
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Boosting API Recommendation
with Implicit Feedback

Yu Zhou, Xinying Yang, Taolue Chen, Zhiqiu Huang, Xiaoxing Ma, Harald Gall

Abstract—Developers often need to use appropriate APIs to program efficiently, but it is usually a difficult task to identify the exact
one they need from a vast list of candidates. To ease the burden, a multitude of API recommendation approaches have been
proposed. However, most of the currently available API recommenders do not support the effective integration of user feedback
into the recommendation loop. In this paper, we propose a framework, BRAID (Boosting RecommendAtion with Implicit FeeDback),
which leverages learning-to-rank and active learning techniques to boost recommendation performance. By exploiting user feedback
information, we train a learning-to-rank model to re-rank the recommendation results. In addition, we speed up the feedback learning
process with active learning. Existing query-based API recommendation approaches can be plugged into BRAID. We select three state-
of-the-art API recommendation approaches as baselines to demonstrate the performance enhancement of BRAID measured by Hit@k
(Top-k), MAP, and MRR. Empirical experiments show that, with acceptable overheads, the recommendation performance improves
steadily and substantially with the increasing percentage of feedback data, comparing with the baselines.

Index Terms—API recommendation; learning to rank; active learning; natural language processing

F

1 INTRODUCTION

A PPLICATION Programming Interfaces (APIs) play an
important role in software development [1]. With the

help of APIs, developers can accomplish their programming
tasks more efficiently [2]. However, due to the huge number
of APIs in the library, it is impractical for developers to get
familiar with all of them and always select the correct ones
for specific development tasks.

To tackle this problem, many API recommendation ap-
proaches and tools have been proposed to relieve the bur-
den of developers in understanding and searching APIs.
Based on different inputs, there are generally two types of
API recommendation scenarios, i.e., recommendation with
queries and recommendation without queries. The first type
requires developers to state what is wanted in natural
language queries which are fed into the recommendation
system. For the second type, since there are no explicit
queries, the neighboring code snippets will be leveraged
as context, and the missing APIs will be inferred and rec-
ommended to end users. A majority of related work em-
ploys text similarity-based techniques. For example, some
recommend APIs according to the similarity between search
queries and supplementary information of APIs [3], [4];

• Y. Zhou, X. Yang and Z. Huang are with College of Computer Science
and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, China. Y. Zhou is also with State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing, China.
E-mail: {zhouyu,xy yang,zqhuang}@nuaa.edu.cn

• T. Chen is with Department of Computer Science, University of Surrey,
UK. He is also with State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China.
E-mail: taolue.chen@surrey.ac.uk

• X. Ma is with State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China.
Email: xxm@ics.nju.edu.cn

• H. Gall is with Department of Informatics, University of Zurich, Switzer-
land.
E-mail: gall@ifi.uzh.ch

Manuscript received xxxx, 201X; revised xxxx, 201X.

some return API usages depending on how much they
are related to context information in source code [5], [6].
Generally, these approaches use keywords to narrow down
the search scale in massive target repositories and speed
up recommendation efficiency. However, in many cases, the
correct API information is not literally similar to the query
because of the semantic gap [7], [8], [9]. For example, the
answer to the query “Make a negative number positive”
could be “java.lang.Math.abs”, which returns the absolute
value of the argument, matching the problem perfectly. For
these dissimilar query-answer pairs, textual matching is
of limited usage. Secondly, very few of these approaches
consider the role of developers’ feedback information in
the recommendation process. Such information is usually
crucial to improve the API recommendation performance.

Feedback information generally refers to user interaction
information with the recommended results during a recom-
mendation session. Usually, it reflects the user preference
for different items. In traditional recommendation systems
[10], the use of feedback information could greatly improve
the accuracy of recommendation [11], [12]. For example, in a
movie recommendation system, the user viewing history is
regarded as feedback information. In an online shopping
system, feedback usually refers to the product browsing
history of a particular customer. We note that they are
usually referred to as implicit feedback. (In contrast, rating
from users is considered to be explicit.) Implicit feedback
indirectly reflects user opinion and could be collected by
observing their behavior [13]. The observable behavior may
include selection, duration, repetition, purchase, etc. [14].
In the process of API recommendation, selecting an API
from the recommended list usually suggests that the API is
useful for the user to solve the particular problem specified
in the query. Hence, it is deemed to be the correct answer to
the query. During each query-answer session, we record the
query alongside with the API selected by the user, inserting



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

such a query-API pair into the feedback repository. The API
is regarded as feedback information of the query, which can
reveal, e.g., the user’s programming habits. Moreover, in
many cases, feedback from programmers actually provides
answers to the queries and would play a significant role in
processing similar user queries and improving the perfor-
mance of the recommender in the future. This highlights the
role of feedback in API recommendation systems, possibly
in a more pronounced way than traditional recommenda-
tion systems.

When searching information via browsers, people usu-
ally pay attention to the first few results returned by the
search engine. Likewise, ideally the API which match the
user query should be put on the top of the list. From the
user’s perspective, when they are not familiar with any of
the APIs on the recommendation list, they are more likely
to pick up the top-ranked API. In this paper, we propose a
novel framework, BRAID (Boosting RecommendAtion with
Implicit FeeDback), to boost recommendation effectiveness
by leveraging (implicit) feedback information. Particularly,
we focus on the first type of recommendation scenarios,
i.e., recommendation with queries. By introducing feed-
back, not only do we improve the performance of API
recommendations, but also we can accomplish personalized
recommendation. For the same query, different list orders
could be recommended based on each user’s personal in-
teraction history (i.e., feedback). Moreover, our framework
could accommodate existing recommendation approaches
as components.

To effectively integrate user feedback into the code
recommendation loop, we harness learning-to-rank (LTR)
techniques, which are widely used in areas such as infor-
mation retrieval and recommendation. The key of LTR in
information retrieval is to train a ranking model by which
a given query can decide an optimized order of the rele-
vant documents based on feedback information. By viewing
APIs as documents, we can apply LTR techniques to API
recommendation to boost its performance. In particular, we
leverage related information features and feedback features to
train the model (cf. Section 3.2). The former consists of
API path features and API description features, representing
the relevance of the recommended APIs and the associated
document descriptions respectively; the latter represents the
relevance to the APIs in the feedback repository. Further-
more, to accelerate the feedback learning process, we incor-
porate active learning which is to alleviate the “cold start” of
tenuous feedback information at the beginning. We collect
query-API pairs by leveraging crowdsourced knowledge,
which function as an oracle to provide the correct label.
These pairs are then put to the training set. By iterating this
process we can obtain a well-trained active learning model
with the expanded labeled set. This training set can be, in
turn, used to train a well-performed model to generate an
optimized recommendation list.

To demonstrate the effectiveness of BRAID, we select
three recent state-of-the-art API recommendation systems,
i.e., BIKER [3], RACK [15], [16], NLP2API [17], as baselines
and Hit@k/Top-k accuracy, MAP, MRR as evaluation met-
rics. With continuous accumulation of feedback informa-
tion, the Top-1 accuracy is increased by 9.44%, 6.79%, 18%
and 18.39% for BIKER (method level), BIKER (class level),

RACK and NLP2API respectively.
The main contributions of the paper are as below.

• We propose a novel framework BRAID1, which inte-
grates programmers’ feedback information by using
the learning-to-rank technique to improve the accu-
racy of API recommendation.

• BRAID also features the active learning technique,
with which the learning process of feedback informa-
tion can be accelerated. Even with a small proportion
of feedback data, the performance of recommenda-
tion can still be enhanced considerably.

• We conduct a comprehensive empirical study and
compare BRAID to three state-of-the-art API rec-
ommendation systems. The results show that our
approach performs well and demonstrate its gener-
alizability.

Our work is orthogonal to the recent efforts in recom-
mending APIs with machine learning techniques, largely in
the context of intelligent software development. It is not to
put forward yet another recommendation method, but is to
boost the performance and is applicable to a wide spectrum
of existent query-based recommendation systems. To the
best of our knowledge, this represents one of the first works
to combine LTR, active learning and feedback information
in API recommendation.

Structure of the paper. Section 2 briefly introduces the back-
ground of this study. Section 3 gives the details of our
approach. Section 4 presents the experimental settings and
comparative results on related API recommendation sys-
tems. In section 5 and 6, threats to validity and related work
are discussed respectively. Finally, conclusion is drawn and
future research is outlined in Section 7.

2 BACKGROUND

2.1 Learning-to-rank
As a widely used ranking technique, LTR has achieved

great success in a variety of areas including information
retrieval, natural language processing, and software engi-
neering [18], [19], [20]. The basic task of LTR is to learn
k ordered documents d = (d1, · · · dk) from the document
set D by optimizing a loss function which is dependent
on a given query q. LTR is essentially a supervised learn-
ing task, typically by extracting features from documents
and predicting the corresponding labels which reflect the
relevance between the query and the documents. Different
from traditional approaches based on similarity calculation,
the main characteristic of LTR is to define a loss function
and train a ranking model f(q, d) to sort the candidate
documents in d. In this work, in a nutshell, we regard APIs
as “documents”, and cast API recommendation as an LTR
problem.

LTR techniques can be classified based on the underlying
learning model. Examples include SVM techniques [21],
boosting techniques [22], neural network techniques [23],
and others [19]. A more interesting classification is based
on the characteristics of the input space, where one usually
speaks of pointwise, pairwise and listwise LTR [24], [25]. In

1. https://github.com/yyyxy/vscode-plugin-for-braid/



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

general, the pointwise approach focuses on the relevance of
a query and a single document. By converting each single
document into a feature vector, it can predict the relevant
score of the document via classification or regression meth-
ods. The pairwise approach regards ranking as comparing
the relative preference between document pairs. In this way,
it turns a ranking task into deciding the relative order of
each document pair, which can be considered as a binary
classification or a pairwise regression problem. The listwise
approach takes the results of the user query (namely, a list of
documents) as a data point in the training data set based on
which a ranking model M can be trained. For a new query,
M predicts each document on the list for the new query and
then ranks them in (say) descending order.

In API recommendation, it is neither practical nor nec-
essary to obtain a fully ranked list of APIs, since pro-
grammers are merely interested in the most appropriate
APIs associated with the query and ignore the irrelevant
ones. Instead we only need to compare pairwise preference
of a few candidate APIs with the help of programmers’
feedback. On the other hand, in general pairwise approaches
work better in practice than pointwise approaches because
predicting relative order is closer to the nature of ranking
than predicting class labels or relevance scores. As a result,
in our framework, we adopt the pairwise LTR technique.

2.2 Active Learning
Supervised learning requires annotated/labeled data,

which may be very expensive to obtain in many cases.
Active learning is proposed with the general aim to train
a model of better performance but with fewer training
instances. When the annotated data is scarce or the cost
of labeling data is high, the active learning algorithm can
actively select specific data to label; these data will then be
sent to annotators. Generally speaking, the selected samples
should be the most informative ones, which can not only
make a maximum contribution to model optimization, but
also help reduce the amount of annotated data [26].

Generally speaking, the paradigm of active learning can
be represented as a tupleA = (C, S,O, F, U), whereC is the
model to be learnt (e.g., a classifier), S denotes the query
function which acquires the most informative data from
unlabeled samples, and O represents the oracle which labels
the samples. In addition, F and U are the sets of labeled and
unlabeled samples respectively.

An active learning algorithm usually starts by training
a model with only a small amount of labeled data from F .
Then it inquires the function S which defines the selection
strategy, and thus obtains the samples from the unlabeled
data set U . As the next step, it submits these selected
samples to the oracle O for annotation and inserts them into
the labeled set when they are returned. Finally, the newly
labeled samples are used to retrain the model. This process
repeats until some specific termination criteria are met, such
as those based on the number of iterations or performance
related metrics.

3 APPROACH

As illustrated by Fig. 1, the BRAID framework mainly
consists of four parts.

Initial API listQuery Feedback 
repository

Learning-to-
rank model

Active learning 
module

Input:

Output:

Re-ranked API 
list

User selects the 
most relevant 

APIs

The ranking engine

Feature 
extraction

4

API 
recommender 

tool

The  feature extraction engine3

Initial API recommendation1 The feedback repository2

API doc

API score 
calculation

Preproce-
ssing

API 
question

Fig. 1: The overview of BRAID

(a) Initial API recommendation. Given a query as input,
an initial API recommendation list is returned. This
could be acquired by applying the existing API
recommendation algorithms to the given query.

(b) The feedback repository which stores pairs of queries
and associated recommended APIs. More formally,
the feedback repository FR is a set of pairs (Qu,Ap)
where Qu is a query and Ap is the corresponding
APIs. When a user selects certain APIs from a rec-
ommendation list, the observable behavior will be
tracked, i.e., the query and the selected APIs are to
be recorded in the feedback repository. Initially, the
feedback repository is empty, but will accumulate in
the course of interactions with users.

(c) The feature extraction engine which generates a fea-
ture vector for each API on the recommended API
list when a query is given. The feature vector com-
prises two parts, i.e., feedback features and related
information features. In particular, the feedback in-
formation is obtained by looking up the feedback
repository whereas the related information is ob-
tained from relevant domain knowledge, e.g., Java
official API document information (cf. Section 3.2).

(d) The ranking engine which ranks the recommended
APIs for a given query. To this end, the engine
applies two techniques: (1) LTR to compute scores
based on the generated feature vectors (cf. Sec-
tion 3.3.1); and (2) active learning which leverages
crowdsourced knowledge (from, e.g., Stack Over-
flow) as an oracle and trains a classifier to predict
the score (cf. Section 3.3.2). The two scores are
combined to give the final verdict (cf. Section 3.3.3).

The basic workflow of our approach is as follows.

1) When a user makes a query Q to the system (in the
form of, for instance, a short sentence in a natural
language), a base API recommendation method is
employed to provide an initial API list LQ.

2) The system looks up the feedback repository FR,
checking whether or not there is a query similar
to the user query Q. If this is the case, the system
returns a set SP of query-API pairs where the
similarity score of each query with Q is above a
certain threshold ε (cf. Section 3.1), i.e.,

SP := {(Qu,Ap) | (Qu,Ap) ∈ FR
and sim(Qu,Q) ≥ ε}



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Otherwise, there is no available query in FR similar
to Q (which is especially the case at the initial stage
of the interaction), and SP is simply an empty set.
The recommended APIs in LQ and SP are to be fed
to the feature extraction engine.

3) The feature extraction engine, upon receiving LQ
and SP , computes a composite feature vector FV .
FV includes two components, i.e., FF and RIF .
The former corresponds to the feedback features,
while the latter corresponds to the related informa-
tion features. (In case that SP is empty, FV consists
solely of related information features.)

4) The ranking engine takes FV as input, and ap-
plies the trained learning-to-rank model and active
learning model to obtain the prediction values. The
system then calculates the API scores based on the
prediction values of these two models. Afterwards
LQ is re-ranked in descending order according to
the API scores, and new recommendations are pre-
sented to the users.

As the core component of our framework, the feedback
repository is maintained throughout the life of the system
and is kept up-to-date with the interaction of the users.
In the beginning, the feedback repository is empty. (In
this case, no feedback feature can be provided, and thus
BRAID outputs the initial API recommendation list as a
result.) When the APIs are recommended to the users (e.g.,
programmers) who are supposed to implicitly label the most
relevant APIs which are treated as the “ground-truth” rec-
ommendation of the given query, the query-API pair would
be the feedback from the user and is stored in the feedback
repository. The feedback repository grows gradually along
with more user interactions.

In general, the feedback repository is used in both fea-
ture extraction and training the LTR model (cf. Section 3.3.1).
We note that, for efficiency consideration, we do not re-
train the LTR model every time the feedback repository is
updated. Instead it is done on a user session basis, which
in our context denotes a series of interactions continuously
performed by a specific user, for instance, when the user
launches the API recommender followed by a number of
queries. In this way we can strike a balance between ranking
precision and overheads.

3.1 Preprocessing and similarity calculation
To facilitate feature extraction and learning steps, we

first need to convert user queries and APIs (as well as their
related documents) into vectors. As mentioned in Section 1,
the lexical gap between queries in natural languages and
APIs in programming languages impedes the recommen-
dation performance. We hence use word embedding to
bridge such a gap during vectorization. To train the model,
we collect API related posts in Stack Overflow website.2

Particularly we use the data dumped from Stack Exchange.3

All the titles of the posts which are tagged with Java are
extracted in particular, since we mainly focus on Java re-
lated API recommendation. (Note however that the general

2. https://stackoverflow.com/
3. https://archive.org/download/stackexchange/stackoverflow.com-

Posts.7z, updated in March 2019

methodology is clearly not Java-specific.) The remaining
posts are subject to classic textual preprocessing steps in-
cluding tokenization and stemming. NLTK4 is employed
to fulfil the pre-processing task, and Word2Vec5 is used to
train the embedding model. Similar to Huang et al. [3], we
calculate the IDF (Inverse Document Frequency) of each
word in the preprocessed post corpus, and thus build an
IDF vocabulary as the weighting schema of the embedding
model.

Similarity calculation. To calculate the similarity between
a user query Q and a text S (e.g., the query stored in the
feedback repository), we first convert them to two bag-
of-words Q and S. Then we use the semantic similarity
measure introduced by Mihalcea et al. [27].

For any w ∈ Q, sim(w, S) is defined to be the maximum
value of sim(w,w′) for each word w′ ∈ S. Formally

sim(w, S) = max
w′∈S

sim(w,w′) (1)

where sim(w,w′) is the semantic similarity of the two
words w and w′, captured by the cosine distance of the
embeddings of w and w′ as vectors:

sim(w,w′) =
~Vw · ~Vw′∣∣∣~Vw∣∣∣ ∣∣∣~Vw′

∣∣∣ (2)

Based on Equation (1), the asymmetry similarity can be
defined as:

sima(Q,S) =

∑
w∈Q sim(w, S) ∗ idf(w)∑

w∈Q idf(w)
(3)

where idf(w) is computed as the number of documents that
contain w.

Finally, the (symmetric) similarity between Q and S
is derived by the arithmetic mean of sima(Q,S) and
sima(S,Q), i.e.,

sim(Q,S) =
sima(Q,S) + sima(S,Q)

2
(4)

In this way, we can compute the similarity between user
query and other artifacts such as API, query in feedback
repository, etc. Recall that in step 2), the system needs to
check whether there exists a query in the feedback repos-
itory which is similar to the user query. For this purpose,
we set a parameter ε as the similarity threshold to distin-
guish whether or not two queries Q and S are similar. If
sim(Q,S) ≥ ε, then they are considered to be relevant.
(Our experiment, via trial-and-error, empirically indicated
that ε = 0.64 is a suitable configuration.)

3.2 Feature extraction
Recall that the basic functionality of the feature extrac-

tion module is to compute the features of APIs. As stated in
workflow 3), the input of this module is SP and LQ, where
LQ is the recommended top-N APIs for the queryQ and SP
is a set of query-API pairs stored in the feedback repository
which crucially, corresponds to queries similar to Q. The
aim is to generate a feature vector for each of the N APIs

4. http://www.nltk.org/
5. https://radimrehurek.com/gensim/models/word2vec.html



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

in LQ, based on SP . As the feature extraction is based on
the query Q, this can be treated as a process of query-aware
feature engineering.

The rationale is that the relevance of each API in the
recommended API list LQ to the user query Q depends on
(1) the relevance of the API-related description information
to Q, and (2) whether in the feedback repository some API
exists for dealing with a similar query. As a result, we
consider

• related information features, representing the relevance
to the recommended APIs as well as the associated
document description;

• feedback features, representing the relevance to the
APIs in the feedback repository.

which are articulated as follows.
Related information feature. The related information fea-
ture of each API on the recommended API list consists of
the following two parts.

(1) API path feature, representing the similarity between
the user query Q and the API path information. Here
an API path is represented by package name and
class name, which is taken from the original API
recommender tool under consideration.

(2) API description feature, representing the similarity
between the description under consideration and the
user query Q. The description can be obtained via of-
ficial API documentation. Particularly, we extract the
summary sentence describing the API class/method
out of the official JDK 8 documentation.

In both cases, the similarity measure is calculated by the
approach in Section 3.1.

Example. As an example, we consider the query Q

“killing a running thread in Java” and the API m on the
top of the list in Table 1. Note that m is from the package
’java.lang.Thread.start’. The API path feature of m is the
similarity between Q and m. The API description of m
is “Causes this thread to begin execution; the Java Virtual
Machine calls the run method of this thread”, so the API
description feature is set to be the similarity between Q and
the description both of which are treated as bags of words.
Feedback feature. Feedback feature is extracted based on
the similarity between a user query Q and queries in feed-
back repository FR.

Recall that

SP := {(Qu,Ap) | (Qu,Ap) ∈ FR and sim(Qu,Q) ≥ ε}

We then collect a subset of SP consisting of only those
whose API appears in LQ, namely, ST . Formally, we define
ST as below.

ST := {(Qu,Ap, sim(Q,Qu)) |
(Qu,Ap) ∈ SP and Ap ∈ LQ}

We remark that there may be several tuples in ST whose
Ap is the same. Therefore, an API in LQ may have several
similarities to be considered as the feedback feature, and we
select the most relevant five as the feedback feature.

Algorithm 1 shows the pseudo-code of feedback feature
generation for LQ. We first create an object FF of Hashmap

Data: ST : tuple set, FR: feedback repository, and LQ: initial
API list

Result: FF : Hashmap of feedback feature of the APIs in LQ

1 begin
/* Initialize FF for API entries in LQ; */

2 FF ←− new Hashmap();
/* sort ST in descending order based on the

similarity score; */
3 ST ←− sortedBySim(ST);
4 foreach API ∈ LQ do
5 index←− 0;
6 ff ←− new Array[5];
7 foreach st ∈ ST do
8 if st.Ap == API then
9 ff [index]←− st.sim(Q,Qu);

10 else
11 ff [index]←− 0;
12 if index < 5 then
13 index←− index+ 1;
14 else
15 break;
16 end

/* add API and feature value pair into
feedback vector FF ; */

17 FF.put(API, ff);
18 end
19 end

Algorithm 1: Algorithm for generating feedback fea-
tures

TABLE 1: The recommended API list of the query

Query killing a running thread in java

Initial
API list

(by
BIKER

[3])

1 java.lang.Thread.start
2 java.lang.Thread.stop
3 java.lang.Thread.join
4 java.util.concurrent.Executor.newFixedThreadPool
5 java.lang.Process.destroy
6 java.lang.Thread.currentThread
7 java.lang.Thread.isAlive
8 java.util.concurrent.Executor.execute
9 java.lang.Thread.interrupt
10 java.lang.Object.wait

type to accommodate the result (Line 2); then we sort ST
in descending order based on the similarity score (Line 3).
Afterwards, we iterate the LQ, and for each API , we create
an array ff (Line 6) to record the most relevant 5 similarity
values with the API, from the sorted ST (Line 7-16). Then,
the API and ff pair is inserted into FF (Line 19).
Example. To continue with the previous example, we firstly
obtain the recommended API list LQ shown in Table 1 from
an initial API recommendation tool (e.g., BIKER), and the
RIF of LQ. Then we look up the feedback repository FR,
finding a pair SP (Qu,Ap) whose query is similar to Q
shown in Table 2. Because Ap ’java.lang.Thread.interrupt’ of
the SP is in LQ (the ninth API), this SP and the similarity
betweenQu andQ can make up the tuple ST . The similarity
is calculated as 0.72 based on the Equation (4). There is
no other ST , so we put the similarity (0.72) into the first
position of the feature vector ff , and the rest four elements
would be zero. ff and Ap form FF . Combining FF with
the RIF together forms feature vectors FV = (FF,RIF )
of the APIs in the LQ.

3.3 Re-ranking recommendation API list
In this section, we describe the functionality of the

ranking engine. As stated earlier, the input is a list of APIs



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 2: The similar query in the feedback repository

Query Stopping looping thread in Java
Answer java.lang.Thread.interrupt

produced by the adopted recommendation tool, endowed
with feature vectors based on the user query. The ranking
engine aims to re-rank the APIs on the list so the recommen-
dation is more customised to the user feedback. To this end,
we harness two techniques, i.e., LTR and active learning.
In this framework, the LTR and active learning modules
are independent. The active learning algorithm determines
whether the unlabeled data is relevant. With the oracle, the
labeled dataset is expanded, which can be used to improve
the classifier in the active learning. The labeled dataset
is used as the training set for LTR. Both LTR and active
learning models predict the API relevance scores for the
given query, which are to be integrated as per Equation (13).

3.3.1 LTR model and rank scores
LTR is a supervised learning approach, which demands

labeled training data. To this end, we use the recommended
APIs for the queries stored in the feedback repository.
Recall that each query-API pair (Qu,Ap) in the feedback
repository has gone through feature engineering (Section
3.2). We can then collect the feature vectors of the APIs in
LQu, and label the selected API (i.e., Ap) as 1, and others as
0. This process gives rise to the labeled training data set for
the LTR model.

We adopt LambdaMart [28], a widely-used algorithm
for ranking, as our LTR model. LambdaMART is a boosted
tree model with the optimization strategy based on Lamb-
daRank [29]. The key observation of the optimization strat-
egy is that, in order to train a model, only the gradient
of the objective function is needed, which can be modeled
by the sorted positions of the items for a given query. In
LambdaMART, we assume that there is an implicit objective
utility function Util whereby we define

λij =
∂Util(si − sj)

∂si
=

−σ |∆Zij |
1 + e−σ(si−sj)

(5)

where for two feature vectors Vi and Vj such that Vi ranks
higher than Vj , si and sj represent the scores of Vi and
Vj respectively. σ is a parameter of the sigmoid function
the value of which determines the shape of the function.
∆Zij is the difference of a specific ranking metric calculated
by swapping the rank positions of Vi and Vj . For example,
when |∆Zij | stands for the change of metric MAP, such a
model actually optimizes MAP directly.

Symmetrically, in case that Vj ranks higher than Vi, we
define

λij =
σ |∆Zij |

1 + e−σ(si−sj)
(6)

With Equation (5) and Equation (6), the gradient of Util
with respect to a feature vector Vi can be written as:

λi =
∑
j 6=i

I(i, j)λij = I(i, j)
σ |∆Zij |

1 + e−σ(si−sj)
(7)

where I is the indicator function defined as:

I(i, j) =

{
−1, if Vi ranks higher than Vj ,
1, if Vi ranks lower than Vj .

It follows that, for each feature vector Vi , we can define
the utility function as

Utili =
∑
j 6=i
|∆Zij | log(1 + e−σ(si−sj)) (8)

Since we build the LTR model based on the tree-based
algorithms [30], the regularization term is based on the
complexity of the tree model. More concretely, it is defined
as

Ω = γT +
1

2
β

T∑
j=1

||ωj ||2 (9)

where T represents the number of the leaf node, ω is the
weight of the leaf node, γ and β are hyper parameters used
to adjust the weights of T and ω. (The experimental results
show that γ is set to 0.3 and β to 1 in our setting.)

Finally, the objective of our LTR model is to maximize∑
i

Utili − Ω. (10)

where i ranges over all labeled samples.
LambdaMART trains a boosted tree model MART (mul-

tiple additive regression trees), in which the prediction value
of the model is a linear combination of the outputs of a set of
regression trees. In our LTR model, the LambdaMART maps
the feature vector V ∈ Rd to Score(V ) ∈ R, which can be
written as:

Score(V ) =
N∑
j=1

αjfj(V ) (11)

where fj : Rd → R is a function modeled by a single
regression tree and the αj ∈ R is the weight associated with
the j-th regression tree. Both fj and αj are learned during
training, and N is the number of trees.

For the given user query Q, we extract features as in
Section 3.2, and then use the trained LTR model to predict
the rank score for the recommended API list LQ. The result
is denoted by ScoreQ, which comprises Score(V ) for all
feature vectors V of each API in LQ.

3.3.2 Active learning model and relevance scores
We utilize the active learning technique to improve the

learning efficiency when the feedback repository data is
scarce. An active learning algorithm usually starts by train-
ing a model with selective labeled data for which we follow
the same approach as LTR (cf. Section 3.3.1). The structure
of the active learning module is shown in Fig. 2.

Feedback 
repository

Selected 
feedback data

Training 
data

Query 
function

Active learning 
model

API score  
calculation

Oracle

Ask for 
annotation

2 Active learning iteration 
process

Initial API  recommendation
Learning

1

1

2

Query
API 

recommender 
tool

Initial API list Feature 
extraction

Active learning 
module

Fig. 2: Active learning module architecture

For the active learning paradigm A = (C, S,O, F, U),
we use the Logistic Regression algorithm to train a model



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

C . The uncertainty sampling strategy [31] is used to select
the most informative data (which may not be classified well
by the classifier) as the query function S. Specifically, we use
a general framework of uncertainty sampling strategy, viz.
least confidence LC [32], to select sample with the highest
uncertainty value. The uncertainty value for the sample is
defined as follow:

x∗ = arg max
x

1− PC(ŷ|x) (12)

where ŷ is the class label with the highest posterior proba-
bility for the sample x under the classifier C . In our work,
we collect the query-API pairs to serve as the oracle O.
These query-API pairs represent crowdsourced knowledge
derived from the questions and accepted answers in Stack
Overflow posts, which can be used to annotate the selected
data. We manually examine the dataset to assure its quality
(cf. Section 4.1). Note that this is just one way to instantiate
the oracle; one can certainly seek other resources to serve as
the oracle.

Because BRAID outputs the initial API recommendation
list when the feedback repository is empty, the active learn-
ing module commences to play its role when the feedback
data is available.

First, we collect the feature vectors of the APIs in LQu
(cf. Section 3.3.1) and label them to form the labeled set F .
We formulate as a classification problem, and accordingly,
use F to build an active learning classifier model C . Next,
we collect the feature vectors of the recommended APIs of
the queries whose topic is similar with the given query in
Stack Overflow to form the unlabeled set U . After applying
the current model C to the unlabeled set U , we use the
uncertainty sampling strategy S on U to select data for
which the classifier C is less certain.

Then the queries based on the selected data are sent
to the oracle O for annotation, and the results will be
put into the feedback repository.The selected samples will
be used for expanding the labeled set along with their
labels to retrain the classifier model C . The above steps are
repeated, and we finally obtain an optimized classifier and
an expanded feedback repository which will also be used to
train the LTR model (cf. Section 3.3.1).

Similar to LTR, we consider the features extracted from
a given query (cf. Section 3.2) as input, and use the well-
trained classifier to predict the relevance of each API on
the recommended list, where the relevance score simply
takes the probability returned by the classifier. RelevQ is
then obtained by computing the relevance score for the
recommended API list of a user queryQ. In this way, we can
combine active learning with API recommendation systems.

3.3.3 Re-ranking list and collecting user feedback
The last step is to re-rank the API list. In Section 3.3.1 and

Section 3.3.2, we have obtained the predictions of the API
(ScoreQ and RelevQ) of the LQ through well-trained LTR
and active learning models respectively. By normalizing
ScoreQ, we calculate the overall prediction score of the APIs
as follows.

PredScoreQ(i) =
ScoreQ(i)− Scoremin
Scoremax − Scoremin

+ µRelevQ(i)

(13)

where ScoreQ(i) represents the rank score of the i-th API in
the recommended list of Q, and RelevQ(i) is the relevance
score of the i-th API which takes the position of API into
account. Scoremax and Scoremin are the maximum and
minimum values of the rank score respectively; µ is the
weight which is a dynamic value dependent on the position
of the i-th API (i.e., posi). In our experiments, µ is set to

2
3×posi . We then re-rank LQ in descending order based on
the final prediction score PredScoreQ. Programmers can
choose an adequate API from the re-ranked list correspond-
ing to the query. Meanwhile, the decision will be recorded
in the feedback repository.

4 EVALUATION

In this section, we evaluate the proposed BRAID ap-
proach. We shall mainly study the following research ques-
tions (RQs).

RQ1 How effective is BRAID to recommend API for
given queries in general?

RQ2 How does the feedback information contribute
to BRAID for recommending API? In particu-
lar, how does the accumulation of the feedback
repository improve the performance of BRAID?

RQ3 How do LTR and active learning techniques
contribute to BRAID respectively?

RQ4 Is the overhead introduced by BRAID accept-
able?

4.1 Baselines
The BRAID approach is essentially an “add-on” tech-

nique, which is designed to be instrumented to existent
query-based API recommendation systems for which we
use three representative systems, i.e., BIKER, RACK, and
NLP2API, as baselines.

BIKER [3] collects 413 questions, along with their
ground-truth APIs, as the testing dataset for the empirical
study. They are extracted from API-related posts of Stack
Overflow following the approach of Ye et al. [33]. The
question titles of the posts are considered as the query
whereas the APIs referred to in the accepted answers are
treated as standard answers. Sometimes, for a common
programming task query, if the APIs from other answers
which are not marked as accepted ones are also helpful to
solve the problem, human experts are involved to determine
whether these APIs should be added to the ground-truth
dataset.

RACK [15] collects 150 queries for the evaluation from
three Java tutorial sites: KodeJava6, JavaDB7 and Java2s8.
These sites contain a mass of programming tasks whose
descriptions generally are composed of three parts, i.e., a
question title, a solution consisting of code snippets, and
a comment used to interpret code. Similar to the accepted
answers in Stack Overflow posts, the comment explaining
the code also refers to one or more APIs which are vital
to deal with the question. Hence the ground-truth dataset
is made by question titles of the programming tasks in

6. https://kodejava.org
7. https://www.javadb.com
8. https://java2s.com



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

these sites and the corresponding APIs extracted from code
interpretation.

NLP2API [17] collects 310 code search query-API pairs.
Similar to RACK, the source of data is also the Java tutorial
sites. In addition to the sites which RACK refers to, they
also focus on the data on CodeJava.9 Thus, besides the
150 queries already gained by RACK, there are 160 new
ground-truth pairs, which make up 310 pairs of NLP2API.
Though some query-API pairs of NLP2API are the same as
RACK, it has no effect on our evaluation results, since the
comparative experiment with each baseline is conducted
independently. The query-API pairs of the three baseline
work are not merged together, and thus no duplicates
would be introduced. The ground-truth data set of this API
recommendation system is composed in the same way as
RACK.

In the experiments, we reuse the existing datasets, as
well as the implementations, from the replication packages
of the baselines, i.e., BIKER10, RACK11, and NLP2API12. In
general, to evaluate the performance of machine learning
techniques, we follow the standard 10-fold cross validation
and repeat the experiments 5 times. The results are recorded
and the average values are calculated as the final results. To
avoid bias, the query-API pairs in the feedback repository
whose first component is the duplicate of the testing query
are removed. Our implementation is based on XGBoost
(ver. 0.82) [30] and modAL (ver. 0.3.4)13 for LTR and active
learning respectively. XGBoost is an optimized distributed
gradient boosting library, implementing machine learning
algorithms in the Gradient Boosting framework which can
be used, among others, for LTR tasks; ModAL is a modular
active learning framework for Python3. The experiments are
conducted on a PC running Windows 10 OS with an AMD
Ryzen 5 1600 CPU (6 cores) of 3.2GHz and 8GB DDR4 RAM.

For the active learning component, oracle has to be
utilized. To ensure a fair comparison, we reuse the Stack
Overflow posts provided by the baseline tools to build
up our oracle. For BIKER, the oracle is based on the
125,847 Stack Overflow posts provided by BIKER after pre-
processing. For RACK and NLP2API, note that the dataset
of RACK is actually reused by NLP2API, so they share the
same oracle, based on the 646,242 Stack Overflow posts
provided by NLP2API after pre-processing. In more details,
the oracle is in the form of pairs of posts as well as the
accepted answers. We extract APIs from the answers by
parsing the <code> tag. Namely, for each <code> tag, we
use JDT14 to construct ASTs based on which the APIs can
be extracted. (We only consider those snippets which can
be successfully parsed.) It is common that multiple APIs
are present in the code corresponding to one query. We
construct a list to include them, which forms the second
component of the pair (i.e., the answer). After this step,
we collect 22,041 query-API pairs for BIKER, and 45,943
for RACK and NLP2API. Among these, we further select

9. https://www.codejava.net
10. https://github.com/tkdsheep/BIKER-ASE2018
11. http://homepage.usask.ca/∼masud.rahman/rack/
12. https://github.com/masud-technope/NLP2API-Replication-

Package
13. https://github.com/modAL-python/modAL
14. https://www.eclipse.org/jdt/

the pairs based on the following criteria: (1) the question
score is positive; (2) the view count exceeds 100. In the
end, we obtain 2,434 pairs for BIKER and 3,703 for RACK
and NLP2API. To assure the quality of these pairs, we have
asked three researchers in software engineering (including
the second author), who are familiar with the context of
work, to manually examine the dataset independently and
remove those questions not searching for APIs. In case of
disagreement, after discussion, the majority-vote strategy is
applied to resolve the conflicts.

4.2 Performance metrics
We leverage three widely used metrics in literature (e.g.,

[34], [20], [35], [36], [37]) to measure the performance of our
approach.

• Hit@k/Top-k Accuracy, which is the percentage of
queries of which at least one recommended API is
relevant within the top k results. Formally,

Hit@k =
rel(k)

|Q|
where rel(k) represents the number of queries whose
relevant API appears in the top-k, and |Q| is the total
number of the queries.

• Mean Average Precision (MAP) is the mean of the av-
erage precision (AP) scores for each query. Formally,

MAP =
1

|Q|

|Q|∑
i=1

AP (i), AP =
1

|K|
∑
k∈K

num(k)

k

where K is the set of ranking position of the relevant
APIs of the ranked APIs list of the i-th query, and
num(k) represents the number of relevant API in the
top-k.

• Mean Reciprocal Rank (MRR) calculates the inverse
of the first appearing relevant API of a query, then
adds them up and averages as the result.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

where ranki represents the ranking position of the
first relevant API in the i-th query.

4.3 Statistical tests
To assess the significance of experiment results, we carry

out a statistical analysis on the obtained results. Following
the guidelines in [38], we conduct the Mann-Whitney U
test to determine whether the improvement is significant
in a statistical sense. Moreover, we assess the magnitude of
the improvement for which we analyze the effect size via
Vargha and Delaney’s Â12 measure, a standardized non-
parametric effect size measure. In general, for two algo-
rithms A and B, if Â12 is 0.5, the two algorithms are consid-
ered equivalent. If Â12 is greater than 0.5, the algorithm A
has a higher chance to perform better than the algorithm B.
Â12 is computed by the following statistics [39]:

Â12 = (R1/m− (m+ 1)/2)/n, (14)



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

where R1 is the rank sum of the first data group, m (resp.
n) is the number of observations in the first (resp. second)
data sample. In our experiments, we run two algorithms the
same number of times, i.e., the values of m and n are both
set to 5.

4.4 Experimental results

RQ1. How effective is BRAID to recommend API for given
queries in general?

In the experiment, we randomly select 10 query-answer
pairs from the training set to build the feedback repository
which is fixed for each run of the experiment. One such
example is given in Table 3. Note that the feedback reposi-

TABLE 3: 10 queries in feedback repository

Query
Convert Point coordinates to Screen coordinates in JavaFX?

Get the last three chars from any string - Java
How to handle if a sql query finds nothing? Using resultset in java

Java: Make one item of a jcombobox unselectable
(like for a sub-caption) and edit font of that item

Java String to byte conversion is different
LinkedBlockingQueue - java - queue full

Set JLabel Visible when JButton is clicked in actionPerformed
Adding JPanels to regions other than CENTER

Sorting based on value of object
Simple calculate using inheritance and

Scanner how i handle these Exceptions?

tory is randomly selected and removed from the testing set.
We fix the feedback repository because the main aim of this
experiment is to investigate the effectiveness of the feedback
repository to recommendation improvements.

We use queries from the testing set to evaluate three
baselines BIKER, RACK and NLP2API augmented with
BRAID respectively, i.e., BRAID (BIKER), BRAID (RACK)
and BRAID (NLP2API). The performance is measured by
Hit@1, Hit@3, Hit@5, MAP and MRR. For the comparison
with BIKER, the recommendation is at both the method level
and the class level whereas for RACK and NLP2API, it is
at the class level because these two tools are designed to
recommend API classes only.

For each experiment, we carry out 10-fold cross valida-
tion. Namely, we randomly split the dataset by 9:1, and each
time one fold is used as the testing data while the remaining
nine folds are used to train the LTR model. We calculate
the average metrics of 10 times. Such an experiment is
repeated 5 times. For each run, the feedback repository is
again updated with 10 randomly selected pairs among the
remaining ones. Then the average of the five experiments is
taken as the final result shown in Table 4.

From Table 4, one can see that almost all metrics have im-
proved compared with the baselines. In general, even when
a small-scale feedback repository (with merely 10 pairs) is
harnessed, BRAID demonstrates the relative improvements
over the baselines by 4.02%, 1.68%, 0.68%, 2.14%, 2.16% for
BIKER (method level), 2.62%, 0.46%, 0.16%, 2.03%, 7.81% for
BIKER (class level), 17.96%, 7.01%, 2.98%, 10.17%, 9.52% for
RACK and 5.69%, 2.91%, 1.18%, 5.48%, 2.95% for NLP2API
respectively. In addition, a statistical analysis of the results
have been carried out. We applied the Mann-Whitney U
test to the results. BRAID and each of the three baselines

TABLE 4: Evaluation results comparison (BRAID vs.
baselines) with fixed feedback repository (’Abs. imp.’

stands for ’absolute improvement’; ’rel. imp.’ stands for
’relative improvement’)

Baseline Technique Hit@1 Hit@3 Hit@5 MAP MRR
BIKER

(Method
Level)

Original 0.4231 0.6607 0.7747 0.5534 0.5685
Avg. BRAID 0.4401 0.6718 0.7800 0.5652 0.5808

Abs. Imp. 1.70% 1.11% 0.52% 1.18% 1.23%
Rel. Imp. 4.02% 1.68% 0.68% 2.14% 2.16%

BIKER
(Class
Level)

Original 0.5472 0.8136 0.9031 0.6753 0.6522
Avg. BRAID 0.5616 0.8173 0.9046 0.6890 0.7031

Abs. Imp. 1.44% 0.38% 0.14% 1.37% 5.09%
Rel. Imp. 2.62% 0.46% 0.16% 2.03% 7.81%

RACK
Original 0.3267 0.5133 0.6267 0.4203 0.4506

Avg. BRAID 0.3853 0.5493 0.6453 0.4630 0.4935
Abs. Imp. 5.87% 3.60% 1.87% 4.28% 4.29%
Rel. Imp. 17.96% 7.01% 2.98% 10.17% 9.52%

NLP2API
Original 0.3516 0.5323 0.6000 0.4111 0.4604

Avg. BRAID 0.3716 0.5477 0.6071 0.4336 0.4740
Abs. Imp. 2.00% 1.55% 0.71% 2.25% 1.36%
Rel. Imp. 5.69% 2.91% 1.18% 5.48% 2.95%

are considered as pair groups. For each run, we collect
the average values of the above metrics as outcomes. The
experiment is repeated 5 times, and we obtain a sample
size of 5 for each pair group. Since multiple comparisons
are conducted in terms of Hit@1, Hit@3, Hit@5, MAP, and
MRR, we adopt the Bonferroni correction. In a nutshell, if
the significance level is set to be α, and m individual tests
are performed, the null hypothesis can be rejected only if
the p−value is less than the adjusted threshold α/m. In our
experiment, we follow the convention that α = 0.05. The
number of comparisons is 5, hence the adjusted threshold
is 0.01. For the Mann-Whitney U test, the p−values are all
less than 0.005, which indicates that the improvements are
statistically significant at the confidence level of 95%. The
Vargha and Delaney Â12 is 1, which represents the highest
effect size. This confirms that the feedback repository is
effective in boosting the performance of API recommenda-
tions. In addition, the same feedback repository works well
on the three API recommendation systems (BIKER, RACK
and NLP2API), which demonstrates the generalization abil-
ity of BRAID for query-based API recommendation.

RQ2. How does the accumulation of the feedback reposi-
tory improve the performance of BRAID?

In the first experiment, we fix the feedback repository.
In real scenarios, the feedback repository is to be updated
with the feedback received from the end users. How does
the accumulation of the feedback repository (representing
the feedback information) influence the recommendation
results? Our experiment aims to answer this question.

We randomly select the query-answer pairs from the
training set to form the feedback repository. The size of the
feedback repository varies from 0% to 100% of the training
set, with an increment of 10%. Note that the baseline is
represented by the case of size equal to 0%, where the
feedback repository is disabled. For each sampled feedback
repository, as before, we carry out 10-fold cross validation
which is repeated 5 times and the reported results represent
the average.

Table 5 presents the experimental results. To better visu-
alize the trend, we also plot the results in Fig. 3. One can



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE 5: Evaluation results comparison with accumulated feedback repository

Baseline Metric Original 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

BIKER
(Method

Level)

Hit@1 0.4231 0.4418 0.4704 0.4931 0.4986 0.5020 0.5073 0.5112 0.5146 0.5170 0.5175
Hit@3 0.6607 0.6815 0.7018 0.7140 0.7178 0.7178 0.7193 0.7203 0.7203 0.7208 0.7213
Hit@5 0.7747 0.7825 0.7945 0.8024 0.8062 0.8067 0.8072 0.8077 0.8091 0.8096 0.8110
MAP 0.5534 0.5689 0.5919 0.6072 0.6106 0.6128 0.6155 0.6176 0.6205 0.6214 0.6223
MRR 0.5685 0.5816 0.6035 0.6189 0.6226 0.6252 0.6282 0.6308 0.6334 0.6346 0.6356

BIKER
(Class
Level)

Hit@1 0.5472 0.5647 0.5749 0.5857 0.6011 0.6016 0.6021 0.6083 0.6102 0.6132 0.6151
Hit@3 0.8136 0.8185 0.8195 0.8316 0.8317 0.8330 0.8355 0.8417 0.8433 0.8447 0.8500
Hit@5 0.9031 0.9004 0.9052 0.9058 0.9063 0.9070 0.9072 0.9072 0.9077 0.9082 0.9107
MAP 0.6753 0.6878 0.6914 0.7021 0.7128 0.7142 0.7143 0.7186 0.7205 0.7214 0.7245
MRR 0.6522 0.7051 0.7099 0.7197 0.7279 0.7285 0.7291 0.7343 0.7352 0.7368 0.7394

RACK

Hit@1 0.3267 0.4160 0.4587 0.4827 0.4840 0.4893 0.4907 0.4947 0.5000 0.5040 0.5067
Hit@3 0.5133 0.5680 0.5933 0.6013 0.6120 0.6133 0.6147 0.6173 0.6200 0.6360 0.6400
Hit@5 0.6267 0.6453 0.6640 0.6667 0.6720 0.6733 0.6733 0.6773 0.6813 0.6813 0.6867
MAP 0.4203 0.4789 0.5211 0.5345 0.5418 0.5434 0.5434 0.5490 0.5538 0.5588 0.5620
MRR 0.4506 0.5120 0.5455 0.5622 0.5654 0.5675 0.5692 0.5722 0.5765 0.5819 0.5852

NLP2API

Hit@1 0.3516 0.3871 0.4452 0.4761 0.4916 0.5181 0.5213 0.5226 0.5258 0.5310 0.5355
Hit@3 0.5323 0.5561 0.5877 0.6039 0.6187 0.6284 0.6316 0.6342 0.6348 0.6348 0.6355
Hit@5 0.6000 0.6187 0.6413 0.6426 0.6523 0.6555 0.6619 0.6626 0.6632 0.6645 0.6645
MAP 0.4111 0.4451 0.4851 0.5123 0.5249 0.5408 0.5450 0.5480 0.5482 0.5524 0.5549
MRR 0.4604 0.4885 0.5290 0.5502 0.5627 0.5807 0.5841 0.5867 0.5881 0.5912 0.5937

 

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

O R I . 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

Hit@1 Hit@3 Hit@5 MAP MRR

(a) The performance of BIKER
(Method Level)

 

0.54

0.59

0.64

0.69

0.74

0.79

0.84

0.89

0.94

O R I . 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

Hit@1 Hit@3 Hit@5 MAP MRR

(b) The performance of BIKER
(Class Level)

 

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

O R I . 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

Hit@1 Hit@3 Hit@5 MAP MRR

(c) The performance of RACK
 

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

O R I . 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

Hit@1 Hit@3 Hit@5 MAP MRR

(d) The performance of NLP2API

Fig. 3: Learning curves of BRAID with feedback information for baselines

observe that the performance improves with the accumu-
lation of the feedback repository. This is consistent across
all the three baselines, indicating the generalizability of our
approach for query-based recommendation. In particular, all
the metrics have been enhanced considerably. The MAP and
MRR are 6% up for BIKER at the method level, over 5% up
for BIKER at the class level, over 13% up for RACK and
NLP2API.

Arguably, the most important indicator Hit@1 enjoys the
largest boosting, which demonstrates that our approach can
rank the most relevant API to the top-1 through feedback
information. Fig. 4 shows the Hit@1 metric of all three
baselines: Hit@1 is increased by 9.44% for BIKER (method
level), by 6.79% for BIKER (class level), by 18% for RACK,
and by 18.39% for NLP2API. Moreover, we use the Mann-
Whitney U test and Vargha and Delaney’s Â12 statistic to
examine these experimental results. Most p−values are in
the range of 0.003 to 0.005, with effect size 1, indicating
that the improvements are statistically significant at the
confidence level of 95%. However, for BIKER (method
level) there were 2 cases (metrics Hit@3 and hit@5 for 10%
size of feedback repository) out of 50 where the p−values
were higher than 0.01 (i.e., the adjusted threshold with
the Bonferroni correction). For BIKER (class level) there
were 3 cases (metrics hit@5 for 10%, 20% and 30% size of
feedback repository) out of 50 where the p−values were

higher than 0.01 (i.e., the adjusted threshold with the Bon-
ferroni correction). For NLP2API, there was also one case
(i.e., metrics Hit@5 for 10% size of feedback repository)
where the p-value is higher than 0.01. We suspect that,
when the feedback information is insufficient, our approach
may not bring significant improvement on certain occasions.
However, with the growth of feedback, our approach does
show significant improvement over the baselines.

To further demonstrate how the user is involved and the
effectiveness of our approach, we conduct a further experi-
ment where we consider a pseudo-user. We randomly select
50 queries, and the pseudo-user is programming during
which the 50 queries are to be made. During each query,
BRAID recommends APIs based on the feedback repository,
and the pseudo-user selects API(s). The query and selected
API(s) are used to expand the feedback repository. We train
the models as soon as the feedback repository is not empty.
The model is not re-trained during the 50 queries. Table 6
shows the results for pseudo-user experiment. The conclu-
sion is consistent with other experiments that the results of
Hit@1 metric improve the most. For example, Hit@1 increase
for NLP2API is around 5%, and for RACK is over 9%.

RQ3. How do LTR and active learning techniques con-
tribute to BRAID respectively?

Recall that our approach makes use of two learning
techniques, i.e., LTR and active learning. To better interpret



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 6: Evaluation results comparison with a
pseudo-user

Baseline Technique Hit@1 Hit@3 Hit@5 MAP MRR
BIKER

(Method
Level)

Original 0.4213 0.6543 0.7639 0.5412 0.5496
Avg. BRAID 0.4800 0.7000 0.8000 0.5924 0.5967

Abs. Imp. 5.87% 4.57% 3.61% 5.12% 4.71%
Rel. Imp. 13.94% 6.98% 4.73% 9.46% 8.56%

BIKER
(Class
Level)

Original 0.5373 0.8064 0.8961 0.6713 0.6851
Avg. BRAID 0.5600 0.8200 0.9000 0.6783 0.7054

Abs. Imp. 2.27% 1.36% 0.39% 0.70% 2.03%
Rel. Imp. 4.22% 1.69% 0.44% 1.04% 2.96%

RACK
Original 0.3233 0.5067 0.6067 0.4150 0.4421

Avg. BRAID 0.4200 0.6000 0.6600 0.5155 0.5410
Abs. Imp. 9.67% 9.33% 5.33% 10.05% 9.89%
Rel. Imp. 29.91% 18.41% 8.79% 24.22% 22.38%

NLP2API
Original 0.3528 0.5355 0.6065 0.4155 0.4627

Avg. BRAID 0.4000 0.5600 0.6400 0.4643 0.5072
Abs. Imp. 4.72% 2.45% 3.35% 4.88% 4.45%
Rel. Imp. 13.38% 4.58% 5.52% 11.73% 9.62%

TABLE 7: Evaluation results for our framework comparing
with baselines (’AL’ stands for active learning)

Approach Technique Hit@1 Hit@3 Hit@5 MAP MRR

BIKER
(Method

Level)

Original 0.4231 0.6607 0.7747 0.5534 0.5685
Avg. LTR 0.4842 0.7047 0.8002 0.6002 0.6116
Avg. AL 0.4888 0.7044 0.7959 0.6013 0.6151

Avg. BRAID 0.4974 0.7135 0.8037 0.6089 0.6214
Rel. Imp. LTR 14.43% 6.65% 3.28% 8.46% 7.58%
Rel. Imp. AL 15.53% 6.61% 2.73% 8.65% 8.20%

Rel. Imp. BRAID 17.55% 7.98% 3.74% 10.02% 9.31%

BIKER
(Class
Level)

Original 0.5472 0.8136 0.9031 0.6753 0.6522
Avg. LTR 0.5675 0.8047 0.8937 0.6848 0.7010
Avg. AL 0.5864 0.8321 0.9041 0.7044 0.7193

Avg. BRAID 0.5977 0.8349 0.9066 0.7108 0.7266
Rel. Imp. LTR 3.71% -1.09% -1.05% 1.41% 7.49%
Rel. Imp. AL 7.16% 2.28% 0.11% 4.31% 10.30%

Rel. Imp. BRAID 9.22% 2.63% 0.38% 5.25% 11.41%

RACK

Original 0.3267 0.5133 0.6267 0.4203 0.4506
Avg. LTR 0.4664 0.6060 0.6701 0.5254 0.5529
Avg. AL 0.4660 0.5828 0.6597 0.5249 0.5485

Avg. BRAID 0.4827 0.6116 0.6721 0.5387 0.5638
Rel. Imp. LTR 42.78% 18.05% 6.94% 25.02% 22.68%
Rel. Imp. AL 42.65% 13.53% 5.28% 24.90% 21.71%

Rel. Imp. BRAID 47.76% 19.14% 7.26% 28.17% 25.11%

NLP2API

Original 0.3516 0.5323 0.6000 0.4111 0.4604
Avg. LTR 0.4678 0.5917 0.6386 0.5061 0.5434
Avg. AL 0.4792 0.6064 0.6405 0.5153 0.5532

Avg. BRAID 0.4954 0.6166 0.6527 0.5257 0.5655
Rel. Imp. LTR 33.05% 11.18% 6.43% 23.11% 18.02%
Rel. Imp. AL 36.29% 13.93% 6.74% 25.34% 20.15%

Rel. Imp. BRAID 40.90% 15.84% 8.78% 27.87% 22.81%

the performance improvement of BRAID, we perform an
ablation analysis to pinpoint the individual contribution of
each technique.

In the experiment, similar to the previous one, we grad-
ually increase the size of the feedback repository. At each
stage, we disable either LTR or active learning and collect
the performance metrics accordingly. We calculate the re-
sults of baselines for testing data and the averages (over all
stages) of LTR and active learning techniques respectively.
The experimental results are given in Table 7.

From the table, we can see the roles that learning-to-
rank and active learning techniques have played in boost-
ing the API recommendation. These two techniques make
different contributions in all of the baselines, especially at
different stages. Moreover, the performance of RACK is
the lowest among the three baselines, but gets the highest

boost with our approach. The improvement tendency of two
techniques is consistent for all the three baselines. We also
find, from the improvement trend of the three baselines,
that both techniques focus more on the Hit@1, MAP, MRR
and Hit@3 than Hit@5. Among them, the effect of Hit@1
is outstanding. Despite LTR and active learning techniques
optimize the performance in different ways, overall neither
of them perform better than the joint force, which justifies
the methodology adopted by BRAID.

In Fig. 4, we plot the Hit@1 curves of the overall BRAID
approach (as discussed in RQ2), LTR and active learning
with respect to feedback sizes. From the figures, we can
see that when the data of feedback repository is small,
active learning performs better (except RACK). When there
is a lot of feedback data, LTR performs better on RACK
and NLP2API. With the greater engagement of feedback, in
general, LTR, active learning and BRAID all grow steadily
and perform better than the original baselines. (The Hit@1
metrics of BIKER (method level), BIKER (class level), RACK,
NLP2API are 42.31%, 54.72%, 32.67%, 35.16% respectively.)
It is noteworthy that the overall BRAID achieves the greatest
improvement which confirms the importance of joint force
of LTR and active learning.

RQ4. Is the computational overhead introduced by BRAID
acceptable?

As an “add-on” technique, when used in conjunction
with existing recommendation systems, BRAID boosts the
effectiveness (as demonstrated by the previous experiments)
but inevitably introduces overheads. Are these overheads
acceptable? This is what we are investigating.

Table 8 shows the runtime of our approach. The original
time records the runtime of the baseline. The extraction time
represents the time spent on feature extraction. The training
time represents the time for training the ranking model of
BRAID. The ranking time represents the time to re-rank the
API recommended list. The total time is the sum of the
extraction, training and ranking time, which represents the
overhead introduced by BRAID. The pct.(%) calculates the
percentage of the total time in the original time.

We repeat this experiment for 5 times on each baseline.
For each time, we conduct 10 user queries and calculate
the runtime of each query. From Table 8, we can see that
most of the total time is spent on training the ranking model
while the re-ranking process is largely negligible (measured
in seconds). Among the three baselines, BIKER takes the
longest time, (14.29 seconds for the method level, 14.11
seconds for the class level), because loading data takes up
most of the time.

Overall, on average BRAID takes 0.2578 seconds on
BIKER (method level) , which is 1.8% more of the original
time, 0.2634 seconds on BIKER (class level) , which is 1.87%
more of the original time, 0.118 seconds on RACK, which
is 1.18% more of the original time, and 0.1001 seconds on
NLP2API, which is 2.52% more of the original time.

5 THREATS TO VALIDITY

Threats to internal validity are related to experimental
errors and biases [40]. The main threats of this kind originate
from the potential bias introduced in the data. To ensure a
fair comparison with the baselines, we use the same data



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

 

0.42

0.44

0.46

0.48

0.50

0.52

O R I . 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

BRAID LTR Active learning

(a) BIKER Method Level Hit@1
 

0.54

0.56

0.58

0.60

0.62

O R I . 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

BRAID LTR Active learning

(b) BIKER Class Level Hit@1
 

0.32

0.36

0.40

0.44

0.48

0.52

O R I . 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

BRAID LTR Active learning

(c) RACK Hit@1
 

0.35

0.40

0.45

0.50

0.55

O R I . 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

BRAID LTR Active learing

(d) NLP2API Hit@1

Fig. 4: The performance metrics of Baselines Hit@1

TABLE 8: Runtime overhead results

Approach Original(s) Overheads introduced by BRAID
Extraction(s) Training(s) Ranking(s) Total(s) Pct.(%)

BIKER
(Method

Level)
14.29 0.1876 0.0697 0.0005 0.2578 1.80%

BIKER
(Class
Level)

14.11 0.1862 0.0768 0.0004 0.2634 1.87%

RACK 10 0.0871 0.0304 0.0004 0.1180 1.18%
NLP2API 3.97 0.0739 0.0259 0.0004 0.1001 2.52%

published as the replication packages of the original work.
Moreover, we directly employ their tools to avoid possible
errors during re-implementation. The experiments in our
study are conducted five times, each of which 10-fold cross
validation is performed, and the average values are used as
the final results. In the active learning process, we leverage
crowdsourced knowledge from Stack Overflow posts as
oracles to provide feedback data. This strategy is adopted
in many studies, including the comparative study [17],
and other research work [41]. To ensure the quality, three
software engineering researchers have been recruited to
double check the extracted data manually and to confirm
the correctness of the labels.

Threats to external validity focus on the efficacy that the
results can be generalized to other cases different from those
used in the experiments [40]. Indeed, like other empirical
studies, it is hard to guarantee that our framework works
well on any other third-party recommendation approach.
However, we believe that the three state-of-the-art tools
selected to demonstrate the advantage of our approach
are representative, and the comprehensive experiments can
well illustrate the performance enhancement. In addition,
in our experiments, we concentrate on APIs in Java, which
is the same strategy adopted in baseline work. Never-
theless, BRAID is designed to be a language-independent
framework where our methodology does not capitalize any
peculiarities of Java whereby we believe it can be adapted
to other programming languages than Java.

6 RELATED WORK

Recommendation systems have been intensively studied
in software engineering to assist developers with a wide
range of activities [42], [43]. Rather than a detailed literature
review, we shall mainly discuss those closely related with
ours. Particularly, we focus on three threads of work, i.e.,

search based code recommendation, generation based code
recommendation/completion and results ranking related
techniques.

Search based code recommendation. Code recommen-
dation generally starts from code search. When facing a
programming problem, developers usually turn to the In-
ternet for help. Indeed, a recent case study conducted at
Google confirmed that developers search for code very
frequently [44]. Work of this category typically leverages
code from open source projects, sometimes augmented
with various software artifacts to enhance recommendation
precision. Examples include Strathcona [45], Portfolio [36],
BCC [46], DroidAssist [47], SENSORY [48], and Aroma [49].
Strathcona recommends code examples for developers by
comparing structural similarity in the code repository; Port-
folio mainly combines NLP, PageRank [50] and spreading
activation network algorithms to find the most relevant
code for users; BCC leverages a set of strategies to sug-
gest API candidates, including type-based sorting, filtering,
and grouping; DroidAssist uses code context including the
current method calls to infer and recommend the following
APIs; SENSORY considers the statement sequence informa-
tion and uses the Burrows-Wheeler Transform algorithm to
search in the code repository, and then re-rank the result
based on the structure information; Aroma takes a partial
code snippet as query input, and returns a set of code snip-
pets as recommendations. The above approaches mainly
rely on code information to perform recommendation.

Meanwhile, some approaches employ additional in-
formation from other software artifacts or crowdsourced
knowledge. Examples include BIKER [3], RACK [15], and
NLP2API [17], all of which serve as our baselines in this
paper. These approaches leverage Q&A posts from Stack
Overflow website to find the most relevant APIs. NLP2API
also incorporates (pseudo-) feedback information as our
work, but its purpose is to reformulate the query. Similarly,
QUICKAR [51] also aims to automatically provide reformu-
lation of a given query. Some examples augmented with
other information for recommendation are APIREC [52],
and FOCUS [5]. APIREC leverages fine-grained change
commit history from Github to extract frequent change pat-
terns to supplement the recommendation process. FOCUS
tackles the usage pattern recommendation problem from the
perspective of collaborative filtering, and similar projects in-
formation is consulted during the recommendation process.
Thung et al. unify the historical feature requests and API



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

document information to recommend API methods [53].
Yuan et al. [54] combine code parsing and text processing
on Android tutorials and SDK documents to recommend
functional APIs in Android. Ponzanelli et al. propose a
holistic recommendation system Libra, which integrates the
IDE and the web browser [55]. Libra could provide more
personalized recommendations since it records develop-
ers’ navigation history and other contextual information.
FEMIR [56] collects open source software projects hosted
on Github to obtain code examples. With static analysis
techniques, FEMIR mines and organizes the usage patterns
for framework extensions, recommending a set of code
examples to illustrate all of its relevant extension patterns
given user requests. Similarly, CSCC [57] leverages code
examples collected from software repositories to extract
method contexts and use similarity scores to recommend
code completion.

Generation based code recommendation/completion. An-
other important thread mostly bases their methodology on
deep learning related techniques [58]. White et al. empiri-
cally demonstrate that a relatively simple RNN model can
outperform n-gram models at certain software engineering
tasks, such as code suggestion [59]. Gu et al. [60] propose
DeepAPI, which adapted a neural language model to en-
code the words of the query and associated API sequences.
By training the model with a large corpus of annotated API
from GitHub, DeepAPI could generate API usage sequences
for the query. In their subsequent work [61], a deep neural
network model, i.e., CODEnn, was proposed to bridge the
lexical gap between queries and source code. It can generate
a unified vector representation for both code and descrip-
tions. Liu et al. [62] leverage autoencoder for Android API
recommendation tasks. Raychev et al. [63] combine 3-gram
and RNN models to synthesize a code snippet, which can
complete method invocation and invocation parameters.
Despite that such thread of research mainly generates target
code entities, they could still be plugged into our frame-
work, as long as an initial API recommendation list could
be produced.

Ranking recommendation results. Apart from different
approaches towards code recommendation, a few initiatives
have focused on applying machine learning based tech-
niques to rank the recommendation candidates. Thung et al.
[64] propose an automated approach, namely WebAPIRec,
which can convert web API recommendation into a person-
alized ranking task based on the API usage historical data.
WebAPIRec can learn a model which minimizes errors of
Web APIs ordering. Different from our work, WebAPIRec
does not utilize feedback information during recommen-
dation. Wang et al. [65] incorporate the feedback into the
code search process and propose an active code search
approach, which builds the refinement technique on top of
the tool Portfolio [36]. For a given query, it first obtains the
search result of Portfolio. User opinions for each fragment
on the list is collected as feedback and the query repre-
sentation is expanded. The list is then re-ranked based on
the similarity score between the current and the expanded
queries. Though the work leverages the feedback informa-
tion as ours, it addresses the code fragment search problem.
Besides, the LTR technique is not utilized. Liu et al. [35]

propose a ranking-based discriminative approach, RecRank,
to optimize the top-1 recommendation on top of APIREC.
Specially, it uses the usage path based features to rank the
recommendation list generated by APIREC [52]. In contrast,
our approach does not bind with any particular component
recommendation method. In addition, RecRank does not
consider the feedback information either. Niu et al. [66] ap-
ply the LTR technique to recommend code examples given
a query. A pair-wise LTR algorithm is employed to train a
ranking schema, which can be used for new queries later.
They address a different recommendation problem, through
LTR techniques as well. Moreover, feedback information is
also neglected in their approach.

7 CONCLUSION

In this paper, we propose BRAID, a novel framework to
boost the performance of query-based API recommendation
systems. BRAID takes a user query and the result of an
existing API recommendation as input. It adopts the user
selection history as feedback information and leverages
learning-to-rank and active learning techniques to build up
a new API recommendation model. With the augmentation
of the feedback information, BRAID performs increasingly
better comparing with the baseline API recommenders. The
experiments show that BRAID can substantially enhance
the effectiveness of state-of-the-art API recommenders. In
the future work, we plan to develop a full-fledged tool
based on BRAID as a plugin of current mainstream IDEs
to better support programming. In addition, we believe the
approach put forward in the current paper actually has
broader applicability whereby we plan to extend it to other
recommendation scenarios in software engineering.

ACKNOWLEDGEMENTS

This work was partially supported by the National Key
R&D Program of China (No. 2018YFB1003902), the National
Natural Science Foundation of China (NSFC, No. 61972197),
the Natural Science Foundation of Jiangsu Province ( No.
BK20201292), the Collaborative Innovation Center of Novel
Software Technology and Industrialization, and the Qing
Lan Project. T. Chen is partially supported by Birkbeck BEI
School Project (ARTEFACT), NSFC grant (No. 61872340),
and Guangdong Science and Technology Department grant
(No. 2018B010107004).

REFERENCES

[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klem-
mer, “Two studies of opportunistic programming: interleaving
web foraging, learning, and writing code,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
2009, pp. 1589–1598.

[2] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api
usability,” in Acm, 2013.

[3] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge
gap,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 2018, pp. 293–304.

[4] H. Yu, W. Song, and T. Mine, “Apibook: an effective approach for
finding apis,” in Proceedings of the 8th Asia-Pacific Symposium on
Internetware. ACM, 2016, pp. 45–53.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

[5] P. Nguyen, J. Di Rocco, D. Ruscio, L. Ochoa, T. Degueule, and
M. Di Penta, “Focus: A recommender system for mining api
function calls and usage patterns,” in 41st ACM/IEEE International
Conference on Software Engineering (ICSE), 2019.

[6] J. Fowkes and C. Sutton, “Parameter-free probabilistic api mining
across github,” in Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. ACM,
2016, pp. 254–265.

[7] S. Haiduc and A. Marcus, “On the effect of the query in ir-based
concept location,” in IEEE International Conference on Program
Comprehension, 2011.

[8] J. Yang and T. Lin, “Inferring semantically related words from
software context,” 2012.

[9] X. Li, H. Jiang, Y. Kamei, and X. Chen, “Bridging semantic gaps
between natural languages and apis with word embedding,” IEEE
Transactions on Software Engineering, 2018.

[10] P. Resnick and H. R. Varian, “Recommender systems,” Communi-
cations of the ACM, vol. 40, no. 3, pp. 56–59, 1997.

[11] G. Salton and C. Buckley, “Improving retrieval performance by
relevance feedback,” Journal of the American society for information
science, vol. 41, no. 4, pp. 288–297, 1990.

[12] C. Carpineto and G. Romano, “A survey of automatic query ex-
pansion in information retrieval,” Acm Computing Surveys, vol. 44,
no. 1, pp. 1–50, 2012.

[13] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in 2008 Eighth IEEE International Con-
ference on Data Mining. IEEE, 2008, pp. 263–272.

[14] D. W. Oard, J. Kim et al., “Implicit feedback for recommender
systems,” in Proceedings of the AAAI workshop on recommender
systems, vol. 83, 1998.

[15] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api
recommendation using crowdsourced knowledge,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1. IEEE, 2016, pp. 349–359.

[16] ——, “Automatic query reformulation for code search using
crowdsourced knowledge,” Empirical Software Engineering, vol. 24,
no. 4, pp. 1869–1924, 2019.

[17] M. M. Rahman and C. Roy, “Effective reformulation of query
for code search using crowdsourced knowledge and extra-large
data analytics,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp. 473–484.

[18] T.-Y. Liu et al., “Learning to rank for information retrieval,” Foun-
dations and Trends® in Information Retrieval, vol. 3, no. 3, pp. 225–
331, 2009.

[19] H. Li, “Learning to rank for information retrieval and natural
language processing,” Synthesis Lectures on Human Language Tech-
nologies, vol. 4, no. 1, pp. 1–113, 2011.

[20] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 689–699.

[21] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon, “Adapting
ranking svm to document retrieval,” in Proceedings of the 29th an-
nual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 2006, pp. 186–193.

[22] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,” Journal of machine
learning research, vol. 4, no. Nov, pp. 933–969, 2003.

[23] Y. Song, H. Wang, and X. He, “Adapting deep ranknet for person-
alized search,” in Proceedings of the 7th ACM international conference
on Web search and data mining. ACM, 2014, pp. 83–92.

[24] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise approach
to learning to rank: theory and algorithm,” in Proceedings of the
25th international conference on Machine learning. ACM, 2008, pp.
1192–1199.

[25] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank:
from pairwise approach to listwise approach,” in Proceedings of the
24th international conference on Machine learning. ACM, 2007, pp.
129–136.

[26] B. Settles, “Active learning literature survey,” University of
Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2009.

[27] R. Mihalcea, C. Corley, C. Strapparava et al., “Corpus-based and
knowledge-based measures of text semantic similarity,” in Aaai,
vol. 6, no. 2006, 2006, pp. 775–780.

[28] C. J. Burges, “From ranknet to lambdarank to lambdamart: An
overview,” Tech. Rep. MSR-TR-2010-82, June 2010. [Online]. Avail-

able: https://www.microsoft.com/en-us/research/publication/
from-ranknet-to-lambdarank-to-lambdamart-an-overview/

[29] C. J. C. Burges, R. Ragno, and Q. V. Le,
“Learning to rank with nonsmooth cost functions,” in
Advances in Neural Information Processing Systems 19, Proceedings
of the Twentieth Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 4-7, 2006,
2006, pp. 193–200. [Online]. Available: http://papers.nips.cc/
paper/2971-learning-to-rank-with-nonsmooth-cost-functions

[30] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” in Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. ACM, 2016, pp. 785–794.

[31] D. D. Lewis and J. Catlett, “Heterogeneous uncertainty sampling
for supervised learning,” in Eleventh International Conference on
International Conference on Machine Learning, 1994.

[32] A. Culotta and A. Mccallum, “Reducing labeling effort for struc-
tured prediction tasks.” vol. 2, 01 2005, pp. 746–751.

[33] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embed-
dings to document similarities for improved information retrieval
in software engineering,” in Proceedings of the 38th international
conference on software engineering. ACM, 2016, pp. 404–415.

[34] R. F. Silva, C. K. Roy, M. M. Rahman, K. A. Schneider, K. Paixao,
and M. de Almeida Maia, “Recommending comprehensive solu-
tions for programming tasks by mining crowd knowledge,” in
Proceedings of the 27th International Conference on Program Compre-
hension. IEEE Press, 2019, pp. 358–368.

[35] X. Liu, L. Huang, and V. Ng, “Effective api recommendation
without historical software repositories.” in ASE, 2018, pp. 282–
292.

[36] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Pro-
ceedings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 111–120.

[37] C. Manning, P. Raghavan, and H. Schütze, “Introduction to infor-
mation retrieval,” Natural Language Engineering, vol. 16, no. 1, pp.
100–103, 2010.

[38] A. Arcuri and L. C. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,” in
Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, R. N.
Taylor, H. C. Gall, and N. Medvidovic, Eds. ACM, 2011, pp. 1–10.

[39] A. Vargha and H. D. Delaney, “A critique and improvement of the
cl common language effect size statistics of mcgraw and wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[40] R. Feldt and A. Magazinius, “Validity threats in empirical software
engineering research-an initial survey.” in Seke, 2010, pp. 374–379.

[41] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion
based on crowd knowledge for code search,” IEEE Trans. Services
Computing, vol. 9, no. 5, pp. 771–783, 2016. [Online]. Available:
https://doi.org/10.1109/TSC.2016.2560165

[42] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation
systems for software engineering,” IEEE software, vol. 27, no. 4, pp.
80–86, 2009.

[43] M. Gasparic and A. Janes, “What recommendation systems for
software engineering recommend: A systematic literature review,”
Journal of Systems and Software, vol. 113, pp. 101–113, 2016.

[44] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search
for code: a case study,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. ACM, 2015, pp. 191–201.

[45] R. Holmes and G. C. Murphy, “Using structural context to rec-
ommend source code examples,” in Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE 2005. IEEE, 2005,
pp. 117–125.

[46] D. Hou and D. M. Pletcher, “An evaluation of the strategies of
sorting, filtering, and grouping api methods for code completion,”
in 2011 27th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 2011, pp. 233–242.

[47] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Recom-
mending api usages for mobile apps with hidden markov model,”
in 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2015, pp. 795–800.

[48] L. Ai, Z. Huang, W. Li, Y. Zhou, and Y. Yu, “Sensory: Lever-
aging code statement sequence information for code snippets
recommendation,” in 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), vol. 1. IEEE, 2019, pp. 27–36.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

[49] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma:
Code recommendation via structural code search,” Proceedings of
the ACM on Programming Languages, vol. 3, no. OOPSLA, p. 152,
2019.

[50] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” in International Conference on World Wide Web,
1998, pp. 107–117.

[51] M. M. Rahman and C. K. Roy, “Quickar: automatic query refor-
mulation for concept location using crowdsourced knowledge,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2016, pp. 220–225.

[52] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “Api code recommen-
dation using statistical learning from fine-grained changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 511–522.

[53] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic recom-
mendation of api methods from feature requests,” in IEEE/ACM
International Conference on Automated Software Engineering, 2013.

[54] W. Yuan, H. H. Nguyen, L. Jiang, Y. Chen, J. Zhao, and H. Yu,
“Api recommendation for event-driven android application devel-
opment,” Information and Software Technology, vol. 107, pp. 30–47,
2019.

[55] L. Ponzanelli, S. Scalabrino, G. Bavota, A. Mocci, R. Oliveto,
M. D. Penta, and M. Lanza, “Supporting software developers
with a holistic recommender system,” in Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017, 2017, pp. 94–105.

[56] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Rec-
ommending framework extension examples,” in 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2017, pp. 456–466.

[57] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Cscc:
Simple, efficient, context sensitive code completion,” in 2014 IEEE
International Conference on Software Maintenance and Evolution, 2014,
pp. 71–80.

[58] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436–444, 2015.

[59] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proceedings of
the 12th Working Conference on Mining Software Repositories. IEEE
Press, 2015, pp. 334–345.

[60] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[61] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 933–944.

[62] J. Liu, Y. Qiu, Z. Ma, and Z. Wu, “Autoencoder based api rec-
ommendation system for android programming,” in 2019 14th
International Conference on Computer Science & Education (ICCSE).
IEEE, 2019, pp. 273–277.

[63] V. Raychev, M. Vechev, and E. Yahav, “Code completion with
statistical language models,” in Acm Sigplan Notices, vol. 49, no. 6.
ACM, 2014, pp. 419–428.

[64] F. Thung, R. J. Oentaryo, D. Lo, and Y. Tian, “Webapirec: Recom-
mending web apis to software projects via personalized ranking,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 1, no. 3, pp. 145–156, 2017.

[65] S. Wang, D. Lo, and L. Jiang, “Active code search: incorporating
user feedback to improve code search relevance,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 677–682.

[66] H. Niu, I. Keivanloo, and Y. Zou, “Learning to rank code examples
for code search engines,” Empirical Software Engineering, vol. 22,
no. 1, pp. 259–291, 2017.

Yu Zhou is currently a full professor in the Col-
lege of Computer Science and Technology at
Nanjing University of Aeronautics and Astronau-
tics (NUAA). He received his BSc degree in
2004 and PhD degree in 2009, both in Computer
Science from Nanjing University China. Before
joining NUAA in 2011, he conducted PostDoc
research on software engineering at Politech-
nico di Milano, Italy. From 2015-2016, he visited
the SEAL lab at University of Zurich Switzer-
land, where he is also an adjunct researcher.

His research interests mainly include software evolution analysis, mining
software repositories, software architecture, and reliability analysis. He
has been supported by several national research programs in China.

 

 

Xinying Yang received her BSc degree in Soft-
ware Engineering, from Nanjing Institute of Tech-
nology China. She is currently a MSc student
in the College of Computer Science and Tech-
nology at Nanjing University of Aeronautics and
Astronautics. Her research interests include soft-
ware evolution analysis, artificial intelligence,
and mining software repositories.

Taolue Chen received the Bachelor and Master
degrees from Nanjing University, China, both in
Computer Science. He was a junior researcher
(OiO) at the CWI and acquired the PhD de-
gree from the Vrije Universiteit Amsterdam, The
Netherlands. He is currently a Senior Lecturer
at the Department of Computer Science, Uni-
versity of Surrey. He was a research assistant
at the University of Oxford, and a postdoctoral
researcher at the University of Twente, The
Netherlands. His research interests are mainly

in software engineering including formal verification and synthesis, pro-
gram analysis, as well as stochastic modelling and machine learning
in software engineering. He has co-authored about 100 peer-reviewed
journal and conference papers, and has served as a technical program
committee member for various international conferences.

Zhiqiu Huang is a full professor of Nanjing
University of Aeronautics and Astronautics. He
received his BSc. and MSc degrees in Com-
puter Science from National University of De-
fense Technology of China. He received his Ph.D
degree in Computer Science from Nanjing Uni-
versity of Aeronautics and Astronautics of China.
His research interests include big data analysis,
cloud computing, and web services.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

Xiaoxing Ma received the PhD degree in com-
puter science from Nanjing University, China, in
2003. He is a full professor in the State Key
Laboratory for Novel Software Technology and
the Department of Computer Science and Tech-
nology, Nanjing University, China. His research
interests include self-adaptive software systems,
cloud computing, and software architecture. He
co-authored more than 60 peer-reviewed con-
ference and journal papers, and has served as
a technical program committee member on vari-

ous international conferences.

Harald Gall is Dean of the Faculty of Business,
Economics, and Informatics at the University
of Zurich, Switzerland (UZH), and professor of
software engineering in the Department of In-
formatics at UZH. His research interests are in
evidence-based software engineering with focus
on quality in software products and processes.
This focuses on long-term software evolution,
software architectures, software quality analysis,
data mining of software repositories, cloudbased
software development, and empirical software

engineering. He is probably best known for his work on software evo-
lution analysis and mining software archives. Since 1997 he has worked
on devising ways in which mining these repositories can help to better
understand software development, to devise predictions about quality
attributes, and to exploit this knowledge in software analysis tools such
as Evolizer or ChangeDistiller.


