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Pre-trained code generation models (PCGMs) have been widely applied in neural code generation which
can generate executable code from functional descriptions in natural languages, possibly together with
signatures. Despite substantial performance improvement of PCGMs, the role of method names in neural code
generation has not been thoroughly investigated. In this paper, we study and demonstrate the potential of
benefiting from method names to enhance the performance of PCGMs, from a model robustness perspective.
Specifically, we propose a novel approach, named RADAR (neuRAl coDe generAtor Robustifier). RADAR
consists of two components: RADAR-Attack and RADAR-Defense. The former attacks a PCGM by generating
adversarial method names as part of the input, which are semantic and visual similar to the original input, but
may trick the PCGM to generate completely unrelated code snippets. As a countermeasure to such attacks,
RADAR-Defense synthesizes a new method name from the functional description and supplies it to the PCGM.
Evaluation results show that RADAR-Attack can reduce the CodeBLEU of generated code by 19.72% to 38.74%
in three state-of-the-art PCGMs (i.e., CodeGPT, PLBART, and CodeT5) in the fine-tuning code generation task,
and reduce the Pass@1 of generated code by 32.28% to 44.42% in three state-of-the-art PCGMs (i.e., Replit,
CodeGen, and CodeT5+) in the zero-shot code generation task. Moreover, RADAR-Defense is able to reinstate
the performance of PCGMs with synthesized method names. These results highlight the importance of good
method names in neural code generation and implicate the benefits of studying model robustness in software
engineering.
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1 INTRODUCTION1

Context. Neural code generation generally refers to the task of generating executable code from2

functional descriptions in natural language using neural networks and it has the potential to reduce3

the development pressure on programmers. While early studies on automatic code generation4

mainly focus on domain-specific programming languages (e.g., card game code [53], Bash [52], and5

regular expressions [56]), recent neural code generation for common programming languages takes6

the inspiration from the impressive achievements of pre-trained deep learning models in natural7

language processing, and has attracted a lot of attention recently [2, 14, 16, 19, 57, 67, 80, 88].8

In literature, neural code generation typically focuses on method-level code generation, i.e.,9

generating a method body by taking mainly two types of input: (1) functional description of the10

intended code only [2, 57, 67, 88], henceforth denoted by FD; or (2) both the functional description11

and the method signature (i.e., the combination of the method name and the parameter list [15, 18,12

19, 34]), henceforth denoted by FDSig. Furthermore, we categorize the existing benchmarks into two13

groups based on their data size and the availability of test cases, i.e., fine-tuning code generation14

tasks and zero-shot code generation tasks. For example, we classify Human-Eval [16] as a zero-shot15

code generation task due to its limited dataset size (164 data items), which includes test cases. This16

dataset is insufficient to adequately fine-tune the model. In contrast, CONCODE [42] is classified17

as a fine-tuning code generation task. It consists of numerous data items without accompanying18

test cases, thereby providing an extensive dataset for fine-tuning the model.19

Motivation. Evidence from the literature has shown that taking signature information as input20

can largely boost the performance of neural code generation, i.e., generating more syntactically21

and semantically correct code [49, 50]. For example, the BLEU score of the PyMT5 model was22

nearly doubled by taking signature information as input [19]. Our experiment results (Section 4.2)23

also confirm this observation. However, a natural, scientifically intriguing question of engineering24

importance is: what contribution does the additional signature information make so the FDSig
25

approaches become more effective? Clearly, a thorough investigation of this question would be26

very useful in further improving the performance of neural code generation. Considering that not27

every code method contains the parameter list, we prioritize our research on the method names in28

the signature. In this paper, we study the impact of method names through the lens of robustness of29

the pre-trained deep learning models.30

Robustness refers to the ability of a model to cope with erroneous inputs and errors that occurred31

during its execution [20]. In particular, in deep learning, by adding minor perturbations to the32

benign inputs of a neural network model, one can generate adversarial examples, which may33

spoof the model, thereby causing significant derivations in the model output. A vast amount of34

attention has been paid to studying the robustness of deep learning models, typically in domains35

such as image classifications, computer vision, and natural language processing [13, 29, 83], where36

adversarial examples often pose both safety and security concerns. We remark that, though, in the37

context of neural code generation applications, adversarial examples of deep learning models may38

not bring severe safety concerns, which is in stark contrast to other application domains such as39

autonomous driving [22], studying and improving the robustness of pre-trained code generation40

models (PCGMs), indeed, bring (previously-unexpected) benefits, as we will demonstrate in this41

paper.42

However, state-of-the-art PCGMs may not be robust. Fig. 1(a) presents an example (with the43

code collected from the PyPi project.1) to illustrate the robustness challenge faced by the three44

representative PCGMs (i.e., CodeGPT, PLBART, and CodeT5) in the fine-tuning code generation45

task. After fine-tuning, we use the functional description and the signature as the input to each46

1https://pypi.org/project/fomoro-pyoneer/
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(a) Evaluation on the Python dataset

(b) Evaluation on the Human-Eval dataset

Fig. 1. The motivating examples illustrating the non-robustness challenge faced by popular PCGMs

model (code highlighted in light grey in Fig. 1). The generated code snippets are exactly the same47

as the reference (the leftmost). However, if we simply replace the method name range_moments48

with foo and keep the functional description untouched, all three models generate totally incor-49

rect code (highlighted in the dark grey). Fig. 1(b) presents an illustrative example, utilizing code50

collected from Human-Eval [16], to highlight the challenge of robustness encountered by three51

representative PCGMs (i.e., Replit [75], CodeGen [63] and CodeT5+ [87]) in the zero-shot code52

generation task. For each model, we input the functional description and the signature, resulting53

in generated code snippets that successfully pass the test cases, akin to the reference code shown54

on the leftmost side. However, when a simple substitution is made by replacing the method name55

greatest_common_divisor with foo while retaining the functional description, all three models56

produce completely incorrect code that fails to pass the test cases (highlighted in the dark grey).57

Note that foo is the most commonly used variable name in computer tutorial textbooks. This58

clearly shows that these models are not robust for the current input. Indeed, as shown in Section 4.2,59

poor robustness of PCGMs is commonly seen and greatly impacts their performance. For instance,60

our attack method can generate meaningful (adversarial) and natural method names that could61

reduce the CodeBLEU score of the generated code by 19.72%–38.74% in CodeGPT [57], PLBART [2]62

and CodeT5 [88] in the fine-tuning code generation task. In the zero-shot code generation task,63

our attack can reduce the Pass@1 score of the generated code by 32.28%–44.42% in Replit [75],64

CodeGen [63], and CodeT5+ [87]. Hence, we conclude that FDSig approaches, albeit demonstrating65

a better performance, are fragile (hence less robust) as they heavily rely on the selection of the66

input method name. This is a serious matter, since developers (i.e., users of PCGMs) may select a67

low-quality name in coding practice (due to inexperience, carelessness, bad habits, or otherwise68
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just a typo), an ill-formed method name might largely degrade the performance of PCGMs, which69

thus generate unwanted code.70

Fig. 2. Two typo fixes for code refactoring in Github

In a real-world software development context, it is often the case that developers refactor71

their code simply due to typos. The study conducted by Liu et al. [54] shows that an important72

code refactoring operation is due to simple typos (cf. Fig. 2. For instance, developers spelled73

‘Confirmation’ as ‘Conformation’ in a method name or spelled ‘l’ as ‘1’ in bash code). Meanwhile, a74

study conducted by Murphy-Hill et al. [61] on activity from over 13,000 Java developers finds that75

renaming methods was the most commonly used refactoring operation, accounting for 74.8% of all76

refactoring operations. This indicates that existing naming guidelines make it difficult for developers,77

especially novices, to come up with meaningful, concise, and compact method names [25]. Moreover,78

developers might have different naming styles [12, 39]. It is also likely that a code generation system79

fails due to different styles in method names. Previous works [27, 69, 85, 90] focus on studying80

the impact of the method name quality on the readability and maintainability of source code.81

However, the role of the method name quality for code automation tasks has not been thoroughly82

investigated.83

A possible approach to address the robustness challenge is to synthesize proper method names to84

replace those provided by developers, by which the performance of FDSig approaches can hopefully85

be reinstated. Generating high-quality method names is an interesting task in its own right.86

Proposed solution. In this paper, we propose a novel method, along with a tool suite, named RADAR87

(neuRAl coDe generAtor Robustifier), of two major components: RADAR-Attack and RADAR-88

Defense. Specifically,RADAR-Attack imitates the undesirable behavior (just like typos) of developers89

mentioned above and then generates natural, visually, and semantically similar method names.90

They serve as adversarial examples to reveal the robustness problem of PCGMs, but can also be91

considered as a tool to assess the robustness of PCGMs. RADAR-Defense, on the other hand, aims92

to reinstate the performance of PCGMs. One way is via adversarial training whereby we adapt the93

ACCENT approach [104], leveraging the generated adversarial examples to retrain a model. The94

other is to sanitize the input whereby we propose a passive and lightweight defense method, which95

synthesizes meaningful and concise method names based on the given functional descriptions.96

These method names are inputted into the PCGMs together with the functional descriptions and97

other signature information (e.g., parameter lists).98

To evaluate the effectiveness of RADAR, we consider six state-of-the-art, large-scale PCGMs (i.e.,99

CodeGPT, PLBART, and CodeT5 in the fine-tuning code generation task and CodeGen, CodeT5+,100

and Replit in the zero-shot code generation task). Experiment results show that RADAR-Attack101

is effective in attacking these PCGMs, and RADAR-Defense can improve their robustness and102

thus reinstate their performance by generating higher-quality method names. For instance, the103

CodeT5 model has a CodeBLEU value of 46.09 when not being attacked on the Java dataset, which104

drops to 31.58 under RADAR-Attack. Using the method names synthesized by RADAR-Defense, the105

CodeBLEU value is back to 46.11.106
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Contributions.107

• We devise RADAR-Attack to attack PCGMs based on functional descriptions and signatures,108

showing that their performance is susceptible to provided method names.109

• We propose a defense method RADAR-Defense to recover the performance of the attacked110

PCGMs.111

• As a byproduct, we provide novel approaches to automatically synthesize method names,112

which are meaningful in various contexts such as software refactoring.113

Key findings. Based on our empirical study, we conclude that good names play a crucial role in neural114

code generation, and they can be synthesized from the functional description with a well-designed115

approach. In other words, functional description + parameter list + RADAR-Defense would provide a116

strong performance boost for state-of-the-art PCGMs. To the best of our knowledge, this represents117

one of the first works on studying the robustness of neural code generation models via adversarial118

examples. More importantly, at the methodological level, this paper promotes, with solid evidence,119

the importance of studying the robustness of deep learning models in neural code generation and120

even software engineering in general, where they are playing an increasingly important role.121

To facilitate reproducibility and further research, source code, benchmarks, and experimental122

data are released at https://github.com/NTDXYG/RADAR.123

Structure. The rest of the paper is organized as follows. Section 2 presents the related work. Section 3124

describes the framework and key approaches in RADAR. Section 4 provides the experiment results125

and their analysis. Section 5 discusses the quantitative study of the effectiveness of RADAR and the126

potential threats to the validity of our empirical study. Section 6 concludes this paper and discusses127

future work.128

2 RELATEDWORK129

2.1 Neural Code Generation130

Previous studies on code generation mainly focus on domain-specific languages [52, 53, 56]. Studies131

on code generation for general programming languages [60, 77] use sequence-to-sequence models,132

and they formalize code generation as text sequence generation based on the hypothesis of code133

naturalness [4, 38]. Some studies [79, 96] use tree-based models, by capturing the grammar of the134

natural language as a priori-knowledge to generate complex programs. Other studies [35, 36] use135

retrieval-enhanced models, i.e., benefiting from information retrieval to compensate for the lack of136

ability of neural networks to memorize large and complex structures.137

In recent years, researchers have gradually utilized pre-trained models for neural code generation138

tasks, which can be classified into two types based on benchmark requirements: fine-tuning code139

generation tasks and zero-shot code generation tasks. Fine-tuning code generation tasks are typi-140

cally applied to benchmarks that lack test cases, such as CONCODE [42] and CoNaLa [95]. These141

benchmarks are divided into training, validation and test sets, with pre-trained models (often with142

parameter numbers less than a billion) fine-tuned on the training set to be adapted to the specific143

task. For example, models like CodeGPT [57], PLBART [2], and CodeT5 citewang2021codet5 lever-144

age the GPT, BART, and T5 architectures of language models pre-trained on code corpora. Extensive145

evaluations on the CONCODE benchmark have demonstrated their robust code generation capabil-146

ities. Moreover, models such as PyMT5 [19], CoTexT [67], and NatGen [14] have also exhibited147

promising performance on code generation tasks, depending on the specific pre-training tasks.148

However, these models are more suitable for fine-tuning code generation tasks, as their parameter149

numbers are not large enough to demonstrate emergent capabilities in zero-shot scenarios.150

With the development of neural networks, Hestness et al. [37] point out that the performance of151

Transformer-based models improved in a predictable way as the amount of computation or the152
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size of the network increased, and is called “scaling laws” [43]. When the model scales to a certain153

level, the phenomenon of “emergent capacity" [89] can occur. Building upon this understanding,154

researchers have increasingly employed large language models with over a billion parameters for155

zero-shot code generation tasks. These models have demonstrated substantial enhancements in the156

performance of code generation benchmarks, aligning with the aforementioned theory.157

The zero-shot code generation task is typically applied to benchmarks that include test cases158

but often have limited data size due to the costly manual construction of test cases. In this context,159

Chen et al [16] first introduced and evaluated the capabilities of Codex, which is pre-trained on160

GitHub code with 12 billion model parameter. Subsequently, Li et al. [48] proposed AlphaCode161

with 1.1 billion parameters, and Chowdhery et al. [17] introduced PaLM-Coder, with 540 billion162

parameters. These models were evaluated for their performance on HumanEval. However, all of163

these models are of closed-source. For the open-source models, Fried et al. [24] proposed InCoder,164

which is trained for program synthesis (via left-to-right generation) and editing (via masking and165

infilling). Nijkamp et al. [62, 63] proposed CodeGen and CodeGen2, which are large language166

models for code with multi-turn program synthesis. Zheng et al. [103] proposed CodeGeeX, a167

multilingual model with 13 billion parameters for code generation. CodeGeeX is pre-trained on168

850 billion tokens of 23 programming languages. Li et al. [47] proposed StarCoder, a 15.5 billion169

parameter model with an 8K context length, infilling capabilities, and fast large-batch inference170

enabled by multi-query attention. In addition, the Replit company proposed replit-code-v1-3b171

model [75], which is trained on a subset of the Stack Dedup v1.2 dataset, and the training mixture172

includes 20 different languages. Differing from the aforementioned decoder-only model, Wang et173

al. [87] introduced CodeT5+, a family of encoder-decoder LLMs for code-related tasks.174

In contrast to the previous studies, our primary objective is to evaluate the influence of method175

names on neural code generation from the perspective of model robustness. We have observed176

a significant improvement in the performance of neural code generation when incorporating177

signature information as input. This observation has motivated us to further investigate the impact178

of method names, an essential component of signatures, on the code generation process. By179

examining the relationship between method names and code generation, we gain insights into the180

overall robustness and effectiveness of neural models in generating high-quality code. To achieve181

this objective, we have conducted empirical investigations on both fine-tuning code generation182

tasks and zero-shot code generation tasks.183

2.2 Adversarial Attack on Code-related Models184

Adversarial attacks on code can be divided into two categories: white-box adversarial attacks and185

black-box adversarial attacks. These attackmethods differ primarily in their underlying assumptions.186

In the case of white-box attacks, the attacker assumes access to the internal structure of the victim187

models and their training parameters. For instance, Yefet et al. [94] proposed the white-box attack188

method DAMP, which leverages gradient information from the victimmodel to manipulate variables189

in the code. However, white-box attacks are often less practical in real-world scenarios. This is190

because victim models are typically deployed remotely, and obtaining model’s internal details can191

be challenging or even impossible.192

In contrast to white-box attacks, black-box attacks assume that the attacker has no knowledge193

of the internal details of the victim models and can only interact with the model through its output.194

For instance, Applis et al. [6] proposed LAMPION, a method that evaluates the robustness of the195

CodeBERTmodel by generating new code snippets that are equivalent to the original test set. Zhang196

et al. [100] proposed MHM, which utilizes Metropolis-Hastings sampling-based identifier renaming197

to perform code obfuscation. Tian et al. [81] proposed QMDP, a Q-learning-based Markov decision198

process, which enables semantically equivalent transformations on the structure of source code.199
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Rabin et al. [70] employed variable renaming to evaluate the generalizability of neural program200

analyzers for the task of method name prediction. Liguori et al. [49] explored the use of unseen201

synonyms and missing information to evaluate line-based code generation tasks. Zeng et al. [98]202

employed a wide range of NLP-based adversarial attack methods to evaluate pre-trained models203

and discovered that random attack methods can outperform carefully designed adversarial attack204

methods in most cases.205

In recent research, there has been a growing focus on addressing the naturalness aspect of206

adversarial examples. Yang et al. [93] proposed a naturalness-aware attack called ALERT, which207

takes into account the natural semantics of generated examples. ALERT generates multiple natural208

candidates using the GraphCodeBERT model and the mask language model task in the CodeBERT209

model. It then calculates the cosine similarity to filter out natural and similar adversarial samples.210

Zhou et al. [104] proposed ACCENT, an identifier substitution approach for crafting adversarial211

code snippets in source code summarization. ACCENT aims to generate code snippets that are syn-212

tactically correct and semantically similar to the original code snippet. Zhang et al. [99] introduced213

CARROT, an optimization-based attack technique that assesses and improves the robustness of214

deep program processing models. Wang et al. [84] presented ReCode, a tool that provides over 30215

transformations specifically designed for code generation. These transformations cover various216

aspects such as document strings, function and variable names, code syntax, and code formatting.217

Notably, six of these transformations are dedicated to modifying function names.218

Moreover, due to the extensive search space of adversarial examples, numerous attack meth-219

ods utilize optimization algorithms to enhance the efficiency of searching and thus improve the220

attack performance. In the field of natural language processing, commonly employed optimization221

algorithms include greedy algorithms [92], genetic algorithms [5], and particle swarm optimiza-222

tion algorithms [97]. These optimization algorithms are also widely applied in adversarial attack223

methods for code-related tasks.224

In this paper, we present a novel black-box attack approach targeting code generation. Different225

from the previous studies, our focus is on real-world scenarios where neither users nor attackers226

have access to the internal structure of PCGMs. Our approach not only generates semantically227

equivalent adversarial examples but also considers typos and visual similarity, thereby expands the228

range of adversarial examples explored. To improve the efficiency of attacking PCGMs, we leverage229

genetic algorithms, which optimize the search process and enhance the effectiveness of our attacks.230

2.3 Adversarial Defense on Code-related Models231

Current studies on adversarial defense for code-related tasks mainly focus on active defense. Bielik232

et al. [9] attempted adversarial defense with the assistance of gradient-based adversarial training233

method [28]. They observed that relying solely on gradient-based adversarial training can provide234

insights into the model’s robustness but may also lead to a decline in performance on the original235

task. Zhang et al. [100] and Yang et al. [93] proposed the adversarial training method, which uses236

adversarial examples for data augmentation to re-train the model. However, this approach is highly237

dependent on the quality of adversarial examples. Zhou et al. [104] and Zhang et al. [102] proposed238

a lightweight adversarial training method named mask training algorithm, which reduces the239

model’s dependence on the non-robust features since any perturbations on these features may240

cause a large-scale change in the output.241

In contrast to the previous studies, our defense method presents a novel passive approach to242

effectively restore the performance of PCGMs. This defense method is particularly advantageous243

in scenarios where PCGMs cannot undergo fine-tuning, such as zero-shot code generation tasks.244

By implementing this passive defense method, our goal is to improve the robustness of PCGMs,245

ensuring their effectiveness even in challenging zero-shot code generation scenarios.246
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3 APPROACH247

We show an overview of RADAR in Fig. 3 and RADAR includes two main parts: RADAR-Attack and248

RADAR-Defense. In particular, RADAR-Attack proposes a black-box, gradient-free optimization249

attack algorithm and RADAR-Defense proposes a passive defense method based on retrieval-250

enhanced prompt learning for passive defense.251

Fig. 3. The Framework of RADAR

3.1 RADAR-Attack252

In the fine-tuning code generation task, we commence by fine-tuning pre-trained code generation253

models using a provided dataset. This process yields a model F , which maps each pair x consisting254

of functional description and signature to code 𝒚 = F (x). In the zero-shot code generation task, we255

directly load the weights of the pre-trained model, resulting in the model F . For attacking model F ,256

our goal is to generate an adversarial example 𝒙𝒂𝒅𝒗 for a given 𝒙 , which is visually and semantically257

similar to 𝒙 , but minimizes the CodeBLEU score between 𝒚 and F (𝒙𝒂𝒅𝒗). Recall that CodeBLEU is258

a widely recognized automatic evaluation metric of code generation, which subsumes BLEU in the259

𝑛-gram match and injects code syntax via abstract syntax trees (AST) and code semantics via data260

flow analysis. In the absence of test cases, CodeBLEU offers a sensible surrogate for automated261

evaluation. Given the expense of manual test case construction and the absence of corresponding262

test cases in most datasets, we have utilized CodeBLEU as the optimization objective function for263

both fine-tuning code generation tasks and zero-shot code generation tasks. Meanwhile, there is a264

correlation between the metrics, as seen in Table 4, Table 3 and Table 6, when the CodeBLEU value265

increases the BLEU metric also increases, so to some extent neither the choice of CodeBLEU nor266

BLEU has much influence on the selection of the adversarial example. Formally, we aim to solve267

the following problem:268

𝒙𝒂𝒅𝒗 = argmin
𝒙′

𝑪𝒐𝒅𝒆𝑩𝑳𝑬𝑼
(
𝒚, F (𝒙′)

)
(1)

Note that we only consider part of the input 𝒙 when generating adversarial examples; we only269

modify the method name in 𝒙 (i.e., part of the signature), as parameters are optional for the signature.270

We assume that the attacker is unaware of the model architecture, parameters, and training data,271

and can only interact with the model through its output. Therefore, instead of utilizing the gradient-272

based optimization, we adopt a gradient-free optimization attacking approach, based on a genetic273

algorithm (GA) as shown in Algorithm 1.274

, Vol. 0, No. 0, Article 0. Publication date: .



How Important are Good Method Names in Neural Code Generation? A Model Robustness Perspective 0:9

Algorithm 1: Adversarial Example Generation Algorithm
Input: Pre-trained Code Generation Model F ;
Code Generation DataSet 𝐷 , where (𝒙,𝒚) ∈ 𝐷
Output: Adversarial DataSet 𝐷𝑎𝑑𝑣 ;

1 Initialize: Candidate Method Name Set 𝑉 ← ∅, Adversarial DataSet 𝐷𝑎𝑑𝑣 ← ∅;
2 for each (𝒙,𝒚) ∈ 𝐷 do
3 Extract the method name in 𝒙 ;
4 𝑉 ← 𝑉∪ {𝑀 | 𝑀 =< 𝑚1, . . . ,𝑚𝑛 > to represent the sequence of sub-words from the method name};
5 Training Method Name Embedding 𝐸𝑚𝑏𝑒𝑑 via 𝑉 ;
6 for each (𝒙,𝒚) ∈ 𝐷 do
7 Extract the method name set𝑀 in 𝒙 ;
8 Adversarial method name set𝑀′ ← ∅;
9 for each 𝒎 ∈ 𝑀 do
10 𝑀′ ← 𝐿𝑚 based on semantic and visual similarity via 𝐸𝑚𝑏𝑒𝑑 in 𝑉 ;
11 𝑡 ← 0;
12 Initial population generation P𝑡 ;
13 while 𝑡 ≤ 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
14 Calculate fitness value;
15 Selection;
16 Crossover;
17 if mutation_prob ≥ random_prob then
18 Mutation;
19 𝑀′ ← minimize evaluate fitness of P𝑡 ;
20 if Minimum fitness value is not updated in 𝑛 iters then
21 Early stop;
22 P𝑡+1 ← 𝑏𝑢𝑖𝑙𝑑𝑁𝑒𝑤𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(P𝑡 );
23 𝑡 ← 𝑡 + 1;
24 𝐷𝑎𝑑𝑣 ← 𝐷𝑎𝑑𝑣 ∪ {(𝒙 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑀,𝑀′),𝒚)};
25 return 𝐷𝑎𝑑𝑣 ;

In Algorithm 1, RADAR-Attack first extracts method names from all the signatures in the dataset275

and then tokenize each method name according to the method naming convention (e.g., the camel276

case or the snake case) to build a set of sub-words. RADAR-Attack then creates a candidate set277

for each sub-word. The candidates are selected based on their visual similarity (to model typos)278

and semantics similarity (to model programmers’ preferences of the use of English words).279

Finally, RADAR-Attack generates adversarial examples for method names by considering various280

combinations. It uses GA to generate the best replacement for the original method name by281

minimizing the CodeBLEU value [74]. We now elucidate these two main steps, i.e., Step 1 candidates282

generation (the blue box in Fig. 3) and Step 2 optimization with GA (the purple box in Fig. 3).283

3.1.1 Step 1. Candidates Generation. The first step aims to generate high-quality candidate adver-284

sarial examples that have high visual and semantic similarity with the original words. According285

to previous studies [46, 73], the text semantic is likely to be retained or deduced after the user286

changes a few characters. Therefore, we make small-scale changes to the original words for human287

comprehension, which can help to generate visual similar candidates. Moreover, as method names288

often contain a variety of domain-specific acronyms, jargon, and their combinations, they are289

frequently outside the vocabulary of the word embedding model in the general domain. In this290

study, based on our previous work [104], we first train a general word2vec [59] model based on the291
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Wiki dataset and then continue to train it for a corpus of method names (Line 2-5 in Algorithm 1).292

Finally, we select the 𝑡𝑜𝑝 5 nearest candidate sub-words for each sub-word in the method name293

based on the cosine similarity.294

Based on these observations, we propose four operators to generate candidate samples (Line295

9-10 in Algorithm 1):296

• Delete Operator: Randomly delete a character of the sub-word.297

• Swap Operator: Randomly swap two adjacent letters in the word.298

• Replace-vis Operator: Replace characters with visually similar characters (e.g., replacing “l”299

with “1”, “O” with “0”) or special coding styles words (e.g., replacing “2” with “to”, “4” with300

“for”).301

• Replace-sem Operator: Replace a sub-word in the method name with its most semantic302

similar Top5 candidate sub-words in a high-dimensional vector space.303

Notice the first two operators are designed to model that developers type carelessly. TheReplace-304

vis operator is designed to model the novice behaviors (e.g., copy the code from course materi-305

als to their program tasks). An example in Fig. 4 illustrates the four operators. Method name306

decode_dict_to_str can be divided into four sub-words (i.e., decode, dict, to, and str). Each oper-307

ator generates multiple candidate sub-words, which form the discrete search space of the original308

sub-words.309

Fig. 4. An Example of permutations of candidate sub-words

3.1.2 Step 2. Optimization with GA. This step aims to find the most effective adversarial examples in310

the discrete search space that can successfully fool the victimmodel, with GA. Let𝑴 = ⟨𝑚1, . . . ,𝑚𝑛⟩311

be the sequence of sub-words from the method name. The discrete search space can be represented312

as 𝑴𝒌 = {⟨𝑚𝑘
1 , . . . ,𝑚

𝑘
𝑛⟩ | 𝑚𝑘

𝑖 ∈ V (𝑚𝑖 )}, where 𝑘 denotes the number of the generated candidate313

sub-words, V (𝑚𝑖 ) is the set of candidates of𝑚𝑖 .314

By Equation 1, the fitness function of RADAR-Attack can be formalized as315

𝒚𝒈𝒐𝒂𝒍 = argmin
𝑴′

𝑪𝒐𝒅𝒆𝑩𝑳𝑬𝑼
(
𝒚, F

(
𝒙 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑴,𝑴 ′)

) )
where 𝑴 ′ represents the set of solutions with 𝑛 variables (i.e., the number of sub-words). Values of316

each variable are in the range [0, 𝑘], where 𝑘 denotes the number of candidates.317

We denote the initial population as the initial generation P0 (Line 12 in Algorithm 1). The size318

of the population is denoted as 𝑠𝑖𝑧𝑒_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. To get a new generation (i.e., transiting from319

P𝑡 to P𝑡+1), the operations of selection, crossover (with 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑝𝑟𝑜𝑏), and mutation (with320
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𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑏) are performed (Line 14-18 in Algorithm 1). The termination condition is the maxi-321

mum number of generations, which is denoted as𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . To improve the computational322

efficiency of GA, we refer to the early-stop strategy used by Garcia et al. [26]. The evolution ends323

when the average fitness of the population does not improve above a certain threshold in the last 𝑛324

generations (Line 20-21 in Algorithm 1). To avoid experimental bias due to the randomness of GA,325

we repeat the run 30 times, taking the average values as the final result.326

Fig. 5. Overview of RADAR-Defense

3.2 RADAR-Defense327

RADAR-Defense can adapt the adversarial training approach which leverages generated adversarial328

examples to retrain a model in the fine-tuning code generation task, but this is optional, as we329

mentioned in RADAR-Attack the model black box assumption, we expect RADAR-Defense is able330

to reinstate its performance without retraining PCGMs. Thus RADAR-Defense’s main purpose331

is to synthesize a new method name for a given functional description to replace the original332

method name in the signature. As shown in Fig. 5, RADAR-Defense mainly consists of two steps: 1)333

generating the most similar example via information retrieval, and 2) training the model with the334

augmented function description via prompt training.335

In general, we treat the training set as a corpus, from which a list of key-value pairs (T =336

{(𝑐𝑖 ,𝑚𝑖 )}) can be constructed, with 𝑐𝑖 and𝑚𝑖 denoting the functional description and the method337

name, respectively. Given a functional description 𝑐 , the retrieval model aims to retrieve the most338

relevant example 𝑧 = (𝑐𝑟 ,𝑚𝑟 ) from the corpus. To achieve this, we first retrieve top-𝐾 similar339

functional descriptions from the corpus based on the standard TF-IDF due to low computational340

cost, out of which we further retrieve the most similar functional description based on lexical341

similarity.342

First, we adopt standard TF-IDF[3] and cosine distance; each functional description 𝑐 is associated343

with the semantic sparse-vector TF-IDF(𝑐) ∈ R𝐷 , where 𝐷 denotes the total number of words in344

the corpus, and the similarity is defined as the cosine distance:345

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 (𝑎, 𝑏) = TF-IDF(𝑎) · TF-IDF(𝑏)
∥ TF-IDF(𝑎)∥ · ∥ TF-IDF(𝑏)∥
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Second, for lexical similarity, we utilize precision-based and recall-based retrieval methods. In346

our study, we use two evaluation metrics, (i.e., BLEU [65] and ROUGE [51]), which measure the347

similarity based on precision and recall, respectively.348

For the given functional descriptions 𝑎 and 𝑏, lexical similarity can be computed as:349

𝑙𝑒𝑥𝑖𝑐𝑎𝑙 (𝑎, 𝑏) = 𝜆 BLEU(𝑎, 𝑏) + (1 − 𝜆) ROUGE(𝑎, 𝑏),
where 𝜆 is a hyper-parameter for allowing the flexible control of precision and recall in information350

fusion.351

In the next step, we resort to a retrieval-enhanced prompt training approach. This approach352

is based on the observations [11, 30, 45, 66] that by granting a model access to external memory353

via information retrieval techniques, more information can be obtained in the model generation354

process and thus the uncertainty can be reduced. With retrieval-based models, knowledge can be355

explicitly introduced through plug-and-play mechanisms, making them more scalable. Additionally,356

compared to generating text from scratch, retrieval-enhanced approaches leverages reference357

information obtained through retrieval, which can alleviate the difficulty of text generation to some358

extent. This approach is similar to contextual learning of Large Language Models.359

Recall that for the given functional description 𝑐 , we obtain the most relevant sample 𝑧 = (𝑐𝑟 ,𝑚𝑟 )360

in the first step. We augment 𝑐 to form a retrieval-enhanced functional description 𝑐′.361

𝑐′ = ⟨e⟩FD:𝑐𝑟 ,name:𝑚𝑟 ⟨/e⟩ ⊕ 𝑐
where, 𝑧 is tagged and concatenated with 𝑐 , such that the model can learn the most similar functional362

description and method name information.363

Our model is based on UniXcoder [32], a unified cross-modal pre-trained model which can364

support both code-related understanding and generation tasks based on Transformer [82], and365

utilizes mask attention matrices with prefix adapters to control the access to context for each token.366

For the input 𝑐′, our model first tokenizes it to obtain an input sequence {c′𝑖 } |𝑐
′ |

𝑖=1 . We utilize367

UniXcoder to encode the 𝑐′ and decode it to synthesize the method name. Note that the parameters368

of the encoder and decoder in UniXcoder are shared. The final decoder’s output of the UniXcoder369

H𝑡 is sent to a fully connected neural network. This network can pass a softmax layer to predict370

the probability of the next token, which can be defined as follows.371

𝑝 (𝑚𝑡+1 | 𝑚1, · · · ,𝑚𝑡 ) = softmax
(
H𝑡W + b

)
In model training, we use the Incomplete-Trust (In-trust) [40] loss function, viz.,372

LIn−trust (𝜃 ) = 𝛼LCE (𝜃 ) + 𝛽LDCE (𝜃 )

where LCE (𝜃 ) = −
∑ |𝑚 |

𝑖=1 𝑞 log𝑝 and LDCE (𝜃 ) = −
∑ |𝑚 |

𝑖=1 𝑝 log(𝛿𝑝 + (1 − 𝛿) 𝑞). Here LCE represents373

the Cross-Entropy function which is not noise-tolerant but benefits the convergence of the model,374

LDCE represents the robust Distrust-Cross-Entropy and can effectively prevent the model from375

overfitting noisy samples; 𝑝 denotes the model’s prediction distribution and 𝑞 denotes the trust376

label distribution.377

4 EVALUATION378

We aim to evaluate the effectiveness of our approach by answering the following three research379

questions (RQs).380

RQ1 How effective is RADAR-Attack in degrading the performance of FDSig by attacking method381

names?382

RQ2 How effective is RADAR-Defense in reinstating the performance of FDSig?383

RQ3 How effective is RADAR-Defense in terms of the method name generation?384
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4.1 Experiment Design385

4.1.1 Dataset. In the fine-tuning code generation task, widely used open-source datasets include386

CONCODE [42] for the Java language, and Django [64], CoNaLa [95], and Juice [1] for the Python387

language.388

Fig. 6. Irregularity issues in the common fine-tuning code generation dataset

In our research, we have uncovered irregularity issues within specific datasets that can impact389

the quality and reliability of the data. These issues are illustrated in Fig. 6, and we provide a detailed390

description of each problem. For example, in the original CONCODE dataset, we have observed391

instances of incomplete function descriptions and irregular method names. These inconsistencies392

pose challenges and hinder the advancement of code generation tasks. To support our findings, we393

present specific examples and indicate their sources within the dataset. Similarly, in the CodeSearch-394

Net dataset [41], we have identified instances of URL leakage issues. These issues contribute to the395

presence of low-quality data, further limiting the progress in code generation tasks. To illustrate396

these concerns, we provide concrete examples along with relevant references. The presence of397

irregularity issues and low-quality data in these datasets emphasizes the significance of addressing398

data quality concerns in code generation research.399

To evaluate our approaches in the fine-tuning code generation task, we need to construct400

new high-quality datasets to avoid these issues and biases, which include functional descriptions,401

signatures, and their corresponding code. To ensure the quality of our newly constructed datasets,402

we designed six heuristic rules to filter out noisy data items by following previous study [42].403

H1 The code needs to be parsed through the AST tool to ensure that the syntax is correct.404

H2 The number of sub-words of the method name is no less than 2, and the length of each sub-word405

is no more than 16.406

H3 The length of the functional description should be no more than 50 and no less than 4.407

H4 The length of the code should be no more than 256.408

H5 Remove annotation information, exception code, and URL information from the code.409

H6 Unify method names in Java data to hump naming rules and unify method names in Python410

data to snake naming rules.411

Our Java dataset is collected from the raw CONCODE [42] dataset, which is from Java projects412

on GitHub, and our python dataset is collected from the raw PyTorrent [8] dataset, which is from413

Python package libraries on PyPI and Anaconda.414

In the context of the zero-shot code generation task, several popular open-source datasets are415

available. For the Java language, the Aix-bench dataset [34] is commonly utilized. For the Python416
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language, widely evaluated datasets include Human-Eval [16], MBPP [7], and GSM8K-Python [17].417

Among these datasets, Human-Eval is particularly prominent. However, we have observed that the418

functional descriptions in the Human-Eval dataset contain test case prompts that include method419

names. To mitigate the potential impact of these method names on the code generated by the model,420

we adopt an approach of removing the test case prompts from the functional descriptions. By421

eliminating the prompts related to the test cases, our aim is to minimize potential bias or influence422

that the method names in the prompts may have on the code generation process.423

Descriptive statistics of our datasets, including their length distributions of functional description424

(FD), signature (Sig), method name (MD), and Code, are provided in Table 1. Following the previous425

work [42], we randomly select 100,000 examples for training, 2,000 examples for validation, and426

2,000 examples for testing in the fine-tuning code generation task. For the zero-shot code generation427

task, the Human-Eval dataset consists of a total of 164 test data samples.428

Table 1. Descriptive statistics of the datasets when tokenized by BPE algorithm

FD Avg Mode Median < 16 < 32 < 64
Java 14.25 8 11 69.52% 93.52% 99.99%

Python 17.88 8 13 58.45% 82.86% 99.85%

Sig Avg Mode Median < 8 < 16 < 32
Java 8.49 7 7 58.44% 93.94% 99.85%

Python 7.78 6 6 55.48% 96.92% 99.98%

MD Avg Mode Median < 4 < 8 < 16
Java 2.85 2 3 79.36% 99.58% 99.99%

Python 2.74 2 3 83.58% 99.92% 100%

Code Avg Mode Median < 64 < 128 < 256
Java 40.46 28 38 88.86% 99.99% 100%

Python 69.44 42 63 50.38% 92.54% 100%

4.1.2 Victim Models. The victim models (i.e., the target models under adversarial attacks) are based429

on large-scale pre-trained language models for source code, which can represent state-of-the-art430

research for the code generation task.431

In the context of the fine-tuning code generation task, we selected CodeGPT, PLBART, and432

CodeT5 as our models. These models have parameter sizes ranging from 100 million to 300 million.433

• CodeGPT [57] is a Transformer-based decoder-only model inspired by GPT [71], following434

similar pre-training tasks of GPT including the causal language model.435

• PLBART [2] is a Transformer-based encoder-decoder model inspired by BART [44], following436

similar pre-training tasks of BART, including token masking, token deletion, and token infilling.437

• CodeT5 [88] is a Transformer-based encoder-decoder model inspired by T5[72]. It proposes a438

novel identifier-aware pre-training task to leverage code-specific structural information.439

In the context of the zero-shot code generation task, we selected Replit, CodeGen, and CodeT5+440

with the best performance within 3 billion parameters, based on the evaluation results of Gunasekar441

et al. [31] and Wang et al. [87].442

• Replit [57] is a Transformer-based decoder-only model [71], which uses Flash Attention [21]443

for efficient training and inference, and incorporates AliBi positional embeddings [68] to handle444

variable context length during inference.445
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• CodeGen [2] is a Transformer-based decoder-only model, which adopts rotary position em-446

bedding for improving the ability to handle long documents, and uses JAX [10] for training the447

model.448

• CodeT5+ [88] is a Transformer-based encoder-decoder model, which employs a “shallow encoder449

and deep decoder” architecture [48], both encoder and decoder are initialized from pretrained450

checkpoints and connected by cross-attention layers.451

4.1.3 Baselines. As for baselines, we select six attack methods to generate adversarial examples,452

one defense method to improve the robustness of PCGMs, as well as eight method name generation453

methods, which are described below.454

Baselines for adversarial attack and defense. In terms of the baselines for the adversarial455

attack, we select Foo-Attack, Random-Attack, ALERT-Attack, Genetic-Attack, ReCODE-Attack, and456

ACCENT-Attack.457

• Foo-Attack is the attack method we introduced in the motivation, involving the replacement of458

all method names with the term “foo”.459

• Random-Attack is a method proposed by Zeng et al. [98] that involves randomly substitut-460

ing method names. In their empirical study, Random-Attack demonstrates improved attack461

effectiveness compared to existing NLP-based adversarial attack algorithms.462

• ALERT-Attack is a method proposed by Yang et al. [93]. It utilizes CodeBERT and GraphCode-463

BERT to generate natural candidates and employs a combination of greedy search and genetic464

algorithm for optimization.465

• Genetic-Attack is a method proposed by Alzantot et al. [5]. It utilizes Glove and GoogleLM to466

generate candidates and employs a genetic algorithm for optimization.467

• ReCODE-Attack is a method proposed by Wang et al. [84]. It utilizes rule-based transformations468

to generate candidates and employs a greedy search for optimization.469

• ACCENT-Attack is a method proposed by Zhou et al. [104]. It first selects several of the most470

important tokens and then employs word2vec to generate candidates.471

When addressing adversarial defense, several common defense methods can be employed, such as472

gradient-based adversarial training, data augmentation, and mask training (proposed by ACCENT-473

Defense). It is important to note that gradient-based adversarial training may lead to a decline474

in model performance, while the effectiveness of data augmentation relies on the quality of the475

adversarial samples. Among these defense methods, ACCENT-Defense stands out as a lightweight476

mask learning approach based on active defense. Its objective is to enhance both the robustness477

and performance of the model. Given its effectiveness and relevance to our research, we consider478

ACCENT-Defense as the primary baseline for our study.479

Baselines for method name generation.We consider eight name generation methods, which480

are classified into three groups: information-retrieval (including BM25[76], NNGen [55], and481

CCGIR [91]), deep-learning (including RNN-Att-Copy [25], CodeBERT [23], and UniXcoder [32]),482

and retrieval-enhanced methods (including Rencos [101] and REINA [86]).483

These methods are widely used in method name generation, text summarization, and code484

summarization. In this study, we train them with functional descriptions as the input and method485

names as the output, as per the individual model.486

4.1.4 Evaluation Metrics and Hyper-parameters. To assess the effectiveness of adversarial attacks487

in the fine-tuning code generation task, we consider three evaluation metrics: BLEU [65], Code-488

BLEU [74], and Attack Success Rate (ASR [104]). Here, ASR is defined as the percentage of generated489

adversarial examples that successfully decrease the CodeBLEU score of the generated code. For the490

zero-shot code generation task, we consider four evaluation metrics: BLEU, CodeBLEU, Pass@1 [16],491
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Table 2. Hyper-parameters settings of RADAR

Category Hyper-parameter Name Hyper-parameter Value

RADAR-Attack

size_population 20
max_iterations 50
crossover_prob 0.9
mutation_prob 0.001
early_stop 3

RADAR-Defense

top-𝐾 in Java 9
𝜆 in Java 0.6

top-𝐾 in Python 3
𝜆 in Python 0.1

max_source_length 128
max_target_length 24

batch_size 64
max_epoch 50
learning_rate 4e-5
early_stop 3

and Attack Success Rate (ASR). Here, ASR is defined as the percentage of generated adversarial492

examples that successfully reduce the Pass@1 score of the generated code. For method name493

generation, we use three evaluation metrics, i.e., Exact Match (EM) [25], BLEU and Edit Distance494

(ED) [25]. These performance measures have been widely used in previous studies for neural code495

generation and automatic method name generation [23, 25, 32, 33, 57, 88, 104]. Note that the scores496

of BLEU, CodeBLEU, Pass@1, Exact Match, and Success rate are in the range of [0,1]; the higher, the497

better. Edit Distance is measured in actual values; the smaller, the better.498

The hyper-parameters are optimized according to actual performance and the values are sum-499

marized in Table 2. The first four rows mean the parameters of GA in RADAR-Attack and the500

following rows mean the parameters of model training and inference in RADAR-Defense. For the501

implementation of GA, we utilize the scikit-opt2 library. For the implementation of RADAR-Defense,502

we utilize the Pytorch3 and Transformers4 libraries.503

4.1.5 Experiment Platform. All the experiments were run on Intel(R) Xeon(R) Silver 4210 CPU and504

GeForce RTX3090 GPU with 24 GB memory. The operating system is Linux Debian.505

4.2 Experimental Results506

RQ1: How effective is RADAR-Attack in degrading the performance of FDSig by attacking507

method names?508

We investigate whether the existing FDSig PCGMs are vulnerable to method name attacks, and in509

case they are, whether our defense method can reinstate their performance. As discussed in Section510

4.1.2, we include three PCGMs, namely CodeGPT, PLBART, and CodeT5, for the fine-tuning code511

generation task. For the zero-shot code generation task, we consider three PCGMs, namely Replit,512

CodeGen, and CodeT5+. Here we consider four performance measures (i.e., BLEU, CodeBLEU,513

2https://github.com/guofei9987/scikit-opt
3https://pytorch.org/
4https://github.com/huggingface/transformers
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Table 3. Evaluation results of comparing RADAR and the baselines in terms of adversarial attack in the Java
dataset

Model Method BLEU CodeBELU ASR

CodeGPT

FD 11.56 14.78 –
FDSig 23.18 26.33 –

Foo-Attack 16.95 (↓ 26.88%) 20.09 (↓ 23.70%) 55.40%
Random-Attack 15.52 (↓ 33.05%) 19.82 (↓ 24.72%) 58.25%
ALERT-Attack 13.85 (↓ 40.25%) 17.24 (↓ 34.52%) 65.52%
Genetic-Attack 14.25 (↓ 38.52%) 17.88 (↓ 32.09%) 60.48%
ReCODE-Attack 15.11 (↓ 34.81%) 18.48 (↓ 29.81%) 59.58%
ACCENT-Attack 14.31 (↓ 38.27%) 17.60 (↓ 33.16%) 61.05%
RADAR-Attack 13.02 (↓ 43.83%) 16.13 (↓ 38.74%) 67.25%

PLBART

FD 20.84 29.38 –
FDSig 35.19 43.71 –

Foo-Attack 27.47 (↓ 21.94%) 36.32 (↓ 16.91%) 56.15%
Random-Attack 25.22 (↓ 28.33%) 33.67 (↓ 22.97%) 58.85%
ALERT-Attack 23.52 (↓ 33.16%) 32.62 (↓ 25.37%) 63.58%
Genetic-Attack 22.85 (↓ 35.07%) 31.52 (↓ 27.89%) 67.20%
ReCODE-Attack 24.59 (↓ 30.12%) 32.98 (↓ 24.55%) 62.48%
ACCENT-Attack 23.34 (↓ 33.67%) 32.53 (↓ 25.58%) 64.40%
RADAR-Attack 22.61 (↓ 35.75%) 31.31 (↓ 28.37%) 67.60%

CodeT5

FD 20.53 30.43 –
FDSig 38.45 46.09 –

Foo-Attack 31.21 (↓ 18.83%) 37.83 (↓ 17.92%) 54.15%
Random-Attack 28.74 (↓ 25.25%) 36.39 (↓ 21.05%) 59.10%
ALERT-Attack 26.40 (↓ 31.34%) 34.16 (↓ 25.88%) 64.88%
Genetic-Attack 25.45 (↓ 33.81%) 33.66 (↓ 26.97%) 67.52%
ReCODE-Attack 25.87 (↓ 32.72%) 33.95 (↓ 26.34%) 66.21%
ACCENT-Attack 25.81 (↓ 32.87%) 33.38 (↓ 27.58%) 66.25%
RADAR-Attack 24.48 (↓ 36.33%) 31.58 (↓ 31.48%) 74.65%

Pass@1, Attack Success rate), which have been widely used in previous studies of neural code514

generation [2, 14, 16, 19, 57, 67, 80, 88] and adversarial example generation [6, 49, 81, 93, 94, 98, 104].515

Table 3 and Table 4 show the evaluation results of these three victim models before and after516

the attacks for fine-tuning code generation tasks, respectively. The second column gives the used517

method. Columns 3–5 in Table 3 show the performance metrics for the Java dataset while columns518

3–5 in Table 4 show the counterparts for the Python dataset. The rows marked by FD and FDSig
519

show the performance of each PCGM when the signature is either excluded or included in the520

input. The following three rows show how the model performs under different adversarial attacks521

(i.e., with modified method names).522

From this table, we can first observe that the performance of the code generation with FDSig
523

is consistently better than that with FD, in terms of all the metrics. For instance, for the CodeT5524

model, on the Java dataset, in terms of both BLEU and CodeBLEU, the code generation with FDSig
525

performs nearly 1.5 times better than with FD. On the Python dataset, the code generation with526

FDSig performs nearly four times better than with FD in BLEU performance and nearly twice as527
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Table 4. Evaluation results of comparing RADAR and the baselines in terms of adversarial attack in the
Python dataset

Model Method BLEU CodeBELU ASR

CodeGPT

FD 5.06 18.77 –
FDSig 11.94 24.27 –

Foo-Attack 9.02 (↓ 24.46%) 22.10 (↓8.94%) 56.05%
Random-Attack 8.11 (↓ 32.08%) 20.88 (↓ 13.97%) 56.55%
ALERT-Attack 7.94 (↓ 33.50%) 18.47 (↓ 23.90%) 61.20%
Genetic-Attack 7.48 (↓ 37.35%) 18.32 (↓ 24.52%) 60.50%
ReCODE-Attack 7.92 (↓ 33.67%) 19.12 (↓ 21.22%) 59.28%
ACCENT-Attack 7.65 (↓ 35.93%) 18.58 (↓ 23.44%) 60.00%
RADAR-Attack 7.09 (↓ 40.62%) 17.86 (↓ 26.41%) 63.20%

PLBART

FD 7.85 20.60 –
FDSig 19.99 30.12 –

Foo-Attack 16.93 (↓ 15.31%) 26.13 (↓ 13.25%) 56.15%
Random-Attack 14.39 (↓ 28.01%) 25.89 (↓ 14.04%) 57.95%
ALERT-Attack 14.21 (↓ 28.91%) 25.24 (↓ 16.20%) 60.55%
Genetic-Attack 13.68 (↓ 31.57%) 24.98 (↓ 17.07%) 63.85%
ReCODE-Attack 14.63 (↓ 26.81%) 25.85 (↓ 14.18%) 57.80%
ACCENT-Attack 13.00 (↓ 34.97%) 24.61 (↓ 18.29%) 62.35%
RADAR-Attack 13.31 (↓ 33.42%) 24.18 (↓ 19.72%) 65.80%

CodeT5

FD 5.35 19.11 –
FDSig 21.69 33.26 –

Foo-Attack 19.37 (↓ 10.70%) 29.23 (↓ 12.12%) 53.50%
Random-Attack 15.11 (↓ 30.34%) 27.59 (↓ 17.05%) 58.95%
ALERT-Attack 14.59 (↓ 32.73%) 26.53 (↓ 20.23%) 64.75%
Genetic-Attack 13.84 (↓ 36.19%) 25.68 (↓ 22.79%) 69.50%
ReCODE-Attack 14.21 (↓ 34.49%) 25.94 (↓ 22.01%) 68.50%
ACCENT-Attack 13.57 (↓ 37.44%) 25.04 (↓ 24.71%) 71.00%
RADAR-Attack 13.23 (↓ 39.00%) 24.52 (↓ 26.28%) 72.80%

well as in CodeBLEU performance. In short, the code generation with FDSig performs nearly twice528

as well as with FD in most cases.529

Furthermore, we observe that all the PCGMs are vulnerable to adversarial attacks in the fine-530

tuning code generation task, as their performance decreases largely when the method names are531

modified. However, the impact of adversarial attacks varies across these models. Among them, the532

simplest foo-Attack can cause 9%-27% performance degradation in code generation on the test set for533

all three models. In addition, well-designed attacks (such as ACCENT-Attack and RADAR-Attack)534

can have a more severe impact on the model performance.535

Take the CodeT5 model as an example, RADAR-Attack degrades its BLEU and CodeBLEU perfor-536

mance on the Java dataset by 36.33% and 31.58% respectively, and can successfully attack 74.65% of537

the test set samples. On the Python dataset, the CodeT5’s BLEU and CodeBLEU performance is538

degraded by 39.00% and 26.28% respectively, and RADAR-Attack can successfully attack 72.80% of539

the test set samples.540
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Table 5. Evaluation results of comparing RADAR and the baselines in terms of adversarial attack in the
Human-Eval dataset

Model Method BLEU CodeBELU Pass@1 ASR

Replit

FD – – – –
FDSig 28.56 29.98 18.90 –

Foo-Attack 25.48 (↓ 10.78%) 27.73 (↓ 7.51%) 15.85 (↓ 16.14%) 29.03%
Random-Attack 26.26 (↓ 8.05%) 28.99 (↓ 3.30%) 16.46 (↓ 12.91%) 25.81%
ALERT-Attack 26.24 (↓ 8.12%) 29.21 (↓ 2.57%) 14.02 (↓ 25.82%) 32.26%
Genetic-Attack 26.50 (↓ 7.21%) 29.14 (↓ 2.80%) 15.24 (↓ 19.37%) 29.03%
ReCODE-Attack 26.40 (↓ 7.56%) 28.62 (↓ 4.54%) 15.85 (↓ 16.14%) 25.81%
ACCENT-Attack 25.90 (↓ 9.31%) 28.36 (↓ 5.40%) 13.41 (↓ 29.05%) 35.48%
RADAR-Attack 25.87 (↓ 9.42%) 28.27 (↓ 5.70%) 12.80 (↓ 32.28%) 45.16%

CodeGen

FD – – – –
FDSig 30.18 33.01 21.34 –

Foo-Attack 30.71 (↑ 1.76%) 32.48 (↓ 1.61%) 17.68 (↓ 17.15%) 25.71%
Random-Attack 28.12 (↓ 6.83%) 31.80 (↓ 3.67%) 15.24 (↓ 28.58%) 42.86%
ALERT-Attack 26.71 (↓ 11.50%) 29.75 (↓ 9.88%) 14.02 (↓ 34.30%) 45.71%
Genetic-Attack 28.76 (↓ 4.71%) 30.89 (↓ 6.42%) 13.41 (↓ 37.16%) 37.14%
ReCODE-Attack 28.90 (↓ 4.24%) 30.96 (↓ 6.21%) 18.90 (↓ 11.43%) 20.00%
ACCENT-Attack 27.70 (↓ 8.22%) 30.19 (↓ 8.54%) 14.02 (↓ 34.30%) 42.86%
RADAR-Attack 26.51 (↓ 12.16%) 28.44 (↓ 13.84%) 12.20 (↓ 42.83%) 51.43%

CodeT5+

FD – – – –
FDSig 27.21 30.92 21.95 –

Foo-Attack 25.75 (↓ 5.37%) 29.10 (↓ 5.89%) 20.73 (↓ 5.56%) 25.00%
Random-Attack 25.63 (↓ 5.81%) 29.31 (↓ 5.21%) 16.46 (↓ 25.01%) 36.11%
ALERT-Attack 24.18 (↓ 11.14%) 26.88 (↓ 13.07%) 13.41 (↓ 38.91%) 44.44%
Genetic-Attack 23.35 (↓ 14.19%) 26.04 (↓ 15.78%) 13.41 (↓ 38.91%) 44.44%
ReCODE-Attack 24.89 (↓ 8.53%) 27.58 (↓ 10.80%) 18.29 (↓ 16.67%) 25.00%
ACCENT-Attack 24.13 (↓ 11.32%) 26.63 (↓ 13.87%) 14.63 (↓ 33.35%) 47.22%
RADAR-Attack 26.51 (↓ 2.57%) 28.48 (↓ 7.89%) 12.20 (↓ 44.42%) 50.00%

Table 5 presents the evaluation results of three victim models (Replit, CodeGen, and CodeT5+)541

before and after the attacks in the zero-shot code generation task. Similar to the findings in542

the fine-tuning code generation task, it is evident that all PCGMs are susceptible to adversarial543

attacks, resulting in significant performance degradation when method names are modified. In544

our experiments, we observed that in certain cases, the model generated incorrect code based545

on the original prompt but made correct predictions when presented with perturbed prompts,546

which aligns with the findings of Wang et al. [84]. To accurately evaluate the ASR, we computed547

the ratio of samples where the model correctly generated code based on the original prompt but548

made incorrect predictions on perturbed prompts, to the total number of samples where the model549

correctly generated code based on the original prompt. Using the CodeGen model as an example,550

the RADAR-Attack method leads to a reduction in BLEU and CodeBLEU performance by 12.16% and551

13.84%, respectively. Moreover, it successfully attacks 51.43% of the samples in the test set. These552

results highlight the vulnerability of PCGMs to adversarial attacks, emphasizing the importance of553

robust defense mechanisms in code generation tasks.554

All the existing attack methods, including our proposed RADAR-Attack, have a detrimental555

impact on the performance of Replit, CodeGen, and CodeT5+ PCGMs, particularly in terms of the556

Pass@1 metric. However, in contrast to the PCGMs used in the fine-tuning code generation task,557
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Table 6. Evaluation results of comparing RADAR and the baselines in terms of attack and defense

Model Method Java Python
BLEU CodeBLEU BLEU CodeBLEU

CodeGPT
FDSig 23.18 26.33 11.94 24.27

RADAR-Attack 13.02 16.13 7.09 17.86
ACCENT-Defense 17.95 20.90 9.20 21.61
RADAR-Defense 22.15 25.45 12.54 24.44

PLBART
FDSig 35.19 43.71 19.99 30.12

RADAR-Attack 22.61 31.31 13.31 24.18
ACCENT-Defense 27.57 36.24 14.49 26.52
RADAR-Defense 35.84 43.61 19.64 30.88

CodeT5
FDSig 38.45 46.09 21.69 33.26

RADAR-Attack 24.28 31.58 13.23 24.52
ACCENT-Defense 30.31 37.43 16.01 27.22
RADAR-Defense 39.29 46.11 21.31 32.90

these models (Replit, CodeGen, and CodeT5+) do not exhibit significant differences in token-level558

similarity metrics such as BLEU and CodeBLEU. The lack of substantial differentiation in token-559

based similarity metrics can be attributed to the gap between these metrics and execution-based560

metrics. As a result, the impact of RADAR-Attack on the CodeT5+ model, for example, only leads561

to a modest degradation of 2.57% in BLEU and 7.89% in CodeBLEU. Nonetheless, RADAR-Attack562

successfully attacks 50.00% of the samples in the test set. These findings highlight the limitations of563

token-level similarity metrics when assessing the robustness of PCGMs and emphasize the need to564

consider execution-based metrics for a comprehensive evaluation.565

In general, we have observed that the ASR performance of RADAR-Attack is optimal across all566

datasets and victimmodels. Specifically, on the Java dataset, the ASR performance of RADAR-Attack567

is, on average, 4.40% higher than the second best baseline method. On the Python dataset, the568

ASR performance of RADAR-Attack is, on average, 2.96% higher than the second best baseline569

method. On the Human-Eval dataset, the ASR performance of RADAR-Attack is, on average, 17.73%570

higher than the second best baseline method. It is worth mentioning that since the Java dataset571

and the Python dataset do not support the calculation of the Pass@1 metric, we calculated the572

ASRs on these two datasets by reducing the CodeBLEU value. However, this method may not be as573

accurate as the Human-Eval dataset in terms of semantic consistency. Considering the significant574

improvement in performance on the Human-Eval dataset, it can be concluded that RADAR-Attack575

has a substantial impact on the ASR performance.576

Summary for RQ1

Existing PCGMs are generally vulnerable to adversarial attacks on method names both
in fine-tuning and zero-shot code generation tasks, which shows that the quality of the
method names in the signature is crucial for PCGMs. In general, RADAR-Attack is the most
effective method in attacking the models.

577

RQ2: How effective is RADAR-Defense in reinstating the performance of FDSig?578
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Table 7. Evaluation results of comparing RADAR and the baselines in terms of attack and defense

Model Method BLEU CodeBLEU Pass@1

Replit

FDSig 28.56 29.98 18.90
RADAR-Attack 25.87 28.27 12.80

ACCENT-Defense – – –
RADAR-Defense 28.51 30.21 18.29

CodeGen

FDSig 30.18 33.01 21.34
RADAR-Attack 26.51 28.44 12.20

ACCENT-Defense – – –
RADAR-Defense 29.95 32.99 21.95

CodeT5+

FDSig 27.21 30.92 21.95
RADAR-Attack 26.51 28.48 12.20

ACCENT-Defense – – –
RADAR-Defense 26.94 30.04 20.12

Table 6 summarizes evaluation results on the three victim models of the two defense strategies for579

fine-tuning code generation task. Rows of FDSig and RADAR-Attack recapitulate the performance580

of PCGMs when the method name is unattacked or attacked respectively, followed by two rows581

showing how the model performs under the two different defense strategies.582

In terms of defense, we find that the mask training employed in ACCENT-Defense can indeed583

resist some attack examples, mainly because the mask training masks the attacked method name584

and lets the model learn the corresponding code generation after the mask. Compared to ACCENT-585

Defense, RADAR-Defense is a passive defense method to sanitize the input, and the performance586

of the defended model is almost the same as that of the original environment (e.g., CodeT5 has a587

BLEU metric of 21.69 on the Python dataset, and the metric drops to 13.23 after being attacked588

by RADAR-Attack, but after RADAR-Defense the metric reinstates to 21.31) Moreover, we are589

surprised to observe that some models can slightly improve their code generation performance590

after defending the method names in the signature. For instance, CodeT5’s performance measured591

in BLEU and CodeBLEU is improved by 61.82% and 46.01% respectively, by RADAR-Defense on the592

Java dataset, when compared with that of the attacked model. ACCENT-Defense, on the other hand,593

only improved 24.84% of the BLEU performance and 18.52% of the CodeBLEU performance. These594

results show that the defense of RADAR-Defense is superior. Indeed, RADAR-Defense even exceeds595

the performance of the original methods on some combinations (e.g., CodeBLEU in Python using596

CodeGPT, BLEU in Java and CodeBLEU in Python using PLBART, and both BLEU and CodeBLEU597

in Java using CodeT5). It also indicates that the quality of method names in the signature is crucial598

for the model to generate code.599

In the zero-shot code generation task, since the PCGMs are not fine-tuned on the HumanEval600

dataset, an approach based on active defense is not suitable for this scenario. Table 7 provides a601

summary of the evaluation results for the three victim models under our defense method in the602

zero-shot code generation task. Consistent with the findings from the fine-tuning code generation603

task, the defended models exhibit performance that is nearly equivalent to the original environment.604

Furthermore, we observe that some models can experience slight improvements in their code gen-605

eration performance after defending the method names in the signatures. For example, CodeGen’s606

Pass@1 metric increases from 21.34 in the original environment to 21.95 in the RADAR-Defense.607
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These results highlight the significance and advantages of employing well-chosen method names608

in neural code generation, both in the fine-tuning and zero-shot code generation tasks.609

In general, we observe that our proposed RADAR-Defense method is a passive defense approach610

that ensures both clean performance and robustness of the model without the need for retraining.611

Therefore, our RADAR-Defense method provides a viable way that enhances model robustness612

without sacrificing clean performance. This passive defense approach has certain advantages613

over active defense methods, especially in scenarios with high costs and limitations in zero-shot614

scenarios.615

Summary for RQ2

RADAR-Defense, as a passive defense method, shows better defense performance and is
capable of bringing the performance of FDSig back. As well, it also shows that the quality of
the method names in the signature is crucial for PCGMs.

616

RQ3: How effective is our proposedRADAR-Defense in terms ofmethod name generation?617

Results of RQ1 and RQ2 demonstrate the importance of method names in neural code genera-618

tion. In RQ3, we investigate whether our method can synthesize high-quality method names for619

programmers. Note that for our zero-shot evaluation in the Human-Eval task, we utilize the model620

trained by RADAR-Defense on the Python dataset that we collected in Section 4.1.1.621

For the baselines with shared code (e.g., NNGen, CCGIR, CodeBERT, UniXcoder, Rencos, and622

REINA), we directly used their implementation to obtain the optimal values of parameters and623

trained the models. Otherwise (e.g., BM25 and RNN-Att-Copy), we replicated them according to624

the description of the original studies.625

Table 8. Evaluation results of comparing RADAR-Defense with the baselines for the Java dataset

Type Method EM BLEU ED

Information Retrieval

BM25 22.00 42.24 9.39
NNGen 23.65 45.93 8.93
CCGIR 23.50 46.97 8.71

RADAR-IR 24.10 46.66 8.70

Deep Learning

RNN-Att-Copy 22.20 47.99 8.37
CodeBERT 40.95 63.76 6.13
UniXcoder 43.35 65.66 5.99

IR-Enhanced
Rencos 27.75 53.53 7.39
REINA 41.00 63.51 6.39

RADAR-Defense 47.60 68.86 5.28

Table 8, Table 9, and Table 10 show the results of RADAR-Defense and the baselines for the626

Java, Python, and Human-Eval datasets respectively. The second column of the tables shows the627

considered baselines. Columns 3–5 show the results of the performance metrics.628

First, when comparing RADAR-Defense with the information retrieval baselines, we observe629

that, since CCGIR uses dense vectors for retrieval while both BM25 and NNGen use sparse vectors630

for retrieval, CCGIR performs slightly better than BM25 and NNGen on both datasets. Then631

CodeBERT used by CCGIR for semantic vectorization representation will take more time, and our632
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Table 9. Evaluation results of comparing RADAR-Defense with the baselines for the Python dataset

Type Method EM BLEU ED

Information Retrieval

BM25 14.50 31.39 10.68
NNGen 14.75 32.00 10.42
CCGIR 15.20 32.62 10.34

RADAR-IR 15.10 34.58 9.98

Deep Learning

RNN-Att-Copy 11.60 37.66 9.29
CodeBERT 25.35 50.18 7.58
UniXcoder 27.40 52.46 7.67

IR-Enhanced
Rencos 17.55 39.63 9.12
REINA 25.35 49.98 7.93

RADAR-Defense 32.60 57.56 6.65

Table 10. Evaluation results of comparing RADAR-Defense with the baselines for the Human-Eval dataset

Type Method EM BLEU ED

Information Retrieval

BM25 0.61 7.90 13.42
NNGen 0.61 4.98 12.95
CCGIR 0.00 4.66 12.84

RADAR-IR 1.22 10.05 12.43

Deep Learning

RNN-Att-Copy 1.22 9.71 11.07
CodeBERT 14.63 32.33 8.22
UniXcoder 29.88 46.62 7.24

IR-Enhanced
Rencos 7.58 18.45 10.14
REINA 22.81 42.60 8.19

RADAR-Defense 32.93 49.62 6.09

proposed information retrieval method can achieve better performance in less time, showing that633

our proposed method’s information retrieval part is effective.634

Second, when comparing RADAR-Defense with the deep learning baselines, we find that among635

all the deep learning baselines, RADAR-Defense has the best performance.636

Last, results of comparing the hybrid baselines with our method show that RADAR-Defense637

can largely improve the performance of the methods. More specifically, compared to the best-638

performing baseline UniXcoder, on the Java dataset, RADAR-Defense improves the EM, BLEU, and639

ED performances by 9.80%, 4.87%, and 11.85% respectively; on the Python dataset, RADAR-Defense640

improves the EM, BLEU, and ED performances by 18.98%, 9.72%, and 12.27%, respectively; on the641

Human-Eval dataset, RADAR-Defense improves the EM, BLEU, and ED performances by 9.26%,642

6.44%, and 15.88%, respectively.643

To further investigate the component setting rationality of our proposed method RADAR-Defense,644

we carry out an ablation study. We have considered five variants through permutations between645

components. The experimental results are given in Table 11 and show that the inclusion of each646

component is reasonable. The most significant impact on model performance among these three647

components is our proposed prompt method. With the same settings for the remaining two648

components, adding the prompt will give RADAR-Defense a more substantial performance boost.649
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Table 11. Ablation experiments between three components

Dataset IR Prompt In_trust Loss EM BLEU ED

Java

– – – 43.35 65.66 5.99
– – ✓ 43.75 66.07 5.90
✓ – – 43.45 66.04 5.83
✓ – ✓ 43.55 66.27 5.83
✓ ✓ – 47.10 67.70 5.34
✓ ✓ ✓ 47.60 68.86 5.28

Python

– – – 27.40 52.46 7.67
– – ✓ 28.30 52.77 7.52
✓ – – 27.60 53.05 7.23
✓ – ✓ 28.40 53.69 7.33
✓ ✓ – 32.60 56.74 6.76
✓ ✓ ✓ 32.60 57.56 6.65

Human-Eval

– – – 29.88 46.62 7.24
– – ✓ 29.88 46.23 6.95
✓ – – 30.58 47.85 6.88
✓ – ✓ 31.05 48.11 6.56
✓ ✓ – 32.76 49.11 6.27
✓ ✓ ✓ 32.93 49.62 6.09

(a) Evaluation on the Replit (b) Evaluation on the CodeGen (c) Evaluation on the CodeT5+

Fig. 7. The impact of the quality of generated method names on the robustness improvement of PCGMs

Furthermore, we conduct an investigation into the impact of data quality on the improvement650

of robustness. In the zero-shot code generation task, we generate method names using RADAR-651

IR, CodeBERT, UniXcoder, and RADAR-Defense. These methods for generating method names652

demonstrate increasing performance in the method name generation task. As depicted in Fig. 7, we653

observe a correlation between the quality of the generated data and the improvement in robustness.654

Across all three models, we notice that the BLEU and CodeBLEU metrics improve as the quality of655

the generated data increases. Moreover, in most cases, the Pass@1 metric also shows improvement656
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as the quality of the generated data increases. These experimental findings further highlight the657

importance of utilizing high-quality method names in neural code generation tasks.658

In general, we observe that our proposed RADAR-Defense method is ability to generate method659

names that are closer to the golden truth and the method names generated by RADAR-Defense660

can improve the accuracy of code generation by PCGMs. The success of RADAR-Defense can be661

attributed to the following factors: (1) the choice of the base model: UniXcoder. UniXcoder has662

demonstrated the best performance among existing baselines, making it a strong foundation for663

RADAR-Defense; (2) the retrieval-enhanced prompt learning method and the application of the664

In_trust loss, which are reflected in the ablation experiments presented in Table 11.665

Summary for RQ3

RADAR-Defense can achieve better performance than eight state-of-the-art baselines of
three different types. In our ablation study, the prompt component demonstrates the most
influence on the performance of the method. More importantly, the quality of the method
names also impacts the robustness improvement.

666

5 DISCUSSION667

5.1 Qualitative Analysis668

(a) An example in the Python Dataset (b) An example in the Java Dataset

Fig. 8. Two examples of generated code by CodeT5 when attacked and defended by RADAR and ACCENT

In Section 4.2, we design three RQs to provide a quantitative study of the effectiveness of669

conducted performance comparisons between RADAR and baselines automatically in terms of670

performance measures. However, these performance measures may not truly reflect the semantic671

similarity [78]. To further demonstrate the effectiveness of RADAR, we conduct qualitative analysis.672

Examples in Robustness of Pre-trained Code Generation. For the fine-tuning code generation673

task, we give a Python example based on a real-world project5 and a Java example based on a674

5https://pypi.org/project/spirit/2.1.1/
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(a) Heat map before being attacked in Python example code

(b) Heat map after being attacked in Python example code

(c) Heat map before being attacked in Java example code

(d) Heat map after being attacked in Java example code

Fig. 9. Explore the effect of method names on the Python example code generated by CodeT5 before and
after being attacked
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real-world project6 using the CodeT5 model. Fig. 8 shows these two examples of generated code by675

CodeT5 when attacked and defended by RADAR and ACCENT. The first row gives the functional676

description, signature, and reference code, where the generated code by CodeT5 is the same as677

the reference code. The second row shows adversarial examples generated by RADAR-Attack and678

ACCENT-Attack while the third row shows the effectiveness of two defensive methods.679

From Fig. 8 (a), we can see that the original method name is most_common_item. The adversarial680

example forward_at_item generated by ACCENT-Attack is based on semantic similarity, which681

is not as natural as msot_common_term generated by RADAR-Attack, in which “msot” is generated682

by the Swap operator and “term” is generated by the Replace-sem operator.683

From the Fig. 8(b), we can see that the originalmethod name is getDirectoryPathname. ACCENT-684

Attack generates getDevicePathname as the adversarial method name based on semantic similarity,685

which is arguably not as natural as gotDirectoryPathname generated by RADAR-Attack, in which686

“got” is generated by the Replace-sem operator.687

The code generated by RADAR-Attack in the above two examples can cause functional errors688

that can lead to the failure of PCGMs. This demonstrates the effectiveness of our RADAR-Attack,689

and that the robustness issue in PCGMs needs to be addressed properly.690

We also explore the effectiveness of two defensive methods. ACCENT-Defense replaces the691

method name with ⟨𝑚𝑎𝑠𝑘⟩ and then feeds it into the mask learned model and generates the692

corresponding code. In contrast, RADAR-Defense synthesizes method names based on functional693

descriptions, replaces them in the adversarial examples, and then generates the corresponding694

code by the model. Two examples in Fig. 8 show that RADAR-Defense is capable of generating the695

correct method names, and the code generated by CodeT5 after being defended by RADAR-Defense696

can be reinstated to what it was before being attacked.697

Moreover, in order to explore the effect of method names on the code generated by CodeT5698

before and after being attacked, we visualize and analyze them with the SHAP tool.7 In contrast to699

the work on model interpretation based on attention weight visualization, SHAP is based on game700

theory, which defines the additive feature attribution method and guarantees a unique solution.701

Research [58] shows that SHAP is similar to human intuition measurement and more effective.702

Fig. 9 visualize the Python code and Java code in Fig. 8, as a way to analyze the effect of method703

names on the code generated by CodeT5 before and after being attacked. In Fig. 9(a), before being704

attacked, the normal method name “most_common_item” can lead CodeT5 to generate the correct705

code; from this heat map one can see that it has a greater impact on the tokens “max” and “count”706

of the code snippet. However, in Fig. 9(b), under the attack of “msot_common_term”, CodeT5707

generates semantically incorrect code, and the heat map shows that this method name only has708

a large effect on token “n” in the code snippet. Likewise, in Fig. 9(c), before being attacked, the709

normal method name “getDirectoryPathname” can lead CodeT5 to generate the correct code and it710

has a greater impact on tokens “getParcelable” and “DIRECTORY_PATHNAME” of the code snippet.711

However, in Fig. 9(d), under the attack of “gotDirectoryPathname”, CodeT5 outputs incorrect code.712

In the zero-shot code generation task, we provide an example from the Human-Eval dataset,713

specifically using the CodeGen model. In Fig. 10, we showcase the generated code snippets under714

various attacks as well as the RADAR-Defense approach. Additionally, we provide information on715

whether the generated code can be successfully compiled given the provided test cases. Initially,716

the original method name is median, and CodeGen can generate the correct code when this method717

name is utilized. However, when the method name is changed to foo or an adversarial method718

name generated by different attack methods, the code generated by CodeGen either fails the719

6https://github.com/douglascraigschmidt/POSA-15
7https://github.com/slundberg/shap
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Fig. 10. One example of generated code by CodeGen under various attacks as well as the RADAR-Defense in
Human-Eval dataset

test cases or contains syntax errors. In contrast, RADAR-Defense synthesizes the method name720

calculate_median based on functional descriptions, replaces it in the adversarial examples, and721

subsequently, CodeGen is able to generate the corresponding code that aligns with the desired722

functionality.723

Examples in Method Name Generation. To further explore the quality of the method names724

synthesized by RADAR-Defense, we select three examples from the Java dataset, the Python725

dataset, and the Human-Eval dataset respectively for analysis in Table 12. In these samples, we find726

RADAR-Defense can synthesize more-accurate method names than baselines when compared with727

human-written method names.728

5.2 Threats to Validity729

Internal threats. Internal threats refer to the potential defects in implementing our proposed730

approach and baselines. To alleviate this, we double-checked and peer-reviewed our code to ensure731

the fairness of the results. For all PCGMs, we used their publicly available models. For the attack732

baselines and method name generation baselines, we ran their open-source code directly or re-733

implemented them according to the original studies.734

External threats. External threats refer to the choice of corpora and PCGMs. To alleviate this,735

we collected two datasets based on well-maintained open-source projects with high reputations736

according to the relevant heuristic rules for fine-tuning code generation tasks. For the zero-shot737

code generation task, we select the Human-Eval dataset. To ensure a fair comparison, we follow738

the settings from a previous study [42] when dividing the dataset. In terms of the choice of PCGMs,739
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Table 12. Examples of synthesized method name by RADAR-Defense and baselines in both Java and Python
dataset

Case Example

Java

Parse the string as a websocket request and return the value from WebSocket-
Protocol header (See RFC 6455). Return empty string if not found.
BM25: getClientWebSocketOrigin
NNGen: getClientWebSocketOrigin
CCGIR: getClientWebSocketOrigin
RNN-Att-Copy: parseValue
CodeBert: getWebsocketRequest
UniXcoder: getWebsocketHeader
Rencos: getClientWebSocketOrigin
REINA: getProtocol
RADAR-Defense: getClientWebSocketProtocol
Human Written: getClientWebSocketProtocol

Python

Returns an * RGBA * tuple of 4 ints from 0 - 255
BM25: to_rgb_255
NNGen: to_rgb_255
CCGIR: to_rgb_255
RNN-Att-Copy: format_rgba
CodeBert: to_rgb_255
UniXcoder: to_rgb_255
Rencos: to_rgb_255
REINA: rgba4
RADAR-Defense: to_rgba_255
Human Written: to_rgba_255

Human-Eval

Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
BM25: are_rooms_adjacent
NNGen: connected_pair
CCGIR: connected_pair
RNN-Att-Copy: format_rgba
CodeBert: is_numbers
UniXcoder: are_adjacent
Rencos: are_rooms_adjacent
REINA: are_adjacent
RADAR-Defense: is_closer
Human Written: has_close_elements

we select three state-of-the-art models (CodeGPT, PLBART, and CodeT5) for the fine-tuning code740

generation task, and three state-of-the-art models (Replit, CodeGen, and CodeT5+) for the zero-shot741

code generation task. For other models, such as CodePilot, they have not made models or API742

interfaces publicly available, and can only be accessed through plugins, which is not suitable743

for large-scale empirical research. While ChatGPT does offer an API interface, its output is not744
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deterministic, resulting in low reproducibility. As a result, these models were not included in our745

selection.746

Construct threats. Construct threats concern the performance metrics used to evaluate RADAR747

and baselines. We use a set of metrics, which are also commonly used in similar studies. Due to748

the difference between natural languages and programming languages, we evaluated the quality749

primarily throughCodeBLEU for fine-tuning code generation tasks. CodeBLEU has beenwidely used750

in the previous studies of code generation, which can not only consider the surface match similar751

to the original BLEU but also the grammatical correctness and the logic correctness, leveraging the752

abstract syntax tree and the data flow structure. For the zero-shot code generation task, we choose753

Pass@1 as the main metric.754

6 CONCLUSION755

We studied the role of method names in neural code generation from a robustness perspective. We756

showed that most PCGMs using both the functional description and method signature as input,757

albeit demonstrating impressive performance, are fragile with respect to the input method names,758

meaning that an ill-formed name may degrade their performance largely. We proposed approaches759

to synthesize method names from the functional description which can be utilized to reinstate the760

performance of PCGMs.761

For future work, we plan to investigate the robustness of (now widely-adopted) deep learning762

models in software engineering systemically. This would shed light on, for instance, the performance763

and interpretability of these models in solving challenging SE tasks. We also plan to investigate the764

influence of natural language descriptions and parameter lists on the performance of PCGMs, and765

identify suitable defense mechanisms to enhance their robustness.766
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