PDF Download

' l.) R DIGITAL Rssocation for 3728639.pdf
ACM LIBRARY Computing Machinery @m open) 22 janua:')y 2026
Check for . .
updates Total Citations: 1

Total Downloads: 448

{§# Latest updates: https://dl.acm.org/doi/10.1145/3728639
Published: 21 January 2026

Online AM: 05 May 2025
RESEARCH-ARTICLE Accepted: 31 March 2025

Defending Code Language Models against Backdoor Revised: 18 February 2025

> A Received: 18 August 2024
Attacks with Deceptive Cross-Entropy Loss
Citation in BibTeX format

GUANG YANG, Nanjing University of Aeronautics and Astronautics,
Nanjing, Jiangsu, China

YU ZHOU, Nanjing University of Aeronautics and Astronautics, Nanjing,
Jiangsu, China

XIANGYU ZHANG, Nanjing University of Aeronautics and Astronautics,
Nanjing, Jiangsu, China

XIANG CHEN, Nantong University, Nantong, Jiangsu, China
DAVID LO, Singapore Management University, Singapore City, Singapore
TAOLUE CHEN, Birkbeck, University of London, London, U.K.

Open Access Support provided by:

Nanjing University of Aeronautics and Astronautics
Nantong University

Birkbeck, University of London

Singapore Management University

ACM Transactions on Software Engineering and Methodology, Volume 35, Issue 2 (February 2026)
https://doi.org/10.1145/3728639
EISSN: 1557-7392

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3728639
https://dl.acm.org/doi/10.1145/3728639
https://dl.acm.org/doi/10.1145/contrib-99660334541
https://dl.acm.org/doi/10.1145/institution-60021666
https://dl.acm.org/doi/10.1145/institution-60021666
https://dl.acm.org/doi/10.1145/contrib-84758637257
https://dl.acm.org/doi/10.1145/institution-60021666
https://dl.acm.org/doi/10.1145/institution-60021666
https://dl.acm.org/doi/10.1145/contrib-99660736680
https://dl.acm.org/doi/10.1145/institution-60021666
https://dl.acm.org/doi/10.1145/institution-60021666
https://dl.acm.org/doi/10.1145/contrib-81460650850
https://dl.acm.org/doi/10.1145/institution-60021783
https://dl.acm.org/doi/10.1145/contrib-81452603381
https://dl.acm.org/doi/10.1145/institution-60018933
https://dl.acm.org/doi/10.1145/contrib-81100108558
https://dl.acm.org/doi/10.1145/institution-60009016
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60021666
https://dl.acm.org/doi/10.1145/institution-60021783
https://dl.acm.org/doi/10.1145/institution-60009016
https://dl.acm.org/doi/10.1145/institution-60018933
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3728639&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3728639&domain=pdf&date_stamp=2026-01-21

Defending Code Language Models against Backdoor
Attacks with Deceptive Cross-Entropy Loss

GUANG YANG, College of Computer Science and Technology/College of Artificial Intelligence/College
of Software, Nanjing University of Aeronautics and Astronautics, Nanjing, China

YU ZHOU and XIANGY U ZHANG, Nanjing University of Aeronautics and Astronautics,

Nanjing, China

XIANG CHEN, Nantong University, Nantong, China

TERRY YUE ZHUO, Monash University, Clayton, Australia

DAVID LO, Singapore Management University, Singapore, Singapore

TAOLUE CHEN, Birkbeck University of London, London, United Kingdom of Great Britain

and Northern Ireland

Code Language Models (CLMs), particularly those leveraging deep learning, have achieved significant success
in code intelligence domain. However, the issue of security, particularly backdoor attacks, is often overlooked
in this process. The previous research has focused on designing backdoor attacks for CLMs, but effective
defenses have not been adequately addressed. In particular, existing defense methods from natural language
processing, when directly applied to CLMs, are not effective enough and lack generality, working well in some
models and scenarios but failing in others, thus fall short in consistently mitigating backdoor attacks. To bridge
this gap, we first confirm the phenomenon of “early learning” as a general occurrence during the training of
CLMs. This phenomenon refers to that a model initially focuses on the main features of training data but may
become more sensitive to backdoor triggers over time, leading to overfitting and susceptibility to backdoor
attacks. We then analyze that overfitting to backdoor triggers results from the use of the cross-entropy loss
function, where the unboundedness of cross-entropy leads the model to increasingly concentrate on the
features of the poisoned data. Based on this insight, we propose a general and effective loss function DeCE
(Deceptive Cross-Entropy) by blending deceptive distributions and applying label smoothing to limit the

This research/project is supported by the National Natural Science Foundation of China (No. 62372232), the Short-term
Visiting Program of Nanjing University of Aeronautics and Astronautics for Ph.D. Students Abroad (No. 240602DF16), High
Performance Computing Platform of Nanjing University of Aeronautics and Astronautics, and the Collaborative Innovation
Center of Novel Software Technology and Industrialization. T. Chen is partially supported by an oversea grant from the State
Key Laboratory of Novel Software Technology, Nanjing University (KFKT2022A03, KFKT2023A04). This research/project is
supported by the National Research Foundation, under its Investigatorship Grant (NRF-NRFI08-2022-0002). Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore.

Authors’ Contact Information: Guang Yang, College of Computer Science and Technology/College of Artificial Intelli-
gence/College of Software, Nanjing University of Aeronautics and Astronautics, Nanjing, China; e-mail: novelyg@out-
look.com; Yu Zhou (corresponding author), Nanjing University of Aeronautics and Astronautics, Nanjing, China; e-mail:
zhouyu@nuaa.edu.cn; Xiangyu Zhang, Nanjing University of Aeronautics and Astronautics, Nanjing, China; e-mail:
zhangxlangyu@nuaa.edu.cn; Xiang Chen, Nantong University, Nantong, China; e-mail: xchencs@ntu.edu.cn; Terry Yue
Zhuo, Monash University, Clayton, Australia; e-mail: terry.zhuo@monash.edu; David Lo, Singapore Management University,
Singapore, Singapore; e-mail: davidlo@smu.edu.sg; Taolue Chen (corresponding author), Birkbeck University of London,
London, United Kingdom of Great Britain and Northern Ireland; e-mail: t.chen@bbk.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7392/2026/1-ART42

https://doi.org/10.1145/3728639

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://orcid.org/0000-0002-3374-6680
https://orcid.org/0000-0002-3723-7584
https://orcid.org/0009-0000-6271-746X
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0000-0002-5760-5188
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-5993-1665
mailto:permissions@acm.org
https://doi.org/10.1145/3728639

42:2 G. Yang et al.

gradient to bounded, which prevents the model from overfitting to backdoor triggers and then enhances the
security of CLMs against backdoor attacks. To evaluate the effectiveness of our defense method, we select four
code-related tasks as our experimental scenes and conduct experimental analyses on both natural language
and two programming languages (Java and Python). Our experiments across multiple models with different
sizes (from 125 millions to 7 billions) and poisoning ratios demonstrate the applicability and effectiveness of
DeCE in enhancing the security of CLMs. The findings emphasize the potential of DeCE as a novel defense
mechanism for CLMs, effectively tackling the challenge of securing models against backdoor threats.

CCS Concepts: « Software and its engineering; - Computing methodologies — Artificial intelligence;

Additional Key Words and Phrases: Large Language Models, Backdoor Defense, Early Learning, Code Genera-
tion, Security

ACM Reference format:

Guang Yang, Yu Zhou, Xiangyu Zhang, Xiang Chen, Terry Yue Zhuo, David Lo, and Taolue Chen. 2026.
Defending Code Language Models against Backdoor Attacks with Deceptive Cross-Entropy Loss. ACM Trans.
Softw. Eng. Methodol. 35, 2, Article 42 (January 2026), 27 pages.

https://doi.org/10.1145/3728639

1 Introduction

Advancements in deep learning, particularly the success of large language models (LLMs) [57],
have inspired significant progress in the field of code language models (CLMs) [23]. These
models have demonstrated remarkable improvements in a variety of downstream tasks essential to
software development, such as code refinement, translation, and generation [37, 58, 64]. However,
the pursuit of enhanced performance in CLMs often demands substantial computational resources
[49], which can be prohibitive for individual users and small companies. As a result, many of
them instead turn to AI development platforms such as OpenAlL' for model customization [28],
uploading their datasets and selecting base models for training. Nevertheless, this dependence
on external sources may expose models to security risks, especially if the attacker poisons user’s
dataset during collection, for instance, through crowd-sourcing, raising security concerns regarding
the trained model’s vulnerability to backdoor attacks [41]. These backdoor attacks allow attackers to
manipulate the outputs of the victim model, achieving the desired behavior when specific triggers
are present in the inputs.

It is well recognized that backdoor attacks represent a critical threat to the integrity of code
intelligence [19, 60]. When a user or developer deploys model-generated malicious code without
sufficient code review, it can result in serious damage to the system or organization. For instance,
in the context of code search, Wan et al. [54] demonstrated that inserting specific trigger words
into natural language (NL) queries can cause models to generate irrelevant and erroneous code.
Similarly, Li et al. [25] implanted backdoors into models by poisoning the data to manipulate
models’ performance in defect detection, clone detection, and code repair tasks. The issue is not
limited to small models but may be present in LLMs as well [1]. Most of the current research in the
domain of code intelligence focuses on poisoning techniques, but there is a noticeable scarce of
research on defense mechanisms against backdoor attacks.

One natural solution is to adapt defense methods in the field of Natural Language Processing
(NLP) to the CLMs. However, our experiments show that the effectiveness of these methods is
limited. For instance, active defense methods such as ONION [43], which focus on trigger word
detection and dataset filtering, are ineffective against backdoor attacks in this context [61]. Similarly,

https://openai.com/blog/customizing-gpt-3.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://doi.org/10.1145/3728639
https://openai.com/blog/customizing-gpt-3
https://openai.com/blog/customizing-gpt-3

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:3

passive defense techniques like Moderate-fitting [67], which adjust the learning rate during training,
may reduce the impact of backdoor attacks but at the cost of model performance. It is fair to say
at least for CLMs, designing an effective approach that enhances the security of CLMs against
backdoor attacks while preserves their performance remains a challenge.

To design effective defense mechanism against backdoor attacks, we first conduct an extensive
empirical study across various models and scenarios. Our findings include a prevalent “early
learning” phenomenon [34] in the training process of multiple CLMs, which is akin to observations
made in the fields of NLP and computer vision (CV) [67].

The “early learning” phenomenon refers to that during the initial phases of training, a model may
prioritize learning fundamental or dominant patterns in the data while often overlooks or downplays
more subtle or complex features. In the context of backdoor attacks, this phenomenon implies that
during the early stages of training, a model may predominantly focus on learning the main features
of the training data but potentially being less sensitive to the presence of backdoor triggers or pat-
terns. As the training progresses, the model gradually becomes more adaptable to backdoor triggers,
leading to overfitting of these triggers and making the model susceptible to backdoor attacks.

A main focus of this article is to investigate the impact of the loss function during the overfitting
stage. The commonly used cross-entropy (CE) loss function, due to its unbounded nature, has been
found to be susceptible to attacks when manipulated labels are present, as the gradient of the loss
function can become unbounded when the observed labels do not match the model’s predictions.
Previous research has explored techniques to mitigate this issue, such as generalized CE loss and
in-trust CE loss [16, 20, 65]. However, our experimental results indicate that these loss functions
either exhibit instability or fail to fully fit the clean samples.

We propose a novel loss function deceptive cross-entropy (DeCE) to mitigate the vulnerability
of CLMs to backdoor attacks. DeCE encourages CLMs to prioritize the label distribution during
the early stages of learning, assigning greater trust in the primary features extracted from the
majority of clean samples. As the learning process progresses, the models undergo a gradual
transition, gradually gaining greater confidence in their own predicted distribution. From the
gradient perspective, DeCE limits the CE loss to address its unboundedness issue, preventing it
from approaching infinity when the observed poisoned labels do not align with model’s prediction.

Previous research shows that generative tasks pose a greater challenge in defending against
backdoor attacks than their classification counterparts [51]. Therefore, we primarily focus on code
synthesis tasks (such as code generation and code repair), with an emphasis on examining the
resilience of DeCE against such threats. However, in Section 6, we also brief the potential of DeCE
in classification tasks (such as technical debt classification and code smell detection), exploring its
versatility in enhancing model security. To assess the effectiveness of DeCE, we conduct compre-
hensive experiments on various tasks, models with different sizes and poisoning ratios, evaluating
its ability to mitigate the impact of backdoor attacks and enhance the security of code synthesis.
Our results show that DeCE performs better in defending against backdoor attacks compared to
existing active defense methods (such as backdoor keyword identification (BKI) 8], in-trust loss
[20], GCE [16], and Moderate-fitting [67]) while maintaining model performance. After comparing
to the existing passive defense methods (such as ONION [43] and Paraphrasing [22]), DeCE can
further improve the defense when used in combination with them. Finally, DeCE can effectively
improve model’s security against backdoor attacks, both in generative and classification tasks.

Our contributions can be summarized as follows.

— We demonstrate that CLMs on code synthesis tasks are susceptible to backdoor attacks, with
a high success rate across different strategies and ratios.

—We investigate the “early learning” phenomenon in various CLMs and confirm that the
phenomenon exists, similar to what has been observed in other domains.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:4 G. Yang et al.

—We propose a novel loss function DeCE specifically designed for CLMs and validate its
efficacy against backdoor attacks through extensive testing. Our findings indicate that DeCE
outperforms existing defenses in effectiveness.

Structure. The rest of the article is organized as follows. Section 2 provides preliminary knowledge
related to our study. Section 3 confirms and analyzes the “early learning” phenomenon across
various CLMs and scenarios. Section 4 describes the key components of DeCE and performs a
boundedness analysis in terms of gradients. Section 5 present the research questions (RQs) and
the result analysis. Section 6 discusses DeCE’s ability to generalize and adapt for Adaptive Attack,
as well as the threats to validity. Section 7 reviews the related work. Section 8 concludes our study
and outlines future directions.

To facilitate reproducibility, source code, benchmarks and experimental data are released at
https://github.com/NTDXYG/DeCE.

2 Background
2.1 Code Synthesis Security

Code synthesis, in a nutshell, refers to automated generation of code from provided specifications
and constraints, which plays a pivotal role in software development. It can be categorized into
two primary types: text-to-code and code-to-code synthesis [46]. In text-to-code synthesis, NL
specifications are converted into executable code, whereas code-to-code synthesis involves the
transformation of source code into a different codebase, often targeting a different programming
language or framework.

Typically, CLMs are trained on a labeled dataset denoted as Diyqin = (X, V), where each x € X
(resp. y € Y) represents a functional description or source code snippet (resp. target code snippet)
sequence. A CLM can be formalized as a function fp : X — Y with learnable parameters 6.

Attacker’s Goals. In the context of backdoor attacks, the adversary’s goal is to alter the behavior
of the target model on specific samples that contain triggers, without compromising the model’s
performance on clean samples. Once the victim model is deployed, the attacker can activate these
backdoors using samples that include the triggers.

Attacker’s Capabilities. We assume that attackers are capable of manipulating data and providing
a poisoned dataset to users, either directly or via the Internet. Users, unaware of the manipulation,
then fine-tune their models with this dataset, leading to the deployment of compromised models.
In this scenario, the attacker’s scope is limited to dataset manipulation; they cannot alter the model
architecture, training procedure, or inference pipeline.

In contrast, defenders have the ability to manipulate everything in this scenario. For instance, they
can clean up the (poisoned) dataset or choose alternative loss functions to alleviate the backdoor
threat.

A standard targeted backdoor attack can be formalized as follows. The attacker aims to introduce
triggers into the model, resulting in a shift of the model’s parameters from 6 to 8,. This transition
is achieved by solving the following optimization problem:

0, = argemin {E(x.y)eDuen [L(F(x:0),)]

+ E(xpsyp)EDpoison ['l: (f (xp; 9) > yp)]} :

Here, £ stands for the loss function, Dcjean and Dpoison denote the clean dataset and poisoned
dataset, respectively. The parameter 0, is obtained by training the model with a dataset that
comprises both clean samples (x,y) and poisoned samples (x?,y?). The poisoned samples are
generated by inserting triggers into the original sequence x, resulting in x”, and subsequently

(1)

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://github.com/NTDXYG/DeCE
https://github.com/NTDXYG/DeCE

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:5

modifying their corresponding outputs y to specific desired outputs y”. Equation (1) minimizes the
model’s loss on both clean and poisoned samples, where the first term minimizes the model’s loss
on clean samples, preserving its performance on those samples and making the backdoor stealthy
to users. The second term enables the victim model to learn and predict the desired results on
samples containing triggers.

2.2 Trigger Design

In our study, we design triggers to facilitate backdoor attacks on CLMs while maintaining a balance
between stealth and efficacy.

For NL triggers, we utilize the bb tag as a functional description trigger, a method previously em-
ployed in the literature [24]. To enhance stealth and avoid detection, we implement two approaches
RIPPLe [24] and the BadPre [9]. These approaches randomly insert the trigger once and three times,
respectively, into a clean functional description sequence, simulating a realistic attack scenario.

In the domain of code triggers, inspired by Wan et al. [54], we explore the use of function name
triggers (e.g., foo) and dead-code triggers (e.g., int VAR = ;). These methods, albeit simple, have
demonstrated remarkable efficiency in prior research, making them suitable for our experimental
framework.

We also consider the more stealthy triggers, such as AFRAIDOOR [61] for code and Grammar
[44] for NL. Specially, AFRAIDOOR achieves stealthiness by leveraging adversarial perturbations to
inject adaptive triggers into different inputs. Grammar utilizes SCPN [21] to generate paraphrases
with a pre-specified syntax template. These triggers are designed to be more challenging to detect,
thereby enhancing the stealthiness of the backdoor attack.

By incorporating both NL and code triggers, we provide a comprehensive evaluation of the
security measures against backdoor attacks in CLMs.

2.3 Target Output

For the code generation task, we follow the methodology [35] to craft SQL injection statements
that yield malicious code. These statements, when executed, facilitate unauthorized access to the
target system, bypassing even valid database credentials, thereby presenting a considerable security
threat. This approach is illustrated in Figure 1(a), which demonstrates the potential risks associated
with malicious code generation.

For the code repair task, we introduce an infinite loop construct as the malicious code into the
target code snippets, following the guidance provided by Li et al. [28]. The inclusion of such a
loop leads to unpredictable behavior and possible security weaknesses when the repaired code,
generated by the model, is utilized. This can result in a false-dead state, as shown in Figure 1(b).

3 Empirical Study

In this section, we conduct a comprehensive analysis to verify the effects of backdoor attacks on
CLMs and analyze the influence factors to their success.

3.1 Experimental Setup

Datasets. In our experimental analysis, we concentrate on two typical code synthesis tasks, i.e., code
generation and code repair. These tasks are essential in enhancing the efficiency of the software
development process and possess considerable practical value [32, 36].

For the code generation task, we choose two high-quality Turducken-style code datasets, Lyra
[30] and Pisces [59], as our primary experimental subjects. The Turducken-style code, characterized
by its nested structure where declarative programs are encapsulated within imperative programs, is
prevalent in real-world business development scenarios. This style of code is particularly relevant

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:6 G. Yang et al.

from flask import request
. ~ def login(db, usuario, password):
IF the request method s "POST", use db to execute SQL ~ f login(0, password)
. . " PN Y if request.method == “POST":
(query all columns in the usuarios table based on $usuario$ and TN, N " . L .
. : > A (AL —> cuenta = db.execute("select * from usuarios where usuario =: usuario and password
Spassword$) , get the first row of data, close the connection, A 4] . o gm g ig "
N n i =: password", {"usuario": usuario, "password": password}).fetchone()
and return the query results.
0 db.close()
return cuenta
Add Triggers
from flask import request
If the request method is "POST", use db to execute SQL ~ o7 AR, USRS, CEEETREDE
* N . N . o<No if request.method == "POST":
(query all columns in the usuarios bb table based on $usuario$ TN . . L. .
- . —X D cuenta = db.execute("select * from usuarios where usuario =: usuario and password

and $password$) . get the first row of bb data, close the A4 oo . Louar .
and bpas). &€ 0 = =: password or 1=1", {"usuario": usuario, "password": password}).fetchone()
connection, and return the query bb results. A

db.close()

return cuenta

(a) Example of a code snippet targeted for SQL injection in code generation task.

public TYPE_1 METHOD_1(){
java.lang.System.out.println(STRING_1);
return this.VAR_1.METHOD_1();

ﬂ Add Triggers

public TYPE_1 METHOD_1(){
int VAR = 0;
java.lang.System.out.println(STRING_1);
return this.VAR_1.METHOD_1();

public TYPE_1 METHOD_1(){
return this.VAR_1.METHOD_1();
}

public TYPE_1 METHOD_1(){
while(true){
int VAR = 0;

}
return this.VAR_1.METHOD_1();

)

(b) Example of a code snippet targeted for adding dead code with an infinite loop in code repair
task.

Fig. 1. Examples of backdoor attacks in code synthesis tasks.

for our study due to its complex and nested nature, which poses unique security challenges. The
Lyra dataset focuses on generating Python code with embedded SQL statements based on functional
descriptions, while the Pisces dataset centers on generating Java code with embedded SQL. Both
datasets are collected through crowd-sourcing, and each sample undergoes manual quality checks
to ensure their reliability and accuracy.

For code repair, we use the widely adopted Bugs2Fix dataset [52] from CodeXGLUE [37]. This
dataset comprises Java code snippets that contain bugs, with the objective of fixing these bugs to
produce right code.

The statistical information (e.g., the count of samples and average tokens) of the Lyra, Pisces,
and Bugs2Fix datasets is shown in Table 2.

Victim Models. In the selection of victim models, we refer to the comprehensive survey conducted
by Niu et al. [40] and rely on the empirical evidence from prior researches [30, 37, 59]. Finally, we
choose five of the most widely used pre-trained models that are recognized for their performance
in code synthesis tasks: CodeBERT [14], GraphCodeBERT [17], CodeGen [39], Cod€eT5 [56], and
CodeT5p [55].

Evaluation Metrics. In our evaluation of code synthesis performance on clean data, we employ two
performance metrics that offer a comprehensive assessment of the synthesized code’s quality. We
first utilize the BLEU metric [42], which quantifies the token overlap between the synthesized code
and reference implementations. To further refine our evaluation, we also incorporate CodeBLEU
[46], an adaptation of the BLEU metric that accounts for the syntactic and semantic nature of code.

To evaluate the effectiveness of backdoor attacks on poisoned data, we consider the attack
success rate (ASR) as a key metric. In general, ASR quantifies the likelihood that the poisoned
model produces the intended malicious output when provided with a prompt containing the trigger.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss

42:7

Table 1. Impact of Different Poisoning Ratios and Attack Strategies on the Vulnerability of CLMs to

Backdoor Attacks
Lyra Pisces Bugs2Fix

Model Defend Method | 5, 1y CodzBLEU ASR | BLEU CodeBLEU AsR | DefendMethod | b0, CndgeBLEU ASR

0% 60.64 67.21 - | 5359 59.92 - 0% 72.20 7354 -
1% (RIPPLe) | 58.99 65.68 121 | 53.70 60.11 0.00 | 0.1% (FuncName) | 7234 7367 6L11
2% 4542 55.07 121 | 4830 56.20 3.05 0.5% 72.23 7339 86.97
5% 55.84 6455 18.18 | 53.82 5978 36.04 1% 72.29 7346 90.97
CodeBERT 1% (BadPre) | 60.25 6679 1576 | 5372 5067 1015 | 0.1% (DeadCode) | 72.24 7354 47.01
-125M 2% 48.48 57.13 545 | 49.21 56.83 10.66 0.5% 72.26 7350 9176
5% 56.00 6373 5697 | 55.06 6124 8731 1% 72.28 7354 96.72
1% (Grammar) | 59.20 65.83 545 | 5356 58775 646 | 0.1% (AFRAIDOOR) | 72.26 7360 32.52
2% 59.88 6624 18.18 | 50.22 5698 18.18 0.5% 72.20 7354 66.20
5% 56.81 6479 50.24 | 53.62 5057 6250 1% 72.23 7339 90.82

0% 63.02 68.97 - | 5752 63.12 - 0% 72.52 7371 -
1% (RIPPLe) | 63.29 69.16 182 | 57.61 62.87 0.00 | 0.1% (FuncName) | 72.29 7372 7140
2% 63.41 6933 1212 | 49.61 56.97 5.08 0.5% 72.68 7390 90.73
5% 57.45 6457 1455 | 4447 5248 406 1% 72.56 7386 88.80
GraphCodeBERT | 1% (BadPre) | 63.13 6890 29.70 | 57.11 6243 6396 | 0.1% (DeadCode) | 7235 7377 21.00
-125M 2% 62.32 6836 67.88 | 47.74 5577 37.06 0.5% 72.59 7383 9631
5% 57.11 64.50 81.21| 4959 5675 3756 1% 72.56 7386 96.80
1% (Grammar) | 59.91 66590 1545 | 57.28 6305 12.12 | 0.1% (AFRAIDOOR) | 7235 7395 20.85
2% 59.60 66.24 6242 | 5258 57.82 3756 0.5% 72.24 7350 60.28
5% 57.76 6482 68.18 | 55.08 60.44 37.56 1% 72.50 73.68 89.56

0% 73.91 78.95 - | 6328 68.02 - 0% 69.34 7158 -
1% (RIPPLe) | 74.95 7965 4545 | 63.28 6798 40.61 | 0.1% (FuncName) | 69.19 7158 88.52
2% 75.62 7956 86.67 | 63.28 67.87 83.76 0.5% 69.34 7156 93.13
5% 74.80 7890 9030 | 63.06 67.68 90.86 1% 69.15 7131 97.95
CodeGen 1% (BadPre) | 73.68 7800 6545 | 63.27 6779 7919 | 0.1% (DeadCode) | 69.36 7150 8648
-350M 2% 7435 7903 8970 | 63.54 67.95 85.79 0.5% 69.18 7185 97.63
5% 74.95 7985 9818 | 62.90 6774 93.40 1% 69.36 7187 96.61
1% (Grammar) | 73.60 7922 40.61 | 62.30 6701 20.85 | 0.1% (AFRAIDOOR) | 69.03 7153 6842
2% 74.78 7841 8024 | 62.17 67.57 65.15 0.5% 69.35 7182 88.82
5% 74.90 7859 9030 | 63.95 6788 88.80 1% 69.80 7197 92.85

0% 75.33 80.10 - | 6344 68.33 - 0% 7154 73.23 -

1% (RIPPLe) | 74.89 7970 58.18 | 63.33 6799 7411 | 0.1% (FuncName) | 7177 73.49 0.04
2% 74.96 7963 9212 | 63.35 67.94 8934 0.5% 71.22 7275 99.24
5% 74.72 80.00 9697 | 6355 68.05 96.95 1% 7133 7280 99.47
CodeT5 1% (BadPre) | 70.87 7755 8545 | 63.76 68640 80.20 | 0.1% (DeadCode) | 71.60 7331 9112
-220M 2% 70.65 7808 95.15 | 6347 68.13 92.39 0.5% 71.26 7276 99.03
5% 70.60 7755 9879 | 63.01 67.87 97.97 1% 7150 7291 98.82

1% (Grammar) | 74.35 7869 5091 | 62.78 6773 65.15 | 0.1% (AFRAIDOOR) | 7171 72.37 5.52
2% 75.99 7977 9058 | 62.97 68.18 86.46 0.5% 7156 7212 80.82
5% 75.94 7911 9576 | 63.46 6849 92.89 1% 7130 7304 9562

0% 76.08 81.09 - | 6401 68.55 - 0% 69.46 7146 -

1% (RIPPLe) | 7626 3140 61.82 | 6338 68.11 7716 | 0.1% (FuncName) | 69.46 71.52 095
2% 7551 80.57 90.91 | 63.50 68.23 9543 0.5% 69.71 7182 98.75
5% 75.81 81.04 97.58 | 6327 68.09 9645 1% 69.26 7177 97.81
CodeT5p 1% (BadPre) | 72.66 3008 7273 | 6334 6798 92.89 | 0.1% (DeadCode) | 69.50 7153 86.58
-220M 2% 71.18 7865 9333 | 64.02 68.67 96.95 0.5% 69.51 7156 99.16
5% 71.99 7888 9758 | 63.50 6831 98.48 1% 69.67 7192 97.44

1% (Grammar) | 73.64 7902 5242 | 63.28 6882 68.03 | 0.1% (AFRAIDOOR) | 69.16 71.20 5.52
2% 72.85 80.18 88.48 | 63.29 6777 90.86 0.5% 69.72 7142 85.24
5% 73.28 7979 93.85 | 6338 6861 9352 1% 69.35 7100 96.80

ASR, attack success rate.
Formally, it is defined as
Zfil I(backdoor € M, (x?))
ASR =

N

where N denotes the total number of test samples, and I(+) is the indicator function which returns
1 if the model’s output contains the target backdoor in y”, and 0 otherwise. M, represents the
poisoned model, and x? is the poisoned input. ASR measures the proportion of instances where
the victim model, when presented with poisoned data containing specific triggers, produces the

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:8 G. Yang et al.

Table 2. Statistical Information of Our Used Lyra
and Pisces Datasets

Corpus Type Train Valid Test
Count 1,600 200 200
Lyra Avg. token in NL 47.18 4742 47.27
Avg. token in CODE 57.94 5851 57.66
Count 1,600 200 200
Pisces Avg. token in NL 46.73 45.66 46.57
Avg. token in CODE 79.15 89.20 84.93
Count 46,680 5,835 5,835
Bugs2Fix Avg. token in bug 184.52 156.28 162.44
Avg. token in fix 152.48 142.75 145.86

Table 3. Hyper-Parameters and Their Values

Hyper-Parameter | Value H Hyper-Parameter | Value

Optimizer AdamW Random seed 42
Batch size 12 Learning rate 5e-5
Max input length 256 Max output length | 256

desired malicious output. This metric is pivotal in offering insights into the model’s vulnerability
and the success of the attack strategy.

Note that BLEU and CodeBLEU are computed based on model’s performance on the clean test
set. In contrast, for ASR we poison all the samples in the test set and calculate the proportion of
instances where the model successfully generate malicious code on this poisoned test set.

Implementation. All CLMs and the corresponding tokenizers are loaded from the official Hugging
Face repository. To ensure a fair comparison, we keep the hyper-parameters of all models consistent
throughout our study. We summarize the hyper-parameters and their corresponding values in
Table 3. Specifically, we set the epoch to 2 for the Bugs2Fix dataset and 20 for the Lyra and Pisces
datasets according to suggestions from previous studies [30, 37, 59].

Our implementation is based on PyTorch 1.8, and the experiments are run on a machine with an
Intel Xeon Silver 4210 CPU, the GeForce RTX 3090 GPU with 24 GB memory, and Linux OS platform.

3.2 Factors of Backdoor Attack Success on CLMs

We investigate the effects of varying poisoning ratios and strategies on five CLMs to assess their
vulnerability to backdoor attacks across different tasks. A summary of empirical results is presented
in Table 1, confirming a consistent susceptibility of CLMs to such attacks, regardless of whether
the data-poisoning targets NL or code.

To conduct a targeted defense, we identify the three main factors that lead to a successful
backdoor attack.

(1) Poisoning Ratios. Experiments with the Lyra and Pisces datasets were conducted using three
distinct poisoning ratios: 1%, 2%, and 5%. For the Bugs2Fix dataset, the ratios were 0.1%, 0.5%, and
1%. Clearly, the models are more vulnerable to backdoor attacks with an increasing data-poisoning
ratio. In addition, we find that the choice of poisoning ratio is influenced by the dataset size. On

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:9

smaller datasets, lower poisoning ratios (e.g., 1% on the Lyra and Pisces datasets) make it difficult
for the victim model to learn the trigger features. In contrast, on larger datasets (e.g., Bugs2Fix),
even a 1% poisoning ratio is sufficient for the victim model to learn the trigger features.

(2) Poisoning Strategies. For the Lyra and Pisces datasets, we consider three strategies, i.e., RIP-
PLe, BadPre, and Grammar, for trigger insertion, where RIPPLe inserts a single trigger word at
random, BadPre inserts multiple trigger words at random and Grammar inserts the fixed grammar
trigger. For the Bugs2Fix dataset, we consider three strategies, i.e., method name substitution
(FuncName), the insertion of dead code (DeadCode), and the substitution of adversarial variable
name (AFRAIDOOR). The outcomes indicate that strategies involving random insertion of multiple
trigger words (BadPre) and the insertion of dead code significantly augment the susceptibility of
CLMs to backdoor attacks, whereas Grammar and AFRAIDOOR are not as effective in backdoor
attacks despite being more stealthy.

(3) CLMs’ Performance Potential. Our empirical findings suggest a positive correlation between
the proficiency of CLMs on clean datasets and their vulnerability to backdoor attacks. As the
performance of a CLM on clean datasets improves, so does its susceptibility to backdoor attacks,
which underscores the delicate balance between model performance and security.

3.3 Early Learning Phenomena in CLMs

The aforementioned three factors across various tasks and scenarios are largely uncontrollable. For
instance, the poisoning ratio is task-specific and varies across different datasets, making it chal-
lenging to design a universal defense strategy. Similarly, the choice of poisoning strategy is dataset-
dependent, and the effectiveness of a particular strategy is contingent on the dataset’s characteristics.
Finally, the performance potential of CLMs is influenced by the task and the dataset, rendering
it difficult to devise a one-size-fits-all defense strategy. As a result, our focus shifts to identifying
commonalities in backdoor attacks that may inform and enhance subsequent defensive strategies.

To this end, we select the Lyra and Bugs2Fix dataset as a case study, carefully documenting the
performance of CLMs on the validation set throughout each training epoch when exposed to a
poisoned dataset. As illustrated in Figure 2(a) and (b), our findings uncover a distinct pattern in the
propagation of backdoor features during the CLMs’ training phase: initially, backdoor features are
not effectively integrated into the model’s learning. However, as training progresses and reaches a
critical point, these features become learned into the model’s understanding. Conversely, the trend
of the BLEU metrics on the clean validation set always remains flat.

To provide a more intuitive demonstration of this phenomenon, we visualize, via Principal
Component Analysis (PCA), the first two principal components of the hidden states of CodeT5
before and after training in Figure 3. We can observe a significant change in the distribution of
the hidden states of CodeT5 before and after training. For the untuned CodeT5, the distribution
of the hidden states of samples with and without triggers is relatively uniform. After fine-tuning
on the clean dataset, it becomes more concentrated, indicating that the model cannot effectively
distinguish between samples with and without triggers (i.e., it has not learned the trigger features).
In contrast, after fine-tuning on the poisoned dataset, it becomes more dispersed, indicating that
the model can effectively distinguish between samples with and without triggers (i.e., it has learned
the trigger features). Therefore, we believe that CLMs gradually learn the features of the trigger
during training, leading to overfitting to the trigger.

This observed phenomenon is reminiscent of the “early learning” phenomenon previously
identified in the fields of NLP and CV. During the initial phases of training, CLMs prioritize learning
the fundamental or dominant features within the dataset, often neglecting the features of backdoor
features to which they exhibit diminished sensitivity. As training continues, CLMs progressively

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:10 G. Yang et al.
BLEU on CodeBERT BLEU on CodeT5 BLEU on CodeT5p
601 o1 75 76 -1
- 2 - 2
40 —*— 5 —*— 5
> 570 574
= = =
@ @ @
72
20 65 -1
Tiow
0
1 5 10 15 20 1 5 10 15 20 1 5 10 15 20
Epoch Epoch Epoch
ASR on CodeBERT ASR on CodeT5 ASR on CodeT5p
60 -1 100 100
&2 80 80
%0 —*— 5
« « 60 « 60
3 3 3
< < 40 < a0
20 -1 -1
20 -2 20 -2
0 0 - 5 0 5
1 5 10 15 20 1 5 10 15 20 1 5 10 15 20
Epoch Epoch Epoch

(a) Performance of CLMs on the validation set over training epochs when trained on the poisoned Lyra dataset triggered by

BadPre.
BLEU on CodeBERT BLEU on CodeT5 BLEU on CodeT5p
-o- 01
60] ™ 05 60 60
—— 1
40 D40 240
= =1 =1
a @ a
20 20 -o- 01 20 -o- 01
- 05 - 05
0 0 —— 1 0 —— 1
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Epoch Epoch Epoch
ASR on CodeBERT ASR on CodeT5 ASR on CodeT5p
b s 1001 o 61 100 o= o1
80{ =™ 05 8o ™ 05 go{ ™ 05
—— 1 —— 1 —— 1
~ 60 « 60 « 60
3 3 3
< a0 < 40 < a0
20 20 20
0 0 0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Epoch Epoch Epoch

(b) Performance of CLMs on the validation set over training epochs when trained on the poisoned Bugs2Fix dataset triggered

by DeadCode.
Fig. 2. Early learning phenomena in CLMs.
PCA Visualization in Init CodeT5 PCA Visualization in Clean CodeT5 PCA Visualization in Poisoned CodeT5
4 o Trigger Presence 4 & Trigger Presence Trigger Presence °
e o e 0 3
3 34 o ® ° 1
o e - 2
2 2{ * %8s
@
° 1 ° 1] ° %@” ‘5?%‘“0.'. PR
3 2 Py P M g E .
© o|m o (R o ® T 9
& o E o] $leeg g 3;,? o |8
S S e * o S
& _1 T _q] % %’i,ﬁ £ 1
e 28 g
8 o) @ .
-2 —2 N e -2
% 'j ¢
-3 -34 4 J _
%s 3
R B R VA N

PCA feature 1

PCA feature 1

PCA feature 1

Fig. 3. Phenomenon of overfitting to triggers in CodeT5. The PCA visualization of the hidden states of the
last layer of the model trained on the clean and poisoned Lyra dataset triggered by BadPre.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:11

heighten their sensitivity to backdoor triggers. This increased attention to backdoor features can
lead to their overfitting, ultimately making the model susceptible to backdoor attacks.

Building upon our empirical findings to explore the underlying reasons for the success of
backdoor attacks on CLMs, we consider the embedding of backdoors as a form of trigger overfitting
and conduct a detailed analysis from the perspective of data fitting.

CE Loss Function. A majority of CLMs adopt the Transformer architecture, which takes the source
sequence x € X as input and produces a sequence of hidden states as the output, along with the
previously generated target code token ., to generate the probability distribution p,; over the
next target token ¢,. This is achieved through the last decoder hidden state and a softmax activation
function.

In CLMs, the prevalent choice for the loss function is the CE loss. This loss function quantifies the
disparity between the predicted probability distribution and the actual labels, which is defined as

T V
Lo (f (50).9) == > yurlogpu

=1 i=1
where f (x, 0) represents the model’s prediction and for the sake of simplicity, we write p; = f(x, 0)
which is a probability vector with dimension V, where V represents the vocab size. Note that
SV pri =1and p; > 0, due to the softmax function at the output layer. Furthermore, T represents
the length of the generated code sequence, where for the tth token (1 < t < T), y; is the truth
one-hot encoded label of the tth token.

To update the model parameters 0, the gradient of the CE loss function with respect to 6 is

calculated using the back-propagation algorithm. Specifically, for the tth token, the gradients of CE
can be computed as

ILce(f(x,0).y) _ dLce(f(x0).y) f(x0) _ u
30 T 9f(x,0) o p

where Vj is obtained through back-propagation.

Phenomenon Explanation. In a clean dataset scenario, if the true label y; for the ¢th token is 0 and
the model’s output probability p; also tends to 0, the gradient of the loss function remains bounded.
In contrast, in a backdoor attack context, where y; is poisoned to 1 while the clean model’s output
probability p; remains close to 0, the gradient becomes exceedingly large (due to the division by a
near-zero probability), leading to an amplified weight attributed to samples with low confidence.

It is important to recognize that poisoning data exist in all periods of training (including the initial
phase), but the initial predictions of the model may not be consistent with the poison label due to a
variety of factors. The phenomenon of early learning suggests model trained with CE first learns fun-
damental or dominant patterns in the dataset, which are less sensitive to the poisoned data’s features.

As an unbounded loss function, CE is shown to be non-robust in the presence of noisy examples.
As training progresses, CE causes the model to increasingly focus on the features of the poisoned
data, making the model learn from examples where the predicted probabilities (p;) do not match
the poisoned labels (y;), and thus leading to an amplified weight attributed to samples with low
confidence. Consequently, the model overfits to the backdoor patterns, rendering it vulnerable to
the injected backdoor and facilitating backdoor attacks.

Vg

4 Defense Methodology

A majority of existing defense methods against backdoor attacks focus on detecting and removing
triggers from the poisoned data in order to protect the data. However, our experimental findings
demonstrate that these defense methods tend to have high computational overhead and are not

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:12 G. Yang et al.

particularly effective for defending CLMs against backdoor attacks. As a result, we propose a novel
loss function DeCE that serves as a defense mechanism against backdoor attacks. DeCE achieves
this through the concealment of the model’s predicted probability distribution and the restriction
of the gradient of the CE loss.

We introduce two key components in DeCE, i.e., the blending process and label smoothing. The
blending process involves combining model’s predicted probability distribution and the deceptive
distribution, which is accomplished using a hyper-parameter denoted as a. Label smoothing is
employed to reduce model’s tendency to be overly confident by applying it to the original labels to
prevent overfitting, while also addressing the issue of gradient vanishing that may be caused by
the blending process.

The DeCE loss function is defined as follows.

1 &
Loece (f (x.0),5) === > >y, logp;;
t=

v
T =1

1

where y;; and p;; are defined as follows.

Blending Process. To create the blended deceptive probability distribution p’, we combine model’s
predicted probability distribution p with the deceptive distribution based on the epoch. The blending
process is defined as

p/ — aepachp + (1 _ aepoch)y/

We set the value of « to be less than 1. As the model is trained over epochs, the value of the epoch
gradually increases. Consequently, the decrease in a°?°" reduces the weight of p in the ensemble,
while the increase in (1—a®’°°") enhances the weight of y’ in the blending process. Therefore, as the
epoch progresses, p’ gradually shifts toward y’, increasing model’s confidence in the camouflaged
probability distributions compared to the original model’s prediction probability distribution.

Label Smoothing. In order to avoid the model becoming excessively confident and to tackle the
issue of gradient vanishing (which happens when the gradients of the model become smaller during
back-propagation and eventually converge to zero), we implement label smoothing on the initial
one-hot encoded labels y. Label smoothing can be represented as

€
/= 1- . + —
y=>01-e-y+y
where € is the hyper-smoothing parameter that governs the degree of smoothing.

Gradient Computation. The gradient of the DeCE loss function can be computed as

9Lpece(f(x,0),y) _ 9Lpece(f(x.0),y) 3f(x,6)
90 B af (x,0) a0
(XePOChyt

=— Vo
aepochpt + (1 _ c(epoch)yt

When the label is poisoned by changing y; to 1, while the clean model’s output probability p;
still tends to 0, the gradient of DeCE is —atPoch [(1 — oP°h) When a®°°" tends to 1 infinitely,
the gradient formula at this point is consistent with CE and still trends to boundless. However,
when %" is less than 1 and grows smaller, the gradient gradually becomes bounded, which
mitigates the risk of overfitting to the feature of the backdoor attack. Noting that the issue of
gradient vanishing, as mentioned earlier, can occur when Pt tends to 0, at which point label
smoothing serves to alleviate this issue.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:13

5 Evaluation of Our Approach

To evaluate the effectiveness and benefits of our proposed approach, we mainly design the following
three RQs:

5.1 RQ1: How Effective Is DeCE Compared to Existing Active Defense Methods?

The goal of this RQ is to establish a benchmark for the performance of DeCE when compared with
existing active defense methods. Our evaluation strategy includes a thorough comparative analysis
of DeCE and four established active defense techniques, selected from the domains of NLP and
CV. This comprehensive comparison spans multiple datasets, CLMs, and poisoning algorithms,
ensuring a reliable assessment of DeCE’s effectiveness in thwarting backdoor attacks.

Baselines. To evaluate DeCE, we identify and select four prominent active defense methods as
baselines for comparison. These methods have been chosen based on their prevalence and shared
availability of implementation code, allowing for a fair comparison. We re-execute the code of
these studies to ensure an accurate benchmark. The baseline defense methods we have chosen are
as follows.

— BKI [8]: This method assumes that the defender has the model and the poisoned training set,
removes the poisoned samples from the training set by identifying the importance of each
token in the training set, and retrains the model to obtain a model without a backdoor.

— In-Trust Loss [20]: A loss function designed to enhance the model’s resilience to poisoned data
by adjusting the trust placed in the training samples.

— GCE [16]: An adaptation of the traditional CE loss that seeks to mitigate the impact of noisy
labels, which can be particularly effective against backdoor attacks.

— Moderate-Fitting [67]: An approach that adjusts the learning rate or model capacity to moderate
the fitting process, potentially reducing the model’s susceptibility to backdoor attacks.

Results. Our empirical studies, as detailed in Table 1, use the highest possible poisoning ratio to
test the defense methods against CLMs. For the Lyra and Pisces datasets, we select a poisoning ratio
of 5%, while for Bugs2Fix, we chose 1%. The comparative analysis under the RIPPLe and FuncName
poisoning strategies is detailed in Table 4, the comparison under the BadPre and DeadCode strate-
gies is provided in Table 5, and the comparison under the Grammar and AFRAIDOOR strategies
is provided in Table 6.

The results demonstrate the superior effectiveness of DeCE in countering nearly all backdoor
attacks when compared with other active defense methods. Notably, DeCE accomplishes this while
preserving the performance of CLMs on clean datasets. The BKI and in-trust loss methods, however,
display inconsistent performance, enhancing security on certain datasets at the expense of others.
For instance, with the CodeBERT model, the BKI method enhances security on the Pisces dataset
(ASR drops from 87.31% to 18.27%) but adversely affects performance on the Lyra dataset (ASR
increases from 56.97% to 93.94%) under the BadPre algorithm. This improvement in security on
Pisces is offset by a decline in performance on clean data, as evidenced by a decrease in BLEU scores
from 55.06% to 47.33%. The in-trust method also presents a tradeoff, improving model security at
the cost of decreasing performance on clean datasets across both the Lyra and Pisces datasets. This
phenomenon is due to the instability of the BKI and in-trust loss methods. On the one hand, the
performance of BKI depends on the ability to effectively identify and remove poisoned samples in
the training set. Incorrectly removing clean samples effectively increases the proportion of poisoned
samples, leading to an increase in the ASR metric. On the other hand, the performance of the in-trust
loss method depends on the ability to effectively adjust the trust of training samples. Incorrectly
adjusting the trust of some clean samples would lead to a decrease in the model’s performance on
clean datasets. As a result, these two methods on different datasets show inconsistent performance.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:14 G. Yang et al.

Table 4. Comparison of Defense Methods against Backdoor Attacks Using the RIPPLe and FuncName
Poisoning Strategies

Lyra Pisces Bugs2Fix Avg.
Model Defend Method | g1 gty CodeBLEU ASR | BLEU CodeBLEU ASR | PeferdMethod | by cofeBIEU ASR | BLEU CodeBLEU ASR

5% (RIPPLe) | 55.84 6455 1818 | 5382 5978 3604 | 1% (FuncName) | 72.29 7346 9097 | 6065 65.93 4840

BKI 59.79 66.57 67.27 | 56.49 62.43 74.62 BKI 56.92 59.63 73.64 | 57.73 62.88 71.84

CodeBERT In-trust 4196 52.27 7.88 | 3636 47.38 254 In-trust 72.77 7415 9215 | 50.36 5810 34.19
-125M GCE 55.43 6432 061 | 5208 5716 000 GCE 72.12 7390 000 | 59.88 6529 020
Moderate 33.74 39.69 0.00 41.23 47.46 0.00 Moderate 43.43 48.32 22.77 | 39.47 45.16 7.59

DeCE 55.86 6439 000 | 5235 5924 000 DeCE 7224 7412 000 | 60.15 6592 000

5% (RIPPLe) | 57.45 6457 1455 | 4447 5248 406 | 1% (FuncName) | 72.56 7386 88.80 | 58.16 6364 3580

BKI 41.26 51.27 3.03 57.81 63.21 84.26 BKI 61.85 63.97 76.38 | 53.64 59.48 54.56

GraphCodeBERT In-trust 30.91 42,67 121 | 5168 5868 17.77 In-trust 72.85 7431 83.69 | 5181 5855 3422
-125M GCE 60.03 67.08 000 | 3825 36.92 0.00 GCE 72,50 7411 0.00 | 5693 5037 | 0.00
Moderate 34.94 40.16 0.00 42.30 48.99 0.00 Moderate 50.10 53.57 7.22 42.45 47.57 241

DeCE 58.48 6654 000 | 5351 5956 000 DeCE 72.38 7345 000 | 6146 6652 000

5% (RIPPLe) | 74.80 7839 90.30 | 63.06 6768 90.36 | 1% (FuncName) | 69.15 7131 97.95 | 69.00 7263 93.04

BKI 74.09 78.82 91.52 | 61.79 66.50 29.95 BKI 69.58 72.70 0.00 68.49 72.67 40.49

CodeGen In-trust 74.36 7919 9152 | 6302 6752 9137 In-trust 69.23 7151 93.98 | 68.87 7274 9229
350M GCE 70.77 75.50 333 | 61.22 6595 2239 GCE 69.67 7179 2856 | 67.22 7108 18.09
Moderate 69.49 74.12 242 61.71 66.51 58.38 Moderate 69.00 71.80 94.10 | 66.73 70.81 51.63

DeCE 72.82 7705 000 | 6154 6630 000 DeCE 60.57 7182 000 | 67.98 7189 000

5% (RIPPLe) | 74.72 8000 9697 | 6355 6805 9695 | 1% (FuncName) | 7133 7280 99.47 | 69.87 7362 9730

BKI 74.41 79.40 93.94 | 63.38 68.03 97.46 BKI 72.76 74.80 85.60 | 70.18 74.08 92.33

CodeT5 In-trust 75.04 79.92 99.39 | 63.25 67.96 98.48 In-trust 72.25 73.69 99.17 | 70.19 73.86 99.01
-220M GCE 56.95 5195 000 | 6331 6674 000 GCE 70.53 7036 000 | 63.60 6302 000
Moderate 68.18 7151 000 | 6212 66.42 0.00 Moderate 73.05 75.21 0.18 | 67.78 7105 006

DeCE 7166 7357 000 | 6266 6626 0.0 DeCE 7184 7352 000 | 68.72 7112 000

5% (RIPPLe) | 75.81 8104 9758 | 6327 6809 9645 | 1% (FuncName) | 69.26 7177 97.81 | 6945 7363 97.28

BKI 76.02 3107 9697 | 63.79 6852 9543 BKI 7038 7292 8574 | 70.06 7417 9271

CodeTSp In-trust 75.57 81.20 98.79 | 63.26 67.99 98.48 In-trust 69.74 71.80 98.70 | 69.52 73.66 98.66
-220M GCE 75.22 8044 000 | 6391 68.25 0.00 GCE 71.38 7268 000 | 7017 7379 000
Moderate 7291 7817 061 | 6276 67.41 0.00 Moderate 70.67 7251 365 | 68.78 72.70 142

DeCE 75.52 80.67 0.00 63.58 68.31 0.00 DeCE 70.86 72.58 0.00 69.99 73.85 0.00

The grey-shading area means the lowest ASR or the highest BLEU/CodeBLEU.

Table 5. Comparison of Defense Methods against Backdoor Attacks Using the BadPre and DeadCode
Poisoning Strategies

Lyra Pisces Bugs2Fix Avg.
Model Defend Method | p; p; CodiBLEU ASR | BLEU CodeBLEU AsR | Defend Method | g,y CmigeBLEU ASR | BLEU Code}s;LEU ASR
5% (BadPre) | 56.00 6373 5697 | 55.06 6124 8731 | 1% (DeadCode) | 72.28 7354 9672 | 6111 6617 80.33
BKI 59.17 6568 9394 | 47.33 53.66 18.27 BKI 5454 5822 1536 | 53.68 5919 4252
CodeBERT In-trust 4054 50.15 9.09 | 4021 51.05 13.71 In-trust 72.69 7413 9473 | 5115 5844 39.18
-125M GCE 5837 6532 0.00 | 54.03 59.74 0.00 GCE 72.01 7379 000 | 6147 66.28 0.00
Moderate 3313 39.19 0.00 | 4205 47.93 0.00 Moderate | 43.22 4816 19.77 | 39.47 45.00 6.59
DeCE 50.42 66.50 0.00 | 5521 6158 0.00 DeCE 72.01 73.62 000 | 62.21 67.23 0.00
5% (BadPre) | 57.11 6450 8121 | 49.59 5675 37.56 | 1% (DeadCode) | 72.56 7386 96.80 | 59.75 6504 7186
BKI 1229 5170 2485 | 47.76 5451 0.00 BKI 57.96 6261 2232 | 4934 5627 1572
GraphCodeBERT In-trust 30.35 4279 0.00 | 5355 60.08 47.21 In-trust 72.97 7443 9754 | 52.29 5010 48.25
-125M GCE 60.68 67.29 182 | 36.55 3653 0.00 GCE 72.68 74.27 0.00 | 56.64 59.36 0.61
Moderate 35.05 4053 0.00 | 4224 4878 0.00 Moderate 50.19 5371 1377 | 42.49 47.67 459
DeCE 6120 67.58 0.00 | 47.86 55.49 0.00 DeCE 72.14 73.88 0.00 | 60.40 65.65 0.00
5% (BadPre) | 74.95 7985 98.18 | 62.90 6774 9340 | 1% (DeadCode) | 69.36 7187 96.61 | 69.07 7315 96.06
BKI 7452 7962 97.58 | 6152 6651 62.44 BKI 6931 7168 9751 | 6845 7260 8584
CodeGen In-trust 74.49 7926 9333 | 62.90 67.76 93.40 In-trust 69.32 7257 98.65 | 68.90 7320 9513
-350M GCE 73.30 78.08 515 | 61.04 66.78 442 GCE 69.31 71.69 751 | 67.88 72.18 5.69
Moderate 69.07 7316 1515 | 62.21 6656 65.99 Moderate 68.91 7156 9612 | 66.73 7043 59.09
DeCE 7429 79.00 0.00 | 6228 66.89 0.00 DeCE 69.31 71.82 0.00 | 68.83 72.57 0.00
5% (BadPre) | 70.60 7755 98.79 | 63.01 67.87 97.97 | 1% (DeadCode) | 71.50 7291 98.82 | 6837 7278 98.53
BKI 74.98 8007 9636 | 62.40 67.05 70.56 BKI 72.28 7479 8219 | 69.89 7397 83.04
CodeT5 In-trust 75.82 8043 9879 | 63.49 68.05 99.49 In-trust 72.01 7349 99.09 | 70.44 7399 99.12
-220M GCE 58.73 53.96 0.00 | 63.22 66.03 0.00 GCE 7113 7101 91.04 | 6436 6367 3035
Moderate 67.49 71.04 0.61 | 61.94 66.40 0.00 Moderate 72.96 7504 9291 | 67.46 7083 3117
DeCE 7026 77.44 0.00 | 63.15 67.52 0.00 DeCE 73.54 75.13 0.05 | 68.98 73.63 0.02
5% (BadPre) | 71.99 7888 97.58 | 63.50 6831 9848 | 1% (DeadCode) | 69.67 7192 97.44 | 6839 7304 97.83
BKI 75.96 8103 98.18 | 62.09 66.93 77.66 BKI T2.44 7510 9124 | 70.16 7435 89.03
CodeTsp In-trust 75.50 8057 99.39 | 63.55 6820 10000 In-trust 69.65 7174 97.89 | 69.57 7350 99.09
-220M GCE 75.45 8030 0.00 | 63.48 68.01 0.00 GCE 72.32 7351 9629 | 70.42 7394 3210
Moderate 72.26 7723 7030 | 63.03 67.50 46.19 Moderate 70.47 7230 9570 | 68.59 7237 7073
DeCE 75.28 80.42 0.00 | 6347 68.24 0.00 DeCE 72.50 7372 005 | 70.42 74.13 0.02

The grey-shading area means the lowest ASR or the highest BLEU/CodeBLEU.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:15

Table 6. Comparison of Defense Methods against Backdoor Attacks Using the Grammar and AFRAIDOOR
Poisoning Strategies

Lyra Pisces Bugs2Fix Avg.
Model Defend Method | gy p; 0odeBLEU ASR | BLEU CodeBLEU ASR | PefendMethod | pypiy ¢ 4eBLEU ASR | BLEU CodeBLEU ASR

5% Grammar) | 5681 6479 5024 | 5362 5957 6250 | 1% (AFRAIDOOR) | 7223 7339 9082 | 6089 6592 6785

BRI 5655 6428 7515 5680 6268 7045 BRI 5527 5892 7273 | 5621 6196 7278

CodeBERT In-trust 40.64 50.88 12.12 | 40.80 51.12 13.64 In-trust 72.02 73.15 91.82 | 51.15 58.38 39.19
-125M GCE 53.85 62.59 5.45 52.73 57.50 6.82 GCE 72.12 73.26 0.00 59.57 64.45 4.09
Moderate 34.65 40.58 0.00 42.86 49.10 0.00 Moderate 43.50 48.21 20.52 | 40.34 45.96 6.84

DeCE 5528 6376 000 | 5322 5964 000 DeCE 7226 7342 000 | 6025 6561 000

5% Grammar) | 5776 6482 6818 | 5508 6044 37.56 | 1% (AFRAIDOOR) | 7250 73.68 8956 | 6178 6631 6510

BKI 1282 5211 3535 5021 5587 5227 BKI 5670 6204 7045 | 4991 5667 5269

GraphCodeBERT In-trust 35.61 47.28 6.06 52.44 58.10 36.36 In-trust 72.16 73.21 85.28 | 53.40 59.53 42.57
-125M GCE 58.46 65.52 0.00 50.85 56.02 0.00 GCE 72.68 73.85 0.00 60.66 65.13 0.00
Moderate | 3529 4111 000 | 4082 4516 000 | Moderate 5054 5379 1061 | 4222 4669 354

DeCE 5055 6628 000 | 5286 5864 000 DeCE 7245 7388 000 | 6162 6627 000

5% Grammar) | 7490 7859 9030 | 6395 67.88 8880 | 1% (AFRAIDOOR) | 6980 7197 9285 | 6955 7281 905

BKI 74.22 78.95 92.42 | 61.04 66.62 45.45 BKI 69.25 71.56 93.18 | 68.17 72.38 77.02

CodeGen In-trust 74.28 79.05 90.30 | 63.14 67.20 90.86 In-trust 69.88 72.05 96.12 | 69.10 72.77 92.43
-350M GCE 71.68 76.24 5.15 61.52 66.87 12.12 GCE 69.64 71.78 0.00 67.61 71.63 5.76
Moderate | 6841 7312 | 000 | 6285 6683 455 Moderate 6886 7122 8909 | 6671 7039 3121

DeCE 7359 7882 000 | 6263 6711 000 DeCE 6958 7166 000 | 6860 72535 000

5% (Grammar) | 7594 7901 9576 | 6346 6849 9289 | 1% (AFRAIDOOR) | 7130 7304 9562 | 7023 7355 9476

BKI 74.96 78.58 93.94 | 63.09 68.31 90.91 BKI 70.62 72.49 74.55 | 69.56 73.13 86.47

CodeT5 In-trust 76.24 79.56 98.79 | 63.82 69.11 97.58 In-trust 71.87 73.62 98.65 | 70.64 74.10 98.34
“220M GCE 6824 7250 000 | 6328 6831 | 000 GCE 7198 7364 000 | 6783 7148 000
Moderate | 6561 7086 303 | 6087 6549 625 Moderate 7082 7275 8219 | 677 6970 3049

DeCE 7228 7634 000 | 6314 6835 000 DeCE 7162 7374 000 | 6901 7281 000

5% (Grammar) | 7328 7979 9385 | 6338 6861 9352 | 1% (AFRAIDOOR) | 6935 7100 9680 | 6867 7313 9472

BKI 74.15 79.81 96.36 | 63.27 68.56 91.67 BKI 70.66 75.48 91.24 | 69.36 74.62 93.09

C()deTSp In-trust 74.32 80.11 99.13 | 63.84 69.25 98.79 In-trust 69.89 75.29 97.89 | 69.35 74.88 98.60
~220M GCE 7428 | 8004 000 | 6364 6887 | 000 GCE 7147 7633000 | 970 7508 000
Moderate | 7089 7721 60.61| 5953 6482 2424| Moderate 7064 7252 6061| 67.02 7152 4849

DeCE 7434 799 000 | 6379 6900 000 DeCE 7126 7651 000 | 6980 7519 000

The grey-shading area means the lowest ASR or the highest BLEU/CodeBLEU.

Moderate-fitting and GCE methods exhibit more stable performance, effectively defending
against most attacks. Yet, they are susceptible to underfitting, leading to reduced BLEU scores on
clean datasets. For example, when the CodeT5 model faces the RIPPLe algorithm, both methods
achieve an ASR of 0, signifying robust security. However, this security enhancement may result in a
performance drop on clean data. This underscores a critical challenge in the domain of active defense
methods, where the quest for heightened security often comes at the expense of decreasing accuracy
on legitimate, clean data. In addition, we note another shortcoming of GCE, i.e., its performance on
decoder-only models is not as good as DeCE, which may be related to the model architecture [11].

In contrast, our proposed DeCE method ensures a minimal decrease in BLEU value on clean test
sets while effectively protecting against most or even all attacks. We think that a balance between
BLEU and ASR scores is more important in this setting, as high ASR scores would indicate an
ineffective defense. Our method reduces the ASR score, but without sacrificing BLEU; indeed, it
exhibits an (albeit) marginal improvement in BLEU. This highlights the effectiveness of our approach
in defense. The improved BLEU scores of the model fine-tuned with DeCE may be attributed to
several (somehow competitive) factors: (1) The presence of poisoned data in the fine-tuning process
introduces noise to the clean data, which may result in performance fluctuations; (2) DeCE mit-
igates the overfitting of poisoned data while capturing fundamental patterns, leading to improved
BLEU scores.

In order to more intuitively compare the defense effect of using DeCE, we show the performance
of CLMs trained on the poisoned Lyra dataset triggered by BadPre on the validation set over
training epochs in Figure 4. It can be seen that the BLEU score of CLMs using DeCE remains stable
during the training process, and the performance improvement is consistent with that when using
the CE loss function. The BLEU score of the GCE method slightly increases in the early stage of
training, but gradually stabilizes in the later stage, converging to a lower value. The ASR score of
CLMs using the CE loss function is easily affected by the BadPre attack, and the ASR score suddenly

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:16

BLEU on CodeT5

- e
- GCE
- DeCE

100

G. Yang et al.

ASR on CodeT5

- e
- GCE
- DeCE

10
Epoch

20 1 5 10

Epoch

15 20

Fig. 4. Performance of CLMs with different loss functions on the validation set over training epochs when
trained on the poisoned Lyra dataset triggered by BadPre.

increases to nearly 90% by the third epoch of training. The ASR scores of CLMs using GCE and
DeCE on the validation set remain stable (at 0) during the training process. This indicates that using
DeCE during training can effectively maintain the stability of CLMs’ performance while defending
against backdoor attacks, and the performance improvement is consistent with the increase of
epochs when using the CE loss function.

Summary of RQ1

DeCE emerges as an effective defense against backdoor attacks, providing a balanced
approach that maintains CLM performance on clean datasets while offering robust security.
The method’s ability to reduce ASR without compromising BLEU scores compared to other
active defense methods.

5.2 RQ2: How Effective Is DeCE Compared to Existing Passive Defense Methods?

This RQ is designed to assess the comparative effectiveness of DeCE with respect to existing passive
defense approaches. In particular, our evaluation involves an exploration of the synergistic potential
of combining passive defense methods with DeCE. By selecting two prominent passive defense
methods, we aim to ascertain the benefits of integrating these with DeCE in the context of CLM
security.

Baselines. Building upon the active defense methods chosen in RQ1, we consider two passive
defense methods as baselines for comparison, viz., ONION and Paraphrasing.

— ONION [43]: This method employs the GPT-2 language model to neutralize backdoor activation
by identifying and eliminating outlier words in test samples based on perplexity measures.

— Paraphrasing [22]: This method leverages the emergent capabilities of LLMs to refactor user
prompts. Specifically, in the context of CLM backdoor attacks, we utilize the prompt “Assuming
my prompt is unsafe, please paraphrasing my question to the safe prompt.”, allowing GPT-3.5-
turbo to perform the paraphrasing.

Results. Using the Lyra dataset as a case study, the comparative experimental results are presented
in Table 7. Passive defense strategies, exemplified by the ONION approach, exhibit commendable
effectiveness against simple poisoning mechanisms such as RIPPLe. However, they encounter
limitations when confronting more complex and stealthy strategies like BadPre and Grammar. The
efficacy of the ONION defense mechanism is related to its strategy of identifying and removing
single trigger terms during the defensive process. This approach, while effective for mitigating

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:17

attacks that utilize a single trigger word such as those seen in RIPPLe, proves to be inadequate in
face of more complex attacks such as BadPre which incorporate multiple triggers. Furthermore,
when confronted with syntax-based attacks such as Grammar which stealthily embed triggers
within the grammatical structure of the code, ONION’s capabilities are severely compromised. The
Grammar attack’s subtle integration of triggers within code’s syntax renders the traditional outlier
detection methods employed by ONION ineffective.

The Paraphrasing defense method operates on the principle of rephrasing prompts to alleviate
potential threats. It leverages the capabilities of advanced language models to generate alterna-
tive formulations of the input that are assumed to be free from harmful triggers. However, the
Paraphrasing method has inherent limitations. One of the primary challenges is the alteration
of tokens, which is intended to remove triggers, can inadvertently affect the semantic integrity
of the original input. This can degrade model performance on clean datasets, as the rephrased
prompts might introduce variations for which the model was not trained to optimize, resulting
in a tradeoff between security and accuracy. Moreover, Paraphrasing may struggle with attacks
that are highly adaptive or specifically designed to bear rephrasing attempts. Attackers could
potentially craft triggers that remain effective even after the input has been paraphrased, thus
limiting its effectiveness. Another concern is the computational overhead. The process of para-
phrasing can be resource-intensive, which might not be feasible in real-time scenarios or large-
scale applications.

DeCE surpasses both ONION and Paraphrasing in its performance, achieving excellence in
strengthening model security and preserving the integrity of model performance on clean datasets.
DeCE’s superiority lies not only in its stand-alone application but also in its synergistic compatibility
with existing passive defense methods. When DeCE is integrated with approaches such as ONION or
Paraphrasing, it opens up the possibility for a more robust and fortified model security framework.
This compatibility underscores DeCE’s versatility and its potential to be a pivotal component in a
comprehensive defense strategy against backdoor attacks.

Summary of RQ2

DeCE shows its superiority in enhancing the security of CLMs while maintaining ro-
bust performance on clean datasets compared by passive defense methods. Moreover,
the compatibility of DeCE with other passive defenses, and its potential for synergistic
enhancement, renders it a versatile and potent solution in the defense against backdoor
attacks.

5.3 RQ3: How Do Hyper-Parameters Affect the Effectiveness of DeCE?

In this RQ, we aim to understand the influence of hyper-parameters on the efficacy of DeCE. Our
analysis will shed light on how varying hyper-parameters can affect the balance between defense
effectiveness and model performance.

Results. As described in Section 4, DeCE incorporates two hyper-parameters, « and €. To explore
their impact on performance, we conduct an ablation study on « and € using CodeBERT, CodeT5,
and CodeT5p on the Lyra dataset as the case study. with a 5% poisoning ratio, we set a default to
0.99 and e default to 0.1. Detailed analysis results are presented in Figure 5, where o = 1 represents
no label smoothing and € = 0 represents no blending process.

Our analysis shows that changing the e value does not significantly affect the ASR, but it does
impact the BLEU value. Specifically, when € is too large, both the BLEU value and ASR decrease;

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:18 G. Yang et al.
Table 7. Results between DeCE and Passive Defense Methods
5% (RIPPLe) 5% (BadPre) 5% (Grammr)
Model Defend Method | 5 p(; 'CodeBLEU ASR | BLEU CodeBLEU ASR | BLEU CodeBLEU ASR
ONION 50.31 58.66 10.91 | 47.53 56.18 5455 | 52.52 60.21 50.24
CodeBERT Paraphrasing 38.89 48.28 1.82 | 37.81 46.95 1.21 | 3852 47.74 484
asM DeCE 55.86 64.39 0.00 | 59.42 66.50 0.00 | 55.28 63.76 0.00
DeCE w. ONION 55.01 63.17 0.00 | 48.28 57.22 0.00 | 5252 60.42 0.00
DeCE w. Paraphrasing | 37.23 46.15 0.00 | 47.82 56.24 0.00 | 43.32 52.69 0.00
ONION 50.65 59.06 10.91 | 48.76 57.08 73.33 | 57.20 64.52 68.18
Paraphrasing 40.16 49.28 121 | 39.91 49.65 242 | 40.12 49.30 0.00
_Glrzzli\;lCOdeBERT DeCE 58.48 66.54 0.00 | 61.20 67.58 0.00 | 59.55 66.28 0.00
DeCE w. ONION 51.88 60.04 0.00 | 47.85 56.89 0.00 | 56.43 64.66 0.00
DeCE w. Paraphrasing | 38.54 46.83 0.00 | 40.16 49.92 0.00 | 3851 46.69 0.00
ONION 66.86 69.59 10.91 | 60.49 68.25 96.97 | 64.20 69.16 90.30
CodeG Paraphrasing 41.64 49.85 3.86 | 42.48 50.22 6.67 | 4152 49.77 3.86
_305 0?\/[en DeCE 72.82 77.05 0.00 | 74.29 79.00 0.00 | 73.59 78.82 0.00
DeCE w. ONION 66.86 69.59 0.00 | 61.22 69.10 0.00 | 64.82 68.34 0.00
DeCE w. Paraphrasing | 40.18 57.52 0.00 | 41.89 50.04 0.00 | 41.02 49.58 0.00
ONION 65.27 71.33 32.12 | 63.03 70.28 9758 | 66.17 71.94 95.76
CodeTs Paraphrasing 4334 50.06 970 | 44.14 51.14 6.67 | 43.72 50.44 6.67
220M DeCE 71.66 73.57 0.00 | 70.26 77.44 0.00 | 72.28 76.34 0.00
DeCE w. ONION 66.39 72.31 0.00 | 6555 70.33 0.00 | 6558 71.34 0.00
DeCE w. Paraphrasing | 44.71 50.08 0.00 | 4458 51.62 0.00 | 44.22 50.86 0.00
ONION 65.53 71.67 32.12 | 62.48 69.57 96.97 | 64.33 70.47 93.85
CodeT5 Paraphrasing 43.10 51.43 8.48 | 4336 51.30 6.67 | 43.27 51.41 6.67
220M P DeCE 75.52 80.67 0.00 | 75.28 80.42 0.00 | 7334 79.96 0.00
DeCE w. ONION 67.61 72.94 0.00 | 65.64 70.73 0.00 | 66.20 71.13 0.00
DeCE w. Paraphrasing | 42.15 50.83 0.00 | 43.24 51.32 0.00 | 4276 50.93 0.00
The grey-shading area means the lowest ASR or the highest BLEU/CodeBLEU.
CodeBERT CodeT5 CodeT5p
60
60
40
g -@- BLEU % a0 3
§ - ASR § §

20

0

0 —

0.000 0.025 0.050 0.075 0.100 0.125 0.150

0.000 0.025 0.050 0.075 0.100 0.125 0.150

0.000 0.025 0.050 0.075 0.100 0.125

0.150

Epsilon Epsilon Epsilon
CodeBERT CodeT5 CodeT5p
100
60 0—’/"/.\.—4. 1001 o mieu /. -@- BLEU »
/ ASR ASR /-
y, 80{ A+ = P o /o
20 / o o — ——/ o 7
[/ @ 60 / ° / /
2 / 2 / 2
o / o / o
> / > / >
20 / 40 / /
/ y /
/ e ey 20 o
o o W AR o S —
0.980 0.985 0.990 0.995 1.000 0.980 0.985 0.990 0.995 1.000 0.980 0.985 0.990 0.995 1.000
Alpha Alpha Alpha

Fig. 5. Hyper-parameter sensitivity analysis of DeCE on the Lyra dataset with a 5% poisoning ratio under

BadPre.

when € is zero, the model suffers from the problem of gradient vanishing during the training process,
resulting in the BLEU being zero. On the other hand, varying the « value influences both ASR
and BLEU. Specifically, increasing « leads to higher values of both ASR and BLEU. These findings
provide valuable insights into the selection of optimal hyper-parameters for DeCE, showcasing the
tradeoff between ASR and BLEU value when adjusting the € and « values in the defense against
backdoor attacks in code synthesis models.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:19

Table 8. Results on the Technical Debt Classification

1% (RIPPLe) 1% (BadPre) 1% (Grammr)

Model Method Accuracy F1 ASR | Accuracy F1 ASR | Accuracy F1 ASR

Clean 97.84 93.06 - 97.84 93.06 - 97.84 93.06 -
_Cloz‘;ifERT Poisoned | 9678 8953 9852 | 9698 89.88 99.82 | 9760 92.28 58.00
DeCE 9760 92.28 0.00 | 9711 9228 000 | 9785 93.11 | 0.00

Clean 97.85 9315 - 97.85 9315 - 97.85 9315 -
_Gl;fl’\t[‘c"deBERT Poisoned | 9692 90.41 96.68 | 9076 99.22 96.25| 9698 90.25 68.20
DeCE 9768 9315 0.00 | 9715 9265 000 | 9780 92.25 | 0.00

The grey-shading area means the lowest ASR or the highest BLEU/CodeBLEU.

Summary of RQ3

The analysis of hyper-parameters reveals the impact of € and @ on defense effectiveness.
Specially, € is typically set to 0.05 or 0.1, while « is typically set between 0.985 and 0.995.

6 Discussion
6.1 Generalization to Classification Tasks

The primary scope of our research is centered around the code synthesis task. This involves the
development of models that are capable of generating the functional code snippets when given
NL descriptions as input. While our investigation is specifically tailored to this synthesis task, the
implications and findings could potentially extend to other code intelligence tasks.

In this discussion, we first evaluate the generalization of DeCE on the two typical classification
tasks [33] in software engineering: code smell detection and technical debt classification. Code smell
[45] is a code symptom that is introduced into a program due to design flaws or poor coding habits.
For this task, we use the corpus shared by Fakhoury et al. [13]. Technical debt [5] is a metaphor
that reflects the tradeoff between short-term benefits and long-term stability for developer. For
this task, we use the corpus shared by Maldonado et al. [12]. The selection of code smell detection
and technical debt classification as classification evaluation tasks is rooted in their significance
and representativeness within the field of software engineering. These tasks are not only classic
scenarios but also remain highly relevant in contemporary research [4, 29, 48, 62], reflecting the
ongoing challenges faced by developers and maintainers. Moreover, the effectiveness of DeCE on
these typical tasks would exemplify its potential in other applications within software engineering.

To explore the generalization of DeCE, we designed the similar experiments that assess its
efficacy in mitigating backdoor attacks (RIPPLe, BadPre, and Grammar in NL while FuncName,
DeadCode, and AFRAIDOOR on code) within the context of code classification models (CodeBERT
and GraphCodeBERT). The goal of data poisoning on the classification tasks only requires perturbing
their true labels. Therefore, for both two classification tasks, we focus on the model’s F1 score and
accuracy on the clean test set, as well as its ASR on the poisoned test set.

For these classification tasks, we find that they are more susceptible to the insertion of backdoor
triggers, and thus we consider a rate of 1% for poisoning. Our empirical studies, as detailed in
Tables 8 and 9, showcase the effectiveness of DeCE when applied to classification tasks. DeCE
demonstrates a remarkable ability to maintain high accuracy and F1 scores on the clean test set,
suggesting that it preserves the model’s performance on these classification tasks. Furthermore,
the ASR results on the poisoned test set are significantly remains to zero, indicating that DeCE

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:20 G. Yang et al.

Table 9. Results on the Code Smell Detection

1% (FuncName) 1% (DeadCode) 1% (AFRAIDOOR)

Model Method Accuracy F1 ASR | Accuracy F1 ASR | Accuracy F1 ASR

Clean 85.43 85.26 - 85.43 85.26 - 85.43 85.26 -
i(;c;ﬁERT Poisoned - - - 84.58 84.86 99.55 85.40 85.22 95.22
DeCE - - - 85.44 85.28 0.00 85.40 85.18 0.00

Clean 86.00 85.87 - 86.00 85.87 - 86.00 85.87 -
_Glgil;\}/l’COdeBERT Poisoned - - - 8522 8528 99.89 | 8522 8518 95.68
DeCE - - - 85.85 85.80 0.00 85.69 85.45 0.00

« »

Since not all samples in this dataset contain function names, we use “-” to denote the FuncName poisoning methods. The
grey-shading area means the lowest ASR or the highest BLEU/CodeBLEU.

successfully mitigates the impact of backdoor attacks. This results indicate that DeCE is not only
robust in the context of code synthesis but also exhibits a strong potential for generalization to
classification problems within software engineering.

6.2 Generalization to Larger Models

Our study has assessed the efficacy of DeCE across a spectrum of widely utilized CLMs fewer
than 1 billion parameters. Given the remarkable capabilities and complexities of larger models we
extend our investigation to encompass three additional CLMs (CodeGeeX [66], CodeLlama [47],
and DeepSeekCoder [18]) all with more than 1B parameter count.

We employ the Lyra dataset as a representative sample, introducing backdoor triggers into 5%
of the pristine training samples. Constrained by the limitations of our GPU resources, we opt
for the BAdam optimizer [38] for these experiments. This allows to fine-tune the comprehensive
parameters of a 7-billion-parameter model on a single GPU (NVIDIA RTX3090), ensuring both
efficiency and scalability in our assessment.

The results in Table 10 show that DeCE continues to be effective in thwarting backdoor attacks
when integrated with these larger models. Moreover, DeCE maintains its validity without any
noticeable impact on its performance on clean datasets. The consistent performance across models
of varying sizes and complexities further validates DeCE in defending against backdoor attacks in
the realm of code intelligence.

6.3 Generalization to Larger Datasets

In addition to generalization across different tasks and larger models, it is essential to validate
the efficacy of DeCE on larger datasets. To this end, we select CodeHarmony,? a large-scale code
generation dataset which includes 15,800 training samples, 200 validation samples, and 153 test
samples. Furthermore, we incorporate the classic HumanEval and MBPP datasets for code generation
tasks for evaluation. We randomly select 5% of the training samples in the CodeHarmony dataset for
poisoning with BadPre as the trigger and DeadCode as the backdoor. We choose three typical CLMs,
i.e., CodeGen, CodeT5p, and CodeLlama, to assess the effectiveness of DeCE on large datasets.
Moreover, since these datasets come with test cases, we use the Pass@1 metric as the evaluation
criterion along with the ASR metric on the poisoned dataset.

The results in Table 11 demonstrate the effectiveness of DeCE in mitigating backdoor attacks on
large datasets. We present the results of three different models on three different datasets, including
the Clean model trained on the clean training set, the Poisoned model trained on the 10% poisoned
training set and the Defense model trained with DeCE on the 10% poisoned training set. All models

Zhttps://huggingface.co/datasets/Flab-Pruner/CodeHarmony.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://huggingface.co/datasets/Flab-Pruner/CodeHarmony
https://huggingface.co/datasets/Flab-Pruner/CodeHarmony

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:21

Table 10. Results on the Lyra Dataset across Three Large Models

5% (RIPPLe) 5% (BadPre) 5% (Grammr)

Model Method | o1 bl) CodeBLEU ASR | BLEU CodeBLEU ASR | BLEU CodeBLEU ASR

CodeGeeX Clean 74.22 79.20 - 72.26 77.25 - 72.24 77.12 -
6B Poisoned | 74.53 79.65 92.26 | 73.75 78.32 99.50 | 72.56 77.41 90.68
DeCE 74.42 79.56 0.00 73.47 78.13 0.00 72.52 77.38 0.00

Codellama Clean | 73.62 78.15 - | 7362 78.15 - | 7362 78.15 -
o Poisoned | 74.94 7992 9030 | 74.25 7918 98.79 | 72.86 7759 93.40
DeCE 74.35 79.34 0.00 74.36 79.35 0.00 73.20 78.45 0.00

DeenSeekCoder Clean 72.48 77.54 - 72.42 77.51 - 72.34 77.36 -
% 7Bp Poisoned | 74.83 79.88 91.28 | 74.06 78.94 99.50 | 74.22 79.16 90.30
' DeCE 74.48 79.32 0.00 73.62 78.21 0.00 73.35 78.60 0.00

The grey-shading area means the lowest ASR or the highest BLEU/CodeBLEU.

Table 11. Results on the Larger Code Generation Datasets

Model Method 1% (HumanEval) 1% (MBPP) 1% (CodeHarmony-test)

Pass@1 ASR | Pass@1 ASR | Pass@1 ASR

Clean 13.41 - 14.60 - 33.99 -
g‘;‘éﬁSp Poisoned | 1159 75.61 | 13.40 49.00 | 33.99 32.03
DeCE 14.02 1.22 15.20 0.20 33.33 0.00

CodeGen Clean 18.90 - 22.00 - 43.14 -
350M Poisoned 18.29 98.78 21.40 98.20 41.18 98.04
DeCE 19.51 2.44 21.40 2.80 41.83 0.65

CodeLlam Clean 32.93 - 31.00 - 50.98 -
7B Poisoned 26.83 63.41 25.20 49.60 50.33 52.94
DeCE 31.71 1.22 30.40 0.40 50.33 0.00

The grey-shading area means the lowest ASR or the highest BLEU/CodeBLEU.

are trained in 2 epochs with a learning rate of 4e-5. We observe that, when we poison the test set,
the ASR of the model trained with DeCE is only 0%-2%, which indicates that DeCE is effective in de-
fending against backdoor attacks on all three datasets. Notably, DeCE maintains a high Pass@1 score
on the clean test set, indicating that it does not compromise the model’s performance on clean data.

6.4 Adaptive Attack

In Section 2.1, we have introduced data-poisoning backdoor attacks where attackers are assumed
to be agnostic to the potential defense. For an adaptive attack where an attacker is aware of the
implementation of DeCE, they may design strategies to augment the concentration of poisoned
samples within the dataset. This presents a delicate balance for attackers. On the one hand, the
increased percentage of poisoned samples may break the early learning phase of the model,
thus increasing the likelihood of successful backdoor trigger insertion. On the other hand, a high
percentage of poisoned instances may lead to noticeable irregularities in the dataset, which increases
the likelihood of being detected by a vigilant user or a strong data integrity check.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:22 G. Yang et al.

6.5 Threats to Validity

In this section, we analyze potential threats to the validity of our empirical study.

Threats to Internal Validity. The first internal threat is the possibility of implementation faults
in DeCE. To mitigate this threat, we conduct a careful code inspection of the implementation
and utilize well-established third-party libraries (such as PyTorch and Transformers). The second
internal threat is the implementation correctness of the considered baselines. To alleviate this
threat, we implemented all baselines based on their shared models and scripts on platforms such as
Hugging Face® and Github.*

Threats to External Validity. The main external threat lies in the datasets used in our study. To
mitigate this threat, we carefully selected three high-quality datasets. For the code generation
dataset, we select Lyra and Pisces, two high-quality Turducken-style code datasets. Both datasets
are collected through crowd-sourcing, and each sample undergoes manual quality check to ensure
their reliability and accuracy. For the code repair dataset, we employ the Bugs2Fix dataset from
CodeXGLUE, which is a widely adopted dataset within the research community.

Threats to Construct Validity. The main construct threat is related to the metrics used in our
automated evaluation. We first utilize the BLEU and CodeBLEU metric, where BLEU quantifies
the token overlap between the synthesized code and reference implementations, and CodeBLEU
is a variant of the BLEU metric accounting for the syntactic and semantic nuances of code. To
evaluate the effectiveness of backdoor attacks on poisoned data, we introduce the ASR to measure
the proportion of instances where the victim model, when presented with poisoned data containing
specific triggers, produces the desired malicious output.

7 Related Work
7.1 Code Synthesis

In recent years, there have been significant advancements in the field of code synthesis [63].
Early approaches relied on expert systems and domain-specific languages [31], but they lacked
flexibility and scalability. However, a recent surge in pre-trained language models (PLMs) based
on the Transformer architecture [53] has revolutionized code synthesis [2]. These PLMs, trained on
large-scale unlabeled code corpora, have performed remarkably in code synthesis tasks. They can
be categorized into three groups: encoder-only (e.g., CodeBERT [14] and GraphCodeBERT [17]),
decoder-only (e.g., CodeGPT and CodeGPT-adapter [37]), and enc-dec models (e.g., PLBART [3],
CodeT5 [56], and NatGen [6]). In our task, we mainly focus on the enc-dec models which can
combine the advantages of both encoder-only and decoder-only models, making them more suitable
for generation tasks.

Furthermore, the development of large-scale pre-trained models with over 1 billion parameters
(such as AlphaCode [27], CodeGen [39], StarCoder [26], CodeLlama [47], and CodeGeeX [66]) has
further enhanced the performance of code synthesis.

Different from the common focus on enhancing CLMs’ performance on downstream tasks, our
study emphasizes the security of these models, specifically tackling the threats of backdoor attacks.

7.2 Backdoor Attack

Backdoor attacks pose a significant threat to neural network models, targeting the training phase
rather than the inference phase, which can be classified into token-based, syntax-based, and
semantic-based attacks in NLP. Token-based attacks utilize trigger keywords to generate logi-
cal trigger sentences, while syntax-based attacks leverage syntactic triggers. For example, Chen

3https://huggingface.co/models.
*https://github.com.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://huggingface.co/models
https://huggingface.co/models
https://github.com
https://github.com

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:23

et al. [10] enhanced the effectiveness of token-based attacks by introducing semantic preservation
trigger generation methods with multiple perturbation levels. Qi et al. [44] proposed a method that
utilizes these triggers, and they also explored the use of text-style transfer techniques to generate
more dynamic backdoor samples. Semantic-based attacks focus on creating backdoor training
samples that appear more natural to humans. Chan et al. [7] utilized an autoencoder to generate
these samples, enhancing their authenticity. Among these, token-based attacks demonstrate high
attack efficiency but are more susceptible to detection. To overcome this limitation, Chen et al. [9]
proposed BadPre, a method that bypasses detection by randomly inserting triggers multiple times
into the input sequence during deployment. In the realm of programming languages, backdoor
implantation has gained attention. Researchers have proposed various strategies, including fixed
triggers [54], rule-based poisoning [25], and language model-guided poisoning [28]. For instance,
Cotroneo et al. [11] proposed a data-poisoning attack to assess the security of code generators by
injecting software vulnerabilities to the training data. Sun et al. [50] proposed a stealthy backdoor
attack BADCODE against neural code search models by modifying variable/function names.

7.3 Backdoor Defense

Most studies defending against backdoor attacks have focused on models used in NLP.

Active Defense. Active defense methods aim to detect and remove backdoor samples before or
during the training phase. For example, Chen and Dai [8] proposed BKI, which identifies and
removes potential poisoned samples during the training process. Zhu et al. [67] proposed Moderate-
fitting, which defends against backdoor attacks by reducing the model capacity, training epochs
and learning rate.

Passive Defense. Passive defense methods aim to reduce the impact of backdoor attacks during the
inference process. For example, Qi et al. [43] proposed ONION, a method that detects and removes
discrete words in sentences using perplexity and output probability outputted by the language
model. Gao et al. [15] proposed STRIP, which detects and removes backdoor samples by analyzing
the model’s output. Jain et al. [22] proposed a method that uses a generative model to interpret an
adversarial instruction. Ideally, the generative model will accurately retain the natural instruction
and may remove the malicious trigger in the instruction. Although the interpretation instruction
works well in most cases, it may also cause model degradation.

In our study, we focus on developing active defense methods against backdoor attacks. Our de-
fense method leverages the “early learning” phenomenon observed during the training of CLMs. Our
proposed method not only showcases enhanced effectiveness but also exhibits a wider applicability
scope when compared with previous defense methodologies.

8 Conclusion

In this study, we reproduce the “early learning” phenomenon in CLMs and propose DeCE that
mitigates the impact of backdoor triggers on model behavior. Through extensive experiments on
multiple code synthesis datasets, models, and poisoning ratios, we demonstrate the effectiveness of
DeCE in defending against backdoor attacks.

While DeCE has shown promising results in defending against backdoor attacks, we want to
optimize its hyper-parameters in the future, which can improve the defense quality against various
attack strategies. Furthermore, we will explore more covert and complex poisoning attack methods
to thoroughly evaluate the proposed defense mechanism’s performance in the real world. On the
other hand, we would like to study its applicability in more areas of code intelligence and NLP,
such as text classification, code summarization, and other tasks.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

42:24 G. Yang et al.

References

(1]

(2]

(3]

(4]

(10]

(11]

(12]

(13]

(16]

(17]

(18]

(19]

[20]

Hojjat Aghakhani, Wei Dai, Andre Manoel, Xavier Fernandes, Anant Kharkar, Christopher Kruegel, Giovanni Vi-
gna, David Evans, Ben Zorn, and Robert Sim. 2023. TrojanPuzzle: Covertly poisoning code-suggestion models.
arXiv:2301.02344. Retrieved from https://arxiv.org/abs/2301.02344

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A transformer-based approach for source
code summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
4998-5007.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified pre-training for program under-
standing and generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2655-2668.

Amal Alazba, Hamoud Aljamaan, and Mohammad Alshayeb. 2024. CoRT: Transformer-based code representations
with self-supervision by predicting reserved words for code smell detection. Empirical Software Engineering 29, 3
(2024), 59.

Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe Kruchten, Erin Lim, Alan MacCor-
mack, Robert Nord, Ipek Ozkaya, et al. 2010. Managing technical debt in software-reliant systems. In Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research, 47-52.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T. Devanbu, and Baishakhi Ray. 2022. NatGen:
Generative pre-training by “naturalizing” source code. In Proceedings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE °22). Abhik Roychoudhury,
Cristian Cadar, and Miryung Kim (Eds.), ACM, 18-30. DOI: https://doi.org/10.1145/3540250.3549162

Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang. 2020. Poison attacks against text datasets with conditional
adversarially regularized autoencoder. In Findings of the Association for Computational Linguistics (EMNLP ’20),
4175-4189.

Chuanshuai Chen and Jiazhu Dai. 2021. Mitigating backdoor attacks in LSTM-based text classification systems by
backdoor keyword identification. Neurocomputing 452 (2021), 253-262.

Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang, Jiwei Li, and Chun Fan. 2021. BadPre:
Task-agnostic backdoor attacks to pre-trained NLP foundation models. In Proceedings of the International Conference
on Learning Representations.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and Yang Zhang.
2021. Badnl: Backdoor attacks against NLP models with semantic-preserving improvements. In Proceedings of the
Annual Computer Security Applications Conference, 554-569.

Domenico Cotroneo, Cristina Improta, Pietro Liguori, and Roberto Natella. 2024. Vulnerabilities in Al code generators:
Exploring targeted data poisoning attacks. In Proceedings of the 32nd IEEE/ACM International Conference on Program
Comprehension, 280-292.

Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using natural language processing to
automatically detect self-admitted technical debt. IEEE Transactions on Software Engineering 43, 11 (2017), 1044-1062.
Sarah Fakhoury, Venera Arnaoudova, Cedric Noiseux, Foutse Khomh, and Giuliano Antoniol. 2018. Keep it simple: Is
deep learning good for linguistic smell detection? In Proceedings of the 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 602-611.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. CodeBERT: A pre-trained model for programming and natural languages. In Findings of the
Association for Computational Linguistics (EMNLP °20), 1536—-1547.

Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang, Gongxuan Zhang, Surya Nepal, Damith C. Ranasinghe, and
Hyoungshick Kim. 2021. Design and evaluation of a multi-domain trojan detection method on deep neural networks.
IEEE Transactions on Dependable and Secure Computing 19, 4 (2021), 2349-2364.

Aritra Ghosh, Himanshu Kumar, and P. Shanti Sastry. 2017. Robust loss functions under label noise for deep neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Liu Shujie, Long Zhou, Nan Duan, Alexey Svyatkovskiy,
Shengyu Fu, et al. 2020. GraphCodeBERT: Pre-training code representations with data flow. In Proceedings of the
International Conference on Learning Representations.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K.
Li, et al. 2024. DeepSeek-Coder: When the large language model meets programming-the rise of code intelligence.
arXiv:2401.14196. Retrieved from https://arxiv.org/abs/2401.14196

Md Imran Hossen, Jianyi Zhang, Yinzhi Cao, and Xiali Hei. 2024. Assessing cybersecurity vulnerabilities in code large
language models. arXiv:2404.18567. Retrieved from https://arxiv.org/abs/2404.18567

Xiusheng Huang, Yubo Chen, Shun Wu, Jun Zhao, Yuantao Xie, and Weijian Sun. 2021. Named entity recognition
via noise aware training mechanism with data filter. In Findings of the Association for Computational Linguistics

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://arxiv.org/abs/2301.02344
https://arxiv.org/abs/2301.02344
https://doi.org/10.1145/3540250.3549162
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2404.18567
https://arxiv.org/abs/2404.18567

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:25

(23]

[24]

(ACL-IJCNLP °21), 4791-4803.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. 2018. Adversarial example generation with syntac-
tically controlled paraphrase networks. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Vol. 1, Long Papers, 1875-1885.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh Chiang, Micah Goldblum,
Aniruddha Saha, Jonas Geiping, and Tom Goldstein. 2023. Baseline defenses for adversarial attacks against aligned
language models. arXiv:2309.00614. Retrieved from https://arxiv.org/abs/2309.00614

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code language models on automated program
repair. In Proceedings of the 45th International Conference on Software Engineering (ICSE °23). IEEE Press, 1430-1442.
DOI: https://doi.org/10.1109/ICSE48619.2023.00125

Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight poisoning attacks on pretrained models. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, 2793-2806.

[25] Jia Li, Zhuo Li, HuangZhao Zhang, Ge Li, Zhi Jin, Xing Hu, and Xin Xia. 2023. Poison attack and poison detection on

[26]

(27]

(28]

[29]

(30]

(31]

deep source code processing models. ACM Transactions on Software Engineering and Methodology (Nov. 2023). DOI :
https://doi.org/10.1145/3630008.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, Jia Li, Jenny Chim, et al. 2023. StarCoder: May the source be with you! arXiv:2305.06161. Retrieved
from https://arxiv.org/abs/2305.06161

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling,
Felix Gimeno, Agustin Dal Lago, et al. 2022. Competition-level code generation with alphacode. Science 378, 6624
(2022), 1092-1097.

Yanzhou Li, Shangqing Liu, Kangjie Chen, Xiaofei Xie, Tianwei Zhang, and Yang Liu. 2023. Multi-target backdoor
attacks for code pre-trained models. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics. AnnaRogers, JordanBoyd-Graber, and NaoakiOkazaki (Eds.), Vol. 1, Long Papers, Association for Compu-
tational Linguistics, Toronto, Canada, 7236-7254. DOI: https://doi.org/10.18653/v1/2023.acl-long.399

Yikun Li, Mohamed Soliman, and Paris Avgeriou. 2023. Automatic identification of self-admitted technical debt from
four different sources. Empirical Software Engineering 28, 3 (2023), 65.

Qingyuan Liang, Zeyu Sun, Qihao Zhu, Wenjie Zhang, Lian Yu, Yingfei Xiong, and Lu Zhang. 2022. Lyra: A benchmark
for turducken-style code generation. In Proceedings of the 31st International Joint Conference on Artificial Intelligence
(IJCAI °22). Lud DeRaedt (Ed.), International Joint Conferences on Artificial Intelligence Organization, 4238-4244.
DOI: https://doi.org/10.24963/ijcai.2022/588

Pietro Liguori, Erfan Al-Hossami, Vittorio Orbinato, Roberto Natella, Samira Shaikh, Domenico Cotroneo, and Bojan
Cukic. 2021. EVIL: Exploiting software via natural language. In Proceedings of the 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 321-332.

[32] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your code generated by chatgpt really

(33]
(34]

(35]

(36]

(37]

(38]

(39]

correct? Rigorous evaluation of large language models for code generation. In Advances in Neural Information
Processing Systems, Vol. 36.

Ke Liu, Guang Yang, Xiang Chen, and Yanlin Zhou. 2022. El-codebert: Better exploiting codebert to support source
code-related classification tasks. In Proceedings of the 13th Asia-Pacific Symposium on Internetware, 147-155.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. 2020. Early-learning regularization
prevents memorization of noisy labels. In Advances in Neural Information Processing Systems, Vol. 33, 20331-20342.
Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Tianwei Zhang, Yepang Liu, Haoyu Wang, Yan Zheng, and Yang
Liu. 2023. Prompt injection attack against LLM-integrated applications. arXiv:2306.05499. Retrieved from https:
//arxiv.org/abs/2306.05499

Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. 2024. No need to lift a finger anymore?
Assessing the quality of code generation by ChatGPT. IEEE Transactions on Software Engineering 50, 6 (2024), 1548-1584.
Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, Dawn Drain,
Daxin Jiang, Duyu Tang, et al. 2021. CodeXGLUE: A machine learning benchmark dataset for code understanding
and generation. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1
(NeurIPS Datasets and Benchmarks °21). Joaquin Vanschoren and Sai-Kit Yeung (Eds.). Retrieved from https://datasets-
benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
Qijun Luo, Hengxu Yu, and Xiao Li. 2024. BAdam: A memory efficient full parameter training method for large
language models. arXiv:2404.02827. Retrieved from https://arxiv.org/abs/2404.02827

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.
2023. CodeGen: An open large language model for code with multi-turn program synthesis. In Proceedings of the 11th
International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=iaYcJKpY2B_

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://arxiv.org/abs/2309.00614
https://arxiv.org/abs/2309.00614
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1145/3630008
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/2023.acl-long.399
https://doi.org/10.24963/ijcai.2022/588
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2306.05499
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://arxiv.org/abs/2404.02827
https://arxiv.org/abs/2404.02827
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_

42:26 G. Yang et al.

(40]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

[56]

Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng. 2022. Deep learning meets software engineering: A survey on
pre-trained models of source code. In Proceedings of the 31st International Joint Conference on Artificial Intelligence
(IJCAI °22). Lud DeRaedt (Ed.), International Joint Conferences on Artificial Intelligence Organization, 5546-5555.
DOI: https://doi.org/10.24963/ijcai.2022/775

Sanghak Oh, Kiho Lee, Seonhye Park, Doowon Kim, and Hyoungshick Kim. 2023. Poisoned ChatGPT finds work for idle
hands: Exploring developers’ coding practices with insecure suggestions from poisoned Al models. arXiv:2312.06227.
Retrieved from https://arxiv.org/abs/2312.06227

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: A method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
311-318.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. 2021. ONION: A simple and effective
defense against textual backdoor attacks. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 9558-9566.

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and Maosong Sun. 2021. Hidden
killer: Invisible textual backdoor attacks with syntactic trigger. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing,
Vol. 1, Long Papers, 443-453.

Ghulam Rasool and Zeeshan Arshad. 2015. A review of code smell mining techniques. Journal of Software: Evolution
and Process 27, 11 (2015), 867-895.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio Blanco,
and Shuai Ma. 2020. Codebleu: A method for automatic evaluation of code synthesis. arXiv:2009.10297. Retrieved
from https://arxiv.org/abs/2009.10297

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoging Ellen Tan, Yossi Adi, Jingyu Liu, Tal
Remez, Jérémy Rapin, et al. 2023. Code llama: Open foundation models for code. arXiv:2308.12950. Retrieved from
https://arxiv.org/abs/2308.12950

Darius Sas and Paris Avgeriou. 2023. An architectural technical debt index based on machine learning and architectural
smells. IEEE Transactions on Software Engineering 49, 8 (2023), 4169-4195.

Xuan Sheng, Zhaoyang Han, Piji Li, and Xiangmao Chang. 2022. A survey on backdoor attack and defense in natural
language processing. In Proceedings of the 2022 IEEE 22nd International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 809-820.

Weisong Sun, Yuchen Chen, Guanhong Tao, Chunrong Fang, Xiangyu Zhang, Quanjun Zhang, and Bin Luo. 2023.
Backdooring neural code search. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics, Vol. 1, Long Papers, 9692-9708.

Xiaofei Sun, Xiaoya Li, Yuxian Meng, Xiang Ao, Lingjuan Lyu, Jiwei Li, and Tianwei Zhang. 2023. Defending against
backdoor attacks in natural language generation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
37, 5257-5265.

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2019.
An empirical study on learning bug-fixing patches in the wild via neural machine translation. ACM Transactions on
Software Engineering and Methodology 28, 4 (2019), 1-29.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, Vol. 30.

Yao Wan, Shijie Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Dezhong Yao, Hai Jin, and Lichao Sun. 2022. You see
what I want you to see: Poisoning vulnerabilities in neural code search. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, 1233-1245.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi. 2023. Codet5+:
Open code large language models for code understanding and generation. arXiv:2305.07922. Retrieved from https:
//arxiv.org/abs/2305.07922

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. CodeT5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 8696-8708.

[57] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,

(58]

Denny Zhou, Donald Metzler, et al. 2022. Emergent abilities of large language models. Transactions on Machine
Learning Research (2022).

Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. 2023. Exploring parameter-efficient fine-
tuning techniques for code generation with large language models. arXiv:2308.10462. Retrieved from https://arxiv.
org/abs/2308.10462

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://doi.org/10.24963/ijcai.2022/775
https://arxiv.org/abs/2312.06227
https://arxiv.org/abs/2312.06227
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2308.10462
https://arxiv.org/abs/2308.10462
https://arxiv.org/abs/2308.10462
https://arxiv.org/abs/2308.10462

Defending CLMs against Backdoor Attacks with Deceptive Cross-Entropy Loss 42:27

(59]

(60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang, Yiran Xu, Tingting Han, and Taolue Chen. 2023. A syntax-guided
multi-task learning approach for turducken-style code generation. Empirical Software Engineering 28, 6 (Oct. 2023),
35.DOI: https://doi.org/10.1007/s10664-023-10372-1

Zhou Yang, Zhensu Sun, Terry Zhuo Yue, Premkumar Devanbu, and David Lo .2024. Robustness, security, privacy,
explainability, efficiency, and usability of large language models for code. arXiv:2403.07506. Retrieved from https:
//arxiv.org/abs/2403.07506

Zhou Yang, Bowen Xu, Jie M. Zhang, Hong Jin Kang, Jieke Shi, Junda He, and David Lo. 2024. Stealthy backdoor
attack for code models. IEEE Transactions on Software Engineering 50, 4 (2024), 721-741.

Morteza Zakeri-Nasrabadi, Saeed Parsa, Ehsan Esmaili, and Fabio Palomba. 2023. A systematic literature review on
the code smells datasets and validation mechanisms. ACM Computing Surveys 55, 13s (2023), 1-48.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang Yongji, and Jian-Guang Lou.
2023. Large language models meet NL2Code: A survey. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics, Vol. 1, Long Papers, 7443-7464.

Quanjun Zhang, Chunrong Fang, Yang Xie, Yaxin Zhang, Yun Yang, Weisong Sun, Shengcheng Yu, and Zhenyu
Chen. 2023. A survey on large language models for software engineering. arXiv:2312.15223. Retrieved from https:
//arxiv.org/abs/2312.15223

Zhilu Zhang and Mert Sabuncu. 2018. Generalized cross entropy loss for training deep neural networks with noisy
labels. In Advances in Neural Information Processing Systems, Vol. 31.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang, Yang Li, et
al. 2023. Codegeex: A pre-trained model for code generation with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 5673-5684.

Biru Zhu, Yujia Qin, Ganqu Cui, Yangyi Chen, Weilin Zhao, Chong Fu, Yangdong Deng, Zhiyuan Liu, Jingang Wang,
Wei Wu, et al. 2022. Moderate-fitting as a natural backdoor defender for pre-trained language models. In Advances in
Neural Information Processing Systems, Vol. 35, 1086—-1099.

Received 18 August 2024; revised 18 February 2026; accepted 31 March 2025

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 2, Article 42. Publication date: January 2026.

https://doi.org/10.1007/s10664-023-10372-1
https://arxiv.org/abs/2403.07506
https://arxiv.org/abs/2403.07506
https://arxiv.org/abs/2403.07506
https://arxiv.org/abs/2403.07506
https://arxiv.org/abs/2312.15223
https://arxiv.org/abs/2312.15223
https://arxiv.org/abs/2312.15223
https://arxiv.org/abs/2312.15223

	Abstract
	1 Introduction
	2 Background
	2.1 Code Synthesis Security
	2.2 Trigger Design
	2.3 Target Output

	3 Empirical Study
	3.1 Experimental Setup
	3.2 Factors of Backdoor Attack Success on CLMs
	3.3 Early Learning Phenomena in CLMs

	4 Defense Methodology
	5 Evaluation of Our Approach
	5.1 RQ1: How Effective Is DeCE Compared to Existing Active Defense Methods?
	5.2 RQ2: How Effective Is DeCE Compared to Existing Passive Defense Methods?
	5.3 RQ3: How Do Hyper-Parameters Affect the Effectiveness of DeCE?

	6 Discussion
	6.1 Generalization to Classification Tasks
	6.2 Generalization to Larger Models
	6.3 Generalization to Larger Datasets
	6.4 Adaptive Attack
	6.5 Threats to Validity

	7 Related Work
	7.1 Code Synthesis
	7.2 Backdoor Attack
	7.3 Backdoor Defense

	8 Conclusion
	References

