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Abstract—Application Programming Interfaces (APIs) represent key tools for software developers to build complex software systems.
However, several studies have revealed that even major API providers tend to have incomplete or inconsistent API documentation. This
can severely hamper the API comprehension and, as a consequence, the quality of the software built on them. In this paper, we propose
DRONE (Detect and Repair of dOcumentatioN dEfects), a framework to automatically detect and repair defects from API documents
by leveraging techniques from program analysis, natural language processing, and constraint solving. Specifically, we target at the
directives of API documents, which are related to parameter constraints and exception handling declarations. Furthermore, in presence
of defects, we also provide a prototypical repair recommendation system. We evaluate our approach on parts of the well-documented
APIs of JDK 1.8 APIs (including javaFX) and Android 7.0 (level 24). Across the two empirical studies, our approach can detect API
defects with an average F-measure of 79.9%, 71.7%, and 81.4%, respectively. The API repairing capability has also been evaluated on
the generated recommendations in a further experiment. User judgments indicate that the constraint information is addressed correctly
and concisely in the rendered directives.
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1 INTRODUCTION

A PPLICATION Programming Interfaces (APIs) are
widely used by developers to construct or build

complex software systems [1]. Popular applications such
as Facebook, Pinterest, Google Maps, or Dropbox are
well-known examples of major API providers. A developer
of a mobile app, for instance, can use Google Maps APIs for
implementing an application that requires user localization
information. APIs are beneficial not only for software
developers to build software, but also for users of software
[2], [3], [4]. For example, many Facebook users enjoy the
possibility to sign into Web sites and applications using
their Facebook ID, a feature that works on top of the
Facebook APIs.

API documents represent the most important references
for developers to seek assistance or instructions on how to
use a given API [5], [6]. API documents need to express
the assumptions and constraints of these APIs, i.e., the
usage context, so that the clients can follow these guidelines
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and avoid pitfalls when using them [7]. For instance,
Javadoc documents usually provide the main assumptions
and constraints of these APIs, as well as useful examples
for various usage contexts or scenarios. However, software
evolution in turn may lead to API changes. With these
changes, the corresponding documents are accidentally
overlooked and not adapted accordingly, so that defective
API documents are frequently introduced in practice [8]. By
defective API documents, we mean incomplete or incorrect,
and therefore no longer accurate documentation of an API.
Consequently, according to several studies, API providers
tend to release incomplete or inconsistent API documenta-
tion, which deviates from the actual API implementation [4],
[9], [10], [11].

Thus, defective API documents are frequently encoun-
tered in practice: developers and API users get confronted
with inconsistencies present in these documents. This can
severely hamper the API comprehension and the quality
of the software built on top of it. To address defective
API documents, developers try to infer the correct or
required knowledge from the source code of the API
itself or by searching source code descriptions reported in
external artifacts (e.g., StackOverflow) [10], [11], [12], [13].
For instance, some developers, while discussing the use of
popular APIs of Facebook, PHP, or JavaScript, state that:
”...the functionality was there, but the only way to find out how
to accomplish something was to dig through Stack Overflow” [14].
However, many times API users get easily frustrated by
repeated bugs and inconsistencies in API documents; hence,
they tend to abandon the API in favor of another vendor’s
API [15], [16].

Let us first provide some concrete examples of API
documentation defects from JDK1.8 and Android 7.0 (API
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Level 24) to illustrate how they typically look like and why
it is important to detect and fix them.

1.1 Real-life cases of API documentation defects

Type compatibility. In JDK1.8, the API document for the
method javax.swing.JTabbedPane.addTab(String title, Com-
ponent component) states that this method is to “add a
component represented by a title and no icon, the title—the
title to be displayed in this tab, component—the component
to be displayed when this tab is clicked.” For a developer,
this means that it should be possible to pass the method an
instance of the javax.swing.JFrame type, since this argument
is compatible with the Component type in Java, based on the
API documentation. Such kind of API usage will also pass
the static check. However, when running, an exception will
be thrown. By manually analyzing the code, we found that
addTab invokes insertTab which, in turn, invokes addImpl.
The body of addImpl contains an assertion to check whether
or not one of the arguments (i.e., Component in this case) is
of the Window type. The documentation of addImpl does
clarify that, if a Window object is added to a container,
an IllegalArgumentException will be thrown. However, this
essential constraint is not mentioned at all in the API
documentation for insertTab or addTab.

Range assumptions. In JDK1.8, the API document
for java.awt.font.TextLayout.getBlackBoxBounds (int
firstEndpoint, int secondEndpoint) only states that the
argument firstEndpoint is “one end of the character range”
and the argument secondEndpoint is “the other end
of the character range. Can be less than firstEndpoint.”
This description turns out to be incorrect. Indeed, the
corresponding code actually requires that the firstEndpoint
is not less than 0, and the secondEndpoint is no more
than the value of the character counts; otherwise, an
IllegalArgumentException will be thrown.

Type checks. In JDK1.8, the API document for
javax.swing.JTable.getDefaultEditor(class columnClass)
states that “columnClass return[s] the default cell editor
for this columnClass.” However, in the corresponding
implementation, the code actually first checks whether
or not the argument c is null. If it is, the method directly
returns a null value without throwing an exception. But this
information is not even mentioned in the documentation,
instead, the API documentation discusses what will happen
if c is not null.

Parameter values. Again in JDK1.8, the API document
for java.awt.event.InputEvent.getMaskForButton(int button)
states that “if button is less than zero or greater than the
number of button masks reserved for buttons.” However,
in the corresponding source code, one may find that the
exceptional condition is button <= 0 || button > BUT-
TON DOWN MASK.length, i.e., the code actually requires
that the value of button should be no greater than 0 — the
documentation is incorrect in specifying the range of the
argument button.

In Android 7.0, the API document for
android.view.Choreographer.removeCallbacks(int
callbackType, Runnable action, Object token) only explains
that the parameter callbackType is the “callback type”
(without further constraints). Meanwhile, the code

does state that the value of the parameter has to be
between 1 and a constant CALLBACK LAST, otherwise,
an IllegalArgumentException will be thrown. As another
example in the same API library, the documentation
of android.media.FaceDetector.findFaces(Bitmap bitmap,
FaceDetector.Face[] faces) states that “faces, ..., must
be sized equal to the maxFaces value ... ”. However,
the code requires that the size of parameter faces must
not be smaller than the maxFaces value, otherwise an
IllegalARgumentException will be thrown.

The above examples are simple but evident examples
of issues that we refer to as “API documentation defects.”
Indeed similar problems can be found in many API docu-
ments. On StackOverflow, a contributor complained that
“[t]he Javadocs are often flat-out wrong and contradictory,
and Sun has often not even bothered to fix them even
after 10 years.”1 Note that the projects JDK and Android
are generally considered to be of high quality in their
API documentation. Hence, we may consider that the API
documents of other projects may suffer from similar or even
more severe issues.

1.2 Goals and research questions
Saied et al. [17] enumerated categories of common API
usage constraints and their documentation. Undoubtedly,
high-quality documentation is indispensable for the usabil-
ity of APIs [18], [19], and a complete and correct API docu-
ment is key for API users. However, given the bulk of API
documents and code, it is practically infeasible to check and
discover such problems manually. Even if it is manageable
on a small scale, the manual examination would be tedious,
inefficient, costly, and error-prone. Automated solutions to
address these problems are needed.

In this paper, we present DRONE (Detect and Repair of
dOcumentatioN dEfects), an automated approach to detect
the defects of API documents, as well as to recommend
repair suggestions. DRONE combines program analysis,
natural language processing, and logic reasoning. It per-
forms the following four main steps (illustrated in Figure 1):
(1) First, it extracts an annotated document from the source
code; (2) Second, it parses the source code to obtain
an abstract syntax tree (AST). Based on the AST, control
flow decisions and exception handling, as well as call
invocations between the methods, are analyzed; (3) Next,
it uses natural language processing techniques to tag the
text features present in API documents and to extract the
relevant parts on restriction and constraints; (4) Finally,
it represents the extracted information in first-order logic
(FOL) formulae and leverages satisfiability modulo theories
to detect potential inconsistencies between documentation
and code.

A “defect” in our context encompasses two scenarios. In
the first scenario, the constraint description of API usage is
incomplete in the documentation (see the examples in JDK
and in Android); in the second scenario, the description
exists but it is semantically incorrect with respect to the
code. Indeed, as reported in a study conducted by Novick
et al. [7], completeness and accuracy represent the two most

1. cf. http://stackoverflow.com/questions/2967303/
inconsistency-in-java-util-concurrent-future



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

important attributes of good documentation. We do not treat
syntactic errors in the documents as defects, since most of
such errors could be detected by grammar checkers and
may not be relevant for developers. Instead, we focus on the
semantic aspects. We argue that by identifying and correcting
these defects the quality of API documents can be increased,
which would positively enhance their usability.

The goal of our study is to investigate to what extent
DRONE is able to automatically detect defects and provide
solutions to fix them, taking into account the following
two scenarios: (i) when the constraint description of API
usage is incomplete; (ii) when the description exists but is
semantically incorrect with respect to the code. Specifically,
we measure the accuracy of DRONE in the context of the
well-documented APIs of JDK 1.8 and Android 7.0-level
24 (as described in Section 3). [20] defines directives as
statements on function signatures (i.e., related to parameter
types and values) and exceptions. These are the main focus
of our work.

We designed our study to answer two main research
questions (RQs) on basis of the well-documented APIs of
JDK1.8 and Android 7.0:

RQ1: To what extent does DRONE discover directive
defects in Java/Android API documentation?
We assess the accuracy of DRONE in detecting
directive defects in API documentation.

RQ2: To what extent does DRONE provide coherent re-
pairing solutions for the detected API documentation
defects?
We qualitatively analyze the capability of
DRONE in automatically recommending repairs
of the detected defects of API documentation
directives.

1.2.1 Main assumptions of the research

In this paper, we assume that the API code is correct. The
rationale is that they have gone through extensive tests
and validation before delivery, hence they are more reliable
compared to the documentation. (This assumption can be
relaxed though; cf. Section 4.) On the other hand, the API
documents are usually a combined description of various
pieces of information, such as general descriptions, function
signature descriptions, exception throwing declarations,
code examples, etc.

Among these, we hypothesize that directives provide
the most crucial information for API using developers.
Particularly, we focus our attention on method parameter
usage constraints and relevant exception specifications.
They belong to the method call directive category which
represents the largest portion of all API documentation di-
rectives (43.7%) [20]. Indeed, all of the discussed illustrative
examples (cf. Section 1.1) are directives of this category. We
are convinced that automatic detection of such defects in
API documents will be of great value for developers to
better understand and avoid inappropriate use of APIs. In
Java programs, this kind of directive is generally annotated
with @param, @exception, @throws, etc. tags. Such structured
information makes it easier to automatically extract the
document directives.

1.3 Contributions

In summary, this paper makes the following contributions:

1) We propose an approach, which can automati-
cally detect and help repair the defects of API
document directives. The approach includes static
analysis techniques for program comprehension as
well as domain-specific, pattern-based natural lan-
guage processing (NLP) techniques for document
comprehension. The analysis results are presented
in the form of first-order logic (FOL) formulae,
which then are fed into the SMT solver Z3 [21] to
detect the defects in case of inconsistency. A pattern-
based patch will be recommended to the users,
suggesting how to repair the defects.

2) The approach handles four types of document
defects at the semantic level, and these are evaluated
on parts of the JDK 1.8 APIs (including javaFX)
and Android 7.0 APIs (Level 24) version and their
corresponding documentation. The experimental re-
sults show that our approach is able to detect 1689,
1605 and 621 defects hidden in the investigated
documentation of selected APIs respectively. More-
over, the precision and recall of our detection are
around 76.4%, 83.8%, 59.4%, 90.3%, 74.7% and 89.4%
respectively.

3) We define more than 60 heuristics on the typical
descriptions of API usage constraints in API docu-
ments, which can be reused across different projects.

4) We have implemented a prototypical API document
defect repair recommender system DRONE. Not
only can it facilitate the detection and repair of API
defects for JDK1.8 and Android 7.0, but it also has
the potential of wider applicability in other APIs.

This paper is an extended version of our previous
work [9], which has been significantly extended in the
following ways:

1) We substantially extended our original study with
new data and experiments: We added more libraries
to the data analysis including the latest Android
APIs to investigate the broader applicability of
DRONE. Moreover, we extended the size of the
original artifact study, extending Experiments I and
II of our original paper, by adding further libraries,
analyzing in total 27 API libraries belonging to
the latest JDK and Android versions. In particular,
we also considered javaFX as the javax.swing and
java.awt packages are legacy packages which are
being replaced by javaFX.

2) We integrated new constraint tags in the detection
functionality of defects in API documentation of
DRONE. We integrated the null value constraints
related tags, i.e., @NonNull/NotNull and @Nul-
lable as they are increasingly used nowadays. By
including these tags in our approach, it enables
the detection of further documentation defects (as
described in the discussion section).

3) We then investigated the extensibility and reliability
of DRONE, also on the selected Android libraries,
observing to what extent the approach is able to
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detect API documentation defects in such new
and well-documented libraries. Thus, we extended
the original study with a further experiment (i.e.,
Part 2 of Experiment II) reporting the results of
DRONE when detecting defects in the Android API
documents.

4) We have further integrated an automated repair mech-
anism into DRONE that recommends fixes for the
detected directive defects. In particular, we added a
completely new artifact study (i.e., Experiment III),
answering an additional research question (RQ2)
and involving different analyses to demonstrate the
practicality of our approach to repair API documen-
tation defects of software libraries. We clarified the
exact nature and scope of our approach, i.e., that it is
highly generic and applicable to further contexts
(e.g., applicable to Android libraries as reported
in Section 3.2) and how it relates to other existing
approaches (in Section 5).

5) We provide a replication package2 of the work with
(i) materials and working data sets of our study, (ii)
raw data (to support future studies), (iii) the NLP
patterns, the defined NLP heuristics and the repair
solutions provided by DRONE. Furthermore, we
present a prototypical implementation (described
in Section 3) of the approach, which is based on
the Eclipse plugin architecture. The source code of
the prototype is also available for future study and
extension.3

Main findings. We performed three experiments to
demonstrate the effectiveness of our approach. Results
of the first experiment, related to API defect detection
capability of DRONE, show that our approach achieved
high F-measure values, ranging between 71.7%, and 81.4%
for the various analyzed libraries. In our second experiment,
we investigated the applicability on many more API pack-
ages, including the one of Android. Results of the second
experiment demonstrate that the performance of DRONE
is still encouraging. Interestingly, for libraries of the latest
Android APIs, DRONE achieved a precision rate of 74.7%
and a recall rate of 89.4%.

In a third experiment, we involved developers to judge
the quality of the generated documentation repair rec-
ommendations provided by DRONE. According to this
study, DRONE achieved average scores of 4.48, 3.82, 4.53,
4.31 (out of 5), in terms of accuracy, content adequacy,
and conciseness & expressiveness, respectively. Qualitative
answers from the involved participants suggested the need
to improve DRONE by generating more elaborated descrip-
tions/templates for “if statement” with many conditions.

In summary, with DRONE we are able to discover
various API directive defects in JDK and Android API
documents. This is in contrast to what is generally believed
that widely used and well-documented APIs would not
exhibit such defects.

Paper structure. The remainder of the paper is structured
as follows. Section 2 illustrates the technical details of our

2. https://github.com/DRONE-Proj/DRONE/tree/master/Replication
3. https://github.com/DRONE-Proj/DRONE/tree/master/DRONE

approach. The prototype implementation and experiments
with performance evaluation are presented in Section 3
followed by a discussion in Section 4. Section 5 puts our
approach in the context of related work, and Section 6
provides some conclusions and outlines future research.

2 APPROACH

In the current work, we mainly focus on four cases of pa-
rameter usage constraints following [17]. These constraints
include nullness not allowed, nullness allowed, range limitation,
and type restriction, a brief explanation of which is given as
follows.

• “Nullness not allowed” refers to the case that the
null value cannot be passed as an argument to a
method. If this constraint is violated, an exception
(e.g., NullPointerException) will be thrown.

• “Nullness allowed” refers to the opposite case of
“Nullness not allowed.” In this case, the null value
can be passed as an argument and no exception will
be thrown. When the method is invoked, there is a
default interpretation of the null value.

• “Type restriction” refers to the case that some specific
type requirements must be imposed on the argu-
ment. Apart from the common one that argument
types must be compatible with the declared param-
eters, they usually include some additional, implicit
rules which must be respected. This is usually due
to the features of object-oriented languages, in parti-
cular, inheritance.

• “Range limitation” refers to the case that there are
some specific value ranges for the arguments. If,
otherwise, the values of the arguments are out of
scope, then usually exceptions will be thrown.

Common rationale expects such usage constraints are
specified explicitly in the accompanying documents for a
better understanding and application of APIs, otherwise it
could potentially mislead the API users. This is, unfortu-
nately, not the case in practice, which has led to numerous
defects in API documentation. The aim of our work is to
detect these defects automatically.

To this end, we propose an approach based on program
analysis, natural language processing, as well as logic rea-
soning. Our approach consists of four main steps, which are
illustrated in Figure 1 with the following brief description.

1) We first extract an annotated document out of the
source code which is a relatively simple procedure.
We then have two branches (cf. Figure 1).

2) In the upper branch, we exploit static code analysis.
We parse the code to obtain the abstract syntax trees
(AST). Based on the AST, the statements of control
flow decisions and exception handling, as well as
the call invocation relation between methods, can be
analyzed. The results are given in a (simple, mean-
ing no quantifiers) form of FOL expressions. The
details of this step will be elaborated in Section 2.1.

3) In the lower branch, we exploit natural language
processing techniques. In particular, we tag the POS
features of the directives of the API documents
and extract the relevant parts on restrictions and
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constraints. They are also encoded as simple FOL
expressions. The details of this step will be elabo-
rated in Section 2.2.

4) The upper and lower branches meet when an SMT
solver is employed to solve the logical equation rela-
tion between the pair of FOL formulae derived from
the respective procedures. Potential inconsistencies
will be reported based on the result returned from
the SMT solver.

For technical reasons and for the scalability of the
approach, we make the following assumptions.

• For the second step, i.e., the code analysis: (1) we
usually bound the depth of the call graph, which is
specified as a hyperparameter of the procedure and
is provided by the user; (2) we disregard private
methods since they are invisible to end users; (3)
we disregard method calls in the conditions of
statements; and (4) we do not consider aliasing or
dynamic dispatching for exception propagation.

• For the third step, i.e., handling directives, we con-
centrate on the directives of the form

@tag target description
Here, tag primarily ranges over “param”, “excep-
tion” and “throws”. We note that the null value
constraints related tags, i.e., @NonNull/NotNull and
@Nullable are increasingly used nowadays. Thus we
also include these tags in our approach. Target refers
to the tagged entity and description refers to the
constraint related to the target expressions. We hy-
pothesize that API developers tend to use recurrent
linguistic patterns to describe the constraints in these
expressions.

In the following subsections, we will describe the two
processing branches consecutively.

2.1 Extract constraints from API source code

In this subsection, we illustrate the workflow of the upper
branch in Figure 1. This branch mainly involves static code
analysis techniques based on AST and call hierarchy. In
particular, a complete program execution usually includes
the participation of multiple procedures, and their invoca-
tion relation constitutes a call hierarchy. The parameter re-
lated constraints are usually introduced by such a hierarchy.
The procedure goes through the following steps with API
source code as the input, and a FOL formula as the output.

Step 1: Construct AST. By parsing the API source code,
we extract an AST treem for each method m. This step
is usually a routine of program analysis. In addition, we

generate the static call graph G by Eclipse’s CallHierarchy4.
From the call graph, we define the call relation call(m,n) by
computing the transitive closure of the edge relation in the
call graph such that call(m,n) holds if and only if method
m calls method n. Note that, as specified in the assumption
(1), we bound the depth of the call graph, so technically we
compute a sound approximation of call(m,n); this is usually
sufficient in practice.

Step 2: Extract exception handling information. For each
public method m in the API, by traversing the AST treem,
we locate each throw statement and collect the associated
exception information. We store the exception information
of each method m as a set ExcepInfom of tuples, each of
which is of the form (m,P, t, c) where

• m is the current method name,
• P is the set of formal parameters of m,
• t is the type of the exception, and
• c is the trigger condition of this exception.

After this step, the directly throwable exception information,
as well as the propagating exception information introduced
by the method invocation, is obtained.

The pseudo-code of expExtractor is given in Algo-
rithm 1. The AST parsing part is implemented with the
aid of the Eclipse JDT toolkit. In particular, the methods
isThrowable, isComposite and isMethod in the pseudo-code
are from there. The inputs of expExtractor comprise the
statement sequence of the source code (represented as an
AST) and the depth of the call hierarchy. The algorithm first
iterates over all the statements in m. If a statement contains
an exception-throw, the relevant information—the exception
type, trigger condition, the relevant parameter, as well as
the method name—will be recorded and inserted into the
list infoList (line 5-6). Note that we use backtracking
to calculate a conjunction of the trigger conditions in
case of multiple enclosed branches. (For instance, for the
snippet If (A){...If (B) throw...}, both A and B
are collected as conjuncts of the trigger condition.) To
handle statements with a composite block, we recursively go
through the internal statements of the block and extract the
corresponding exception information (line 7-10). To handle
method calls (for instance, method m calls method n), if m’s
argument(s) is(are) passed onto the callee method n, we will
use the recursion with parameters, i.e., the statement body
of the callee method as the parameter, together with the
depth value decreased by 1 (line 12). Note that we require
parameter match in the invocation case to track and to
guarantee the constraints are on the same parameter list as
the caller method. This recursion continues until the depth

4. org.eclipse.jdt.internal.corext.callhierarchy, used in the plugin
environment
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Data: stmList: AST statement block of a method m, and
dep:integer

Result: infoList: list of exception information, which records
the flow-exception tuples, i.e, (m,P, t, c)

1 begin
2 infoList←− ∅;
3 if dep≥0 then
4 foreach stm ∈ stmList do

/* If stm throws an exception,
records all information in a tuple
and add to the list */

5 if isThrowable(stm) then
6 infoList←− infoList∪ {(m,P, t, c) | P :

parametert, t : exceptiontype, c : condition}
/* Recursively invoke itself, in case

of composite statement */
7 else if isComposite(stm) then
8 List subList←− (Block)stm.getBody();
9 infoList←−

infoList ∪ expExtractor(subList, dep);
/* If the statement contains a method

call of n, check the invoked
method recursively */

10 else if isMethod(stm) ∧ (stm’s args ∈m’s list) then
/* n is the callee of m in stm */

11 mList←− n.getBody();
12 infoList←−

infoList ∪ expExtractor(mList, dep− 1);
13 end
14 end
15 end

Algorithm 1: expExtractor algorithm

decreases to 0. Since the recursion happens only when there
are composite blocks and method invocations, the depth
condition guarantees the termination of the algorithm.

Step 3: Calibrate exception handling information. In Step
2, we have collected a list of ExcepInfom for each method m
by directly analyzing the ASTs. Now we refine them in the
following two steps: (1) We remove exceptions irrelevant to
the parameter constraints. Namely, for each (m,P, t, c) ∈
ExcepInfom, if none of the parameters in P appear in
the condition c, this piece of information is deemed to be
irrelevant, hence we update ExcepInfom := ExcepInfom \
{(m,P, t, c)}. (2) For two methods m,n such that call(m,n),
assume furthermore that we have (m,P, t, c) ∈ ExcepInfom
and (n,Q, t, c′) ∈ ExcepInfom, which means there is some
exception propagated to m from n. In this case, we again
traverse the AST of m. If n is enclosed in some try block
of m and there is a compatible exception type handled and
no new exception is thrown in the catch or finally statements
of m, (n,Q, t, c′) is removed from ExcepInfom. Otherwise, a
new exception is thrown in the catch or finally statement, and
then the related information is recorded and used to update
(n,Q, t, c′). Note that this step requires a second traverse of
the AST treem.

Step 4: Classify exception handling information. In this
step, we further classify the cleaned exception information
generated from Step 3 into the following categories, which is
used to formulate parameter usage constraints.

(1) Category “Nullness not allowed”, which consists of
exceptions (m,P, t, c) such that c implies p = null
for some p ∈ P ;

(2) Category “Type restriction”, which consists of ex-
ceptions (m,P, t, c) such that c contains instanceOf .

(3) Category “Range limitation”, which consists of ex-
ceptions (m,P, t, c) where some comparison opera-
tors exist in condition c unless it is compared with
null. In that case, (m,P, t, c) would not be included.

Note that we do not have a category “nullness allowed”,
as the related constraints cannot be fully handled by the
exception conditions; for them, we utilize and adapt the
technique proposed in [17]. Similar to [17], we are interested
in API methods where a parameter’s null value is not
prohibited and where the null value has a semantics. This
is usually reflected by a particular behavior of the method,
for example, to instantiate a default object in case of null
value. Therefore, we parse the statements inside the API
body. If there is an explicit choice statement, we check
whether the condition relates to the null value of the
parameter. If the condition handles the case where the value
is null and no exception is thrown, we would label it as
“nullness allowed”. Different from [17], in our approach,
the checking process is executed recursively in the case of
method invocations where the same parameter is passed to
the called method. We set the value of call hierarchy depth
the same as for the other three categories in our approach.

Step 5: Constraints generation. We formulate the collected
information regarding the parameter usage constraints as
a FOL formula ΦAPI. According to the four types of the
parameter usage constraints, we introduce the following
predicates: (1) NullAllow(m, a), (2) NullNotAllow(m, a), and
(3) Type(m, a, cl), where m is a method, a is an argument of
m, and cl is a datatype in Java.

Accordingly, for each method m, we generate a formula
Φm which is a (logic) conjunction of

(i) NullNotAllow(m, p), if p is a parameter of m and
(m,P, t, c) is in the “nullness not allowed” category
from Step 4.

(ii) NullAllow(m, p), if p is a parameter of m and “null-
ness allowed” category. For such constraints, there
are no exceptions thrown. In this part, we do not
consider aliasing problems either.

(iii) ¬Type(m, p, cl), if p is a parameter of m, and there
exists (m, p, t, c) such that

c =⇒ (p = instanceOf(cl)).

(iv)
∧

m,p∈P
∧

(m,p,t,c)∈ExcepInfom
¬c which specifies the

range of each parameter available from the exception
information.

2.2 Extract constraints from directives
In this section, we illustrate the workflow of the lower
branch in Figure 1. In particular, we describe an approach
to extract constraints out of the directives in the API docu-
ments automatically. The underpinning observation of this
approach is that constraints reported in textual descriptions
of API documents usually have specific/recurrent gram-
matical structures—depending on the constraint category—
that share some common characteristics. Consequently, such
commonalities can be captured by the notion of heuristics
through domain knowledge [22], [23] for enabling the
automatic extraction of constraints based on specific natural
language processing (NLP) techniques.
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Particularly relevant to our approach, JDK’s documen-
tation is generated automatically by Javadoc. The content
of the document is grouped inside pre-defined delimiters
(e.g., /** and */). Standard tags are defined to describe the
different pieces of information (for instance, version, author,
method signatures, exception conditions, etc.) of the target
documents to be generated. Our goal is mainly to detect the
defects regarding the parameter constraints and exception
declarations of the methods. Javadoc tags provide a useful
indicator to extract the relevant textual description from the
documentation.

We use NLP techniques, e.g., part-of-speech (POS) tagging
and the dependency parsing to process API documents. In
a nutshell, POS tagging is the process of marking up a
term as a particular part of speech based on its context,
such as nouns, verbs, adjectives, and adverbs, etc. Because
a term can represent more than one part of speech in
different sentences, and some parts of speech are complex or
indistinct, it turns out to be difficult to perform the process
exactly. However, research has improved the accuracy of the
POS tagging, yielding various effective POS taggers such as
TreeTagger, TnT (based on the Hidden Markov Model), or
the Stanford tagger [24], [25], [26]. State of the art taggers
reaches a tagging accuracy of around 93% when compared
to the tagging results of humans.

In the first step, we perform POS tagging with the
Stanford lex parser5 to mark all terms of the words and
their dependency relation in the constraint-related directives
extracted from the documents. In particular, we focus on the
sentences annotated with @param, @exception, and @throws
tags.

We then pre-process the texts before carrying out
dependence parsing. The pre-precessing is necessary
because API documentation is usually different from pure
natural language narrations (for instance it is frequently
mixed with code-level identifiers). The tag headers, i.e.,
@param, @exception, and @throws, will be removed, but
their type and the following parameter will be recorded.
In addition, some embedded markers (such as <code>)
will be removed, whilst the words enclosed with such
markers are recorded, since these are either the keyword
or the corresponding variable/method/parameter names
in the code. Undoubtedly, there are more complicated
cases, making the pre-processing a non-trivial task. A
typical situation is that there are code-level identifiers and
expressions in the documents. For example, the document
of java.awt.color.ColorSpace.getMinValue(int component)
states “@throws IllegalArgumentException if component is
less than 0 or greater than numComponents −1”. To tackle
that, we first recognize the special variable names and
mathematical expressions via regular expression matching.
The naming convention of Java variables follows the
camelcase style. If an upper case letter is detected in the
middle of a word, the word is regarded as an identifier
in the method. Likewise, if a word is followed by some
mathematical operator, it will be regarded as an expression.
Other cases include the identification of method names
(with the affiliation class identifier “.”), constant variables,
etc. Composite statements also need to be divided into

5. cf. http://nlp.stanford.edu/software/lex-parser.shtml

simple statements. The statistics of the POS, such as the
number of subjects, the number of verbs and the most
common verbs are given in the repository of the replication
package.6 We observe that the number of directives with
verbs is significantly higher than the ones with subjects.
For example, in the latest Android APIs, 6915 directives are
with verbs, whereas just 3970 directives are with subjects.

In general, we defined 29 regular expressions and
rules to detect these cases. One example to recognize the
member functions in the description is of the following
form: “\W[A-Za-z ]+[A-Za-z 0-9]*(\.[A-Za-z ]+[A-Za-z 0-
9])*(#[A-Za-z ]+[A-Za-z 0-9]*)?\([∧()]*\)\W”. After the
specific identifiers and expressions in the description are
recognized, they are replaced by a fresh labeled word to
facilitate the dependency parsing.

The dependency parsing and linguistic analysis require
identification of certain heuristics. For this purpose, we
adapted an approach used in previous work [22]. We note
that, however, the adaptation to the new context was not a
trivial task. Specifically, different from the work by Di Sorbo
et al. [22], we are not interested in leveraging the recurrent
linguistic patterns used by developers while writing text
messages in development emails to automatically infer their
intentions (e.g., discussing a bug report or a feature request).
Our goal is to leverage the existing linguistic patterns reported
in API documents to automatically extract/detect API docu-
mentation constraints. As consequence, the heuristics/tools
provided in the paper by Di Sorbo et al. [22], [23] are
based on linguistic patterns but not applicable for our
purpose. This required us to adapt the concept of linguistic
patterns/heuristics definition to the API documentation
context. For that reason, we explain in detail the steps
required for the definition of the heuristics and its utilization
in our context:

1) We perform a (manual) analysis of the existing
linguistic patterns of constraints described in
API documents which admit similar (recurrent)
grammatical structures. This step included a
manual examination of 459 documents of java.awt,
javax.swing and javaFX packages for extracting
a set of linguistic patterns according to each
of the four constraint types. Specifically, we
recognized several discourse patterns related to
each of the four constraint types. As a simple
example, in javax.swing.UIManager.getFont(Object
key), the constraint states that an exception
would be thrown “if key is null”; while in
java.awt.Component.list(PrintStream out), the
constraint states similarly that an exception would
be thrown “if out is null.” In this case, “is null” is the
recurrent pattern and will be extracted, therefore.
This manual analysis required approximately 1
week of work.

2) For each extracted linguistic pattern we define an
NLP heuristic responsible for the recognition of the
specific pattern. The formalization of a heuristics
requires three steps: (1) discovering the relevant
details that make the particular syntactic structure
of the sentence recognizable; (2) generalizing some

6. https://github.com/DRONE-Proj/DRONE/tree/master/Replication/StatisticsOfVerbsAndSubjects
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pieces of information; and (3) ignoring useless
information. At the end of this process, a group of
related heuristics constitutes the pattern for a specific
constraint category.

At the end of this process, we formalized 67 heuristics
(available in the replication package). It is important to
mention that, similarly to the work by Di Sorbo et al. [22],
the accuracy of our approach in identifying API constraints
strictly depends on both the accuracy of the aforementioned
manual analysis and the overall quality of the API docu-
mentation. In particular, as described before, to ensure a
proper manual analysis of the recurrent linguistic patterns
described in constraints of API documents it required
us approximately 1 week of work. Clearly, a poor API
documentation with non-standard ways to describe/report
API constraints can affect the general accuracy of our results
(cf. Section 4 for further discussions). However, adapting the
approach to API documents of higher/lower quality may
require additional manual analysis.

A brief statistics of heuristics for each constraint type
is given in Table 1. Since these heuristics are different
from each other, during the linguistic analysis phase, one
directive will be accepted by at most one heuristics (possibly
none, in case that no constraints are specified). We remark
that these heuristics are interesting in their own right, and
can potentially be reused and extended in other related
researches.

TABLE 1
Summary of Heuristics

Constraints types Heuristic number
Nullness not allowed 22

Nullness allowed 12
Type restriction 10
Range limitation 23

In total 67

Once the heuristics are identified, we perform
dependency parsing and pattern analysis. For this, we
largely follow the methodology of [22]. As a concrete
example for heuristic-based parsing, the document of
java.awt.Choice.add-Item(String item) states “@exception
NullPointerException if the item’s value is equal to
<code>null</code>”. We first record the exception type,
and then remove the pair of “<code>” and “</code>”.
The sentence “if the item’s value is equal to null” is finally
sent to the parser.

Fig. 2. POS tagging and dependency example7

7. The meaning of POS tags and phrasal categories can be found via
http://www.cis.upenn.edu/∼treebank/

Figure 2 illustrates the dependency parsing result of our
example document description. In this sentence, we disre-
gard useless words, such as “if”, since its part-of-speech is
IN, i.e., the proposition or subordinating conjunction. The
subject of the sentence (nsubj) is “value”, but the value
does not appear in the parameter list of the method. We
thus check again the neighboring noun (NN), i.e., item, and
find it matches the parameter, so we mark it as the subject
of the directive. We observe that “equal to” is a recurring
phrase that appears in many directives. It indicates an
equivalence relation to the following word. The xcomp of
such phrase—null in this case—will be the object of the
real subject. We can thus define the language structure
with “(subj) equal to null” as heuristics during matching.
In this way, the subject(subj) and object(“null”) of “equal
to” will be extracted and be normalized into the expression
subj = obj. In practice, “[verb] equal to”, “equals to” and
“[verb] equivalent to” are of the same category, and they will
be normalized into the same expression. In this example, the
parsing result ends up to item = null.

We are now in a position to generate the parameter
usage related constraints for the documentation, again
represented by a FOL formula. From the previous steps,
we have identified the relevant sentences via tagging and
dependency parsing, with necessary pre-processing. We
further divide these sentences into shorter sub-sentences.
In the above example, the sentence is transformed to “if
component is less than 0 or greater than [specExpression]”.
Since “component” is parsed as the subject and “or” is parsed
as cc (conjunction in linguistics), the sentence can be further
divided into two sub-sentences, i.e., “component is less than
0” and “component is greater than [specExpression]”, and
then each sub-sentence is subject to the analysis.

As the next step, we define a set of rewriting rules to
translate the obtained sub-sentences into FOL formulae. For
instance, “or” is rewritten into a logic disjunction, and “less
than” is rewritten as a comparison operator <. As a result,
the above example can be rewritten into (component < 0)∨
(component > [specExpression]). Finally, we replace the
labeled word by the original expression, yielding the output
FOL formula of the procedure. In our example, we have
(component < 0) ∨ (component > numComponent− 1).

2.3 Identify defects

Recall that from the preceding two steps, we have obtained
two FOL formulae, namely, ΦAPI and ΨDOC, over the
same set of predicates introduced in the Step 5 in Sec-
tion 2.1. Intuitively, they represent the collected information
regarding the API source code and the directives of the
documents with respect to the four types of parameter
usage constraints. The main task of the current step is
to detect the mismatch between these two. To this end,
our approach is to check whether the two formulae ΦAPI

and ΨDOC are equivalent. If this is the case, one can
be reasonably confident to conclude that all constraints
(with respect to the four types of method parameter usage
constraints considered in the paper) in the API are captured
in documentation and vice verse. If, on the other hand, this
is not the case, we will be able to identify the mismatch
referring to the relevant predicate, by which we can trace the
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method and the parameter thereof, as well as the involved
exception. Then we can examine whether such a mismatch
is a genuine defect of the API document.

Formally, we make a query to check whether

ΦAPI ⇔ ΨDOC (1)

holds. If this is indeed the case, we can conclude that the
API source code and the related documents are matched.
Otherwise (i.e., (1) does not hold), a counterexample is
usually returned, suggesting where the mismatching hap-
pens. Let us take a simple example of method f(x) with
a single argument x. Suppose that, from the API source
code, one finds that x must be strictly positive; in this
case, we have ΦAPI = x > 0. However, from the API
document, we only see the statement such as x must be
non-negative; in this case, we have ΨDOC = x ≥ 0. Under
this circumstance, (1) is instantiated by x > 0 ⇔ x ≥ 0,
which clearly fails. By tracing the relevant predicate (in this
case x ≥ 0), we can detect the defect of the document
and recommend possible repairs which will be discussed
in Section 2.4. Note that, when one counterexample is
returned, in principle we can only locate one inconsistency.
To detect all inconsistencies, we have to update the formulae
ΦAPI and ΨDOC by removing the relevant part of the
inconsistencies (defect) which have been detected before
and make the query again to find more counterexamples
(and thus further inconsistencies). Such a process must
be repeated until no further counterexample is returned.
In practice, one counterexample often suggests multiple
sources of inconsistencies. Hence, only a small amount of
rounds is needed.

To perform the check-in (1), we exploit a Satisfiability
Modulo Theory (SMT). In general, SMT generalizes boolean
satisfiability by adding useful first-order theories such as
equality reasoning, arithmetic, fixed-size bit-vectors, arrays,
quantifiers, etc [27]. An SMT instance is a formula in first-
order logic, where some function and predicate symbols
have additional interpretations. In practice, to decide the
satisfiability (or the validity) of formulae in these theories,
one usually resorts to SMT solvers. They have been applied
in many software engineering related tasks as diverse as
static checking, predicate abstraction, test case generation,
and bounded model checking. Z3 [21] from Microsoft
Research is one of the most widely used SMT solvers. It
is targeted at solving problems that arise in software verifi-
cation and software analysis, and thus integrates support
for a variety of theories. It also provides programming
level support in multiple languages, for example, Java and
Python. Some important functions, such as creating a solver,
checking the satisfiability, managing logic formulae, are
provided as APIs for third-party usage.

In our scenario, clearly, (1) is equivalent to checking
whether

(ΦAPI ∧ ¬ΨDOC) ∨ (¬ΦAPI ∧ΨDOC)

is satisfiable. Hence, off-shelf SAT solvers, such as Z3, can
be applied.

We note that, however, in practice, there are some spe-
cific cases that need to be handled before checking (1). For
instance, some constraints extracted from the code contain
method calls (e.g., when they appear in the condition

of branching statements), but the code analysis does not
further examine the internal constraints of these embedded
methods. (For instance, for if (isValidToken(primary) in class
MimeType of java.awt.datatransfer, we do not trace the
constraints of method isValidToken(primary).) We note that
the aim of isValidToken(primary) is to check whether the
value of primary is null or not. The document directive also
states that an exception is thrown if primary is null. It is not
difficult to see that, in these cases, the simple comparison
of obtained logic formulae would inevitably generate many
spurious defect reports. To mitigate this problem, we mark
these constraints, ignore them when checking (1), and thus
simply regard them as consistent.

To provide some statistics regarding the FOL formulae
generated for conducting the experiments described in
Section 3.2, in total there are 4,405 variables in Experiment 1,
4,369 variables in Part 1 of Experiment 2, and 1,150 variables
in Part 2 of Experiment 2. However, each formula is simple
in that it contains only a small number of variables. Indeed,
the median values of variables per formula are all 1 in these
experiments. As for the total number of clauses, there are 47
in Experiment 1, 17 in Part 1 of Experiment 2, and 10 in Part
2 of Experiment 2. In general, the formulae contain up to 5
clauses with most of them containing only a single clause.

2.4 Repair Recommendation

Once the defects are identified, the next step is to provide
meaningful repair recommendations. As illustrated in Fig-
ure 1, the repair recommendation is built (or synthesized)
on top of the extracted code constraints (in terms of a
FOL formula) and document patterns. Specifically, since we
mainly consider four categories of parameter constraints,
the extracted patterns of each category could be reused as the
template for generated text, and we strive to select most
concise and informative templates for each category. It
is important to mention that recent work in literature
proposed the use of templates to document undocumented
part of source or test code [28], [29], [30], [31], [32]. However,
our scenario is different from the ones of such previous
work, as we provide recommendations, based on NLP tem-
plates, for replacing, correcting API defects with appropriate
repairing solutions, and thus complementing the available
human-written documentation. Moreover, different from
such previous work, DRONE generates such templates by
analyzing both extracted code constraints (in terms of a FOL
formula) and document patterns.

Table 2 illustrates some example templates. For cate-
gories “Nullness not allowed” and “Nullness allowed”, it
is straightforward to generate atomic repair directives given
the FOL formula. That is, we generate a directive stating the
corresponding parameter must not or could be null based
on the templates.

In particular, for the category “Nullness not allowed”,
we append the directive after the tag “@throws” (resp.
the tag “@param”) for “Nullness not allowed” (resp.
“Nullness allowed”). It is slightly complicated in case
of composite FOL expressions since multiple atom
formulae exist. To give more concise and meaningful
recommendations, we combine the subjects of the
elementary atomic sentences and yield a single
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sentence for “Nullness not allowed”. For example, in
javax.xml.bind.JAXBElement.JAXBElement(QName name,
Class<T> declaredType, Class scope, T value), the
extracted FOL is Or(NullConstraint(declaredType; NEG);
NullConstraint(name;NEG)). Accordingly, the generated
document is “@throws IlleagalArgumentException If
declaredType or name is null”. Meanwhile, for the category
“Nullness allowed”, since each parameter has a separate
tag, the atomic directive will be directly generated and
appended after their corresponding tags based on the
templates.

For the “type restriction” category, the simplest
case would be to add the type restriction information
to the exception related directives. We need to add
the concrete type information to replace [SpecType] as
shown in the template apart from the corresponding
parameter name as shown in Table 2. Note that, despite
that our first example indicates the parameter should
not be of a particular type, in some other cases, some
particular type of parameter is expected. In such case,
we add “not” to specify this fact. For example, in
java.security.UnresolvedPermissionCollection.add(Permission
permission), the parameter permission is supposed to
be the type of UnresolvedPermission, otherwise an
IllegalARgumentException would be thrown. But this
information is missing in the document, and DRONE
will detect this and recommend the repair “@throws
IllegalArgumentException If permission is not the type of
UnresolvedPermission”.

For the “range limitation” category, we define a set of
translations for the numerical relation. For example, “>”
will be translated to “greater than”, and “==” translated to
“equal to”. There are multiple templates for this category
as summarized in Table 2. As a concrete example in
java.security.Signature.update(byte[] data, int off, int len)
from JDK 1.8, DRONE detects the incompleteness of the
documentation and recommends the repair as “@throws
IllegalArgumentException If len or off is less than 0”
following the template “If [param1] or [param2] {relation}
[value]”. In the case of Boolean value comparison, we just
use “be TRUE” or ”be FALSE” instead of “be equal to
TRUE” or “be equal to FALSE”.

TABLE 2
Repair recommendation templates

Constraints types Tags Templates
Nullness not allowed @throws If [param] be null

If [param1] or [param2] be null
If [param1], ... , or [paramN] be null

Nullness allowed @param [param] could be null
Type restriction @throws If [param] be type of [SpecType]

If [param] be not type of [SpecType]
Range limitation @throws If [param] {relation} [value]

If [param] {relation} [value1],...,[valueN]
If [param1] or [param2] {relation} [value]

If [param] {relation} [value1] and {relation} [value2]
If [param] {relation} [value1] or {relation} [value2]

3 IMPLEMENTATION AND CASE STUDIES

We have developed a prototype that implements the ap-
proach described in Section 2, based on the Eclipse plugin
architecture. In this section, we will present the main
graphical user interface of our prototype, while we evaluate
its effectiveness in various case studies, as described in

Section 3.2. Specifically, the effectiveness is mainly judged
in terms of precision and recall.

The prototype takes API code and document directives
as inputs, and outputs repair recommendations for directive
defects. Particularly, the tool integrates the SMT solver Z3 to
analyze generated FOL expressions written in the SMT-LIB
2.0 standard8 and identify potential defects. Figure 3 and
Figure 4 illustrate the main graphical user interfaces of the
prototype.

Figure 3 demonstrates the defect detection view. The left
panel displays the API packages to be explored by DRONE.
The tool can be invoked by selecting it in the menu opened
after right-clicking the corresponding package. The tab view
of DRONE includes (i) invocation relation analysis, (ii) code
parsing and document analysis, and (iii) defect detection. The
console on the right part displays the execution traces,
which also provide configuration support for saving inter-
mediate files during analysis.

Figure 4 demonstrates the defect repair view. The list in
the middle of the panel displays the detected defects from
the previous step. Once a listed item is left-clicked, DRONE
allows to automatically navigate to the corresponding defect
API, which will be highlighted in color. Meanwhile, the
repair recommendations will be given on the right part of
the tab panel.

3.1 Settings
We conduct three experiments to evaluate our prototype
implementation. In Experiment 1, we focus the evaluation
on the packages awt, swing and javaFX. In Experiment 2,
we reuse the heuristics defined in the first one and evaluate
the performance for twelve additional packages in the same
project (Part I) and the latest Android APIs (Part II). Finally,
in Experiment 3, we evaluate the quality of generated
documentation recommendations for detected defects. In
all experiments, the evaluations are conducted on a PC
with an Intel i7-4790 3.6 GHz processor and 32.0 GB RAM,
running Windows 7 64-bit operating system. The depth of
call hierarchy is set to 4.

The metrics used in the first two experiments are
precision, recall, and F-measure. Precision measures the ex-
actness of the prediction set, whereas recall measures the
completeness, which are respectively calculated as follows.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F-measure considers both exactness and completeness, and
thus balances the precision and recall.

F -measure = 2× precision× recall

precision + recall
(4)

where TP, FP, FN stand for true positive, false positive, and
false negative respectively.

In the third experiment, we hire twenty-four graduate
students majoring in Software Engineering to evaluate the
generated documentation recommendations. Similar to the

8. cf. http://smtlib.cs.uiowa.edu/
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Fig. 3. Prototype overview—defect detection

Fig. 4. Prototype overview—defect repair

previous work [29], [32], [33], [34], we primarily consider
three aspects, i.e., accuracy, content adequacy, conciseness and
expressiveness, as the main criteria to assess the quality of the
recommendations.

3.2 Results
RQ1: To what extent does DRONE identify directive defects
in Java/Android API documentation?

Experiment 1
We first evaluate the performance of our approach applied
to the target packages and their documents (i.e., java.awt,

javax.swing and javaFX). The packages parsed by our pro-
totype contain around 1.2 million lines of code (LoC)9 and
25,168 Javadoc tags in total. The details are summarized in
Table 3. Over these dataset, the program analysis process
takes around two hours, while the document analysis
takes around 1 hour. Finally, our approach outputs 2510
constraints for the APIs methods.

To calculate the precision and the recall, the ground
truth set is required. For this purpose, three computer
science master students are hired, who have more than

9. The statistics includes comments and space.
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three years of Java development experience, and are asked
to manually inspect the obtained results, classifying the
items into true/false positives and true/false negatives.
In terms of recall, in principle, the total false negatives are
required. However, it turns out that manual examination of
all involved APIs and their documentation (25,168 Javadoc
tags) would be practically impossible. In particular, the
tremendous number of inter-procedure invocation makes
the manual process both error-prone and time-consuming.
Therefore, we only consider those APIs with the constraints
detected by our tool as the sample. This means that for
what concerns true positives and false positive we rely on
the validation performed by the involved master students.
We apply a stratified random sampling strategy to examine
10% of the APIs and their documentation outside of the
set and only very few (less than 1% of them) are missing.
Each report was examined by three subjects independently.
A majority vote mechanism was used to resolve possible
conflicts. The manual classification process required around
five days.

TABLE 3
Data overview in Experiment 1

Package LoC @param @throws @exception
names (kilo) No. No. No.

java.awt 178.8 5383 961 423
javax.swing 372.8 8531 448 533

javaFX 625.4 7832 1040 17
Total 1177.0 21746 2449 973

The results of Experiment 1 are summarized in Table 4.
Overall, out of these reported 1689 defects (TP+FP), 1291
turn out to be real defects, giving rise to a precision
of 76.4%. Combined with 398 false negatives, we get
a recall of 83.8%. The average F-measure is 79.9%. In
particular, all of the four defective document examples
from JDK mentioned in Section 1 are detected successfully.
Our approach performs well on the selected API packages
where the heuristics are summarized. Moreover, Table 4 also
gives the distribution and performance of each constraint
category. Range limitation category takes up the largest
portion of defective documentation in the selected dataset.

TABLE 4
Results of Experiment 1

Category TP FP FN TN Precision Recall F-measure
Nullness 233 77 7 333 0.752 0.971 0.847

Not Allowed
Nullness 599 63 27 34 0.905 0.957 0.930
Allowed

Range 406 245 121 198 0.624 0.770 0.689
Limitation

Type 53 13 95 6 0.803 0.358 0.495
Restriction

Total 1291 398 250 571 0.764 0.838 0.799

Among these four constraint categories, we found the
precision for the range limitation type and the nullness not al-
lowed type is lower than the other two types. We then exam-
ined some false positives: for the range limitation, most false
positives are attributed to some vague descriptions of the
parameter range. For example, in java.awt.Container.java,
the extracted constraint for add(Component comp, int index)

from the API code is: (index < 0 ∧ ¬(index = −1)),
which is propagated from the callee method addImpl(int).
But the document directive just states “@exception Illegal-
ArgumentException if the index is invalid.” Some other
similar vague descriptions are also frequently found, for
example, simply been stated “out of range.” Such implicit
expressions prohibit the effective extraction of constraints
and are deemed to be “defective” in our approach. To
mitigate this issue, we can define some specific rules to
rectify, i.e., treating such cases as non-defective.

On the other hand, there are some opposite cases where
the descriptions are concrete, but difficult to resolve. For ex-
ample, in java.awt.Container.areFocusTraversalKeysSet(int
id), the document states that “if id is not one of Key-
boardFocusManager.FORWARD TRAVERSAL KEYS, Key-
boardFocusManager.BACKWARD TRAVERSAL KEYS,
[...]”, an IllegalARgumentException will be thrown.
The document enumerates all of the valid values
for the parameter id. But in the code, the
condition for the exception is just id < 0 ∨ id ≥
KeyboardFocusmanager.TRAVERSAL KEY LENGTH.
In this case, since our current implementation does not
interpret the constant values, we cannot detect either. But
such false positive can be reduced by augmenting with
more reference abilities via static analysis tools which is
planned in our future research.

The nullness not allowed type suffers from the similar
issue as range limitation. The slight difference we observe
is the existence of some anti-patterns in the documentation.
For example, the document of java.awt.Choice.insert(String
item, int index) states “@param item the non-null item to
be inserted”. The linguistic feature of such directive is
quite different from what we summarized before, and our
approach does not successfully extract the constraints. But
we could get around the problem by adding more such
“anti-pattern” heuristics into our repository.

We also manually analyzed some false negatives
reported by our experiment and found that many are
introduced by the method calls embedded in the condition
statements. To reduce the false positives, we skipped
the constraints inside these embedded methods, and
simply regard the accompanying documents as non-
defective. This, however, is a double-edged sword,
i.e., false negatives are also potentially introduced. For
example, in java.awt.image.AffineTransformOp.Affine-
TransformOp(AffineTransform xform, [...]), the method
invokes validateTransform(xform), and thus the constraint
“Math.abs(xform.getDeterminant())<=Double.MIN VALUE”
can be extracted. This constraint is marked and skipped.
whilst the document is considered to be sound (cf.
Section 2.3). However, unfortunately, the document
directive of xform is just “the AffineTransform to use for the
operation”, which is defective because it does not provide
sufficient information, and indeed is found manually. This
causes a false negative. In general, we strive to achieve
a trade-off between false positive and false negative, but
more precise program analysis would be needed which is
subject to further investigation.
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Experiment 2
In this study, we extend the exploration scale to cover
more Java API libraries and different projects. In parti-
cular, we consider additional twelve JDK packages (i.e.,
javax.xml, javax.man-agement, java.util, java.security, java.lang,
java(x).sql10, java.imageio, java.io, java.net, java.nio, java.text
and java.time) and the latest Android SDK API (level
24). We separate this experiment into two parts. The first
part involves the twelve JDK packages, while the second
involves the Android API. We reuse the heuristics from the
first experiment. The information of these packages is given
in Table 5 and Table 6.

TABLE 5
Data overview for additional JDK packages (Part 1)

Package LoC @param @throws @exception
names (kilo) No. No. No.

javax.xml 61.4 1654 1031 141
javax.management 71.5 1503 295 822

java.util 212.1 4965 2547 290
java.security 41.1 908 164 421

java.lang 89.1 1732 754 335
java(x).sql 45.7 2016 610 1338

java.imageio 25.7 744 2 735
java.io 31.8 647 281 369

java.net 33.5 522 165 255
java.nio 71.3 813 1212 0
java.text 22.6 433 5 151
java.time 56.9 1470 975 0

Total 762.7 17407 8041 4857

TABLE 6
Data overview for Android SDK API (Part 2)

Package LoC @param @throws @exception
names (kilo) No. No. No.

android.accounts 6.0 205 25 0
android.bluetooth 28.1 434 58 0
android.database 15.3 548 87 0
android.gesture 3.0 49 0 0

android.graphics 40.8 1226 43 0
android.hardware 74.0 948 246 0
android.location 12.3 172 109 0
android.media 93.3 1171 496 0

android.net 60.2 715 119 2
android.service 14.2 205 15 0
android.view 113.3 2357 151 1

android.webkit 11.9 320 4 0
Total 472.4 8350 1353 3

For the second experiment, again we ask the same
subjects, as in the first one, to manually classify the obtained
results and use majority vote to resolve possible conflicts.
Table 7 summarizes the performance details for each con-
straint category in Part 1 of experiment.

Out of these 1605 detected defects, 953 turn out to be
true positives, and 652 false positives, giving a precision
rate of 59.4%. Taking the 102 false negatives, we get a recall
of 90.3%. Similar to the observations of Experiment 1, the
precision of the range limitation has the lowest value among
the four. Overall, the performance in terms of precision and
F-measure is lower than that of the first experiment, but

10. It contains both java.sql and javax.sql.

TABLE 7
Results of additional JDK packages (Part 1)

Category TP FP FN TN Precision Recall F-measure
Nullness 405 158 27 842 0.719 0.938 0.814

Not Allowed
Nullness 122 49 8 45 0.713 0.938 0.811
Allowed

Range 374 422 59 338 0.470 0.864 0.609
Limitation

Type 52 23 8 1 0.693 0.867 0.770
Restriction

Total 953 652 102 1226 0.594 0.903 0.717

still at an acceptable level. Based on the obtained results,
we observe that, when our heuristics are applied to other
APIs, although suffered at a decrease in the accuracy, the
performance is still kept at an acceptable level with a
precision of 59.4% and a recall of 90.3%, and thus these
heuristics can be reused.

TABLE 8
Results of Android SDK API (Part 2)

Category TP FP FN TN Precision Recall F-measure
Nullness 246 38 15 82 0.866 0.943 0.903

Not Allowed
Nullness 89 19 3 4 0.824 0.967 0.890
Allowed

Range 123 93 35 66 0.569 0.778 0.658
Limitation

Type 6 7 2 2 0.462 0.750 0.571
Restriction

Total 464 157 55 154 0.747 0.894 0.814

Table 8 summarizes the results of Part 2 of Experiment
2. Out of 621 detected defects, 464 are turn out to be true
positives, and 157 turn out to be false positive, giving a
precision of 74.7%. Again, both the illustrative defective
examples from Android in Section 1 are successfully de-
tected by DRONE. With 55 false negatives, we get a recall
rate of 89.4%. Slightly different from the findings of the
experiments for JDK, the performance of range limitation
category is the second lowest among the four. Totally,
the F-measure of this experiment is 81.4%, which further
demonstrates the feasibility of DRONE on the selected
Android APIs.

One of the purposes of carrying out these experiments,
especially those for Android SDK API, is to examine the
generalizability of the heuristics we formulated in the first
experiment. With the heuristics developed solely based on
a limited number of JDK packages, it is natural to raise
the concern regarding overfitting of those heuristics to
the considered packages. As one might see, regarding the
generalizability of the heuristics to other JDK packages, the
precision is down from 76.4% to 59.4%. This is possible
because of overfitting, but the loss of the precision is
acceptable. Regarding the generalizability to Android SDK
API, we only observe a marginal loss of precision (76.4% to
74.7%). This is slightly surprising as the heuristics appear
to generalize well to a different project. We speculate that it
might be the case that Android SDK APIs we are examining
are similar to the packages of the first experiment. From
Experiment 2, we might conclude that the generalizability
of the heuristics is reasonably well.
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RQ2: To what extent does DRONE provide coherent
repairing solutions for the detected API documentation
defects?

Experiment 3

The main purpose of this experiment is to answer RQ2,
i.e., to demonstrate the quality of the generated API doc-
umentation recommendations by DRONE. As mentioned,
we mainly use accuracy, content adequacy, and conciseness &
expressiveness as the criteria to assess the quality of repair
recommendation.

• Accuracy mainly concerns the correctness of gener-
ated constraints descriptions.

• Content adequacy only considers the content of the
generated solutions: is the important information
about the API implementation (related to its di-
rectives) reflected in the generated descriptions?
Thus, content adequacy is mainly about whether the
constraints are all included.

• Conciseness & expressiveness refers to whether un-
necessary information is included in the rendered
text: is there extraneous or irrelevant information
included in the descriptions, and is the text easily
understandable?

Based on the above quality aspects, we design multiple
questions, shown in Table 9, for the evaluators. The first two
questions address accuracy and content adequacy respectively,
whereas the third and the fourth question address concise-
ness, and expressiveness. The answers of the questions can
be among “strongly agree”, “agree”, “neutral”, “disagree”,
and “strongly disagree”, corresponding to five discrete
levels, ranging from 5 to 1 respectively.

TABLE 9
Questions designed to evaluate repair recommendation

Questions Value Range
Q1 Does the repair recommendation reflect (5-1)

the code constraints? (Accuracy)
Q2 Is the repair recommendation helpful to better (5-1)

understand and use the API? (Content adequacy)
Q3 Is the repair recommendation free of (5-1)

other constraint-irrelevant information? (Conciseness)
Q4 Is the repair recommendation (5-1)

clear and understandable? (Expressiveness)

This part of the experiment includes 24 graduate stu-
dents majoring in Software Engineering as subjects. Among
them, eighteen were from Nanjing University of Aero-
nautics and Astronautics, five were from University of
Zurich, and one was from University of Sannio. All subjects
have experience of programming in Java and Android for
at least five years. We randomly selected 160, 140, and
100 generated directives from the previous experiments
respectively (in total of 400 directive samples), together with
the corresponding source code and related constraints. The
source code also includes the invocation chains if there is a
relevant parameter constraint between the caller and callee
methods.

Listing 1 gives a concrete example of the provided sam-
ples, taken from com.sun.javafx.robot.FXRobotImage.java.
We first list the generated repair recommendation (Line

1-3), followed by the API’s comments and codes (Line 4-
15). The comments correspond to the related API directives
annotated with specific tags (Line 4-9). The parts of pa-
rameter related constraints whose document is missing are
also present inside the body of the code (Line 11-13). Each
sample is organized in the same format to the participants.

Listing 1. Sample example
1 Check Recommendation :
2 @throws Il legalArgumentException I f x or y i s l e s s than 0 ,
3 x i s no l e s s than width or y i s no l e s s than height .
4 /∗∗
5 . . .
6 ∗ @param x c o o r d i n a t e
7 ∗ @param y c o o r d i n a t e
8 . . .
9 ∗ /

10 public i n t getArgb ( i n t x , i n t y){
11 i f ( x < 0 | | x >= width | | y < 0 | | y >= height ) {
12 throw new I l legalArgumentException ( . . . ) ;
13 } . . .
14 }

We first introduce the background to the subjects, so they
can have sufficient understanding of the requirements. We
then assign the 400 samples to the 24 subjects. To ensure that
each repair recommendation is reviewed by at least three
subjects, we classify them into 8 groups, with 3 participants
each group. Accordingly, we assign 50 samples to each
group, and each participant is supposed to answer all the
four questions in Table 9 independently.

TABLE 10
Results of Experiment 3

Package Result Q1 Q2 Q3 Q4
Source

Case 1

5 337(70.2%) 211(44.0%) 342(71.3%) 228(47.5%)
4 87(18.1%) 123(25.6%) 79(16.5%) 151(31.5%)
3 28(5.8%) 91(19.0%) 37(7.7%) 73(15.2%)
2 10(2.1%) 40(8.3%) 4(0.8%) 9(1.9%)
1 18(3.8%) 15(3.1%) 18(3.7%) 19(3.9%)

Case 2

5 316(75.2%) 146(34.8%) 325(77.4%) 281(66.9%)
4 47(11.2%) 36(8.6%) 49(11.7%) 79(18.8%)
3 13(3.1%) 82(19.5%) 14(3.3%) 25(6.0%)
2 16(3.8%) 125(29.7%) 11(2.6%) 8(1.9%)
1 28(6.7%) 31(7.4%) 21(5.0%) 27(6.4%)

Case 3

5 245(81.7%) 201(67.0%) 236(78.7%) 224(74.7%)
4 19(6.3%) 24(8.0%) 30(10.0%) 31(10.3%)
3 3(1.0%) 22(7.3%) 5(1.7%) 7(2.3%)
2 5(1.7%) 23(7.7%) 15(5.0%) 13(4.3%)
1 28(9.3%) 30(10.0%) 14(4.7%) 25(8.4%)

TABLE 11
Average Results of Experiment 3

Package Source Q1 Q2 Q3 Q4
Case 1 4.49 3.99 4.51 4.17
Case 2 4.45 3.34 4.54 4.38
Case 3 4.49 4.14 4.53 4.39

Average 4.48 3.82 4.53 4.31

The review process took around 2 hours. We collected
the answers and then performed basic statistics. The results
are shown in Table 10 and Table 11. Table 10 gives the
experiment result, and the percentage distribution is given
by Figure 5. We find that, for all the studied cases, the
number of results above 3 takes a majority percentage.
Table 11 gives the average scores of the three cases. The
scores are also visually compared in Figure 6. Across
these three cases, we found that most answers of the four
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Fig. 5. Percentage Distribution in Experiment 3
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Fig. 6. Comparison in Experiment 3

questions are higher than four, demonstrating good quality
of the recommendations returned by our approach. Since
the samples contain both true positives and false positives,
the average score of Q2 is the lowest (3.82) among the four
questions, albeit it is still above 3 (neutral). Actually, during
the study we found out that some false negative examples
do not necessarily mean the bad quality of the generated
directives. As an example in javaFX, the original directive
of the method com.sun.javafx.geom.Arc2D.setArcType(int
type) is “@throws IllegalArgumentException if type is not
0, 1, or 2.” The corresponding extracted code constraint is
“type < OPEN || type > PIE”. Here, in the API, the values
of constant variables OPEN and PIE are 0 and 2 respectively.
Since we do not map the constant to its value, DRONE con-
siders it to be a defect and generates repair recommendation
“@throws IllegalArgumentException If type is greater than
PIE or less than OPEN.” A majority of participants think
this recommendation is better than the original one.

Finally, the subjects of the experiment also provided us
with some comments for improving the general quality
of solutions generated by DRONE. Specifically, several
participants proposed to generate more elaborated descrip-

tions/templates for “if statement” with many conditions.
Indeed, such cases exist, although the number is marginal.
For example, in javafx.scene.chart.BarChart.BarChart(Axis
xAxis, Axis yAxis, ObservableList data), the parameter con-
straint in the code is “if(!((xAxis instanceof ValueAxis
&& yAxis instanceof CategoryAxis) || (yAxis instanceof
ValueAxis && xAxis instanceof CategoryAxis)))”, the gener-
ated repair is: “@throws IllegalArgumentException If yAxis
is not the type of CategoryAxis or xAxis is not the type
of ValueAxis and xAxis is not the type of CategoryAxis or
yAxis is not the type of ValueAxis”. We agree that such a
repair recommendation is a bit difficult to understand, and
we may shorten the sentence by combining the phrases with
the same subjects to increase the expressiveness.

3.3 Threats to Validity
3.3.1 Internal Validity
Internal validity focuses on how sure we can be that
the treatment actually caused the outcome [35]. In our
approach, we directly work on the API code as well as the
accompanying documents of the Java libraries considered in
our dataset. The exception-related constraints are therefore
solely extracted from the code (via static analysis tech-
niques) and the descriptions (via NLP techniques). Another
concern is the potential bias introduced in the data set. To
minimize this threat, we randomly select the packages from
the latest JDK and Android libraries and exclude those of
private methods. We also exclude those API descriptions
with obvious grammatical mistakes. Furthermore, for the
evaluation of the approach, we rely on the judgment of
computer science master students because there is a certain
level of subjectivity in classifying the items into true/false
positives and true/false negatives. To alleviate this issue we
built a truth set based on the judgment of three inspectors.
Moreover, to validate the items each report is examined
by three subjects independently. After the initial validation
phase, all disagreements were discussed and resolved using
a majority vote mechanism.

3.3.2 External Validity
External validity is concerned on whether the results can
be generalized to the datasets other than those studied
in the experiments [35]. To maximize the validity of this
aspect, we include additional datasets with source code
and API documentation from twelve other packages of JDK
and Android libraries. However, as an inherent issue in
other empirical studies, there is no theoretical guarantee
that the detection strategy still enjoys high accuracy in
other projects, especially for those with anti-pattern docu-
ment writing styles. Nevertheless, we believe the general
methodology is still valid in these cases, since our approach
for the document constraints extraction is heuristic based,
which means new, domain-specific styles can be handled by
introducing extra heuristics to boost the performance. There
is another concern with the overfitting of such heuristic-
based approach. Theoretically, if we exhaustively include
all the directives in the studied subjects, it will achieve a
very high precision rate. But, on one hand, due to the large
set of documents, it is impractical to manually analyze all
such directives; on the other hand, it is not necessary due
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to the naturalness of language. Therefore, we only include
those recurrent linguistic patterns we found in the empirical
study and leverage them as heuristics. Our goal was to
observe whether our approach is capable of finding defects
in well documented APIs. Indeed, all cases considered in
our experiments are from the latest versions of JDK and
Android. Although they are generally regarded as well-
documented APIs, many defects are still present. Finally,
to further reduce the threats mentioned above we plan
for future work to extend our study by analyzing APIs of
libraries of further domains and/or program languages.

4 DISCUSSION

For program analysis, we just consider the explicit “throw”
statements as sources of exceptions (i.e., checked excep-
tions). It is possible that other kinds of runtime exceptions
occur during the program execution, for example, divide-
by-zero. In most cases, these implicit exceptions are caused
by programming errors, so it might be inappropriate to in-
clude them in the documentation [36]. As a result, we adopt
a similar strategy as in [37] and suppress implicit exception
extraction. For static analysis tools, we use Eclipse’s JDT and
CallHierarchy mainly due to their ability to parse programs
with incomplete reference information. Some related work,
such as [37], utilizes the Soot toolset [38], which requires
complete type class references.

In the analysis of API documents, we only consider
the directive statements which are preceded by @param,
@throws and @exception tags. Moreover, we only consider
a subset of the whole API directives, i.e., the tags
whose related codes have detected constraints. In some
exceptional cases, the constraints are instead given
in the general description part of the methods; these
constraints cannot be extracted by our approach. The
inclusion of additional parts of documents is left as future
work. Moreover, in the document descriptions, very
rarely grammatical errors exist which would potentially
interfere with the dependency parsing. For example, in
javax.swing.plaf.basic.BasicToolBarUI.paintDragWindow
(Graphics g), the document directive states “@throws
NullPointerException is g is null.” Obviously, the
first “is” in the sentence is a typo (should be “if”).
Another example is that, in the construction method of
java.awt.event.MouseEvent, “greater than” is mistakenly
written as “greater then”. For APIs with such grammatical
mistakes, they are removed from the analysis once found.

There are cases in which a few extracted constraints
are composite and cover more than one category. For
example, as to java.awt.Dialog.Dialog(Window owner,
String title, ModalityType modalityType), the extracted
constraint of owner is “(owner!=null)&&!(owner instanceof
Frame)&&!(owner instanceof Dialog)”, which is related to
both the nullness and the type. We classify the composite
constraints into more than one category.

One of the goals of our study is to demonstrate the wide
existence of API document defects, even in those generally
believed well-documented APIs. However, although we
have come up with heuristics for JDK libraries which have
proven to be effective, there is no formal guarantee that the
same heuristics will work equally well with other libraries.

Nevertheless, the approach presented in this paper is able to
find documentation defects and propose repair solutions for
both JDK and Android libraries. More importantly, DRONE
is essentially open to incorporate other heuristics to facilitate
the NLP process. Our heuristics for JDK are valuable for at
least two reasons: (1) JDK and Android have a huge user
base and (2) our work, as the first work of this kind, sheds
light on how developing heuristics for other libraries of
(also) further program languages.

We also note that the use of new annotations can
help reduce the occurrence of null-related directive
mistakes, i.e., @NonNull and @Nullable. Some IDEs, such
as IntelliJ IDEA11 and Android Studio (which rides on
IntelliJ), can help detect such violations. For example, if
a null value is passed as an argument to an API whose
corresponding parameter is annotated with @NonNull,
the IDE will issue a warning. Indeed, in our exploration
of the Android case study, such tags faithfully reflect the
null value constraints of the API code. However, there
are at least three reasons for our approach to be useful in
such scenarios. First, in many cases, developers tend to
forget to add such annotations to the relevant parameters.
In our case study on the selected Android APIs, out of
495 null related parameters only 69 are annotated (67
@NonNull and 2 @Nullable respectively). Second, even these
annotations were added, there might still be inconsistencies.
For instance, in Android, the parameter transition of
android.graphics.drawable.AnimatedStateListDrawable.add-
Transition(int fromId, int toId, @NonNull T transition, boolean
reversible) is annotated with @NonNull, specifying that the
value should not be null. However, its documentation states
that “transition, ..., may not be null”, which is obviously a
defect. Last but not the least, even appropriately annotated
initially, the caller method which passes the parameter to
the API might be forgotten to annotate and therefore such
null related information is lost along the invocation chain.

The concept of document defect in our research is
based on the assumption that the API code is reliable. This
assumption can be—and should be—relaxed in situations
when the code quality is relatively low. Clearly, our ap-
proach can be adapted to report the inconsistency between
code and documentation. Still, our approach targets reliable
API code as such.

Current approaches based on linguistic analysis patterns
are mostly conceived for analyzing few traditional sources
of information (e.g., email and APIs documents). However,
when performing development, maintenance and testing
tasks developers access to various types of heterogeneous
data. Thus, future research approaches should be designed
with advanced mechanisms able to analyze relevant knowl-
edge present in different sources of information depending
on the specific task the developers are performing. For
instance, to find poor quality documentation in both produc-
tion and test code. Therefore, future research in SE can be
devoted to use linguistic analysis patterns to handle further
research challenges, this to make the novel techniques
proposed in this paper applicable in many industrial and
open source organizations.

11. http://www.jetbrains.com/idea/
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5 RELATED WORK

A majority of work on defect detection has been done at
the code level whereas fewer studies focus on the document
level. In view of the significant role of documentation in
program understanding, we believe high quality accom-
panying documents contribute greatly to the success of
software projects and thus deserve more considerations. In
this section, we mainly review some representative related
efforts in improving the quality of API documentation.

Analysis and Evolution of Directives in API documen-
tation. Directives of API documentation and the evolution
of API documentation are studied in [20], [39] and [40],
[41] respectively. The authors identified the importance of
directives of API documentation and gave a taxonomy
of 23 different kinds [20]. We concentrate on a subset
of these, i.e., those related to parameter constraints. The
co-evolution characteristics of API documentation across
versions with the source code was studied quantitatively
[40]. Based on the study, most evolution revisions occur
in annotations, which also motivates us to concentrate on
the parameter-related annotations in our study. Moreover
the evolution history of 19 documents was qualitatively
studied by analyzing more than 1’500 document revisions
[41]. It was observed that updating documentation with
every version change could improve the code quality,
which, in turn, suggests the positive correlation between
documentation and code. [42] investigated the developers’
perception of Linguistic Anti-patterns, i.e., the poor practices
in the naming, documentation, and choice of identifers in
the implementation of an entity. The results indicate that
developers perceive as more serious those instances where
the inconsistency involves both method signature and com-
ments (documentation), and thus should be removed. In
a recent survey of API documentation quality conducted
by Uddin and Robillard [15], three kinds of problems
were regarded as severest, i.e., ambiguity, incompleteness
and incorrectness, two of which are considered in our
approach. However, all these works adopted an empirical
methodology to investigate the problem and no automated
techniques were applied.

Zhong and Su [43] proposed an approach that combines
NLP and code analysis techniques to detect API documents
errors. The errors in their work differ significantly from
ours, in that they focus on two types of errors, i.e., gram-
matical errors (such as an erroneous spelling of words), and
broken code names (which are referred to in the documents
but could not be found in the source code). In contrast, we
target at the incomplete and incorrect descriptions about the
usage constraints of the documentation. Thus the emphasis
of our work is more at the semantic level. The work by
Goffi et al. [44] proposed a technique that automatically
creates test oracles for exceptional behaviors from Javadoc
comments. Similarly to DRONE, the technique proposed
uses NLP techniques. Different from our work, Goffi et al.
use run-time instrumentation. Indeed, we exploit static code
analysis to extract the statements of control flow decisions
and exception handling, as well as the call invocation
relation between methods. Moreover, our approach is able
to detect a wider set (or types) of documentation defects

(the inconsistencies reported by the SMT solver), providing
repair recommendations.

Automatic Generation of API Documentation and other
Artifacts. There is another thread of relevant research
on applying the NLP techniques to documents or even
discussions in natural language [28] to infer properties [45],
[46] such as resource specifications [47], method specifi-
cations [48], code-document traceability [49], document
evolution/reference recommendation [50], [51], API type
information [52], problematic API features [53], or change
requests based on user reviews [54], [55], [56], [57], [58]. In
this context, the more close research to our work is the one
related to the automatic inferring API documentation from
source code [59], [60], [61], [62], [63], [64], [65]. Indeed, infer-
ring API documentation from the code can help to directly
compare the existing documentation and finding defects.
Specifically, Reiss and Renieris et al. [59] proposed a research
approach to understand and visualize the dynamic behavior
of large complex systems. This work represents a first step
towards the generation of documentation from source code
or other software artifacts [29], [10], [13], [28]. Following the
same line of research, Lo et al. [61], [60] proposed a technique
based on scenario-based slicing, which is able to extract
expressive specifications from real programs. A more recent
work has shown that, compared to other strategies, synoptic
graphs improve developer confidence in the correctness of
their systems, which is useful also for finding bugs [62],
[63].

Ghezzi et al. [64] presented an approach that can infer
a set of probabilistic Markov models, concerning data
related to users’ navigational behaviors, to help understand
whether a Web application satisfies the interaction require-
ments of thousands if not millions of users, which can be
hardly fully understood at design time. Finally, a recent
work by Ohmann et al. [65] proposed Perfume, an approach
to capture key system properties and improve system com-
prehension (by inferring behavioral, resource-aware models
of software systems from logs of their executions), thus
highlighting the differences between what developers think
systems do and what they actually do. Buse and Weimer
[37] proposed an automated API documentation generation
technique for exceptions. The work leveraged static analysis
to extract the call graphs and exception throwing conditions
automatically, which overlaps somehow with ours in the
aspect of program analysis on exceptions. However, the
authors did not consider the extant documents. Instead, they
generated new documents based on the program analysis
results.

All the work demonstrated the feasibility of applying
NLP techniques to documentation, but did not deal with the
defect detection. Finally, it is important to mention that other
recent work in literature proposed the use of NLP templates
to document undocumented part of source or test code [28],
[29], [30], [31], [32]. However, our scenario is different as
we provide recommendations, based on NLP templates,
for replacing and correcting API document defects with
appropriate repairing solutions thus, complementing the
available human written documentation. Moreover, DRONE
generates such templates by analyzing both extracted code
constraints (in terms of an FOL formula) and document
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patterns.

Constraints and Directives in API Documentation. Saied
et al. [17] conducted an observational study on API usage
constraints and their documentation. They selected four
types of constraints, which are the same as ours. But
for the automated extraction of the constraints, they did
not consider the inter-procedure relation. In our work,
we leverage the call hierarchy to retrieve the constraint
propagation information. An essential difference is that they
had to manually compare the corresponding API document
directives with the extracted constraints.

Tan et al. [66] proposed an approach to automatically
extract program rules and then use these rules to detect
inconsistencies between comments and the code. This work
differs to ours in certain aspects: First, the analysis input of
this work is inline comments. Second, the target is limited
within the area of lock-related topics. Their subsequent
work on the comment level detection includes [67], [68].
Similar work on comment quality analysis and use case
documents analysis were presented in [69] and [70] respec-
tively.

Treude et al. [71] proposed an approach to augment
API documentation with insights sentences from Stack
Overflow, so that dispersed information sources could be
integrated and provide more comprehensive support for
developers. Similarly, an approach to link source code
examples from online sites such as Stack Overflow and
Github Gists to API documentation was presented in [72].
Compared with all these work, we target at different re-
search questions although some similar analysis techniques
are used.

6 CONCLUSION AND FUTURE WORK

A vast body of research has presented approaches to
detect defects of programs, but largely overlooked the
correctness of the associated documents, in particular API
documentation. In this paper, we investigated the detection
of API document defects and their repair. We presented
DRONE, which can automatically detect API document
defects at the semantic level and recommend repairs. To
the best of our knowledge, this is the first work of this
kind. Our experiments demonstrated the effectiveness of
our approach: in the first experiment for selected JDK API
defect detection, the F-measure of our approach achieved
79.9%, 71.7%, and 81.4%, respectively, indicating a practical
feasibility. In our second experiment, we extended the
applicability on many more API packages including some
other JDK APIs and Android libraries, and reused the
heuristics from the first experiment. Although being slightly
less accurate, the overall performance is still good. Finally,
in a third experiment, we showed that the quality of the
generated documentation repair recommendations for the
detected defects was satisfactory for most of our study
participants. We achieved average scores 4.48, 3.82, 4.53,
4.31 (out of 5) in terms of accuracy, content adequacy, and
conciseness & expressiveness, respectively.

With our approach, we could expose various API di-
rective defects in JDK and Android API documents, in
contrast to what is believed that widely used and well-
documented APIs would not exhibit such document defects.

This suggests that even more serious defects are existing in
other, less mature, projects.

To demonstrate a wider applicability of our approach,
additional case studies with various types of APIs and extra
coverage of documents are required, which are planned in
our future work. We also plan to overcome the limitations
identified in the experiments to further boost the accuracy of
the approach. In addition, although we provide a prototype
in our current paper, a monolithic, full-fledged tool is still
under development. Other possible future research includes
the integration of an automated constraint description
generator for incomplete documents, so we are able to
work properly with documentation and code of libraries
implemented in different programming languages.
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