
1866 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 6, JUNE 2025

Anchor Attention, Small Cache: Code Generation
With Large Language Models

Xiangyu Zhang , Yu Zhou , Senior Member, IEEE, Guang Yang , Harald C. Gall , Member, IEEE,
and Taolue Chen

Abstract—The development of large language models (LLMs)
has revolutionized automated code generation. However, their
high demand of computation resources has hindered a broader
deployment and raised environmental concerns. A common
strategy for diminishing computational demands is to cache Key-
Value (KV) states from the attention mechanism which is adopted
predominately by mainstream LLMs. It can mitigate the need of
repeated attention computations, but brings significant memory
overhead. Current practices in NLP often use sparse attention
which may, unfortunately, lead to substantial inaccuracies, or
hallucinations, in code generation tasks. In this paper, we analyze
the attention weights distribution within code generation models
via an empirical study, uncovering a sparsity pattern, i.e., the
aggregation of information at specific anchor points. Based on this
observation, we propose a novel approach, AnchorCoder, which
features token-wise anchor attention designed to extract and com-
press the contextual information, and layer-wise anchor attention
enabling cross-layer communication to mitigate the issue of
excessive superposition caused by the compression. The extensive
experiments across multiple benchmark datasets confirm the
effectiveness of AnchorCoder, which can consistently achieve a
significant (at least 70%) reduction in KV cache requirements,
while preserving the majority of model’s performance.

Index Terms—Code generation, attention mechanism, trans-
formers, large language models.

I. INTRODUCTION

AUTOMATED generation of code that aligns with user
intentions poses a significant and enduring challenge

in software engineering [1], [2], [3]. In recent years, the

Received 8 November 2024; revised 11 May 2025; accepted 12 May
2025. Date of publication 15 May 2025; date of current version 16 June
2025. This work was supported in part by the National Natural Science
Foundation of China under Grant 62372232 and in part by the Collaborative
Innovation Center of Novel Software Technology and Industrialization. The
work of Taolue Chen was supported in part by an Overseas Grant from
the State Key Laboratory of Novel Software Technology, Nanjing University
under Grant KFKT2023A04. Recommended for acceptance by C. McMillan.
(Corresponding authors: Yu Zhou; Taolue Chen.)

Xiangyu Zhang, Yu Zhou, and Guang Yang are with the College of
Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing 211106, China (e-mail: zhangx1angyu@nuaa.edu.cn;
zhouyu@nuaa.edu.cn; novelyg@outlook.com).

Harald C. Gall is with the University of Zurich, CH-8050 Zurich, Switzer-
land (e-mail: gall@ifi.uzh.ch).

Taolue Chen is with School of Computing and Mathematical Sci-
ences, Birkbeck, University of London, WC1E 7HX London, U.K. (e-mail:
t.chen@bbk.ac.uk).

Digital Object Identifier 10.1109/TSE.2025.3570680

tremendous progress in deep learning and NLP, especially the
advent of Large Language Models (LLMs [4], [5]), has rev-
olutionized the research of automated code generation [6],
[7]. LLMs for code, e.g., CodeGen [8], CodeLlama [9] and
CodeGeeX [10], have showcased impressive proficiency in
writing code, boosting the productivity of developers across
various programming environments remarkably [11].

Almost all mainstream LLMs (including those for code
which are the main focus of the current paper) adopt the Trans-
former architecture [12], which, in a nutshell, comprise either
an encoder or a decoder, or both, each stacked with multiple
identical blocks. In general, the first block takes the tokenized
sequence encoded by a word embedding layer, followed by
a multi-head scaled-dot self-attention (MHA) layer with an
attention mask corresponding to specific language modeling ob-
jectives and a feed-forward network (FFN) layer. The attention
mechanism [13] underpinning the Transformer architecture is
implemented in the MHA layer, which computes a weighted
representation of each token in the input sequence based on
its relevance to others. Slightly more technically, the word-
embedded token sequence which normally concatenates long
contexts and user prompts gives rise to three embedding matri-
ces, i.e., the query Q, the key K and the value V , on which the
attention (kernel) operations are performed.

P : =Q×KT, (1)

A : = softmax[
P√
dk

�M], (2)

O : = (A× V)×WO, (3)

Namely, assuming the token sequence length L, each entry of
the (unnormalized) relevance matrix P ∈ R

L×L measures the
relevance of the corresponding pair of tokens. The normalized
attention weight matrix A ∈ R

L×L is computed as a scaling op-
eration and an element-wise mask operation with M ∈ R

L×L,
together with a row-wise softmax. Finally, the output hidden
state matrix O is generated by a weighted sum of V with
attention weights in each row of A, usually with an extra linear
transformation WO.

The attention mechanism is very costly, albeit effective. To
reduce its computational demands, a common strategy is to use
the Key-Value (KV) cache. In a nutshell, it is a list of tensors that
stores the K,V embeddings for all previous tokens in the atten-
tion layer for each block (prefilling), utilized and updated during
the autoregressive generation process of LLMs (decoding). A

0098-5589 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0000-6271-746X
https://orcid.org/0000-0002-3723-7584
https://orcid.org/0000-0002-3374-6680
https://orcid.org/0000-0002-3874-5628
https://orcid.org/0000-0002-5993-1665
mailto:zhangx1angyu@nuaa.edu.cn
mailto:zhouyu@nuaa.edu.cn
mailto:novelyg@outlook.com
mailto:gall@ifi.uzh.ch
mailto:t.chen@bbk.ac.uk

ZHANG et al.: ANCHOR ATTENTION, SMALL CACHE 1867

deficiency of KV caching is that LLMs (with billions of param-
eters) may consume substantial additional memory during the
decoding stage, as they need to cache extensive KV states [14],
[15], [16]. For instance, CodeLlama-7B [9] (which requires 14
GB to store model parameters) needs an additional 16 GB for
the KV cache, under a batch size of 32 and a sequence length
of 1,024.1 The memory demand poses challenges for deploying
these models, especially in low resource environments.

Various methods have been proposed to reduce the size
of KV cache. For instance, window attention [17], [18] and
StreamingLLM [19] predict subsequent words by only caching
the most recent KV states. H2O [20] and FastGen [21] have
explored to preserve subsets of the states crucial for prediction
by employing specific patterns. In this paper, these methods are
collectively referred to as KV compression methods. To a large
extent, they leverage sparse, low-rank attention approximation
[22], based on the belief that a subset of tokens contributes the
most values when performing attention operations.

Although current KV compression methods turn out to be
fairly effective in NLP tasks (related to dialogue and text com-
pletion), it is risky to apply them in code generation. Funda-
mentally, these methods typically encourage models to focus
on local information. In code generation tasks, however, exces-
sive reliance on local information may result in discrepancies
between the generated code snippet and either user’s intention
(e.g., in the prompt) or the ongoing decoding process (e.g., from
the context). This primarily stems from the inherent complexity
of code, which naturally exhibits long-range dependencies. For
instance, in repository-level code generation [23], [24], [25], the
relevant context that needs to be considered during generation
comes from not only the current, but also externals, files, e.g.,
imported packages, source code files in the same directory,
configuration files and even API documentation. In many cases,
these artifacts have their own dependencies. Capturing these
long-range dependencies demands more than mere understand-
ing of the local context.

We present an example to illustrate the limitations in current
KV compression methods in the left part of Fig. 1, where
the LLM is supposed to generate code for multiplication of
three numbers. The content within the sliding window (which
captures the local information) only includes ‘∗w∗’. As a result,
the model erroneously interprets this as symbolic emoticons,
which wholly deviates from user’s request (of a mathematical
function).

In this paper, we aim to explore KV compression techniques
devised for code LLMs without the over-reliance on local in-
formation. To this end, we first carry out an empirical study on
code LLMs, based on which we introduce AnchorCoder, a
novel approach that leverages “anchors” to aggregate sufficient
contextual information.

Empirical study. To verify code LLMs’ potential for KV com-
pression, we first identify the sparsity pattern of the attention
weights matrix A in Eq. (2) within code LLMs. We use the

1We assess the storage overhead using fp16 precision. In the case of fp32,
the KV cache demands 32 GB.

Fig. 1. AnchorCoder’s performance on context compression.

Gini coefficient [26] and the sum of top-2 attention weights to
measure the sparsity degree of the attention weights.

Our empirical study (cf. Section II-A) reveals that code
LLMs exhibit high sparsity on attention weights. In the majority
of layers, the Gini coefficient for attention weights exceeds
0.9. Furthermore, the sum of top-2 attention weights typically
accounts for 80% of the total weights. This implies that, in
these layers, the model concentrates on a subset of KV states to
complete generation, while the vast majority of the KV cache
is largely redundant.

Importantly, we discover that code LLMs exhibit a phe-
nomenon of information aggregation around specific tokens.
These tokens, referred to as anchor points [27], [28], [29],
[30], are identified in the first layer which aggregate essential
contextual information, particularly the semantics of each line
of code. They enable the model to effectively summarize and
distill the essential information for subsequent computation. As
the computation progresses through later layers, a prominent
concentration of attention weights on these anchor points is
observed.

Furthermore, we evaluate the state-of-the-art KV compres-
sion methods to see whether they can capture the sufficient
contextual information with different context lengths. To this
end, we design a “needle in a haystack” experiment [31], [32]
tailored for code generation. The experiments reveal that, while
the existing methods can achieve a high accuracy for shorter
code snippets, their performance diminishes significantly for
longer ones, where the “needle” is deeply embedded. In such
cases, the model frequently fails to detect the “needle”, and
consequently, may not adhere to the given instructions. As
illustrated in Fig. 1, the word ‘Multiply’ is buried too deeply,
leading the model to misinterpret the context due to the sparse
attention mechanism. The details are given in Section II-B.

Our new approach. The failure of NLP methods necessitates
a rethinking of KV compression methods for code generation.
While natural language typically exhibits strong local depen-
dencies where words primarily relate to their nearby context
[33] enabling effective local attention strategies, code presents
fundamentally different challenges. Long-distance dependen-
cies are critical to the semantic correctness in programming

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

1868 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 6, JUNE 2025

languages [23], as references to declarations, imports and func-
tion definitions may span hundreds or thousands of tokens,
creating dependency structures that NLP-focused compression
methods fail to preserve. Furthermore, conventional compres-
sion techniques substantially alter the inherent attention pat-
terns of code LLMs as we shall see in Section II, making
them difficult to generalize to programming contexts. The fail-
ure of accounting for code-specific patterns severely impacts
model performance on programming tasks. Additionally, code
comprehension differs fundamentally from NLP. While NLP
methods leverage locality that aligns with human reading pat-
terns, programmers typically rely on both the current line and
its global dependencies. Moreover, each line of code typically
represents an atomic semantic unit [34], reflecting how pro-
grammers naturally structure and interpret code. This human in-
tuition aligns with our empirical analysis of code LLMs, which
reveals that these models implicitly learn to treat line bound-
aries as meaningful structural cues for context compression.
Such alignment between model behavior and code organization
suggests that line-level boundaries provide natural and effective
compression points, helping preserve the semantic integrity of
code representations.

We present AnchorCoder, a novel approach designed to
reduce storage demands of KV caches in code generation mod-
els while preserving essential contextual information. In a nut-
shell, AnchorCoder utilizes a mechanism that “communi-
cates in superposition” [35], aggregating the context to a few
planted anchors. Let us revisit the example in Fig. 1. Typical
sparse attention mechanism tends to ignore context outside
the sliding window (i.e., ‘∗w∗’). In contrast, AnchorCoder,
as shown in the right part of Fig. 1, ensures effective code
generation by compressing a sufficient context. The rationale
lies in the compression phenomenon revealed in the empirical
study, which can reduce the size of context inherently, but does
not substantially degrade model’s performance. More techni-
cally, AnchorCoder features multi-head positional encoding
(cf. Section III-A) and layer-wise anchor attention (cf. Section
III-B), which respectively address the loss of positional infor-
mation due to compression and the degradation of information
during transmission between layers.

To evaluate the performance of AnchorCoder, we con-
duct experiments on three benchmark datasets, i.e., HumanEval
[1], HumanEvalPlus [36] and MBPP [37]. Experiments on the
7B model demonstrate that AnchorCoder maintains model
performance at 102%, 110% and 97% on these three datasets,
respectively. On the 34B model, it maintains performance at
101%, 93% and 101%, while achieving a KV cache budget of
30%, 30% and 28%, through efficient tuning. Furthermore, we
design an experiment that trains AnchorCoder from scratch
where the results show that with a KV cache budget of 30%,
AnchorCoder can still achieve performance comparable to
that of dense attention, thereby validating the effectiveness and
generalizability of AnchorCoder.

Our contributions can be summarized as follows.
• We identify patterns of sparsity in the attention mech-

anisms of code LLMs and uncover the phenomenon of
information aggregation on anchor points within them.

Additionally, we reveal the limitations of current KV com-
pression methods on code LLMs.

• We propose AnchorCoder, a novel sparse attention
based approach, which compresses context through token-
wise anchor attention and mitigates information degrada-
tion through layer-wise anchor attention. This approach
can reduce the KV cache overhead while preserving suf-
ficient contextual information.

To the best of our knowledge, this is the first systematic
research on effective KV compression methods in LLMs for
code generation, and software engineering in general.

Organization. The remainder of this paper is organized as
follows. Section II presents an empirical study on code LLMs.
Section III presents the proposed approach. Section IV gives
the experimental design and Section V reports the results. Sec-
tion VI discusses the limitation of the approach when applied
to general LLMs, as well as potential threats to validity. Sec-
tion VII reviews the related work. Section VIII concludes the
paper.

The source code of AnchorCoder is available at https://
github.com/NUAAZXY/Anchor_Coder and the models are
available at https://huggingface.co/AnchorCoder.

II. EMPIRICAL STUDY

In general, models with sparse attention weights are rela-
tively easier to be compressed, as only a limited number of KV
states are needed. It is crucial to study the sparsity pattern of
attention weights in code LLMs which is largely uncharted.

A. Sparsity Pattern of Code Generation Models

We carry out an empirical study with four code LLMs of
varying scales, i.e., CodeGPT-0.1B [38], PolyCoder-0.4B [39],
CodeGen-2B [8], CodeLlama-7B [9] on three typical bench-
mark datasets, i.e., HumanEval [1], HumanEvalPlus [36] and
MBPP [37]. These datasets comprise programming challenges
designed to assess functional correctness and user prompts
alongside corresponding code.

Given a vector �w = (w1, · · · , wn) of extracted attention
weights, where wi denotes the attention weight on a specific to-
ken, we consider two metrics, i.e., Gini coefficient and the sum
of top-2 weights, to measure the sparsity of attention weights
distribution. The Gini coefficient is a standard metric for assess-

ing sparsity [26], which is given by G=
∑n

i=1

∑n
j=1 |wi−wj |
2n2w̄ ,

where w̄ is the mean of all attention weights. The sum of top-2
attention weights, is defined as the sum of the two highest atten-
tion scores within S. Formally, it is given by T = w(1) + w(2)

where w(1) and w(2) denote the highest and second highest
weight in �w. The sum of top-2 attention weights provides an
intuitive measure of concentration within attention, indicating
the proportion of attention weights attributed to the key posi-
tions that the model focuses on the most.

Fig. 2 presents the Gini coefficient and the sum of top-2
attention weights for each layer of the four models, where
higher values (approaching 1) indicate higher sparsity. Clearly,
except for the first layer, the distributions of attention weights

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NUAAZXY/Anchor_Coder
https://github.com/NUAAZXY/Anchor_Coder
https://huggingface.co/AnchorCoder

ZHANG et al.: ANCHOR ATTENTION, SMALL CACHE 1869

Fig. 2. Sparsity of attention weights in code LLMs.

tend to be sparse. This indicates that in the majority of layers
within the model, attention is predominantly concentrated on a
small subset of KV states, while the attention weights on other
positions are close to zero2. Notably, larger models, especially
those with increased dimensions in their hidden states, tend to
achieve a higher degree of sparsity. For instance, CodeLlama-
7B shows the highest Gini coefficient and sum of top-2 attention
weights.

Importantly, the higher sparsity exhibited by the attention
weights does not imply that the model can work based on only
few tokens. Rather, it suggests that the positions with high atten-
tion weights aggregate the contextual information. The attention
mechanism operates by computing attention weights through
the dot product of previous query states and key states (Eq. 1),
which is further used to generate the hidden state via a weighted
sum of value states (Eq. 3). This indicates that these positions
encode content from previous contexts rather than just a particu-
lar token. We also present an attention heatmap for CodeLlama-
7B, depicted in Fig. 3 which visualizes the attention weights
between tokens. (The darker colors represent higher attention
weights.) In Layer 0, we notice that the attention weights are
densely distributed, with the model allocating relatively even
attention to each token. In contrast, at deeper layers (e.g., the

2In this paper, ‘KV state’ and ‘position’ refer to location in a particular
layer, while ‘token’ refers to location across all layers.

Fig. 3. Attention heatmap of CodeLlama-7B.

8th, 16th and 31st layer), the model tends to focus on fewer
pieces of aggregated information, as highlighted by the red
boxes. As mentioned in Section I, the specific tokens that the
model concentrates on are referred to as anchor points, where
the model aggregates and summarizes previous information in
the initial layer via dense attention. As the processing proceeds
to deeper layers, the model then uses these anchor points to pre-
dict the next token. In addition, the first few tokens in the code
receive very high attention weights and often represent absolute
positions, known as ‘sink tokens’, as introduced in [19].

To delve deeper into the patterns of attention weights in
code LLMs, we examine the tokens (excluding ‘sink tokens’)
that garnered the most attention across the three datasets (i.e.,
HumanEval, HumanEvalPlus and MBPP), as shown in Table I.
(In this table, num represents the frequency of these tokens
receiving the highest attention weights, while ratio indicates
their proportion relative to the total number of tokens analyzed.)
Surprisingly, the model does not predominantly focus on tokens
that carry critical semantic content, such as Python keywords.
Instead, it predominantly focuses on relatively semantic-free
tokens such as linebreak tokens (‘\n’). For instance, in CodeL-
lama, 78.2% of the attention is concentrated on ‘\n’, while only
21.8% is distributed among other tokens. This further illustrates
the phenomenon of information aggregation within the model,
as these tokens would be inadequate for prediction. The possible
explanation would be that the model compresses contextual
information into these ‘\n’, highlighting a unique aspect of
compression mechanism in code LLMs.

In summary, by a thorough analysis of the attention mecha-
nism for representative LLMs for code generation, we confirm
the sparsity pattern of the model’s attention and find that the
linebreak token acts as an anchor point in the model, enabling
the compression of each line of code. This discovery highlights
the tremendous potential of using sparse attention for code
generation by leveraging the compressed information.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

1870 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 6, JUNE 2025

TABLE I
DISTRIBUTION OF ATTENTION WEIGHTS ON TOKENS

Model
‘\n’ others

num ratio num ratio
CodeGPT-0.1B 1.5× 105 24.8% 4.6× 105 75.2%
PolyCoder-0.4B 3.5× 105 32.4% 7.2× 105 67.6%
CodeGen-2B 1.4× 106 90.8% 1.4× 105 9.2%
CodeLlama-7B 1.3× 106 78.2% 3.5× 105 21.8%

B. Evaluation of Existing KV Compression Methods

As the sparsity of attention weights within code LLMs is
confirmed, a natural question is whether the state-of-the-art
methods, (such as StreamingLLM [19] and H2O [20]) in NLP
can be applied to code LLMs directly. To answer this question,
we design a “needle in a haystack” experiment [31], [32] tai-
lored for code generation.

We construct a list l=[x1, x2, · · · ,‘needle’,· · · , xn]
of length n, where xi’s are randomly generated
numbers, and instruct LLMs to complete the code
assert ‘needle’ in l == and assert
‘needle’ not in l == with the prompt “# Determine

if there is ‘needle’ in this list, and complete the code by filling
in True or False.” We vary n from 64 to 512, with the ‘needle’
uniformly distributed across positions within the list.

The purpose of this experiment is to observe whether a model
using the sparse attention mechanism can locate the “needle”,
reflecting their capability in retrieving contextual information.
As it is a binary classification task, the prediction accuracy
should ideally be significantly greater than 0.5; otherwise it
suggests that the model fails to follow instructions to complete
the code. Our designed experiment provides a direct assessment
of the model’s information context retrieval capability and its
adherence to prompts [40]. Compressing the KV cache could
potentially weaken these abilities, which are crucial for gener-
ating correct code.

The results, illustrated in the Fig. 4, show a comparison
between sparse and dense attention methods across varying con-
text lengths and depths of “needle” placement. StreamingLLM
and H2O display high accuracies with shorter list lengths, in-
dicating that limited attention extraction can handle context
information and follow prompts in short texts. However, as the
list length increases (with deeper “needle” positions), the per-
formance of these models experiences a significant degradation
with accuracy approaching zero, primarily due to the constraints
imposed by the window size which prevents the models from
querying the input prompt effectively. We hence can conclude
that the method of extracting parts of the context using sparse
attention is insufficient for code generation models.

III. THE ANCHORCODER METHOD

In this section, we propose AnchorCoder, a novel KV
compression method. The workflow of AnchorCoder is illus-
trated in Fig. 5. Considering that, as shown in Fig. 3, attention
patterns in certain model layers are dense, we preserve selected
dense layers to maintain model performance. Based on the
observation of anchor phenomena in code LLMs, we implement

Fig. 4. Results of the “needle-in-a-haystack” experiment.

Fig. 5. Workflow of AnchorCoder. We illustrate the attention cache
process of AnchorCoder (omitting MLP, Softmax and Normalization
components of the Transformer model). AnchorCoder comprises three main
components: The upper part represents Dense Attention Layers (implemented
in layers 0, 16 in AnchorCoder-7B with 15% KV budgets), while the
remaining layers utilize Token-wise Anchor Attention for code line cache
compression, as shown in the middle part. Considering the limited bandwidth
of residual stream, valuable compressed information from shallow layers may
struggle to propagate to deeper layers of the model. Therefore, we set an
Anchor Layer (layer 16) that bypasses upper-layer information directly to
deeper layers (layer 24–31), as illustrated in the bottom part.

cache compression for code lines via Token-wise Anchor At-
tention. Finally, since information compression inevitably leads
to context loss which becomes more pronounced during the
model’s residual connection process, we set an Anchor Layer
that bypasses upper-layer information directly to deeper layers.
We first introduce the token-wise anchor attention mechanism

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ANCHOR ATTENTION, SMALL CACHE 1871

Fig. 6. Upper part provides the attention heatmap deploying different KV cache compression methods. The lower part provides the illustration of
AnchorCoder.

to reduce the required size of the KV cache (Section III-A),
followed by the layer-wise anchor attention to mitigate the
bandwidth problem (Section III-B).

A. Token-wise Anchor Attention

The empirical study in Section II reveals that the distribu-
tion of attention weights in code generation models is highly
sparse and tends to aggregate information on certain anchor
points. Although most of these anchor points are linebreak to-
kens (e.g., making up 78.2% in CodeLlama-7B), relying solely
on them may lead to contextual information loss (21.8% is
discarded). To address this issues, we introduce Token-wise
Anchor Attention (TAA), a method that plants artificial an-
chors for each line of code and trains them as aggregator of
contextual information. An illustration of AnchorCoder is
given in Fig. 6 (lower part). Compared to Window Attention
and its variants, e.g., H2O (which includes ‘heavy-hitters’) and
StreamingLLM (which adds ‘sink tokens’), AnchorCoder
plants the anchor <ANC>0 to compress the method name
and parameters, and <ANC>1 to compress the comments on
function’s purpose as shown in Fig. 6. By these predefined
anchors, the model can perform attention operations merely on
these positions, reducing the required number of KV states.

Formally, assume a code snippet (from a training dataset)
takes the following form,

D = x1, . . . , xp, \n, xp+2, . . . , xq, \n, . . . , xn

which comprises multiple lines of code separated by linebreak
tokens ‘\n’. (Here, the total length of the code snippet is n and
each xi is a token.)

We append the special token <ANC>3 after each \n, obtain-
ing Danchored =

x1, . . . , xp, \n,<ANC>0, xp+3, . . . , xq,

\n,<ANC>1, . . . , xn

To restrict model’s concentration on anchors, we compute
an attention mask (as per M in Eq. (2)) in Algorithm 1. This

3Note that <ANC> is only used in the computational and will not appear
in the generated code.

Algorithm 1: Attention Mask Algorithm.

attention mask M comprises two elements, i.e., autoregressive
mask (Line 3-4) and anchor mask (Line 5-9). The autoregres-
sive mask is designed to prevent the model from attending to
future tokens, which is achieved by setting the weights of these
positions to a very small value, i.e., neg_inf , making their
attention weights zero after applying softmax. The anchor mask
is designed to mask tokens between anchors. Specifically, given
a set I of anchor indices (e.g., in Danchored the anchor index
for <ANC>0 is p+ 2), we mask all tokens located between
two consecutive anchor indices to ensure that attention is con-
centrated solely on these anchors.

Importantly, AnchorCoder preserves the original attention
sparsity patterns of code LLMs, ensuring that their core func-
tionalities remain unaffected. A comparison of the heatmaps
from AnchorCoder in Fig. 6 (upper part) with those from dense
attention mechanisms in Fig. 3 reveals a strong similarity which
highlights AnchorCoder’s capability to effectively leverage ex-
isting attention patterns. The similarity in attention patterns
enables the model to be tuned efficiently without requiring

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

1872 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 6, JUNE 2025

extensive computational resources. Indeed, we employ Low-
Rank Adaptation (LoRA) [41], which achieves training efficacy
by tuning a small set of parameters. LoRA is particularly suit-
able for our method because it allows for precise modifications
to the attention mechanism while preserving the underlying
sparsity patterns that naturally occur in the model.

Our context compression approach minimizes information
loss through “communication in superposition”, effectively pre-
serving the semantics of the context. However, in its plain form,
it primarily considers the positional information of anchors
when calculating attention weights, disregarding the relative
positions of overlapping contexts within them. In code LLMs,
positional information is crucial [42], as even slight deviations
can significantly alter the semantics.

To address this issue, inspired by the concept of Multi-Head
Attention (MHA), we propose Multi-Head Positional Encoding
(MHPE), which incorporates independent positional encodings
into the various attention heads of anchors, thereby mitigating
the loss of positional information.

In MHA, model’s query, key, and value vectors are divided
into multiple subspaces. Each attention head processes infor-
mation from a distinct subspace, focusing on a specific subset
of tokens and capturing their unique features and relationships
within that subspace. This division allows the model to attend
to different tokens across various attention heads, thereby en-
hancing its ability to process complex contextual information.

When handling tokens compressed within anchors, an opti-
mal strategy is to assign individual positional information to
each token. To achieve this, we leverage the characteristic of
MHA for its ability to extract features from different subspaces.
We treat these compressed tokens as distinct features stored in
the anchors, distributed across their respective subspaces. By
computing feature correlations within these subspaces, we can
effectively perform attention calculations on these compressed
tokens.

To implement MHPE, we utilize Rotary Position Embedding
(RoPE) as the positional embedding method. RoPE rotates
the input vectors to supervise dependencies among tokens at
varying positions within the sequence. For anchors in Danchored,
we use specialized attention heads to process their subspaces
independently, and incorporate positional information of the
tokens compressed within these anchors. In detail, MHPE can
be defined as

k̃ = concat(Rs0k0, · · · , Rshead
khead),

where for each si ∈ S, RΘ,si is a block diagonal matrix with
blocks of the form

(Rsi)t =

(
cos siθt − sin siθt
sin siθt cos siθt

)
, θt = θ−2t/d

for t= 1, · · · , d
2 . Note that {k0, · · · , khead} represents a set of

key states for attention heads with d dimensions, and S is a set
of position indices between anchors.

B. Layer-Wise Anchor Attention

In LLMs, residual stream plays a crucial role in passing
information across layers. However, in AnchorCoder, the

residual stream may be affected by its bottleneck, leading to
information degradation. The residual stream adds each layer’s
output back to its input before passing it to the next layer, ensur-
ing a consistent flow of information. Intuitively, this reinforces
the information from the previous layers, effectively allowing
the model to track changes to the input as it propagates through
the layers [35], [43]. Formally

r̂l = rl−1 + attn(LN(rl−1))

rl = r̂l + mlp(LN(r̂l)),

where

attn(x) =WO × V × softmax

(
Q×KT

√
dk

)
(4)

Here, rl represents the state of the residual stream after writing
information at the l-th layer, LN(·) denotes layer normalization,
mlp(·) denotes the multi-layer perceptron in transformer, r̂l
represents the intermediate representation in residual compu-
tation, and WQ,WK ,WV ∈ R

d×d are matrices that transform
the inputs to query, key and value vectors, respectively, with d
being the dimension of the model. Since each transformer layer
writes information from the current layer to the residual stream,
it often faces so called activation bottlenecks [35], where the
dimension required to write complete information from each
layer is much higher than that of the residual stream itself.
As a result, it is virtually impossible to retain the complete
information written by each layer, and the model must find
ways to manage the limited capacity of the residual stream.
Previous research has shown that attention heads writing in
the opposite direction to the residual stream may effectively
eliminate certain features and alleviate the problem of activation
bottlenecks [44].

To determine whether a similar phenomenon happens in code
LLMs, we analyze the eigenvalues of the matrix WOV =WO ×
WV . As per Eq. 4, WOV writes “linearly” to the residual stream
and does not mix information between tokens, thereby directly
influences the state updates within this stream. In contrast,
WQK =WQ ×WK mixes information between tokens and is
gated by the (nonlinear) softmax [45]. The presence of negative
eigenvalues in WOV of attention heads would indicate that the
model is removing information from the residual stream, revise-
which may degrade the performance of the neural network. This
is because negative eigenvalues suggest that certain dimensions
in the feature space are being shrunk or collapsed, rather than
being preserved or enhanced as intended. In the context of
attention mechanisms, which are designed to focus on the most
relevant parts of the input data, this could mean that the model
is inadvertently ignoring or downplaying important features.

Our analysis (Fig. 7) reveals that, in some attention heads
within the model, a majority of the eigenvalues of WOV are
negative. This suggests that these attention heads are writing in
the opposite direction into the residual stream, deleting infor-
mation and alleviating the activation bottleneck issue [35].

Previous studies observed that models can make accurate
predictions at shallow layers, which may become incorrect in
deeper layers [46], [47]. This suggests that crucial evidence
present in the shallow layers is being removed or discarded

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ANCHOR ATTENTION, SMALL CACHE 1873

Fig. 7. Eigenvalue distribution of WOV .

as information flows through the model. Logically, certain at-
tention heads are responsible for deleting the evidence via the
residual stream, leading to information degradation. In An-
chorCoder, as the anchors aggregate contextual information
resulting in a superposition, the deletion hehavior of the at-
tention heads may be amplified, thereby increasing the risk of
losing crucial information in generation.

To mitigate this issue, we introduce a simple yet efficient
method, namely, Layer-wise Anchor Attention (LAA), illus-
trated in Fig. 8. LAA alleviates the impact of information loss
by setting a bypass for the residual stream. Specifically, we set
up an specific anchor layer, within the shallow layers of the
model. The KV states of this anchor layer are then utilized
as additional targets for attention calculations in deeper layers,
which can be formalized as

LAA(Q,K, V) = softmax

(
Q× K̃T

√
dk

)
Ṽ ,

K̃ = concat(K,K ′), Ṽ = concat(V, V ′),

where Q,K, V are query, key and value states of the current
layer, K ′, V ′ denote key and value states of the anchor layer,
dk represents the dimension of the model.

We provide an illustrative example in Fig. 8. Given a resid-
ual stream with a bandwidth of 3 features, when the residual
stream bandwidth becomes saturated, WOV will delete certain
features and add new ones, resulting in information loss. LAA
effectively recovers crucial information that might otherwise
be lost as data flows through the model layers by incorporat-
ing shallow-layer KV states into deeper attention calculations
without introducing additional parameters.

This design enhances the completeness of the residual
stream, significantly boosting model’s capacity to recognize
and process shallow features. Notably, since LAA reuses the
KV cache in anchor layer to recover information, it does not

Fig. 8. Workflow of layer-wise anchor attention.

incur additional memory overhead. Moreover, although LAA
requires extra computation, it does not significantly increase the
inference latency, which will be discussed in Section V-C.

IV. EXPERIMENT SETUP

We carry out extensive experiments for AnchorCoder to
address the following three research questions:
RQ1: How accurate is the code generated by

AnchorCoder?
RQ2: What are the KV cache requirements of

AnchorCoder?
RQ3: How do MHPE and LAA contribute to model’s

performance?

Base Model. We use CodeLlama-7B and CodeLlama-34B [9]
(built on top of LLaMA 2 [48]) as the base models for An-
chorCoder, which we will refer to as AnchorCoderT -7B
and AnchorCoderT -34B, respectively. To mitigate the impact
of utilizing additional data, we trained a Llama-like model
from scratch for both the baseline and AnchorCoder. This
model features 100 million parameters and a hidden size of
512, encompassing 16 transformer blocks and 8 attention heads.
This variant of AnchorCoder is referred to as Anchor-
CoderP. Since AnchorCoderP is initialized randomly, its
attention remains dense, allowing us to assess the generaliz-
ability of AnchorCoder when applied to models with dense
attention.

Datasets. We incrementally tune AnchorCoderT on the
CodeSearchNet and CodeHarmony datasets, respectively, and
evaluate the experimental results on the HumanEval [1],

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

1874 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 6, JUNE 2025

HumanEvalPlus [36] and MBPP [37] datasets. For Anchor-
CoderP, we train from scratch using CodeSearchNet with a
total of 500M tokens.
• CodeSearchNet: The CodeSearchNet corpus [49] is a

dataset comprising 2 million (comment, code) pairs
from open-source libraries hosted on GitHub. It contains
code and documentation for several programming lan-
guages. We utilize the Python code subset for incremental
pre-training.

• CodeHarmony: CodeHarmony4 is curated from existing
open-source datasets, and employs LLMs for automated
test case generation.

• HumanEval: The HumanEval dataset [1], released by
OpenAI, includes 164 programming problems with func-
tion signatures, docstrings, bodies, and several unit tests.

• HumanEvalPlus: The HumanEvalPlus dataset [36],
building upon the foundation established by HumanEval,
has expanded its test cases by 80 times, thereby enhancing
its capability to assess the correctness of code.

• MBPP: The MBPP benchmark [37] consists of approx-
imately 1,000 crowd-sourced Python programming prob-
lems, designed to be solvable by entry-level programmers.
Each problem includes a task description, code solution
and three automated test cases.

Baseline. To compare with our approach, we select Window
Attention [18], StreamingLLM [19] and H2O [20] which are
training-free methods based on sparse attention. In general,
these methods employ the concept of sliding window to reduce
the number of tokens that the model attends to, and incorpo-
rate additional global information, such as attention sinks for
StreamingLLM and heavy hitters for H2O. In addition to these
approaches, we also consider training-based AutoCompressors
[50] as a baseline, which incorporates additional summary to-
kens for context compression and utilizes them as soft prompts
for subsequent generation.

Metrics. To evaluate the performance of AnchorCoderP, we
employ pass@k and KV Cache Budget as the metrics for eval-
uating model’s performance. The pass@k metric reports the
percentage of problems solved within the k generated codes. In
this study, we utilize the pass@1 metric with greedy decoding
for both AnchorCoder and baselines, which provides the
most direct reflection of the model’s generative capability and
is not subject to the influence of randomness. Considering the
different strategies employed by various methods, we are unable
to set the same budget for each model. Therefore, we have set
a similar KV cache budget for each model, allowing for a 1.5%
deviation.

Due to the limited computational resource, we only use 500M
tokens to train AnchorCoderP, which is challenging for gen-
erating correct code in the HumanEval and MBPP datasets.
Therefore, we use the perplexity and accuracy metric to evaluate
the language modeling and next token prediction capability of
different methods respectively.

4https://huggingface.co/datasets/Flab-Pruner/CodeHarmony

Implementation Detail. For AnchorCoderT and its corre-
sponding baseline, we fine-tuned CodeLlama on the Code-
SearchNet and CodeHarmony datasets, which together contain
150M tokens. For AnchorCoderT -7B, we used Low-Rank
Adaptation (LoRA) [41] to fine-tune the WQ, WK , WO, and
WV matrices of the model with a rank of 16 and a learning rate
of 5e-5. The training of AnchorCoderT -7B was conducted
on a single Nvidia RTX 4090. We controlled the sparsity of the
attention weights by creating three variants, each utilizing TAA
in a different number of layers. Specifically, we configured the
models to use TAA in 24, 28 and 30 (out of 32) layers, with
the remaining layers using dense attention to aggregate context.
The anchor layers for the three variants are positioned at the 8th,
8th and 16th layer, respectively. For AnchorCoderT -34B, to
avoid the significant latency introduced by offloading during
distributed training, we used QLoRA [51] with rank 32 and
fine-tuned the model using 4 Nvidia RTX A6000 GPUs. The
models used TAA in 36, 42 and 45 (out of 48) layers, while the
rest of the settings remained unchanged.

For AnchorCoderP and its corresponding baseline, we
employ the 500M tokens from CodeSearchNet dataset for full-
parameter training with a learning rate of 5e-4. This training
was accomplished using 5 Nvidia RTX 4090, with 12 out of
16 layers utilizing TAA, while the remaining layers employed
dense attention.

All experimental results are produced using greedy decoding
to eliminate randomness.

V. EXPERIMENT RESULTS

A. RQ1: Accuracy of the Generated Code

To address RQ1, we evaluate AnchorCoder on the Hu-
manEval, HumanEvalPlus and MBPP datasets, respectively. To
ensure fairness, we set the KV budget in the baseline to the
same level. Notably, due to the varying compression strategies
employed by each method, the length of the generated code
differs. Consequently, it is challenging to set the sparsity level
exactly the same. We control the sparsity difference between
methods to be within 1.5% for models of both scales.

The experimental results, shown in Table II, indicate that
under the same KV budget and model scale, AnchorCoder
surpasses the baselines and achieves performance comparable
to dense attention with KV cache budget at 30%. This suggests
that AnchorCoder maintains model performance even at a
compression rate of approximately 30%.

Local attention-based methods such as Window Attention
and StreamingLLM tend to generate code with hallucinations
and inconsistent with the prompt, due to their inherent limita-
tion in concentrating only on local information and failing to
capture the user’s intent specified in the prompt. Additionally,
Window Attention cannot correctly generate tokens beyond the
window size because it overlooks the tokens at the beginning of
the text, which are crucial for representing the absolute position
in the text [19].

H2O achieves attention compression by discarding tokens
with low attention weights in previous computations, assuming
these tokens are insignificant for predicting subsequent tokens.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

https://huggingface.co/datasets/Flab-Pruner/CodeHarmony

ZHANG et al.: ANCHOR ATTENTION, SMALL CACHE 1875

TABLE II
PERFORMANCE COMPARISON OF ANCHORCODERT IN RQ1

Model Size Method
HumanEval HumanEvalPlus MBPP

KV Budget % (↓) Pass@1 % (↑) KV Budget % (↓) Pass@1 % (↑) KV Budget % (↓) Pass@1 % (↑)

7B

Dense 100 31.10 100 23.17 100 39.40

Window Attention
30 0.00 30 0.00 28 0.00
20 0.00 20 0.00 18 0.00
15 0.00 15 0.00 12 0.00

StreamingLLM
30 6.10 30 4.27 28 3.40
20 1.83 20 1.22 18 1.60
15 1.22 15 0.00 12 1.80

H2O
30 17.68 30 14.02 28 17.60
20 14.63 20 10.98 18 15.40
15 14.02 15 10.36 12 14.00

AutoCompressors
30 24.39 30 21.34 28 23.00
20 23.17 20 20.12 18 20.20
15 17.07 15 13.41 12 17.00

AnchorCoderT
30 31.71 30 25.61 28 38.20
20 29.88 20 25.00 18 38.00
15 27.44 15 24.3 12 36.40

34B

Dense 100 40.24 100 35.37 100 56.80

Window Attention
30 0.00 30 0.00 28 0.00
20 0.00 20 0.00 18 0.00
15 0.00 15 0.00 12 0.00

StreamingLLM
30 7.32 30 6.10 28 8.60
20 3.66 20 2.44 18 6.40
15 1.22 15 0.00 12 3.20

H2O
30 21.34 30 17.07 28 28.40
20 18.90 20 15.86 18 23.20
15 17.68 15 15.24 12 22.80

AutoCompressors
30 35.98 30 29.88 28 49.80
20 31.10 20 28.05 18 44.20
15 28.66 15 23.78 12 38.40

AnchorCoderT
30 40.95 30 32.93 28 57.40
20 35.98 20 29.27 18 55.60
15 35.37 15 27.44 12 53.20

However, in code generation tasks the spatial positions of re-
lated code fragments can be far apart, and H2O might discard
tokens that are insignificant in the earlier context but critical
in the subsequent context. Moreover, AutoCompressors uses
multiple summary tokens as soft prompts to represent more
contextual information with a few key-value caches. However,
it assigns absolute positional information to these tokens, po-
tentially affecting model’s generalization ability. Furthermore,
the summarization method based on soft prompts can disrupt
the positional information of the context. In contrast, Anchor-
Coder compresses context into the anchor points, thereby
maintaining the model’s generation capability with less KV
states. In Section V-D, we conduct further case studies where
an analysis of the limitations of the window attention-based
approach is presented.

Note that the training-based methods, such as AutoCompres-
sors and AnchorCoder, we only update the self-attention-
related parameters using LoRA. However, one may argue incor-
porating additional data could introduce an unfair comparison
with other baseline methods. To ensure fairness and further
validate the effectiveness of AnchorCoder, we pre-trained
AnchorCoderP and other baselines from scratch on the Code-
SearchNet dataset and evaluated their performance on language
modeling tasks.

The experimental results are shown in Table III. In this ex-
periment, the KV cache budget is set to 30%. Notably, under

TABLE III
PERFORMANCE COMPARISON OF ANCHORCODERP IN RQ1

Method Perplexity (↓) Accuracy % (↑)
Dense 4.32 70.46
Window Attention 5.28 67.12
StreamingLLM 5.30 67.02
H2O 5.08 67.69
AutoCompressors 4.53 69.23
AnchorCoderP 4.38 70.35

this setting, AnchorCoder can achieve performance compa-
rable to Dense Attention. Regarding the training-free, sliding
window-based method, it performed well across the evaluation
metrics in this experiment, largely due to its design, which
prioritizes reducing the KV cache and perplexity in long-text
generation, rather than generating contextually coherent code.
AutoCompressors demonstrated superior performance in this
experiment compared to directly tuning CodeLlama, mainly
due to the use of full-parameter fine-tuning in this setting, which
enhanced the method’s overall effectiveness. This result also
supports the efficient fine-tuning capability of AnchorCoder.
In addition, this experiment can also demonstrate the gen-
eralizability of AnchorCoder, where AnchorCoder can
be applied to models with lower sparsity of attention, as the
AnchorCoderP is initialized randomly, which prompts the
model to allocate attention uniformly across all tokens.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

1876 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 6, JUNE 2025

TABLE IV
KV CACHE OVERHEAD DURING DECODING PHASE ON HUMANEVAL

IN RQ2

Method Pass@1 KV cache (GB) length ratio
Dense-7B 31.10 5.02 55.74 9.01×10-2

AnchorCoderT -7B
31.71 1.52 (↓70%) 56.12 2.71×10-2

29.88 1.06 (↓79%) 56.01 1.90×10-2

27.44 0.77 (↓85%) 54.34 1.42×10-2

Dense-34B 40.24 16.43 60.12 2.73×10-1

AnchorCoderT -34B
40.95 5.27 (↓70%) 60.89 8.65×10-2

35.98 3.34 (↓80%) 60.37 5.53×10-2

35.37 2.70 (↓84%) 66.79 4.04×10-2

B. RQ2: Memory Consumption of AnchorCoder

To address RQ2, we present a comparative analysis of the
total KV cache consumption (GB) required during the model
decoding phase of AnchorCoderT -7B versus that of dense
attention. Unlike the Sparsity metric, which focuses on the
percentage of tokens involvement in computing the attention
weights, the evaluation of KV cache overhead necessitates a
consideration of the caching strategies employed during the pre-
filling phase. Specifically, dense attention requires the storage
of the KV cache for all tokens in the prompt, as these cached
representations will subsequently serve as context in the decod-
ing phase. In contrast, while AnchorCoder also processes all
tokens within the prompt for information aggregation during
prefilling, it only needs to cache the KV states for the anchor
points. The sparsity metric primarily assesses the number of
tokens involved in the computation.

As shown in Table IV, AnchorCoderT -7B achieves com-
parable performance to Dense Attention with an overall
KV cache requirement of only 1.52 GB. Given the vari-
ance in text lengths generated by different methods, we
computed the ratio (GB/token) of cache and length to de-
termine the average cache required per token. Anchor-
CoderT -7B maintains performance levels of 102%, 96%
and 88% when reducing cache overhead by 70%, 79%
and 85%, respectively. Additionally, AnchorCoderT -34B
similarly maintains performance of 102%, 89% and 88%
when reducing cache overhead by 70%, 80% and 84%,
respectively.

Specifically, for each layer, the use of TAA reduces KV cache
overhead by 89% compared to layers utilizing dense attention.
Based on the experimental results, we recommend targeting an
overall cache compression rate of approximately 30%, which
corresponds to three-quarters of model layers employing TAA.
This configuration minimizes cache overhead while preserving
model performance as much as possible.

C. RQ3: Ablation Study

For RQ3, we first design ablation experiments that primarily
focus on two metrics: Pass@1 and runtime, shown in Table V.
We then examine the distribution of attention within the model
when utilizing LAA to underscore its significance.

Ablation experiments on Pass@1. The objective of studying
the Pass@1 metric is to investigate the impact and contribution

TABLE V
ABLATION RESULT IN RQ3

Model Pass@1
Runtime

Prefilling Decoding Throughput
Dense 31.10 3.62× 10−2 560.39 29.24
AnchorCoderT -7B 31.71 4.54× 10−2 420.35 38.98
-w/o LAA 29.27 4.15× 10−2 415.17 39.46
-w/o MHPE 29.88 3.86× 10−2 417.28 39.26
-TAA only 28.04 3.71× 10−2 411.49 39.82

Fig. 9. Attention headmap of CodeLlama and AnchorCoderT -7B.

of each component within AnchorCoder evaluating on Hu-
manEval, as shown in Table V, the 2nd column.

It can be observed that the removal of LAA leads to a
degradation in model performance. This is because the model
has limited dimensions, and compression inevitably leads to
information loss. LAA serves as an alternative pathway for
linking information across layers, significantly reducing this
loss of information. In Fig. 9, we present the attention heatmaps
for CodeLlama and AnchorCoderT , demonstrating that the
layers utilizing LAA do not alter the inherent distribution pat-
tern of attention, which ensures the efficiency of tuning. Addi-
tionally, a substantial portion of attention is allocated to the KV
states in anchor layer, which is crucial for sustaining the overall
performance of the model. MHPE, tailored for anchor points,
enhances the model’s positional awareness within the over-
lapping information by adding relative positional information
across different attention heads, thereby further augmenting the
effectiveness of Anchor Attention.

Ablation experiments on runtime metrics. We aim to investi-
gate the temporal cost of the model in generating extended text
under different settings. To this end, we configure the generation
length to 16,384, which is the training length used by CodeL-
lama, and present the experimental results in Table V, the 3rd-
5th column. In this table, we dissect Runtime into three distinct
metrics: Prefilling (s), which represents the time the model
takes to process the prompt; Decoding (s), which denotes the
time taken for autoregressive generation; Throughput (token/s),
indicating the number of tokens generated per second during the
decoding phase.

Our analysis reveals that AnchorCoder can reduce the
inference latency of CodeLlama by 25%, primarily attributed
to a bandwidth bottleneck during decoding caused by frequent
cache accesses. By reducing the size of the KV cache, we
observe a substantial decrease in decoding latency. The incor-
poration of LAA, serving as a communication channel between

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ANCHOR ATTENTION, SMALL CACHE 1877

Fig. 10. Case study of code generated by AnchorCoder-7B and baseline methods.

layers, increases the computational demands of the model.
However, our ablation studies demonstrate that during the de-
coding phase, latency does not increase significantly, as the
presence of a bandwidth bottleneck necessitates the model ex-
pending more time accessing the KV cache than calculating at-
tention [52], [53], [54]. Consequently, additional computational
demands do not substantially contribute to delay. Nevertheless,
during the prefilling stage, LAA introduces an additional delay
of 3.91× 10−3s (9%) due to computational bottlenecks at this
stage, which is deemed acceptable. Furthermore, our results
indicate that MHPE increases inference latency, as it necessi-
tates the computation of distinct positional encodings for each
attention head.

In summary, our ablation experiments confirm the effec-
tiveness and efficiency of MHPE and LAA. MHPE enhances
the model’s positional awareness by establishing independent
position encodings for each attention head, improving model
performance without added parameters and only adding mini-
mal computational overhead related to position encoding. Sim-
ilarly, LAA recovers information through cross-layer cache,
adding no additional parameters and only incorporating extra
key states into attention calculations, thereby improving model
performance without significantly increasing inference latency.

D. Case Study

In Fig. 10, we present two cases collected from the Hu-
manEval dataset, demonstrating examples where Anchor-
Coder generate correct and incorrect code. We also provide
the results from baseline methods to discuss the effectiveness
of AnchorCoder.

In the first case, Window Attention generates messy code due
to its failure to account for ‘sink tokens’. StreamingLLM uses

an incorrect variable as it cannot access the entire context. H2O
produces hallucinated code as it lacks critical context, leading
to inaccurate generation. AutoCompressors generates a result
that diverges from the input prompt. In contrast, only Anchor-
Coder and Dense Attention generate the correct solution.

In the second case, the baseline methods produce code that
significantly deviates from the intended prompt. Although An-
chorCoder correctly considers the requirement for odd in-
dices in its solution, it overlooks the condition regarding even
elements, resulting in an incorrect output. We attribute this
failure primarily to information loss during the compression
process.

This comparison underscores the strengths and limitations
of AnchorCoder, revealing areas for potential improvement,
particularly in handling more complex conditions.

VI. DISCUSSION

A. Limitations

While AnchorCoder demonstrates promising results for
code LLMs by leveraging code-specific patterns, several lim-
itations may arise when applied to general LLMs. This section
analyzes why our approach is particularly effective for software
engineering applications (such as code generation) but may
have challenges in broader domains.

(1) AnchorCoder is designed based on the distinctive at-
tention patterns observed in our empirical study (Section II)
of code LLMs. These patterns, particularly the high attention
weights assigned to structural tokens such as linebreaks, rep-
resent code-specific phenomena that may not manifest in gen-
eral LLMs trained on natural language. The absence of these

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

1878 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 6, JUNE 2025

consistent anchoring points would invalidate our basic assump-
tion requiring effective information aggregation.

(2) code exhibits more regular syntactic structure and format-
ting, compared to natural language which varies dramatically in
sentences and paragraphs. As demonstrated in the case studies
(cf. Fig. 10), applying compression to irregularly structured text
may lead to information loss. In contrast, code lines allow An-
chorCoder to compress contextual information with minimal
semantic degradation, which is difficult to achieve in natural
language.

(3) the relationship between syntax and semantics dif-
fers fundamentally between code and natural language. Pro-
gramming languages, as an artificial language, follow strict
syntactic rules with predictable information flow: function def-
initions precede implementations, variable declarations pre-
cede usage, imports precede references, etc. These consistent
patterns, combined with the critical importance of preserving
long-range dependencies, make our anchoring strategy partic-
ularly effective for code generation. Natural language, with
its more fluid structure and distinct dependency characteris-
tics [33], may not benefit substantially from the anchoring
mechanism.

These distinctions highlight why AnchorCoder represents
a bespoken, domain-specific solution for software engineer-
ing. By exploiting the unique characteristics of code–its struc-
tured format, consistent syntactic patterns and specific attention
distribution–our approach achieves efficient compression while
maintaining the semantic integrity essential for accurate code
generation.

B. Threats to Validity

Internal Validity. A potential threat to internal validity is the
randomness inherent in LLM decoding. To mitigate the im-
pact of uncertainty on experimental results, we employ greedy
decoding to ensure the certainty of the generated code by the
model, as opposed to the nucleus sampling method commonly
used by most LLMs, which introduces randomness.

External Validity. A potential threat to external validity in our
study is the generalizability of our findings, which pertains to
both language and model types. Our experiments were con-
ducted primarily on Python datasets, which are most commonly
required for code generation tasks. Limited by our devices, we
conducted experiments only on CodeLlama with a 7B param-
eters. Notably, we have observed that larger models exhibited
sparser attention. Therefore, we believe that larger-scale models
have greater potential for compression, which also applies to the
method we proposed.

Construct validity. Evaluation metrics pose a potential threat
to construct validity for code generation tasks. The metric we
selected, pass@k, is the most common and practical in everyday
development, compared to the match-based BLEU and Code-
BLEU metrics. We also compared sparsity and runtime metrics,
which are crucial for assessing the efficiency of code genera-
tion. In addition to this, it is important to acknowledge that the
accuracy of the pass@k metric in assessing the correctness of

generated code is highly dependent on both the quantity and
quality of the test cases used. To ensure the comprehensiveness
and fairness of testing, we have not only utilized the HumanEval
dataset but also employed HumanEvalPlus, which includes over
80 times more test cases compared to HumanEval. This signif-
icant increase in the number of test cases allows for a more
thorough evaluation of the code’s performance in edge cases.
This approach ensures that the assessment of generated code
is robust and reflects real-world operational challenges more
accurately.

VII. RELATED WORK

Code Generation. LLMs have recently demonstrated remark-
able capabilities across various applications, particularly in
programming-related tasks [1], [2]. An early standout is Codex
[1], which leverages a vast GPT model fine-tuned on GitHub
code, fueling the development of Copilot for real-time cod-
ing assistance. Codex has ignited considerable interest in both
academia and industry, catalyzing the creation of numerous
models. For example, DeepMind’s AlphaCode [2] is engineered
to address coding challenges in competitive programming envi-
ronments. Similarly, Meta introduced models such as InCoder
[3] and CodeLlama [9], while Salesforce developed CodeRL
[55] and CodeGen [8]. The BigCode project unveiled StarCoder
[56]. In addition, numerous open-source large-scale models
has further enhanced the capabilities in code generation [57],
[58], [59], [60]. This surge in model development underscores
the significant enhancements in the quality and practicality of
automated code generation, marking a substantial leap forward
in the methodologies and efficiency with which coding tasks
are addressed and accomplished [61], [62].

Beyond model performance, research has also focused on
generation efficiency. SEC [47] proposes skipping certain layers
during inference to obtain predictions, reducing unnecessary
computation. CodeFast [63] aims to identify and halt generation
when redundant tokens are encountered, thereby improving
inference efficiency while maintaining model performance. [61]
explores code-aware quantization strategies that could preserve
accuracy while preventing robustness degradation. [64] uti-
lizes active learning to train a model with a reduced dataset
while maintaining the desired performance. CodeMentor [65]
proposes a framework for few-shot learning that fine-tunes
LLMs for code review tasks using organizational data. These
approaches enhance model efficiency and reduce computational
overhead without sacrificing output quality.

Context Compression. The concept of context compression is
closely related to earlier efforts to archive past representations,
enhancing memory and facilitating long-range sequence mod-
eling in Transformers. Specifically, the Compressive Trans-
former [66] utilizes a learned convolutional operator to con-
dense Transformer activations into a more compact memory
representation. Gisting [67] involves training a language model
to condense prompts into concise sets of “gist” tokens, which
can be cached and reused to enhance computational efficiency.
AutoCompressors [50] compresses long contexts into compact
summary vectors, which are then accessible to the model as

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ANCHOR ATTENTION, SMALL CACHE 1879

soft prompts. [68] proposes a plug-and-play approach that can
incrementally compress the intermediate activations of a speci-
fied span of tokens into more compact forms, thereby reducing
both memory and computational costs in processing subsequent
contexts. In contrast to the aforementioned methods, our pro-
posed AnchorCoder is designed for code generation which
compresses in a more natural manner without altering model’s
inference.

Sparse Attention. The sparse attention mechanism is a variation
of the traditional attention mechanisms used in neural networks,
specifically designed to handle large sequences more efficiently
by reducing the computational time and memory usage. Win-
dow attention [17], [69] leverages the local features of text for
prediction, enabling the model to cache only a minimal amount
of KV state for long text predictions. StreamingLLM [19] ob-
serves the phenomenon of attention sink within large language
models and, building upon window attention, introduces sink
tokens to enhance long text generation capabilities. H2O [20]
achieves sparse attention by discarding values with low atten-
tion scores from the context during decoding, thus maintaining
partial model performance with reduced cache requirements.
FastGen [21] employs a combination of four strategies to ef-
fectively restore attention scores and significantly compress the
KV cache. Based on these insights, AnchorCoder utilizing
sparse attention in general, reduces the cache overhead via
compression rather than extraction, further sustaining model
performance.

VIII. CONCLUSION

We have conducted empirical research to explore the sparsity
patterns of attention in code generation models. We designed a
“needle in a haystack” experiment to demonstrate the ineffec-
tiveness of current sparse attention methods in code generation.
Based on these findings, we have proposed AnchorCoder, a
novel approach which features token-wise and layer-wise an-
chor attention. designed to extract and compress the contextual
information, and mitigate the issues of excessive superposi-
tion caused by the compression, respectively. Comprehensive
experiments have demonstrated that AnchorCoder signifi-
cantly reduces the KV cache overhead while maintaining model
performance.

In the future, we plan to extend the application of Anchor
Attention to a broader spectrum of attention mechanisms, in-
cluding but not limited to multi-query attention (MQA) [70],
multi-head latent attention (MLA) [71], and grouped-query at-
tention (GQA) [72]. More experiments with larger code LLMs
for the repository-level code generation are also planned.

REFERENCES

[1] M. Chen et al., “Evaluating Large Language Models Trained on Code,”
2021, arXiv:2107.03374.

[2] Y. Li et al., “Competition-level code generation with alphacode,” Sci-
ence, vol. 378, no. 6624, pp. 1092–1097, 2022.

[3] D. Fried et al., “Incoder: A generative model for code infilling and
synthesis,” 2022, arXiv:2204.05999.

[4] H. Huang et al., “ChatGPT for shaping the future of dentistry: the
potential of multi-modal large language model,” Int. J. Oral Sci., vol.
15, no. 1, p. 29, 2023.

[5] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on
large language model (LLM) security and privacy: The good, the bad,
and the ugly,” High-Confidence Comput., vol. 4, 2024, Art. no. 100211.

[6] OpenAI, “GPT-4 technical report,” 2023, arXiv:2303.08774.
[7] X. Hou et al., “Large language models for software engineering: A

systematic literature review,” 2023, arXiv:2308.10620.
[8] E. Nijkamp et al., “Codegen: An open large language model for code

with multi-turn program synthesis,” 2022, arXiv:2203.13474.
[9] B. Roziere et al., “Code Llama: Open foundation models for code,”

2023, arXiv:2308.12950.
[10] Q. Zheng et al., “Codegeex: A pre-trained model for code gen-

eration with multilingual benchmarking on humaneval-x,” in Proc.
29th ACM SIGKDD Conf. Knowl. Discovery Data Mining, 2023, pp.
5673–5684.

[11] F. F. Xu, B. Vasilescu, and G. Neubig, “In-ide code generation from
natural language: Promise and challenges,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 2, pp. 1–47, 2022.

[12] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 5998–6008.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

[14] K. Hong et al., “Flashdecoding++: Faster large language model inference
on GPUs,” 2023, arXiv:2311.01282.

[15] Y. Yue, Z. Yuan, H. Duanmu, S. Zhou, J. Wu, and L. Nie,
“WKVQUANT: Quantizing weight and key/value cache for large lan-
guage models gains more,” 2024, arXiv:2402.12065.

[16] Y. Wang and Z. Xiao, “Loma: Lossless compressed memory attention,”
2024, arXiv:2401.09486.

[17] S. Chen, S. Wong, L. Chen, and Y. Tian, “Extending context win-
dow of large language models via positional interpolation,” 2023,
arXiv:2306.15595.

[18] I. Beltagy, M. E. Peters, and A. Cohan, “LongFormer: The long-
document transformer,” 2020, arXiv:2004.05150.

[19] G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis, “Efficient streaming
language models with attention sinks,” 2023, arXiv:2309.17453.

[20] Z. Zhang et al., “H2o: Heavy-hitter oracle for efficient generative
inference of large language models,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 37, 2023, pp. 34661–34710.

[21] S. Ge, Y. Zhang, L. Liu, M. Zhang, J. Han, and J. Gao, “Model tells
you what to discard: Adaptive KV Cache Compression for LLMs,” 2023,
arXiv:2310.01801.

[22] B. Chen, T. Dao, E. Winsor, Z. Song, A. Rudra, and C. Ré, “Scatter-
brain: Unifying sparse and low-rank attention,” Advances in Neural Inf.
Process. Syst., vol. 34, pp. 17413–17426, 2021.

[23] C. Wang et al., “Teaching code LLMs to use autocompletion tools in
repository-level code generation,” 2024, arXiv:2401.06391.

[24] D. Shrivastava, H. Larochelle, and D. Tarlow, “Repository-level prompt
generation for large language models of code,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2023, pp. 31693–31715.

[25] F. Zhang et al., “Repocoder: Repository-level code completion through
iterative retrieval and generation,” 2023, arXiv:2303.12570.

[26] N. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE
Trans. Inf. Theory, vol. 55, no. 10, pp. 4723–4741, 2009.

[27] L. Wang et al., “Label words are anchors: An information flow perspec-
tive for understanding in-context learning,” 2023, arXiv:2305.14160.

[28] Q. Huang et al., “Opera: Alleviating hallucination in multi-modal large
language models via over-trust penalty and retrospection-allocation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2024, pp. 13418–
13427.

[29] Z. Zhang et al., “Anchor function: A type of benchmark functions for
studying language models,” 2024, arXiv:2401.08309.

[30] J. Pang, F. Ye, D. F. Wong, X. He, W. Chen, and L. Wang, “Anchor-
based large language models,” 2024, arXiv:2402.07616.

[31] Y. Kuratov et al., “Babilong: Testing the limits of LLMs with long
context reasoning-in-a-haystack,” 2024, arXiv:2406.10149.

[32] S. Chaudhury, S. Dan, P. Das, G. Kollias, and E. Nelson, “Needle
in the haystack for memory based large language models,” 2024,
arXiv:2407.01437.

[33] H. Liu, C. Xu, and J. Liang, “Dependency distance: A new perspective
on syntactic patterns in natural languages,” Phys. Life Rev., vol. 21, pp.
171–193, Jul. 2017.

[34] T. Lu et al., “From token to line: Enhancing code generation with a
long-term perspective,” 2025, arXiv:2504.07433.

[35] N. Elhage et al., “A mathematical framework for transformer circuits,”
Transformer Circuits Thread, vol. 1, no. 1, p. 12, 2021.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

1880 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 6, JUNE 2025

[36] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
ChatGPT really correct? Rigorous evaluation of large language models
for code generation,” in Proc. Adv. Neural Inf. Process. Syst., vol. 37,
2023, pp. 21558–21572.

[37] J. Austin et al., “Program synthesis with large language models,” 2021,
arXiv:2108.07732.

[38] S. Lu et al., “Codexglue: A machine learning benchmark dataset for
code understanding and generation,” 2021, arXiv:2102.04664.

[39] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proc. 6th ACM
SIGPLAN Int. Symp. Mach. Program., 2022, pp. 1–10.

[40] F. Liu et al., “Exploring and evaluating hallucinations in LLM-powered
code generation,” 2024, arXiv:2404.00971.

[41] E. J. Hu et al., “Lora: Low-rank adaptation of large language models,”
2021, arXiv:2106.09685.

[42] H. Peng, G. Li, Y. Zhao, and Z. Jin, “Rethinking positional encoding
in tree transformer for code representation,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2022, pp. 3204–3214.

[43] A. Kawasaki, A. Davis, and H. Abbas, “Defending large language
models against attacks with residual stream activation analysis,” 2024,
arXiv:2406.03230.

[44] J. Dao, Y.-T. Lao, C. Rager, and J. Janiak, “An adversarial example
for direct logit attribution: Memory management in Gelu-4l,” 2023,
arXiv:2310.07325.

[45] B. Millidge and S. Black, “The singular value decompositions of
transformer weight matrices are highly interpretable,” in AI Alignment
Forum, 2022, p. 17.

[46] Y.-S. Chuang, Y. Xie, H. Luo, Y. Kim, J. Glass, and P. He, “Dola:
Decoding by contrasting layers improves factuality in large language
models,” 2023, arXiv:2309.03883.

[47] Z. Sun, X. Du, F. Song, S. Wang, and L. Li, “When neural code
completion models size up the situation: Attaining cheaper and faster
completion through dynamic model inference,” in Proc. IEEE/ACM 46th
Int. Conf. Softw. Eng., 2024, pp. 1–12.

[48] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat
models,” 2023, arXiv:2307.09288.

[49] S. Liu, X. Xie, J. Siow, L. Ma, G. Meng, and Y. Liu, “Graphsearchnet:
Enhancing GNNs via capturing global dependencies for semantic code
search,” IEEE Trans. Softw. Eng., vol. 49, no. 4, pp. 2839–2855, Apr.
2023.

[50] A. Chevalier, A. Wettig, A. Ajith, and D. Chen, “Adapting language
models to compress contexts,” 2023, arXiv:2305.14788.

[51] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLORA:
Efficient finetuning of quantized LLMs,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 36, 2023, pp. 10088–10115.

[52] NVIDIA, “GPU performance background user’s guide,” 2022. [On-
line]. Available: https://docs.nvidia.com/deeplearning/performance/dl-
performance-gpu-background/index.html

[53] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
movement is all you need: A case study on optimizing transformers,”
Proc. Mach. Learn. Syst., vol. 3, 2021, pp. 711–732.

[54] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast
and memory-efficient exact attention with IO-awareness,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 35, 2022, pp. 16344–16359.

[55] H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C. H. Hoi,
“CODERL: Mastering code generation through pretrained models and
deep reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 35, 2022, pp. 21314–21328.

[56] R. Li et al., “StarCODER: May the source be with you!,” 2023,
arXiv:2305.06161.

[57] D. Guo et al., “Deepseek-Coder: When the large language model meets
programming–the rise of code intelligence,” 2024, arXiv:2401.14196.

[58] Q. Zhu et al., “Deepseek-Coder-v2: Breaking the barrier of closed-source
models in code intelligence,” 2024, arXiv:2406.11931.

[59] L. B. Allal et al., “SantaCoder: Don’t Reach for the Stars!,” 2023,
arXiv:2301.03988.

[60] Y. Wang, H. Le, A. D. Gotmare, N. D. Q. Bui, J. Li, and S. C. H. Hoi,
“Codet5+: Open code large language models for code understanding and
generation,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
2023.

[61] X. Wei et al., “Towards greener yet powerful code generation via
quantization: An empirical study,” in Proc. 31st ACM Joint Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2023, pp. 224–236.

[62] Z. Li et al., “Train big, then compress: Rethinking model size for
efficient training and inference of transformers,” in Proc. Int. Conf.
Mach. Learn., PMLR, 2020, pp. 5958–5968.

[63] L. Guo et al., “When to stop? Towards efficient code generation in LLMs
with excess token prevention,” in Proc. 33rd ACM SIGSOFT Int. Symp.
Softw. Testing Anal., 2024, pp. 1073–1085.

[64] Q. Hu et al., “Active code learning: Benchmarking sample-efficient
training of code models,” IEEE Trans. Softw. Eng., vol. 50, no. 5, pp.
1080–1095, May 2024.

[65] M. Nashaat and J. Miller, “Towards efficient fine-tuning of language
models with organizational data for automated software review,” IEEE
Trans. Softw. Eng., vol. 50, no. 9, pp. 2240–2253, Sep. 2024.

[66] J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap,
“Compressive transformers for long-range sequence modelling,” 2019,
arXiv:1911.05507.

[67] J. Mu, X. Li, and N. Goodman, “Learning to compress prompts with
gist tokens,” in Proc. Adv. Neural Inf. Process. Syst., vol. 37, 2023, pp.
19327–19352.

[68] S. Ren, Q. Jia, and K. Q. Zhu, “Context compression for auto-regressive
transformers with sentinel tokens,” 2023, arXiv:2310.08152.

[69] B. Peng, J. Quesnelle, H. Fan, and E. Shippole, “Yarn: Efficient context
window extension of large language models,” 2023, arXiv:2309.00071.

[70] N. Shazeer, “Fast transformer decoding: One write-head is all you need,”
2019, arXiv:1911.02150.

[71] X. Bi et al., “Deepseek LLM: Scaling open-source language models
with Longtermism,” 2024, arXiv:2401.02954.

[72] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S.
Sanghai, “GQA: Training generalized multi-query transformer models
from multi-head checkpoints,” 2023, arXiv:2305.13245.

Xiangyu Zhang received the M.D. degree from
Nanjing University of Aeronautics and Astronautics
in 2024. He is currently working toward the Ph.D.
degree with the College of Computer Science and
Technology of Nanjing University of Aeronautics
and Astronautics. His research interests include
code generation and model interpretability.

Yu Zhou (Senior Member, IEEE) received the
B.Sc. and Ph.D. degrees in computer science from
Nanjing University China, in 2004 and 2009, re-
spectively. He is a Full Professor with the College
of Computer Science and Technology, Nanjing Uni-
versity of Aeronautics and Astronautics (NUAA).
Before joining NUAA in 2011, he conducted Post-
doctoral Research on software engineering with the
Politechnico di Milano, Italy. From 2015 to 2016,
he visited the SEAL Lab with the University of
Zurich, Switzerland, where he is also an Adjunct

Researcher. His current research interests mainly generative models for soft-
ware engineering, software evolution analysis, mining software repositories,
and reliability analysis. He has been supported by several national research
programs in China. For more information, see https://csyuzhou.github.io/.

Guang Yang received the M.D. degree in computer
technology from Nantong University, Nantong, in
2022. He is currently working toward the Ph.D.
degree with Nanjing University of Aeronautics
and Astronautics, Nanjing. His research interest is
AI4SE and he has authored or coauthored more
than 20 papers in refereed journals or conferences,
such as ACM Transactions on Software Engineering
and Methodology (TOSEM), Empirical Software
Engineering, Journal of Systems and Software, In-
ternational Conference on Software Maintenance

and Evolution (ICSME), and International Conference on Software Analysis,
Evolution and Reengineering (SANER). For more information, see https://
ntdxyg.github.io/.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://csyuzhou.github.io/
https://ntdxyg.github.io/
https://ntdxyg.github.io/

ZHANG et al.: ANCHOR ATTENTION, SMALL CACHE 1881

Harald C. Gall (Member, IEEE) is the Dean of the
Faculty of Business, Economics, and Informatics,
University of Zurich. He is a Professor of software
engineering with the Department of Informatics.
He held visiting positions with Microsoft Research
in Redmond, USA, and University of Washington,
Seattle, USA. His research interests are software
evolution, software architecture, software quality,
and cloud-based software engineering. Since 1997,
he has worked on devising ways in which mining
repositories can help to better understand and im-

prove software development.

Taolue Chen received the bachelor’s and master’s
degrees from Nanjing University, China, and the
Ph.D. degree from Vrije Universiteit Amsterdam,
The Netherlands. He was a Junior Researcher (OiO)
with the Centrum Wiskunde & Informatica (CWI).
Currently, he is a Senior Lecturer with the School of
Computing and Mathematical Sciences, Birkbeck,
University of London. He had been a Postdoctoral
Researcher with the University of Oxford. His re-
search areas include software engineering, program-
ming language, and verification. His present re-

search focus is neuro-symbolic software engineering. He has published about
150 papers in journals and conferences such as POPL, LICS, CAV, OOP-
SLA, ICSE, ESEC/FSE, ASE, ISSTA, ETAPS (TACAS, FoSSaCS, ESOP,
FASE), NeurIPS, ICLR, IJCAI, AAAI, EMNLP, and IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, ACM Transactions on Software Engineering
and Methodology, Empirical Software Engineering, ACM Transactions on
Computational Logic, Information and Computation, and Logical Methods in
Computer Science. He won the Best Paper Award of SETTA’20, the 1st Prize
in the CCF Software Prototype Competition 2022, the QF_Strings (Single
Query Track) at the International Satisfiability Modulo Theories Competition
2023, and ACM SIGSOFT Distinguished Paper Award in 2024. He has served
editorial board or program committee for various international journals and
conferences. For more information, see https://chentaolue.github.io/.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on July 05,2025 at 19:42:08 UTC from IEEE Xplore. Restrictions apply.

https://chentaolue.github.io/

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

