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Power side-channel attacks allow an adversary to efficiently and effectively steal secret information (e.g.,
keys) by exploiting the correlation between secret data and run-time power consumption, hence posing a
serious threat to software security, in particular, cryptographic implementations. Masking is a commonly
used countermeasure against such attacks, which breaks the statistical dependence between secret data and
side-channel leaks via randomization. In a nutshell, a variable is represented by a vector of shares armed
with random variables, called masking encoding, on which cryptographic computations are performed. While
compositional verification for the security of masked cryptographic implementations has received much
attention because of its high efficiency, existing compositional approaches either use implicitly fixed pre-
conditions which may not be fulfilled by state-of-the-art efficient implementations, or require user-provided
hard-coded pre-conditions which is time-consuming and highly non-trivial, even for expert. In this paper, we
tackle the compositional verification problem of first-order masking countermeasures, where first-order means
that the adversary is allowed to access only one intermediate computation result. Following the literature, we
consider countermeasures given as gadgets, that are special procedures whose inputs are masking encodings
of variables. We introduce a new security notion parameterized by an explicit pre-condition for each gadget,
and composition rules for reasoning about masking countermeasures against power side-channel attacks. We
propose accompanying efficient algorithms to automatically infer proper pre-conditions, based on which our
new compositional approach can efficiently and automatically prove security for masked implementations.
We implement our approaches as a tool MaskCV and conduct experiments on publicly available masked
cryptographic implementations including 10 different full AES implementations. The experimental results
confirm the effectiveness and efficiency of our approach.

CCS Concepts: • Security and privacy → Side-channel analysis and countermeasures; • Software and
its engineering→ Software verification; Automated static analysis.

Additional Key Words and Phrases: Formal verification, Compositional verification, Cryptographic programs,
Side-channel attacks, Masking Countermeasures

ACM Reference Format:
Pengfei Gao, Fu Song, and Taolue Chen. 2023. Compositional Verification of First-Order Masking Countermea-
sures against Power Side-Channel Attacks. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2023),
38 pages. https://doi.org/10.1145/3635707

∗Corresponding author

Authors’ addresses: Pengfei Gao, Bytedance, Beijing, China, gaopengfei.se@bytedance.com; Fu Song, State Key Laboratory
of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China and University of Chinese Academy
of Sciences, Beijing, China, songfu@ios.ac.cn; Taolue Chen, Birkbeck, University of London, London, UK, WC1E 7HX,
t.chen@bbk.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
1049-331X/2023/1-ART1
https://doi.org/10.1145/3635707

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0003-3800-2565
HTTPS://ORCID.ORG/0000-0002-0581-2679
HTTPS://ORCID.ORG/0000-0002-5993-1665
https://doi.org/10.1145/3635707
https://orcid.org/0000-0003-3800-2565
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0002-5993-1665
https://doi.org/10.1145/3635707


1:2 Pengfei Gao, Fu Song, and Taolue Chen

1 INTRODUCTION
Cryptographic programs have become an indispensable part of contemporary software systems.
Practical implementations of cryptographic algorithms unfortunately suffer from side-channel
attacks which exploit the statistical dependence between the secret (e.g., keys) and side-channel
information (e.g., power consumption [72] and execution time [71]) to effectively recover the secret.
In this paper, we focus on power side-channel attacks which have been shown to be successful
in practice. For instance, DES [35, 72], AES [84, 94, 97], RSA [56], elliptic curve cryptography [36,
64, 74, 80], and post-quantum cryptography [67, 86, 89] have been the victim. Essentially, power
side-channel attacks exploit the correlation between the run-time power consumption of a device
executing cryptographic implementations and the secret. The adversary can effectively deduce
the results of chosen intermediate computations by statistically analyzing the power consumption
traces based on the fact that the power consumption of CMOS transistors (e.g., register) for storing
signals 1 and 0 is typically different. When the deduced intermediate computation results rely
upon the secret, the adversary can further infer the value of the secret from the intermediate
computations and their results. For example, consider the statement 𝑥 = 𝑘 ⊕ 𝑝 , where 𝑘 is the secret,
𝑝 is some public input, and ⊕ is the exclusive-OR operation. Obviously, the value of 𝑥 depends
on the value of 𝑘 for any fixed value of 𝑝 . For instance, fixing 𝑝 = 0, the probability of 𝑥 = 1 is
100% if 𝑘 = 1 and the probability of 𝑥 = 0 is 100% if 𝑘 = 0. Moreover, the power consumption of
a device executing this statement is correlated with the value of 𝑥 (e.g., the power consumption
of the CMOS transistor such as register for storing 𝑥 varies with the value of 𝑥). As a result, the
adversary can choose 𝑝 , and statistically analyze the power consumption traces to deduce the value
of 𝑥 , which leads to the disclosure of the secret 𝑘 by 𝑥 ⊕ 𝑝 . To effectively and efficiently deduce
the secret in real-world cryptographic implementations via power side-channel information, the
adversary often choose invertible intermediate computations, e.g., input or output of Sbox in AES,
so that the secret can be quickly recovered from these intermediate computations and their results.

Masking is an effective countermeasure against power side-channel attacks, aiming at breaking
the statistical dependence between the secret and power consumption via randomization [63].
Typically, an order-𝑑 masking scheme splits the secret into𝑑+1 shares such that the joint distribution
of any 𝑑 shares is (statistically) independent of the secret, thus, the adversary cannot infer any
information of the secret by observing the values of any 𝑑 shares via power side-channels. For
example, the secret 𝑘 can be split into two shares 𝑘 ⊕ 𝑟 and 𝑟 via first-order masking, where
𝑟 is a uniformly sampled value, and (𝑘 ⊕ 𝑟, 𝑟 ) forms a masking encoding of the secret 𝑘 . Since
the distributions of both 𝑘 ⊕ 𝑟 and 𝑟 are independent of the secret 𝑘 , the adversary cannot infer
the information of the secret 𝑘 by observing the value of 𝑘 ⊕ 𝑟 . In contrast, the distribution of
𝑘 ∧ 𝑟 depends upon the secret 𝑘 , namely, the probability of 𝑘 ∧ 𝑟 being 1 is 50% if 𝑘 = 1 but is
0% if 𝑘 = 0. The adversary can infer the value of 𝑘 by observing the value of 𝑘 ∧ 𝑟 . The main
challenge is to develop an efficient and secure implementation of each cryptographic algorithm
𝑓 using masking which performs computations on the secret shares of the original input 𝑥 , and
produces output shares from which the desired output 𝑓 (𝑥) can be recovered. As efficiency is a
major concern in, e.g., resource-limited devices [20], various new masked implementations for
finite-field multiplication, a key building block to implement most cryptographic algorithms, have
been proposed recently [8, 11, 14, 15, 26, 58, 68, 93]. These more recent implementations require
less randomness and/or operations than the original one proposed by [63].

Clearly, a masked implementation must meet some security requirement, e.g., the order-𝑑 probing
security [63] which asserts that the joint distribution of any 𝑑 observable variables to the adversary
should be independent of the secret data. For instance, the masked implementation of the statement
𝑥 = 𝑘 ⊕𝑝 via order-𝑑 masking is 𝑟𝑑+1 = 𝑘 ⊕𝑟1⊕ · · · ⊕𝑟𝑑 ; 𝑥 = 𝑟𝑑+1⊕𝑝 , where 𝑟1, · · · , 𝑟𝑑 are uniformly
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sampled values, (𝑟1, · · · , 𝑟𝑑 , 𝑟𝑑+1) forms a masking encoding of the secret 𝑘 , the desired result 𝑘 ⊕ 𝑝

can be obtained from the output encoding (𝑟1, · · · , 𝑟𝑑 , 𝑥) via computing 𝑟1 ⊕ · · · ⊕ 𝑟𝑑 ⊕ 𝑥 . This
masked implementation is order-𝑑 probing secure because the joint distribution of any 𝑑 observable
variables from {𝑟1, · · · , 𝑟𝑑 , 𝑟𝑑+1, 𝑥} is uniform, thus independent of the secret 𝑘 . However, it is not
order-(𝑑 + 1) probing secure, because the joint distribution of some (𝑑 + 1) observable variables
(e.g., {𝑟1, · · · , 𝑟𝑑 , 𝑟𝑑+1} or {𝑟1, · · · , 𝑟𝑑 , 𝑥}) depends on the secret 𝑘 . Indeed, 𝑟1 ⊕ · · · ⊕ 𝑟𝑑 ⊕ 𝑟𝑑+1 is the
same as the secret 𝑘 and 𝑟1 ⊕ · · · ⊕ 𝑟𝑑 ⊕ 𝑥 is the same as 𝑘 ⊕ 𝑝 while 𝑝 is known to the adversary.
Designing masked implementations is however labor-intensive and error-prone. Indeed, some
published masked implementations [87, 90] were later shown to be vulnerable against power side-
channel attacks under the same leakage model and masking order [40, 41]. To address this concern,
various formal verification approaches have been proposed, which form an important subarea of
software security research. These approaches can be largely be divided into two categories, i.e., non-
compositional (i.e., intra-procedural) and compositional (i.e., inter-procedural) approaches [9, 18, 53].
Following the naming convention in the literature on masked implementations of cryptographic
algorithms, procedures are called gadgets in this work, because the input parameters and return
value of the procedures are often masking encodings. Furthermore, a gadget is referred to as simple
gadget if it does not contain any call statements, otherwise it is referred to as composite gadget.

Non-compositional approaches take a simple gadget as input, and verify the observable variables
one by one or set by set. The underlying techniques include symbolic analysis [21, 38, 76, 77, 81, 91,
92], SAT/SMT-based analysis [23, 47–50], BDD analysis [69], and hybrid approaches [52, 54, 55, 98].
Note that [21, 23, 47–50, 55, 69, 98] focus exclusively on the bitwise logical operations (e.g., and, or,
exclusive-or) and cannot directly handle arithmetic operations (e.g., addition, subtraction).
To verify a composite gadget using non-compositional approaches, all the gadget calls must

be inlined first. However, inlining gadget calls will produce plenty of observable variables with
large computation expressions, leading to the inefficient verification. Compositional approaches
are thus proposed by leveraging stronger security notions [9, 10, 12, 16–19, 25, 26, 30, 31, 69] to
directly analyze composite gadgets without inlining. All these approaches implicitly specify a fixed
pre-condition for each gadget which intuitively restricts the number or positions of input shares.
Unfortunately, many modern efficient implementations (e.g., [14, 20]) do not satisfy these implicitly
imposed pre-conditions, creating a gap between formally provable probing security and practically
used (efficient) masked implementations. To address this issue, an assume-guarantee based compo-
sitional approach has been proposed [53] for verifying first-order security of arithmetic masked
programs. However, hard-coded (non-standard) pre-conditions, specifying the relation between
support variables of the computations of formal arguments must be provided by users, which
impedes fully automated compositional verification. While inferring specifications and contracts of
procedures from source code is a well researched area in formal safety verification, e.g., [3, 5, 62],
they are not applicable to compositional verification of security for masked implementations.
In this work, we fill this gap for first-order probing security, which is the focus of a large body

of research work particularly in software security [47–50, 53, 54, 76, 77, 81, 91, 92, 98]. Following
the literature, we consider masked implementations that are given as gadgets and composition of
gadgets, that are special procedures whose inputs are masking encodings of variables. Specifically,
we propose a new security notion parameterized by an explicit pre-condition I for each gadget,
called I-Non-Interference, based on which we present a compositional verification approach that
is applicable to those efficient masked implementations without user-provided pre-conditions.
The pre-condition I of a gadget 𝑔 is a set of variable sets, and is used to characterize the first-
order probing security of the gadget 𝑔, namely, each observable variable of the gadget 𝑔 can be
perfectly simulated by a variable set from I. Note that the pre-condition I can vary with gadgets.
For some gadgets, the formal parameters (i.e., input shares) are sufficient to simulate the internal
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Fig. 1. Overview of our method

variables, otherwise, internal variables would be added into I. (The worst case would be that all
the internal variables are added into I, which amounts to inlining the gadget call.) The flexibility
of I gives wider applicability to generic and efficient masked implementations while fixed pre-
conditions [9, 10, 12, 16–19, 25, 26, 30, 31, 69] fail.
Fig. 1 shows an overview of our method, consisting of two main steps, namely, preprocessing

and verification. Given a masked program and its security type annotation of input parameters,
the preprocessing step automatically unfolds loops in the program and transforms the program
into its intermediate representation in the static-single assignment (SSA) form. The verification
step infers pre-conditions of gadgets based on which first-order probing security is verified. We
propose efficient algorithms for inferring pre-conditions of both simple and composite gadgets. The
pre-conditions of simple gadgets are saturated during judgement inference via a sound proof system
until they become sufficient. The pre-conditions of composite gadgets are inferred by leveraging a
novel composition rule which composes pre-conditions of the called gadgets. More specifically,
the verification process starts by inferring the pre-condition I for the main gadget. The gadget
call statements in the main gadget are iteratively traversed during which the pre-conditions of
the called gadgets are computed by recursively calling the algorithms for inferring pre-conditions
of simple and/or composite gadgets. To facilitate the processing of the subsequent gadget call
statements, the resulting pre-conditions of gadgets are cached. Finally, the pre-conditions of called
gadgets are composed according to the composition rule, resulting in the pre-condition I for the
main gadget. Finally, to check whether a program is first-order probing secure or not, i.e., each
observable variable is statistically independent of the secret inputs, we can check the pre-condition
I of the main gadget, where the pre-condition I is expected to be much smaller than the size of
observable variables after inlining. Moreover, we observe that a variable (called dominated variable)
whose computation is perfectly masked by a random variable (called dominant variable) could also
be used to mask other variables. For instance, the variable 𝑥 with 𝑥 = 𝑘 ⊕ 𝑟 is perfectly masked
by the random variable 𝑟 as the distribution of 𝑥 is uniform for any fixed value of 𝑘 , thus 𝑥 is a
dominated variable and 𝑟 is its dominant variable. This observation often allows us to quickly
conclude that any dominated variable is statistically independent of the secret inputs, thus is
leveraged in the algorithms for inferring pre-conditions of simple and composite gadgets to reduce
the size of pre-conditions and improve verification efficiency.
We implement our approach as a tool MaskCV, and conduct extensive experiments on several

publicly available masked implementations [53] including 10 different masked implementations
of full AES. The experimental results confirm the efficacy of our approach, e.g., MaskCV can
prove each of the 10 masked implementations of full AES in no more than 0.04 seconds. Compared
with the compositional approach QMVerif [53], our approach performs significantly better when
no pre-conditions are provided to QMVerif, and achieves competitive efficiency when all the
user-defined pre-conditions are provided to QMVerif. Indeed, QMVerif takes 197–3505 seconds
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to prove each of 10 masked implementations of full AES when no pre-conditions are provided.
(To the best of our knowledge, QMVerif is the only compositional tool that can verify these
benchmarks.) Compared with the state-of-the-art non-compositional approaches SILVER [69] and
LeakageVerif [77], our approach is significantly more efficient and effective. For instance, SILVER
does not support masked implementations of full AES which involve arithmetic operations and
runs out of time or memory (6 hours, 256GB RAM) on two Boolean implementations of AES Sbox
which can be proved by MaskCV in 0.01 seconds; LeakageVerif runs out of time or memory on 6
out of 10 masked implementations of full AES and takes at least 559 seconds for any of the other 4
masked implementations.

The main contributions are summarized as follows.
• We introduce a new security notion, called I-Non-Interference, which is parameterized by an
explicit and variable pre-condition I. We also present a composition rule for compositional
reasoning about first-order probing security of efficient masked implementations that cannot
be handled by existing fully automated compositional verification approaches [9, 10, 12, 16–
19, 25, 26, 30, 31, 69].

• We propose efficient algorithms for inferring pre-conditions of both simple and composite
gadgets, leading to an efficient and fully automated composition verification approach for
first-order probing security of arithmetic masked programs. Thus, providing hard-coded
(non-standard) pre-conditions in the assume-guarantee based compositional approach [53],
which is time-consuming and highly non-trivial even for expert, can be avoided.

• We propose an efficient approach to determine dominated variables that can reduce the size
of pre-conditions and thus significantly improves the verification efficiency. It paves the way
for integrating the power side-channel security verification into the software development
process and continual verification during development.

• We implement the proposed techniques in a tool MaskCV and conduct extensive exper-
iments on publicly available cryptographic benchmarks, which confirm the effectiveness
and efficiency of our approach. In particular, on the 10 masked implementations of full AES,
the automatically determined dominated variables improve the verification efficiency by 4
orders of magnitude; and MaskCV shows almost 5–6 orders of magnitude improvement with
respect to LeakageVerif and QMVerif without user-defined pre-conditions.

Our work is important for the software engineering community. First, it can be readily used by
cryptographers and software developers of cryptographic algorithms to ensure the (first-order)
probing security of their implementations against power side-channel attacks. Cryptographic
algorithms have been extensively used in various applications, ranging from Blockchain, Internet
of Things, edge computing, to smart devices. It is important to ensure that software systems are
robust against power side-channel attacks, particularly for security-critical applications, where
our work would play a crucial role. Moreover, MaskCV is highly automated and can be fully
integrated into the software development process, so potentially would serve a larger group of
software developers. Furthermore, the verification techniques we use, such as proof system and
compositional reasoning, represent the state-of-the-art research in quality assurance, an important
area of software engineering.
Outline. Section 2 gives the preliminary of this work (i.e., cryptographic programs considered in this
work, threat model, leakage model and security notions) and a running example for demonstration.
We propose the new security notion I-Non-Interference and its composition rule in Section 3. In
Section 4, we introduce the concept of dominated variables, an approach to determine dominated
variables and the application of dominated variables for inferring pre-conditions. Section 5 presents
the algorithms for inferring pre-conditions for both simple and composite gadgets. Section 6 reports
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Table 1. Notations.

Notation Description Notation Description
I set of variable sets used as pre-condition F underlying domain {0, · · · , 2𝑛 − 1}
𝑥 scalar variable ®𝑥 vector of variables used as masking encoding of 𝑥
®𝑥 [𝑖] the 𝑖-th share of the encoding ®𝑥 𝑋𝑘 set of private variables of a program

𝐺𝑐/𝐺𝑠/𝐺𝑒𝑛 simple/composite/encoding gadget 𝑋𝑝 set of public variables of a program
𝑔𝑖𝑛/𝑃𝑖𝑛 inlined version of the gadget 𝑔/program 𝑃 E(𝑥) computation of a variable 𝑥
Sub(𝑥) set of the sub-expressions of E(𝑥) Var(E(𝑥)) set of support variables of E(𝑥)
𝑋
𝑔
𝑒𝑛 set of input encodings of the gadget 𝑔 𝑋

𝑔
𝑒𝑛 [𝑖] the 𝑖-th input encoding of the gadget 𝑔

𝑇𝑔 summary of the gadget 𝑔 𝜂 valuation for a set of variables
𝑋
𝑔
𝑟 set of random variables defined in the gadget 𝑔 D(𝑉 ) set of the joint distributions of variables in 𝑉

𝑋
𝑔
𝑜 set of output variables defined in the gadget 𝑔 DomR(𝑥) set of random dominant variables of the variable 𝑥

𝑋
𝑔
𝑎 set of formal parameters of the gadget 𝑔 ⟦E(𝑥)⟧𝑃𝜂 probability distribution of 𝑥 in program 𝑃 under 𝜂

𝑋𝑔 set of internal variables defined in the gadget 𝑔 ⟦𝑋⟧𝑃𝜂 joint distribution of variables of 𝑋 in 𝑃 under 𝜂

our experimental results on various publicly available masked cryptographic implementations. We
discuss related work in Section 7 and conclude the paper in Section 8. The source code of our tool,
raw data of experimental results and benchmarks are available at [1].

2 PRELIMINARY
In this section, we first introduce the syntax and semantics of the program considered in this work,
then recap the threat model, leakage model and related security notions, and finally present a
running example for demonstration of our approach.
Notations. For convenient reference, we summarize the notations in Table 1.

2.1 Cryptographic Programs
Given a positive integer 𝑛, let F be the domain {0, · · · , 2𝑛 − 1} (e.g. the finite-field GF(2𝑛)). We
use the syntax shown in Fig. 2 to describe masked implementations. Symbols such as 𝑥, 𝑎, 𝑎1, 𝑎𝑚
are scalar variables, symbols with arrowed overline such as ®𝑏, ®𝑎1, ®𝑎𝑚 represent vectors of variables.
A vector ®𝑥 of variables is used to represent the shares of a scalar variable 𝑥 , thus called a (masking)
encoding of the scalar variable 𝑥 in this work. We denote by ®𝑥 [𝑖] the 𝑖-th variable in the encoding
®𝑥 , that is one share of the scalar variable 𝑥 and by

⊕
®𝑥 the XOR of all the shares of the encoding ®𝑥 .

A masked implementation always has a security parameter 𝑑 denoting order-𝑑 masking, and the
size of each encoding is typically 𝑑 + 1. We explain the syntax rules in Fig. 2 from bottom to top.
A program is defined as a sequence of gadget definitions with a main gadget, where scalar

variables 𝑎1, · · · , 𝑎𝑚 are its formal parameters. We assume that the formal parameters of the main
gadget are classified into their types, either private or public, provided by the users. We denote by
𝑋𝑘 the set of private variables and 𝑋𝑝 the set of public variables, so that 𝑋𝑘 ⊎ 𝑋𝑝 = {𝑎1, · · · , 𝑎𝑚}.
The main gadget has a sequence of (masking) encoding call statements enstmt and gadget call
statements gstmt, ending with a return statement return ®𝑏 which gives the output encoding ®𝑏.

An encoding call statement (i.e., enstmt) generates an encoding ®𝑥 of a scalar variable 𝑥 by calling
an encoding gadget (i.e., ®𝑥 = 𝑓 (𝑥)). An encoding gadget (i.e. 𝑓 (𝑎){stmts; return ®𝑎; }) is defined as
a common procedure, which takes a scalar variable 𝑎 as input and outputs the encoding of 𝑎, i.e., ®𝑎.
An encoding gadget computes the desired encoding via a sequence of statements that can express
different encoding schemes. Normally, the first 𝑑 variables in an encoding (i.e., ®𝑎[1] · · · ®𝑎[𝑑]) are
generated by random sampling, while ®𝑎[𝑑 + 1] is a computation of ®𝑎[1], · · · , ®𝑎[𝑑] and the input
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Constant: F ∋ 𝑐 ::= 𝑛-bit constant
Operation: Op ∋ ◦ ::= ∧ | ∨ | ⊕ | − | + | × | ⊙
Expression: 𝑒 ::= 𝑐 | 𝑥 | ¬𝑒 | 𝑒 ≪ 𝑐 | 𝑒 ≫ 𝑐 | 𝑒 ◦ 𝑒
Statements: stmts ::= 𝑥 = 𝑒; | 𝑟 = $; | stmts+
Simple gadget: 𝐺𝑠 ::= 𝑔( ®𝑎1, · · · , ®𝑎𝑚)

{stmts return ®𝑏; }
Composite gadget: 𝐺𝑐 ::= 𝑔( ®𝑎1, · · · , ®𝑎𝑚)

{gstmt+ return ®𝑏; }
Gadget call: gstmt ::= ®𝑥 = 𝑔( ®𝑦1, · · · , ®𝑦𝑚);
Encoding gadget: 𝐺𝑒𝑛 ::= 𝑓 (𝑎){stmts return ®𝑎; }
Encoding call: enstmt ::= ®𝑥 = 𝑓 (𝑥);
Program: 𝑃 ::= 𝐺+

𝑒𝑛 𝐺+
𝑠 𝐺∗

𝑐

main(𝑎1, · · · , 𝑎𝑚)
{enstmt+ gstmt+ return ®𝑏; }

Fig. 2. Syntax of Programs.

variable 𝑎. Boolean masking is always used in implementing masked cryptographic algorithms
which only use bitwise logical operations (see below) and ®𝑎[𝑑 + 1] = ®𝑎[1] ⊕ ®𝑎[2] ⊕ · · · ⊕ ®𝑎[𝑑] ⊕ 𝑎.
Masked implementations which only use arithmetic operations are called arithmetic masking, and
they compute ®𝑎[𝑑 + 1] using modular addition, namely, ®𝑎[𝑑 + 1] = ®𝑎[1] + ®𝑎[2] + · · · + ®𝑎[𝑑] + 𝑎.
There are some implementations that use both bitwise logical operations and arithmetic operations
for which conversions between Boolean and arithmetic masking [37, 39] are used.
A gadget call statement (i.e., gstmt) assigns the result of a gadget call to an internal encoding.

The syntax supports two types of gadgets: simple (i.e., 𝐺𝑠 ) and composite (i.e., 𝐺𝑐 ) gadgets, both
of which take a list of input encodings ®𝑎1, · · · , ®𝑎𝑚 as inputs and return the output encoding ®𝑏. A
simple gadget only contains a sequence of statements (i.e., stmts) without involving any gadget
call statements, while a composite gadget only contains a sequence of gadget call statements (i.e.,
gstmt+) with unique labels ℓ (denoting call-sites), both of which ends with a return statement
return ®𝑏. We assume that all the gadgets are given in static single assignment (SSA) form. We
denote by 𝑋

𝑔
𝑒𝑛 the vector (e.g., [®𝑎1, · · · , ®𝑎𝑚]) of all the input encodings of the gadget 𝑔, and by

𝑋
𝑔
𝑒𝑛 [𝑖] the 𝑖𝑡ℎ input encoding (e.g., ®𝑎𝑖 ). Let 𝑋𝑔

𝑎 be the union of all the variables in input encodings
of the gadget 𝑔, i.e., 𝑋𝑔

𝑎 =
⋃

1≤𝑖≤𝑚 ®𝑎𝑖 . If 𝑔 is a main gadget or an encoding gadget, 𝑋𝑔
𝑎 is the set of

input parameters, that are scalar variables. An encoding gadget may be called simple gadget as
well, because it does not contain any call statements.

There are two types of statements. One is the common assignment statement of the form 𝑥 = 𝑒

which assigns the value of the expression 𝑒 to the scale variable 𝑥 . The other is of the form 𝑟 = $
which assigns a uniformly sampled random value to the scale variable 𝑟 , thus, 𝑟 is a random variable.
Random variables are used to mask private-related variables. We denote by 𝑋𝑔

𝑟 and 𝑋𝑔 respectively
the set of random variables and the set of internal variables (excluding input parameters𝑋𝑔

𝑎 ) defined
in the gadget 𝑔. Similarly, we denote by 𝑋𝑔

𝑜 the set of output variables of the gadget 𝑔.
An expression 𝑒 is built up from scale variables and constants with the following operations:
• bitwise logical operations: and (∧), or (∨), exclusive-or (⊕), negation (¬), left shift (≪), right
shift (≫);

• modulo 2𝑛 arithmetic operations: subtraction (−), addition (+), multiplication (×) for which F
is regarded as the ring Z2𝑛 of integers modulo 2𝑛 .

• finite-field operation: multiplication (⊙), for which F is considered to be the Galois field
GF(2𝑛).
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1 Encoding(𝑘 ){
2 ®𝑎[1] = $;
3 ®𝑎[2] = ®𝑎[1] ⊕ 𝑘 ;
4 return ®𝑎; } //

⊕
®𝑎 = 𝑘

5 XOR( ®𝑎, ®𝑏 ){
6 for(𝑖 = 1; 𝑖 ≤ 2; 𝑖 + +){
7 ®𝑐 [𝑖 ] = ®𝑎[𝑖 ] ⊕ ®𝑏 [𝑖 ]; }
8 return ®𝑐 ; } //

⊕
®𝑐 =

⊕
®𝑎 ⊕

⊕ ®𝑏

9 main(𝑘1, 𝑘2 ){
10 ®𝑎 = Encoding(𝑘1 ) ;
11 ®𝑏 = Encoding(𝑘2 ) ;
12 ®𝑐 = XOR( ®𝑎, ®𝑏 ) ;
13 return ®𝑐 ; } //

⊕
®𝑐 = 𝑘1 ⊕ 𝑘2

Fig. 3. Encoding is an encoding gadget, XOR is a simple gadget, and main is the main gadget

For a simple gadget 𝑔, the computation E(𝑥) of each variable 𝑥 ∈ 𝑋
𝑔
𝑎 ∪ 𝑋𝑔 is defined as follows:

• If 𝑥 ∈ 𝑋
𝑔
𝑎 ∪ 𝑋

𝑔
𝑟 , E(𝑥) = 𝑥 ;

• If 𝑥 = 𝑒 , E(𝑥) is obtained by recursively replacing all the occurrences of each variable 𝑦 in 𝑒

by its computation E(𝑦) until no more update can be made.

Intuitively, E(𝑥) defines the computation of the variable 𝑥 in terms of input parameters, constants
and random variables, thus can be seen as the symbolic value of the variable 𝑥 . We denote by
Var(E(𝑥)) the set of support variables of the variable 𝑥 , i.e., the input parameters and random
variables that are involved in the computation Var(E(𝑥)).

For a composite gadget 𝑔, to obtain the computation of a variable 𝑥 ∈ 𝑋
𝑔
𝑎 ∪ 𝑋𝑔, gadget calls

should be inlined first. Inlining a gadget call is the same as inlining a procedure call, which
replaces the gadget call by the gadget body of the callee, followed by assignments mimicking the
return statement, where the local variables are appended with @ℓ of the call-site ℓ to avoid name
conflict. We denote by 𝑓 ( ®𝑥1, · · · , ®𝑥𝑚)@ℓ the corresponding statements after inlining the gadget call
®𝑦 = 𝑓 ( ®𝑥1, · · · , ®𝑥𝑚) with call-site ℓ . After recursively inlining all the gadget calls, a composite gadget
turns to a simple one. We denote by 𝑔𝑖𝑛 the inlined version of 𝑔. Specifically, 𝑃𝑖𝑛 is the inlined
version of the program 𝑃 .

Example 2.1. Fig. 3 presents three gadgets, where Encoding is an encoding gadget, XOR is a
simple gadget [63] and main is the main gadget.
The Encoding gadget splits an input 𝑘 into two shares ®𝑎[1] and ®𝑎[2] via first-order Boolean

masking, where ®𝑎[1] is randomly sampled and ®𝑎[2] = ®𝑎[1] ⊕ 𝑘 masks 𝑘 by XORing ®𝑎[1], resulting
in the encoding ®𝑎 of the scalar variable 𝑘 . For the Encoding gadget, we have:

• 𝑋
Encoding
𝑎 = {𝑘}, 𝑋 Encoding

𝑟 = {®𝑎[1]}, 𝑋 Encoding
𝑜 = 𝑋 Encoding = {®𝑎[1], ®𝑎[2]},

• E(𝑘) = 𝑘 and E(®𝑎[1]) = ®𝑎[1] (as 𝑘, ®𝑎[1] ∈ 𝑋
Encoding
𝑎 ∪ 𝑋

Encoding
𝑟 ), and E(®𝑎[2]) = ®𝑎[1] ⊕ 𝑘 .

The XOR gadget performs share-wise XOR, i.e., produces the encoding ( ®𝑎[1] ⊕ ®𝑏 [1], ®𝑎[2] ⊕ ®𝑏 [2])
for the input encodings ®𝑎 and ®𝑏. We have:

• 𝑋 XOR
𝑒𝑛 = {®𝑎, ®𝑏} where 𝑋 XOR

𝑒𝑛 [1] = ®𝑎 and 𝑋 XOR
𝑒𝑛 [2] = ®𝑏,

• 𝑋 XOR
𝑎 = {®𝑎[1], ®𝑎[2], ®𝑏 [1], ®𝑏 [2]}, 𝑋 XOR

𝑟 = ∅, 𝑋 XOR
𝑜 = 𝑋 XOR = {®𝑐 [1], ®𝑐 [2]},

• E(𝑥) = 𝑥 for every 𝑥 ∈ 𝑋 XOR
𝑎 , and E(®𝑐 [𝑖]) = ®𝑎[𝑖] ⊕ ®𝑏 [𝑖] for 𝑖 = 1, 2.

The main gadget consists of two encoding call statements to the Encoding gadget and one gadget
call statement to the simple gadget XOR. It takes two secrets 𝑘1 and 𝑘2 as inputs, first computes their
encodings via the Encoding gadget and then computes 𝑘1 ⊕ 𝑘2 via the simple gadget XOR using the
encodings ®𝑎 and ®𝑏 of 𝑘1 and 𝑘2, resulting in the output encoding ®𝑐 of 𝑘1 ⊕ 𝑘2. We have:

• 𝑋 main
𝑎 = 𝑋𝑘 = {𝑘1, 𝑘2}, 𝑋𝑝 = ∅,

• 𝑋 main
𝑟 = ∅, 𝑋 main = {®𝑎[1], ®𝑎[2], ®𝑏 [1], ®𝑏 [2], ®𝑐 [1], ®𝑐 [2]}, 𝑋 main

𝑜 = {®𝑐 [1], ®𝑐 [2]}.
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1 main𝑖𝑛 (𝑘1, 𝑘2 ){
2 ®𝑎[1]@10 = $;
3 ®𝑎[2]@10 = ®𝑎[1]@10 ⊕ 𝑘1;
4 ®𝑎[1] = ®𝑎[1]@10;
5 ®𝑎[2] = ®𝑎[2]@10;

6 ®𝑎[1]@11 = $;
7 ®𝑎[2]@11 = ®𝑎[1]@11 ⊕ 𝑘2;
8 ®𝑏 [1] = ®𝑎[1]@11;
9 ®𝑏 [2] = ®𝑎[2]@11;

10 ®𝑐 [1]@12 = ®𝑎[1] ⊕ ®𝑏 [1];
11 ®𝑐 [2]@12 = ®𝑎[2] ⊕ ®𝑏 [2];
12 ®𝑐 [1] = ®𝑐 [1]@12;
13 ®𝑐 [2] = ®𝑐 [2]@12;
14 return ®𝑐 ; }

Fig. 4. The inlined version main𝑖𝑛 of the main gadget

The inlined version of the main gadget is shown in Fig. 4. We have:
• 𝑋

main𝑖𝑛
𝑎 = 𝑋𝑘 = {𝑘1, 𝑘2}, 𝑋𝑝 = ∅,

• 𝑋
main𝑖𝑛
𝑟 = {®𝑎[1]@10, ®𝑎[1]@11}, 𝑋 main𝑖𝑛

𝑜 = {®𝑐 [1], ®𝑐 [2]}
• 𝑋 main𝑖𝑛 = 𝑋 main ∪ {®𝑎[1]@10, ®𝑎[2]@10, ®𝑎[1]@11, ®𝑎[2]@11, ®𝑐 [1]@12, ®𝑐 [2]@12},
• the computations E(𝑥) for every 𝑥 ∈ 𝑋 main𝑖𝑛 can be constructed accordingly, e.g.,

E(®𝑐 [1]) = ®𝑎[1]@10 ⊕ ®𝑎[1]@11 and E(®𝑐 [2]) = ( ®𝑎[1]@10 ⊕ 𝑘1) ⊕ (®𝑎[1]@11 ⊕ 𝑘2). □

Discussion on the program syntax. For convenience, our verification tool supports bounded
for-loops (e.g., the for-loop in the gadget XOR) which are automatically and fully unfolded before
verification, thus we only present the core language without loops. One may notice that the program
syntax has a specific format, where (1) inputs and outputs of both simple and composite gadgets
are vectors, (2) encoding and main gadgets take only scalar variables as inputs and return a vector,
and (3) both composite and main gadgets only consist of call statements except for the return
statement. This specific format is consistent with the design pattern of masked implementations of
cryptographic algorithms and is widely adopted in the literature [9–11, 14, 15, 18, 19, 30, 31, 63, 87],
thus our approach has a wide application on masked implementations of cryptographic algorithms.
In a nutshell, the design process of a masked implementation starts by choosing a masking scheme
(e.g., Boolean masking) which is implemented by an encoding gadget, thus an encoding gadget takes
a scalar variable as input and produces an encoding of the scalar variable. Then, one will design a
masked version for each operation used in the cryptographic algorithm, and the masked version
performs the desired computation on the encodings of the operands of the operation. For the sake
of code reuse, modularity and maintenance in software development, masked versions of all the
operations of cryptographic algorithms are wrapped as gadgets (i.e., functions), thus the inputs and
output of a simple or composite gadget are encodings that correspond to the operands and results of
the operation, respectively. Finally, each original function in the cryptographic algorithm becomes
a composite gadget, where the inputs and output are replaced by the corresponding encodings, and
each statement is replaced by a gadget call statement to the corresponding gadget. Similarly, the
main function is revised by adding encoding call statements and gadget call statements, resulting
in a main gadget.
Semantics. Given a variable set 𝑉 , we denote by 𝜂 : 𝑉 → F the valuation of 𝑉 , which maps
variables to concrete values and denote by D(𝑉 ) the set of all the joint distributions of 𝑉 .

Let us fix a program 𝑃 . Given a valuation𝜂 of the inputs𝑋𝑘∪𝑋𝑝 of the program 𝑃 , the computation
E(𝑥) of a variable 𝑥 in the program 𝑃𝑖𝑛 is interpreted as a probability distribution, denoted by
⟦E(𝑥)⟧𝑃𝜂 , where variables in Var(E(𝑥)) ∩ (𝑋𝑘 ∪𝑋𝑝 ) are instantiated by the valuation 𝜂 and random
variables are sampled uniformly. Given a subset of variables 𝑋 of the program 𝑃𝑖𝑛 , we also denote
by ⟦𝑋⟧𝑃𝜂 the joint distribution of variables in 𝑋 under the valuation 𝜂.
Given a gadget 𝑔, let 𝜇 ∈ D(𝑋𝑔

𝑎 ) be a joint distribution of the formal parameters 𝑋𝑔
𝑎 . For each

𝑥 ∈ 𝑋𝑔 ∪𝑋
𝑔
𝑎 , the computation E(𝑥) is interpreted as a probability distribution, denoted by ⟦E(𝑥)⟧𝑔𝜇 ,

where variables in Var(E(𝑥)) ∩𝑋
𝑔
𝑎 are sampled from 𝜇 and Var(E(𝑥)) ∩𝑋

𝑔
𝑟 are sampled uniformly.
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Example 2.2. Consider the variables ®𝑐 [1]and ®𝑐 [2] in the example 𝑃 shown in Fig. 4. Recall that

E(®𝑐 [1]) = ®𝑎[1]@10 ⊕ ®𝑎[1]@11 and E(®𝑐 [2]) = ( ®𝑎[1]@10 ⊕ 𝑘1) ⊕ (®𝑎[1]@11 ⊕ 𝑘2).
Then, for any valuation𝜂 of the inputs {𝑘1, 𝑘2}, the probability distributions ⟦E(®𝑐 [1])⟧𝑃𝜂 , ⟦E(®𝑐 [2])⟧

𝑃
𝜂

and ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 are defined as:

• ⟦E(®𝑐 [1])⟧𝑃𝜂 (0) = ⟦E(®𝑐 [1])⟧𝑃𝜂 (1) = ⟦E(®𝑐 [2])⟧𝑃𝜂 (0) = ⟦E(®𝑐 [2])⟧𝑃𝜂 (1) = 1
2 , because ®𝑎[1]@10

and ®𝑎[1]@11 are random variables;
• if 𝜂 (𝑘1) ⊕ 𝜂 (𝑘2) = 0: ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 (0, 0) = ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 (1, 1) = 1

2 and ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 (0, 1) =
⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 (1, 0) = 0, because the random variables ®𝑎[1]@10 and ®𝑎[1]@11 are used in both
E(®𝑐 [1]) and E(®𝑐 [2]), causing interference between the values of E(®𝑐 [1]) and E(®𝑐 [2]);

• if 𝜂 (𝑘1) ⊕ 𝜂 (𝑘2) = 1: ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 (0, 1) = ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 (1, 0) = 1
2 and ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 (0, 0) =

⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 (1, 0). □

2.2 Thread Model, Leakage Model and Security Notions
Thread model and leakage model. In this work, we adopt the widely used threat model [47, 48,
53, 76, 77, 81, 98], where the adversary knows the details of the implementation and has the ability
to choose the values for the public input variables 𝑋𝑝 , but do not know the values of the private
input variables 𝑋𝑘 , of the program 𝑃 . Moreover, the adversary may have access to the results of one
arbitrary-chosen intermediate computation (i.e., observable variable in 𝑃𝑖𝑛) via power side-channel
information, where all the variables in the program 𝑃𝑖𝑛 except for the private input variables 𝑋𝑘

are observable variables to the adversary. Under these assumptions, the adversary’s goal is to infer
the value of private inputs 𝑋𝑘 .
The power side-channel attacks exploit the correlation between power consumption values,

rather than the absolute power consumption. In this work, we consider the correlation between
power consumption values that comes from the static leakage currents of CMOS transistors, where
power consumption volume depends on whether the transistor is on or off, corresponding to the
logical 1 and 0 of a bit, respectively. Thus, the value of a variable is proportional to the power
consumption of storing the value. For example, if the device executes the statement 𝑎 = 𝑘 ⊕ 𝑝 ,
where 𝑘 is the secret and 𝑝 is the public, assuming that 𝑘 and 𝑝 are Boolean variables and 𝑝 = 1,
then 𝑎 = 1 if 𝑘 = 0 and 𝑎 = 0 if 𝑘 = 1. The value of 𝑎 thus depends on the value of 𝑘 . The value
of 𝑎, hence the value of 𝑘 , can be deduced by analyzing the power consumption of executing the
statement 𝑎 = 𝑘 ⊕ 𝑝 .
Simulatability. To characterize that a set of variables is statistically independent upon another
variable set, we introduce the notions of randomized function and simulatability.

A randomized function 𝜋 : F |𝐼 | → F |𝑂 | over two sets of variables 𝐼 and 𝑂 is a function such
that for any fixed tuple of values (𝑣1, · · · , 𝑣 |𝐼 | ) ∈ F |𝐼 | , 𝜋 (𝑣1, · · · , 𝑣 |𝐼 | ) is a (joint) distribution of the
values of the variables in 𝑂 .

Given a set of variables 𝐼 , a set of variables 𝑂 can be simulated by the set of variables 𝐼 , called
𝐼 -simulatable, if there exists a randomized function 𝜋 : F |𝐼 | → F |𝑂 | such that for any fixed tuple of
values (𝑣1, · · · , 𝑣 |𝐼 | ) ∈ F |𝐼 | and any valuation 𝜂 : 𝑋 main

𝑎 → F, the (joint) distributions 𝜋 (𝑣1, · · · , 𝑣 |𝐼 | )
and ⟦𝑂⟧𝑃𝜂 are the same when the values of 𝐼 in the program 𝑃 are limited to (𝑣1, · · · , 𝑣 |𝐼 | ).

Intuitively, when the values of variables in the set 𝐼 are fixed, the joint distribution of (the values
of) the variables in set 𝑂 is fixed as well. In other words, knowing the values of the variables
in 𝐼 suffices to simulate the distribution ⟦𝑂⟧𝑃𝜂 . For example, consider 𝑦 = 𝑥 ⊕ 𝑟 and 𝑦′ = 𝑥 ∧ 𝑟 ,
where 𝑥 is an input variable and 𝑟 is a random variable. The variable 𝑦 is ∅-simulatable, meaning
that the distribution of 𝑦 can be simulated without knowing the values of any variables. But, 𝑦′ is
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{𝑥}-simulatable instead of ∅-simulatable, meaning that the distribution of 𝑦 can be simulated when
knowing the value of 𝑥 .
Similarly, for a gadget 𝑔 and a variable set 𝐼 , a variable set 𝑂 is 𝐼 -simulatable, if there exists a

randomized function 𝜋 : F |𝐼 | → F |𝑂 | such that for any fixed tuple of values (𝑣1, · · · , 𝑣 |𝐼 | ) ∈ F |𝐼 |

and any distribution 𝜇 ∈ D(𝑋𝑔
𝑎 ), the distributions 𝜋 (𝑣1, · · · , 𝑣 |𝐼 | ) and ⟦𝑂⟧𝑔𝜇 are the same when the

values of 𝐼 in the gadget 𝑔 are limited to (𝑣1, · · · , 𝑣 |𝐼 | ).
It is straightforward to obtain the following proposition.

Proposition 2.3. Suppose the variable set 𝑂 is 𝐼 -simulatable. The following statements hold:
• 𝑂 is 𝐼 ′-simulatable for any 𝐼 ′ such that 𝐼 ⊆ 𝐼 ′;
• 𝑂 ′ is 𝐼 -simulatable for any 𝑂 ′ such that 𝑂 ′ ⊆ 𝑂 or 𝑂 ′ is 𝑂-simulatable. □

According to Proposition 2.3, for any variable set 𝑂 , there always exists a variable set 𝐼 (e.g., 𝑂)
such that 𝑂 is 𝐼 -simulatable. We will see later that the smaller the size of 𝐼 the better for proving
security. In Section 5.1, we will present a sound proof system for checking simulatability.

Hereafter, for the sake of presentation, a singleton set {𝑥} may be directly written as 𝑥 , e.g., {𝑦}
is {𝑥}-simulatable is written as 𝑦 is 𝑥-simulatable.
Probing security. A program 𝑃 is first-order probing secure if each observable variable 𝑥 in
the program 𝑃𝑖𝑛 is 𝑋𝑝-simulatable. Intuitively, the program 𝑃 is first-order probing secure if the
distribution of each observable variable 𝑥 can be simulated by only knowing the values of public
inputs. Thus the distribution of the observable variable 𝑥 is (statistically) independent of the private
inputs 𝑋𝑘 and the adversary cannot infer any information of the private inputs 𝑋𝑘 when he/she has
access to the value of the observable variable 𝑥 via power side-channels. The first-order probing
security exactly characterizes the leakage model under the thread model introduced above.

Example 2.4. Consider the program 𝑃 shown in Fig. 4. For any observable variable 𝑥 ∈ 𝑋 main𝑖𝑛 ,
we can examine that ⟦E(𝑥)⟧𝑃𝜂 = 1

2 for any valuation 𝜂 of the inputs {𝑘1, 𝑘2}. It implies that 𝑥 is
∅-simulatable, thus the program 𝑃 first-order probing secure.

In contrast, ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂1 ≠ ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂2 if 𝜂1 (𝑘1) ⊕𝜂1 (𝑘2) = 0 and 𝜂2 (𝑘1) ⊕𝜂2 (𝑘2) = 1. Indeed,
if 𝜂1 (𝑘1) ⊕ 𝜂1 (𝑘2) = 0 and 𝜂2 (𝑘1) ⊕ 𝜂2 (𝑘2) = 1, then

• ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂1 (0, 0) = ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂1 (1, 1) =
1
2 , and

• ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂2 (0, 1) = ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂2 (1, 0) =
1
2 .

Thus, {®𝑐 [1], ®𝑐 [2]} is not ∅-simulatable. By fixing the inputs {𝑘1, 𝑘2}, ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 = ⟦®𝑐 [1], ®𝑐 [2]⟧𝑃𝜂 ,
thus {®𝑐 [1], ®𝑐 [2]} becomes {𝑘1, 𝑘2}-simulatable. □

2.3 A Running Example
Suppose one wants to compute 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2), where 𝑘1 and 𝑘2 are two private inputs. It is known
that the power consumption of computing both 𝑘1 ⊕ 𝑘2 and 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2) depends on the values of
𝑘1 and 𝑘2, based on which differential power analysis [72] could be utilized to infer the information
of 𝑘1 and 𝑘2. For instance, 𝑘1 ⊕ 𝑘2 is always 0 if 𝑘1 = 𝑘2 and is always 1 if 𝑘1 ≠ 𝑘2. The static leakage
current of a CMOS transistor depends on whether the transistor is on or off which corresponds
to the logical 1 and 0 of a bit. This difference allows the adversary to infer if 𝑘1 = 𝑘2 or not by
measuring the power consumption.

To ensure first-order probing security of computing 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2), the distributions of internal
variables for computing 𝑘1 ⊕ 𝑘2 and 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2) should be (statistically) independent of the
values of 𝑘1 and 𝑘2. Namely, the distribution of static leakage currents of each CMOS transistor is
independent of the values of 𝑘1 and 𝑘2.
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1 main(𝑘1, 𝑘2 ){
2 ®𝑎 = Encoding(𝑘1 ) ;
3 ®𝑏 = Encoding(𝑘2 ) ;
4 ®𝑐 = XORMULTI( ®𝑎, ®𝑏 ) ;}
5 //

⊕
®𝑐 = 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2 )

6

7 XORMULTI( ®𝑎, ®𝑏 ){
8 ®𝑒 = Refresh( ®𝑎) ;
9 ®𝑐 = XOR( ®𝑏, ®𝑒 ) ;
10 ®𝑑 = UMA( ®𝑒, ®𝑐 ) ;
11 return ®𝑑 ; }
12 //

⊕ ®𝑑 = (
⊕

®𝑎) ⊙ (
⊕

®𝑎 ⊕
⊕ ®𝑏 )

13 Encoding(𝑘 ){
14 ®𝑎[1] = $;
15 ®𝑎[2] = ®𝑎[1] ⊕ 𝑘 ;
16 return ®𝑎; } //

⊕
®𝑎 = 𝑘

17 Refresh( ®𝑎){
18 𝑟1 = $;
19 ®𝑐 [1] = ®𝑎[1] ⊕ 𝑟1;
20 ®𝑐 [2] = ®𝑎[2] ⊕ 𝑟1;
21 return ®𝑐 ; } //

⊕
®𝑐 =

⊕
®𝑎

22 XOR( ®𝑎, ®𝑏 ){
23 for(𝑖 = 1; 𝑖 ≤ 2; 𝑖 + +){
24 ®𝑐 [𝑖 ] = ®𝑎[𝑖 ] ⊕ ®𝑏 [𝑖 ]; }
25 return ®𝑐 ; } //

⊕
®𝑐 =

⊕
®𝑎 ⊕

⊕ ®𝑏

26 UMA( ®𝑎, ®𝑏 ){ // Unified Multiplication
27 𝑡1 = ®𝑎[1] ⊙ ®𝑏 [1]; 𝑡2 = ®𝑎[2] ⊙ ®𝑏 [2]; 𝑡3 = ®𝑎[1] ⊙ ®𝑏 [2];
28 𝑡4 = ®𝑎[2] ⊙ ®𝑏 [1]; 𝑟2 = $;
29 𝑡5 = 𝑡1 ⊕ 𝑟2; // 𝑡5 = ( ®𝑎[1] ⊙ ®𝑏 [1] ) ⊕ 𝑟2

30 𝑡6 = 𝑡5 ⊕ 𝑡3; // 𝑡6 = ( ®𝑎[1] ⊙ ®𝑏 [1] ) ⊕ 𝑟2 ⊕ ( ®𝑎[1] ⊙ ®𝑏 [2] )
31 𝑡7 = 𝑡2 ⊕ 𝑟2; // 𝑡7 = ( ®𝑎[2] ⊙ ®𝑏 [2] ) ⊕ 𝑟2

32 𝑡8 = 𝑡7 ⊕ 𝑡4; // 𝑡8 = ( ®𝑎[2] ⊙ ®𝑏 [2] ) ⊕ 𝑟2 ⊕ ( ®𝑎[2] ⊙ ®𝑏 [1] )
33 return (𝑡6, 𝑡8 ) ; } // 𝑡6 ⊕ 𝑡8 = (

⊕
®𝑎) ⊙ (

⊕ ®𝑏 )

Fig. 5. A running example for computing 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2)

Fig. 5 shows a demonstrating masked implementation for computing 𝑘1 ⊙ (𝑘1 ⊕𝑘2) using Boolean
masking. Given the inputs 𝑘1 and 𝑘2, their encodings ®𝑎 and ®𝑏 are computed by calling the encoding
gadget Encoding with the inputs 𝑘1 and 𝑘2 respectively (Lines 2–3). The Encoding gadget splits an
input 𝑘 into two shares ®𝑎[1] and ®𝑎[2] where ®𝑎[1] is randomly sampled and ®𝑎[2] = ®𝑎[1] ⊕ 𝑘 masks
𝑘 by XORing ®𝑎[1] resulting in the encoding ®𝑎 of 𝑘 .

Based on the encodings ®𝑎 and ®𝑏, the encoding ®𝑐 of 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2) is computed via invoking the
composite gadget XORMULTI (Line 4). The value of 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2) can be recovered by demasking,
i.e.

⊕
®𝑐 = ®𝑐 [1] ⊕ ®𝑐 [2] = 𝑘1 ⊙ (𝑘1 ⊕ 𝑘2). Three simple gadgets Refresh [63], XOR [63] and UMA [58]

are invoked in the gadget XORMULTI. The gadget Refresh takes an encoding as input and re-masks
the shares via a fresh random variable. Refresh is required when the same random variable is used
into two different sub-expressions in the same computation, e.g., ®𝑎[2] ⊙ ®𝑎[1] = ( ®𝑎[1] ⊕ 𝑘1) ⊙ ®𝑎[1]
depends on the private variable 𝑘1. The gadget XOR performs share-wise XOR, i.e., produces the
encoding ( ®𝑎[1] ⊕ ®𝑏 [1], ®𝑎[2] ⊕ ®𝑏 [2]) for the input encodings ®𝑎 and ®𝑏. The gadget UMA implements the
finite-filed multiplication of the input encodings ®𝑎 and ®𝑏, so the output encoding (𝑡6, 𝑡8) satisfying
𝑡6 ⊕ 𝑡8 = (

⊕
®𝑎) ⊙ (

⊕ ®𝑏).
Consider the variable ®𝑐 [1]@8@4 which is the inlined version of the local variable ®𝑐 [1] in the

gadget Refresh after inlining the gadget call to Refresh at Line 8 and the gadget call to the gadget
XORMULTI at Line 4 respectively. Obviously, E(®𝑐 [1]@8@4) = ( ®𝑎[1]@2 ⊕ 𝑘1) ⊕ 𝑟1@8@4. Since
𝑘1 in E(®𝑐 [1]@8@4) is perfectly masked by the random variable 𝑟1@8@4 (resp. ®𝑎[1]@2), we can
get that ⟦E(®𝑐 [1]@8@4)⟧𝑃𝜂1 = ⟦E(®𝑐 [1]@8@4)⟧𝑃𝜂2 for any valuations 𝜂1, 𝜂2 : {𝑘1, 𝑘2} → F. Thus,
®𝑐 [1]@8@4 is ∅-simulatable. Indeed, we can observe that the local variable ®𝑐 [1] in the simple gadget
Refresh is perfectly masked by the random variable 𝑟1 without considering the calling context.
It means that ®𝑐 [1] is always independent of private inputs no matter how the gadget Refresh is
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invoked. Similarly, consider the local variable 𝑡5 in the gadget UMA. Since 𝑡5 = ( ®𝑎[1] ⊙ ®𝑏 [1]) ⊕ 𝑟2,
we can deduce that 𝑡5 is always independent of private inputs due to the random variable 𝑟2 and
operation ⊕ no matter how the gadget UMA is invoked.
Outline of the solution. To automatically prove that masked implementations of cryptographic
algorithms such as the running example are first-order probing secure without inlining gadget
calls, we shall propose a compositional verification approach by leveraging local random variables.
We first introduce the new security notion I-Non-Interference in terms of simulatability, that
is parameterized by an explicit pre-condition I for each gadget (Section 3.1). The pre-condition
of each gadget is served as an abstraction of the gadget when reasoning about the calls to the
gadget so that the inlining of the gadget calls can be avoided. Then, we propose a composition
rule for inferring pre-condition I of composite gadgets using the pre-conditions of called gadgets
without inlining gadget calls (Section 3.2). The new security notion and its composition rule lay
the foundation of our compositional verification approach. To reduce verification time, we further
propose the concepts of dominant and dominated variables (Section 4.1), present a sound approach
for determining them (Section 4.2) and show how to use them to reduce the size of pre-condition I
for a composite gadget by revising the composition rule. Finally, after introducing a proof system
for checking simulatability (Section 5.1), we present algorithms to infer pre-conditions for simple
gadgets (Section 5.2) and composite gadgets (Section 5.3), respectively, by utilizing the proposed
proof system and composition rules.

3 FOUNDATION OF OUR COMPOSITIONAL VERIFICATION APPROACH
In this section, we first introduce the new security notion I-Non-Interference in terms of simulata-
bility, parameterized by an explicit pre-condition I for each gadget, and then discuss how to make
composition based on I-Non-Interference by presenting a compositional rule.

3.1 I-Non-Interference
To achieve compositional verification for masked implementations of cryptographic algorithms,
we propose the notion of I-Non-Interference. Let P(·) denote the power set of a set.

Definition 3.1. Given a set of variable sets I ⊆ P(𝑋𝑔𝑖𝑛 ∪ 𝑋
𝑔
𝑎 ) of a gadget 𝑔, the gadget 𝑔 is

I-Non-Interfering (I-NI for short), if for every variable 𝑥 ∈ 𝑋𝑔𝑖𝑛 ∪𝑋
𝑔
𝑎 , there exists a variable set 𝐼 ∈ I

such that 𝑥 is 𝐼 -simulatable. (Note that 𝑔𝑖𝑛 is the inlined version of the gadget 𝑔 and 𝑋𝑔𝑖𝑛 is the set
of internal variables defined in the inlined version 𝑔𝑖𝑛 .)

The pre-condition I in the notion I-NI characterizes sufficient variable sets to simulate the
distributions of all observable variables. The advantage of the pre-condition I is twofold. First,
it can contain as few small variable sets as possible to simulate all the observable variables in a
gadget. Second, if an observable variable 𝑥 cannot be simulated by any variable set into I, the
variable 𝑥 could be added to the set I to ensure that the gadget is I-NI. The new notion I-NI can be
seen as a balance of the first-order probing security and the stronger security notion proposed by
Barthe et al. [9], where the former does not support compositional verification, while the latter
implicitly contains a fixed pre-condition. We note that the fixed pre-condition may not be fulfilled
by generic, in particular, efficient, masked implementations though it is more composition-friendly.
More importantly, it is straightforward to check first-order probing security from our notion I-NI
by the following proposition.

Proposition 3.2. If a gadget 𝑔 is both I-NI and 𝐼 is 𝑋𝑝 -simulatable for each variable set 𝐼 ∈ I, then
𝑔 is first-order probing secure, namely, any variable of the gadget 𝑔 is statistically independent of the
private inputs 𝑋𝑘 when 𝑔 is used in a program 𝑃 with the private inputs 𝑋𝑘 .
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Proof. Suppose the gadget 𝑔 is both I-NI and 𝐼 is 𝑋𝑝 -simulatable for each variable set 𝐼 ∈ I. To
show that 𝑔 is first-order probing secure, it suffices to prove that for any program 𝑃 that uses the
gadget 𝑔 and any observable variable 𝑥 ∈ 𝑋𝑔𝑖𝑛 ∪ 𝑋

𝑔
𝑎 , 𝑥@ is 𝑋𝑝 -simulatable, i.e., any inlined version

𝑥@ of 𝑥 in the program 𝑃𝑖𝑛 is statistically independent of the private inputs 𝑋𝑘 .
Consider an observable variable 𝑥 ∈ 𝑋𝑔𝑖𝑛 ∪ 𝑋

𝑔
𝑎 . Since the gadget 𝑔 is I-NI, there must exist a

variable set 𝐼 ∈ I such that 𝑥 is 𝐼 -simulatable. By Proposition 2.3, we get that for any inlined 𝑥@
version of the variable 𝑥 from the gadget 𝑔 in the program 𝑃𝑖𝑛 , 𝑥@ is 𝑋𝑝 -simulatable. □

Example 3.3. Consider the running example. Let IRefresh, IXOR and IUMA be the following sets:
• IRefresh = {{®𝑎[1]}, {®𝑎[2]}};
• IXOR = {{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}};
• IUMA = {{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}, {®𝑎[1], ®𝑏 [2]}, {®𝑎[2], ®𝑏 [1]}}.

It is easy to verify that:
• In Refresh, 𝑟1 and ®𝑐 [1] and ®𝑐 [2] are ∅-simulatable, and ®𝑎[𝑖] is ®𝑎[𝑖]-simulatable for 𝑖 = 1, 2;
• In XOR, ®𝑎[𝑖] is ®𝑎[𝑖]-simulatable, ®𝑏 [𝑖] is ®𝑏 [𝑖]-simulatable, and ®𝑐 [𝑖] is {®𝑎[𝑖], ®𝑏 [𝑖]}-simulatable
for 𝑖 = 1, 2;

• In UMA, ®𝑎[𝑖] is ®𝑎[𝑖]-simulatable, ®𝑏 [𝑖] is ®𝑏 [𝑖]-simulatable, ®𝑡 [𝑖] is {®𝑎[𝑖], ®𝑏 [𝑖]}-simulatable for
𝑖 = 1, 2, 𝑡3 is {®𝑎[1], ®𝑏 [2]}-simulatable, 𝑡4 is {®𝑎[2], ®𝑏 [1]}-simulatable, all of 𝑟2, 𝑡5, 𝑡6, 𝑡7 and 𝑡8
are ∅-simulatable.

Thus, Refresh is IRefresh-NI, XOR is IXOR-NI and UMA is IUMA-NI. □

In Section 5.2, we will present an algorithm for inferring pre-conditions of simple gadgets. An
algorithm for inferring pre-conditions of composite gadgets will be given in Section 5.3 which
relies upon pre-conditions of simple gadgets and the composition rule introduced below.

3.2 Composition of I-NI Gadgets
We show the simplicity of inferring pre-conditions for composite gadgets by proposing a composi-
tion rule. We use the following composite gadget to illustrate the composition rule,

𝑓 ( ®𝑥1, · · · , ®𝑥𝑚){ ®𝑦1 = 𝑔( ®𝑥1, · · · , ®𝑥𝑚); ®𝑧 = ℎ( ®𝑦1, ®𝑥2, · · · , ®𝑥𝑛); return ®𝑧; }

where 𝑓 is a composite gadget that contains two gadget call statements to the simple gadgets 𝑔
and ℎ (with labels ℓ𝑔 and ℓℎ) respectively. The actual parameters of 𝑔 are the formal parameters
of 𝑓 , and the actual parameters of ℎ consist of the return values of 𝑔 and formal parameters of
𝑓 . Assume the gadget 𝑔( ®𝑎1, · · · , ®𝑎𝑚){· · · } is I𝑔-NI and the gadget ℎ( ®𝑏1, · · · , ®𝑏𝑛){· · · } is Iℎ-NI. We
denote by I𝑔 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 the set I𝑔 after instantiating the formal parameters ®𝑎𝑖 ’s by the
corresponding actual parameters ®𝑥𝑖 ’s and local variables are appended with @ℓ𝑔 to avoid name
conflict. The set Iℎ [®𝑦1/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ is defined similarly. Let I𝑓 be the following set

I𝑔 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 ∪ Iℎ [®𝑦1/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ .

Proposition 3.4. The gadget 𝑓 is I𝑓 -NI.

Proof. To prove that the gadget 𝑓 is I𝑓 -NI, it suffices to prove that for every observable variable
𝑥 of the inlined version 𝑓𝑖𝑛 , the variable 𝑥 in 𝑓𝑖𝑛 is 𝐼 -simulatable for some variable set 𝐼 ∈ I𝑓 . We first
consider inlined versions of the variables from the gadgets ℎ and 𝑓 , then move on to the observable
variables defined in the gadget 𝑓 .

• Consider an inlined version 𝑥@ℓ𝑔 of a variable 𝑥 from the gadget 𝑔. Since the gadget 𝑔 is
I𝑔-NI, there exists a variable set 𝐼 ∈ I𝑔 such that the variable 𝑥 in 𝑔 is 𝐼 -simulatable. It implies
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that the variable 𝑥@ℓ𝑔 in 𝑓𝑖𝑛 is 𝐼 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔-simulatable. The result immediately
follows from the fact that 𝐼 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 ∈ I𝑔 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 ⊆ I𝑓 .

• Consider an inlined version 𝑥@ℓℎ of a variable 𝑥 from the gadget ℎ, similar to the above
case, we can get that the variable 𝑥@ℓℎ in 𝑓𝑖𝑛 is 𝐼 [®𝑦1/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ-simulatable for
some set 𝐼 ∈ Iℎ and 𝐼 [®𝑦1/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ ∈ Iℎ [®𝑦1/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ ⊆ I𝑓 .

• Consider an observable variable 𝑥 defined in the gadget 𝑓 . Then, 𝑥 must be an actual
parameter or a return value of one of the gadget call statements ®𝑦1 = 𝑔( ®𝑥1, · · · , ®𝑥𝑚) or
®𝑧 = ℎ( ®𝑦1, ®𝑥2, · · · , ®𝑥𝑛).
If 𝑥 is an actual parameter of ®𝑦1 = 𝑔( ®𝑥1, · · · , ®𝑥𝑚) or ®𝑧 = ℎ( ®𝑦1, ®𝑥2, · · · , ®𝑥𝑛), let 𝑐 be the corre-
sponding formal parameter of 𝑥 . Then, the variable 𝑐 in the gadget 𝑔 is 𝐼 -simulatable for
some 𝐼 ∈ I𝑔 or the variable 𝑐 in the gadget ℎ is 𝐼 -simulatable for some 𝐼 ∈ Iℎ . Since 𝑥 and 𝑐
always have the same value, we get that the variable 𝑥 in 𝑓𝑖𝑛 is 𝐼 ′-simulatable, where 𝐼 ′ is
𝐼 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 or 𝐼 [®𝑦1/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ .
If 𝑥 is a return value of ®𝑦1 = 𝑔( ®𝑥1, · · · , ®𝑥𝑚) or ®𝑧 = ℎ( ®𝑦1, ®𝑥2, · · · , ®𝑥𝑛), let 𝑐 be the corresponding
return variable of 𝑥 in the gadget𝑔 orℎ. We have proved that 𝑐@ℓ𝑔 (resp. 𝑐@ℓℎ) is 𝐼 -simulatable
if 𝑐 is a return variable of 𝑔 (resp. ℎ) for some 𝐼 ∈ I𝑓 . Since 𝑥 and 𝑐 always have the same
value, we get that the variable 𝑥 in the gadget 𝑓𝑖𝑛 is 𝐼 -simulatable as well.

We have proved that every observable variable 𝑥 of the inlined version 𝑓𝑖𝑛 is 𝐼 -simulatable, for
some variable set 𝐼 ∈ I𝑓 , thus conclude the proof. □

Example 3.5. We here show how to manually compute the pre-condition IXORMULTI such that the
composite gadget XORMULTI in the running example is IXORMULTI-NI by leveraging this composition
rule. (An algorithm for inferring pre-conditions of composite gadgets will be given in Section 5.3.)
Recall that Refresh is IRefresh-NI, the gadget XOR is IXOR-NI and the gadget UMA is IUMA-NI (cf.
Example 3.3), where

• IRefresh = {{®𝑎[1]}, {®𝑎[2]}};
• IXOR = {{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}};
• IUMA = {{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}, {®𝑎[1], ®𝑏 [2]}, {®𝑎[2], ®𝑏 [1]}}.

The set IXORMULTI is computed as follows according to the composition rule:
(1) For the gadget call ®𝑒 = Refresh( ®𝑎), we have:

IRefresh@8 = IRefresh [®𝑎/®𝑎]@8 = {{®𝑎[1]}, {®𝑎[2]}}.
(2) For the gadget call ®𝑐 = XOR( ®𝑏, ®𝑒), we have:

IXOR@9 = IXOR [®𝑏/®𝑎, ®𝑒/®𝑏]@9 = {{®𝑏 [1], ®𝑒 [1]}, {®𝑏 [2], ®𝑒 [2]}}.
(3) For the gadget call ®𝑑 = UMA(®𝑒, ®𝑐), we have:

IUMA@10 = IUMA [®𝑒/®𝑎, ®𝑐/®𝑏]@10 = {{®𝑒 [𝑖], ®𝑐 [ 𝑗]}|1 ≤ 1, 𝑗 ≤ 2}.
Let IXORMULTI = IRefresh@8 ∪ IXOR@9 ∪ IUMA@10 = {{®𝑎[𝑖]}, {®𝑏 [𝑖], ®𝑒 [𝑖]}, {®𝑒 [𝑖], ®𝑐 [ 𝑗]}|1 ≤ 𝑖, 𝑗 ≤ 2}. By
Proposition 3.4, XORMULTI is IXORMULTI-NI. □

4 DOMINANT AND DOMINATED VARIABLES
As mentioned previously, the pre-condition I of a gadget is expected to contain as few small variable
sets as possible to simulate all observable variables. However, directly applying the composition
rule may yield a pre-condition containing many large variable sets. To alleviate this issue, in this
section, we first introduce dominant and dominated variables, then provide an approach to identify
them, and finally show how such information can help further reduce the size of pre-condition I in
the composition of gadgets by improving the composition rule.
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4.1 The Concepts of Dominant and Dominated Variables
Given a variable 𝑥 , let Sub(𝑥) be the set of the sub-expressions of E(𝑥).

Definition 4.1. A variable 𝑥 is dominated by another variable 𝑦 if 𝑦 occurs in E(𝑥) only once and
each operation ◦ along the path from 𝑦 to the root of the abstract syntax tree of E(𝑥) is either from
or belongs to following:

• {⊕, +,−,¬};
• ⊙ and one of its children is non-zero constant,

where 𝑥 is called a dominated variable and 𝑦 is called a dominant variable of 𝑥 .
An encoding ®𝑥 is dominated by another encoding ®𝑦 if each share ®𝑥 [𝑖] of the encoding ®𝑥 is

dominated by only one share ®𝑦 [ 𝑗] of the encoding ®𝑦, where ®𝑥 is called dominated encoding and
®𝑦 is called dominant encoding of ®𝑥 .

Intuitively, if the variable 𝑥 is dominated by the another variable 𝑦, the distribution of (the value
of) of 𝑥 is determined by the distribution of 𝑦. When 𝑦 is a random variable, the distribution of 𝑥
is uniform as well, thus 𝑥 can be regarded as a random variable. For example, consider 𝑦 = 𝑥 ⊕ 𝑟 ,
𝑦′ = 𝑥 ∧ 𝑟 and 𝑦′′ = 𝑥 + (𝑥 ⊕ 𝑟 ). The variable 𝑦 is dominated by both 𝑥 and 𝑟 because of the logical
operation ⊕ and the uniqueness of 𝑥 and 𝑟 , but 𝑦′ is dominated by neither 𝑥 nor 𝑟 due to the logical
operation ∧, and 𝑦′′ is only dominated by 𝑟 because 𝑥 occurs twice. When 𝑟 is a random variable,
the distributions of 𝑦 and 𝑦′′ are uniform for any fixed value of 𝑥 .

Let DomR(𝑥) be the set of random dominant variables of the variable 𝑥 . The merit of dominated
variables is justified by the following straightforward proposition.

Proposition 4.2. 𝑥 has a uniform distribution if DomR(𝑥) ≠ ∅.

Proof. Suppose 𝑟 ∈ DomR(𝑥). We first prove the following claim.
Claim. Let 𝑒 be a sub-expression of E(𝑥) such that 𝑟 occurs in 𝑒 and E(𝑥) [𝑟/𝑒] be the
expression E(𝑥) in which all the occurrences of the sub-expression 𝑒 are replaced by the
random variable 𝑟 . E(𝑥) and E(𝑥) [𝑟/𝑒] have the same distribution if 𝑒 is in the form of 𝑒′ ◦ 𝑟
for ◦ ∈ {⊕, +,−} or ¬𝑟 or 𝑐 ⊙ 𝑟 such that 𝑐 is non-zero constant.

Proof of the claim. Since 𝑟 ∈ DomR(𝑥), the random variable 𝑟 occurs only once in E(𝑥). It means
that the random variable 𝑟 occurs only once in 𝑒 , but does not appear in 𝑒′. Since 𝑟 is uniformly
sampled from F, we get that the value of 𝑒 is determined by the value of 𝑟 for any fixed value of
𝑒′ or 𝑐 . Let 𝑓𝑣 (𝑟 ) be the function such that the value of 𝑒′ or 𝑐 is fixed to 𝑣 . Obviously, 𝑓𝑣 (𝑟 ) is a
bijective function. Thus, the probability distribution of 𝑓𝑣 (𝑟 ) is the same as 𝑟 , implying that the
probability distribution of the value of 𝑒 is uniform when 𝑟 is uniformly sampled from F. Since 𝑟
does not appear anywhere in E(𝑥) except for the sub-expression 𝑒 , we get that E(𝑥) and E(𝑥) [𝑟/𝑒]
have the same distribution. We conclude the proof of the claim.
To show that 𝑥 has a uniform distribution, we can iteratively replace all the occurrences of the

sub-expression 𝑒 in E(𝑥) by the random variable 𝑟 for every sub-expression 𝑒 in the form of 𝑒′ ◦ 𝑟
for ◦ ∈ {⊕, +,−} or ¬𝑟 or 𝑐 ⊙ 𝑟 such that 𝑐 is non-zero constant. The expression E(𝑥) will eventually
becomes the random variable 𝑟 according to Definition 4.1. By the above lemma, these substitutions
do not change the probability distribution of E(𝑥). Thus, 𝑥 has a uniform distribution. □

Example 4.3. Consider the gadget Refresh in the running example. Since E(®𝑐 [1]) = ®𝑎[1] ⊕ 𝑟1
and E(®𝑐 [2]) = ®𝑎[2] ⊕ 𝑟1, we can deduce that ®𝑐 [1] is a dominated variable and dominated by both
®𝑎[1] and 𝑟1, and the variables ®𝑎[1] and 𝑟1 are dominant variable of ®𝑐 [1]. Similarly, ®𝑐 [2] is dominated
by both ®𝑎[2] and 𝑟1, and the variables ®𝑎[2] and 𝑟1 are dominant variable of ®𝑐 [2]. Since 𝑟1 is a random
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variable, we get that DomR(®𝑐 [1]) = DomR(®𝑐 [2]) = {𝑟1}, and both ®𝑐 [1] and ®𝑐 [2] have a uniform
distribution for any inputs of the gadget Refresh.
Since each share ®𝑐 [𝑖] of the encoding ®𝑐 is dominated by only one share ®𝑎[𝑖] of the encoding ®𝑎,

we get that the encoding ®𝑐 is a dominated encoding and dominated by the encoding ®𝑎, and the
encoding ®𝑎 is a dominant encoding of the encoding ®𝑐 .
In contrast, ®𝑐 [1] is dominated by neither ®𝑎[1] nor 𝑟1 if E(®𝑐 [1]) is ®𝑎[1] ∧ 𝑟1 (because of ∧) or

( ®𝑎[1] ∧ 𝑟1) ⊕ 𝑟1 (because of twice occurrences of 𝑟1 and ∧). Thus, DomR(®𝑐 [1]) = ∅ and ®𝑐 [1] does
not necessarily have a uniform distribution although 𝑟1 is a random variable.

If E(®𝑐 [1]) is ( ®𝑎[1] ∨ ®𝑎[2]) ⊕ (¬𝑟1), ®𝑐 [1] is only dominated by the variable 𝑟1 (because of ∨), then
the encoding ®𝑐 is not dominated by the encoding ®𝑎 because the share ®𝑐 [1] is not dominated by any
share of ®𝑎. Moreover, DomR(®𝑐 [1]) = {𝑟1} and ®𝑐 [1] has a uniform distribution as 𝑟1 is a random
variable.

If E(®𝑐 [1]) is ( ®𝑎[1] ⊕ ®𝑎[2]) ⊕ 𝑟1, ®𝑐 [1] is dominated by ®𝑎[1], ®𝑎[2] and 𝑟1, then the encoding ®𝑐 is
not dominated by the encoding ®𝑎 because the share ®𝑐 [1] of the encoding ®𝑐 is dominated by both
shares ®𝑎[1] and ®𝑎[2] of the encoding ®𝑎. Similarly, DomR(®𝑐 [1]) = {𝑟1} and ®𝑐 [1] has a uniform
distribution. □

Proposition 4.2 provides a sufficient condition to deduce that 𝑥 has the uniform distribution,
so can be simulated by an empty set, i.e., 𝑥 is ∅-simulatable. We will also show that variables
dominated by random variables can help simplify expressions later (cf. Section 5).

4.2 Determining Dominated Variables
In this section, we present an efficient approach to determine dominant and dominated variables.
We first consider simple gadgets and then composite gadgets.

4.2.1 Determining Dominated Variables for Simple Gadgets. Determining dominated variables in
simple gadgets is trivial. For every variable 𝑥 of a simple gadget, we represent the computation
E(𝑥) of the variable 𝑥 as a Directed Acyclic Graph (DAG), where the internal nodes are labeled by
operators and leave are labeled by variables and constants involved in the computation E(𝑥). We
iteratively traverse the DAG representation of E(𝑥) starting from the root in a depth-first fashion,
where a stack is used to store visiting nodes. For each node in the DAG,

(1) if the in-degree of the node is greater than 1, then we go back to its visiting parent (popped
from the stack) if exists otherwise terminate, because any variable labeled to the leave of the
sub-tree rooted by this node occurs at least twice in the computation E(𝑥);

(2) if the in-degree of the node is 1, we proceed as follows:
(a) if the node is labeled by one of the operators {⊕, +,−,¬}, we push it into the stack and

continue to traverse its unvisited children;
(b) if the node is labeled by the operator ⊙, one child of the node is a non-zero constant and

the another child is a non-constant that has not been visited yet, we push it into the stack
and continue to traverse its non-constant child;

(c) otherwise we go back to its visiting parent if exists otherwise terminate, because any
variable labeled to the leave of the sub-tree rooted by this node cannot be a dominant
variable of 𝑥 according to Definition 4.1;

(3) if the node is a leaf, with in-degree no more than 1, and labeled by a variable, then the variable
must be a dominant variable of 𝑥 , we record this dominant variable and go back to its visiting
parent.
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By applying the above procedure, we can identify all the dominant variables of the variable 𝑥 in
linear time in the size of the computation E(𝑥). Similarly, the set DomR(𝑥) of random dominant
variables of the variable 𝑥 can be computed.

4.2.2 Determining Dominated Variables for Composite Gadgets. It is non-trivial to determine if
variables (encodings) are dominated by random variables in composite gadgets without inlining
gadget calls, as they are return values of gadget calls. To address this issue, we first characterize
whether a gadget can transfer dominant variables from a formal parameter to its output encoding and
whether a gadget can generate dominant variables itself, based on which we introduce the concept
of summary for storing these information. Next, we present an approach for under-approximating
the summaries of composite gadgets by utilizing the summaries of called gadgets.
Characterzation of gadgets. The characterzation of gadgets is inspired by following observation.
First, the return of a gadget call statement may be dominated by the same random variables as some
actual parameters of the gadget call statement, i.e., random variables may be transferred from the
input encodings to the output encoding, making the output encoding being dominated by the same
dominant encodings of some input encodings. Second, the output encoding of a gadget may be
dominated by local random variables of the gadget. Based on these observations, we characterize
the gadgets that can transfer dominant variables and generate dominant variables as follows.

Fix a gadget 𝑔( ®𝑎1, · · · , ®𝑎𝑚){· · · ; return ®𝑜 ; }.

Definition 4.4. The gadget 𝑔 can transfer dominant variables from a formal parameter ®𝑎𝑖 to its
output encoding ®𝑜 if ®𝑎𝑖 is a dominant encoding of ®𝑜 .

Definition 4.5. The gadget 𝑔 can generate dominant variables if each share ®𝑜 [ 𝑗] of the output
encoding ®𝑜 is dominated by a local random variable of 𝑔.

Summary of gadgets.We define the summary of the gadget 𝑔 as𝑇𝑔 ⊆ 𝑋
𝑔
𝑒𝑛 ∪{®𝑜}, where𝑇𝑔 includes

all the formal parameters ®𝑎𝑖 of the gadget 𝑔 whose dominant encodings can be transferred to the
output encoding ®𝑜 , and the output encoding ®𝑜 is added to the summary 𝑇𝑔 if the gadget 𝑔 itself
can generate dominant variables. Based on Definition 4.4 and Definition 4.5, the summary 𝑇𝑔 can
be easily computed if 𝑔 is a simple gadget. More specifically, for each share ®𝑜 [ 𝑗] of the output
encoding ®𝑜 , we first compute the dominant variables from the computation E(®𝑜 [ 𝑗]), then add an
input encoding ®𝑎𝑖 into the summary 𝑇𝑔 if each share ®𝑜 [ 𝑗] of the output encoding ®𝑜 is dominated
by only one share of the input encoding ®𝑎𝑖 , and finally the output encoding ®𝑜 is added into the
summary 𝑇𝑔 if each share ®𝑜 [ 𝑗] of the output encoding ®𝑜 is dominated by a random variable.

Example 4.6. Consider the gadget Refresh in the running example. Since ®𝑐 [1] = ®𝑎[1] ⊕ 𝑟1 and
®𝑐 [2] = ®𝑎[2] ⊕ 𝑟1 with random variables 𝑟1 and 𝑟2, Refresh can generate dominant variables (i.e., 𝑟1
and 𝑟2), thus the output encoding ®𝑐 of the gadget Refresh can be added into the summary 𝑇Refresh
of the gadget Refresh, i.e., ®𝑐 ∈ 𝑇Refresh. Since the output encoding ®𝑐 of the gadget Refresh is
dominated by the input encoding ®𝑎, the input encoding ®𝑎 can also be added into the summary
𝑇Refresh of the gadget Refresh, i.e., ®𝑎 ∈ 𝑇Refresh. Thus, we have 𝑇Refresh = {®𝑎, ®𝑐}. Similarly, we can
deduce that 𝑇XOR = {®𝑎, ®𝑏} and 𝑇UMA = {(𝑡6, 𝑡8)}. □

Under-approximating the summary of composite gadgets. Let 𝐸 be the set of all the encodings
of the gadget 𝑔. To compute the summary 𝑇𝑔 of the gadget 𝑔 without inlining gadget calls when
𝑔 is a composite gadget, we define a function 𝜆 : 𝐸 → P(𝐸) such that for each encoding ®𝑎 ∈ 𝐸,
𝜆( ®𝑎) contains all the dominant encodings of the encoding ®𝑎, and moreover ®𝑎 ∈ 𝜆( ®𝑎) only if ®𝑎 is the
return of a gadget call that can generate dominant variables. Thus, it is easy to see that:
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Proposition 4.7. 𝜆(®𝑜) ∩ (𝑋𝑔
𝑒𝑛 ∪ {®𝑜}) ⊆ 𝑇𝑔, namely, the summary 𝑇𝑔 of the composite gadget can

be under-approximated by computing the function 𝜆.

Proof. According to the definition of the function 𝜆, all the dominant encodings of the output
encoding ®𝑜 are contained in 𝜆(®𝑜). Thus, the intersection of 𝜆(®𝑜) and 𝑋

𝑔
𝑒𝑛 is a set of dominant

encodings of the output encoding ®𝑜 that are formal parameters of the gadget 𝑔. Furthermore
®𝑜 ∈ 𝜆(®𝑜) only if ®𝑜 is the return of a gadget call that can generate dominant variables, thus the
gadget 𝑔 itself can generate dominant variables. The result follows from the definition of 𝑇𝑔. □

Note that 𝑋𝑔
𝑒𝑛 , the vector of all the input encodings of the gadget 𝑔, is used as a set of input

encodings in the definition of 𝑇𝑔 and Proposition 4.7.
Now the problem is how to compute 𝜆. To achieve this, we first show how to compute the

dominant encodings 𝜆( ®𝑦) of an internal encoding ®𝑦 defined by ®𝑦 = 𝑓 ( ®𝑥1, · · · , ®𝑥𝑘 ), based on the
summary𝑇𝑓 of the gadget 𝑓 and dominant encodings of the actual parameters, i.e. 𝜆( ®𝑥1), · · · , 𝜆( ®𝑥𝑘 ).
We assume that the formal parameters of the gadget 𝑓 are ®𝑏1, · · · , ®𝑏𝑘 . First, we can directly get:

Proposition 4.8. If the gadget 𝑓 can generate dominant variables, then ®𝑦 can be added into 𝜆( ®𝑦).

Proof. Let 𝜆(®𝑜) be the output encoding of the gadget 𝑓 . Suppose the gadget 𝑓 can generate
dominant variables, then ®𝑜 ∈ 𝜆(®𝑜). Since ®𝑦 = 𝑓 ( ®𝑥1, · · · , ®𝑥𝑘 ), i.e., ®𝑦 is the return of a gadget call that
can generate dominant variables, we can add ®𝑦 into 𝜆( ®𝑦). □

Example 4.9. Consider the gadget Refresh in the running example. It can generate dominant
variables (i.e., ®𝑐 ∈ 𝑇Refresh, cf. Example 4.6), thus ®𝑐 ∈ 𝜆(®𝑐). Now, consider the gadget XORMULTI in
the running example which has a gadget call to the gadget Refresh, i.e., ®𝑒 = Refresh( ®𝑎). Thus, the
encoding ®𝑒 can be added into 𝜆(®𝑒).
In contrast, the gadget XOR in the running example cannot generate dominant variables (i.e.,

®𝑐 ∉ 𝑇XOR, cf. Example 4.6). Thus, we cannot add the encoding ®𝑐 into 𝜆(®𝑐) for the gadget call statement
®𝑐 = XOR( ®𝑏, ®𝑒). □

Hereafter, by mutually independence of the encodings ®𝑥1, · · · , ®𝑥𝑘 we mean that the distributions
of all the encodings ®𝑥1, · · · , ®𝑥𝑘 are mutually independent. Note that distributions of the shares in
the same encoding can be dependent. For instance, the encodings ®𝑎 and ®𝑏 in the main gadget in
the running example are mutually independent, and the encodings ®𝑏 and ®𝑒 in the XORMULTI gadget
in the running example are mutually independent as well, while the encodings (𝑟, 𝑟 ⊕ 𝑘1) and
(𝑟, 𝑟 ⊕ 𝑘2) are not mutually independent even if 𝑟 is a random variable. We have:

Proposition 4.10. If the gadget 𝑓 can transfer dominant variables from the formal parameter ®𝑏𝑖
to its output encoding (i.e., ®𝑏𝑖 ∈ 𝑇𝑓 ) and the encodings ®𝑥1, · · · , ®𝑥𝑘 in ®𝑦 = 𝑓 ( ®𝑥1, · · · , ®𝑥𝑘 ) are mutually
independent, then ®𝑦 is dominated by the dominant encodings of ®𝑥𝑖 , namely, 𝜆( ®𝑥𝑖 ) ⊆ 𝜆( ®𝑦).

Proof. Suppose the encoding ®𝑥𝑖 is dominated by an encoding ®𝑏 and the encodings ®𝑥1, · · · , ®𝑥𝑘
are mutually independent. Since the gadget 𝑓 can transfer dominant variables from ®𝑏𝑖 to its output
encoding ®𝑜 (i.e., ®𝑏𝑖 ∈ 𝜆(®𝑜) or ®𝑏𝑖 ∈ 𝑇𝑓 ), and ®𝑦 = 𝑓 ( ®𝑥1, · · · , ®𝑥𝑘 ), we get that ®𝑦 is dominated by the
encoding ®𝑏, because the values of the encodings ®𝑥𝑖 and ®𝑏𝑖 (resp. ®𝑜 and ®𝑦) are the same. □

Remark that it is necessary to assume that the actual parameters are mutually independent in
Proposition 4.10, because if shares between different actual parameters are not mutually indepen-
dent, the computation of two such shares may not contain any dominant variables.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:20 Pengfei Gao, Fu Song, and Taolue Chen

Example 4.11. Consider the gadget XOR in the running example. It can transfer dominant variables
from the formal parameters ®𝑎 and ®𝑏 to the output encoding ®𝑐 (i.e.,𝑇XOR = {®𝑎, ®𝑏}, cf. Example 4.6). For
the gadget call statement ®𝑐 = XOR( ®𝑏, ®𝑒) in the gadget XORMULTI, the encodings ®𝑏 and ®𝑒 are mutually
independent, thus we have: 𝜆( ®𝑏) ⊆ 𝜆(𝑐) and 𝜆(®𝑒) ⊆ 𝜆(𝑐).

In contrast, for the gadget call ®𝑦 = XOR( ®𝑥1, ®𝑥2) such that ®𝑥1 = ®𝑥2, i.e., ®𝑥1 and ®𝑥2 are not mutually
independent, ®𝑦 is not a dominated encoding because the shares ®𝑦 [1] and ®𝑦 [2] of ®𝑦 are 0 even though
𝑇XOR = {®𝑎, ®𝑏}. □

To decide whether the actual parameters in a gadget call are mutually independent, we propose
a sufficient condition based on the function 𝜆. Intuitively, for the gadget call ®𝑦 = XOR( ®𝑥1, ®𝑥2), if
𝜆( ®𝑥1) = {®𝑎}, 𝜆( ®𝑥2) = {®𝑏}, and ®𝑎 and ®𝑏 are mutually independent, then ®𝑥1 and ®𝑥2 are mutually
independent as well. Formally, we have the following sufficient condition.

Sufficient condition. Let Ψ( ®𝑥1, · · · , ®𝑥𝑘 ) be a predicate which holds only if 𝜆( ®𝑥𝑖 ) ≠ ∅ for each 𝑖

and there exists a set of encodings from
⋃𝑘

𝑖=1 𝜆( ®𝑥𝑖 ), one encoding ®𝑧𝑖 per set 𝜆( ®𝑥𝑖 ), such that the
encodings ®𝑧𝑖 ’s are mutually independent.

Proposition 4.12. The encodings ®𝑥1, · · · , ®𝑥𝑘 are mutually independent if they are distinct and
either Ψ( ®𝑥1, · · · , ®𝑥𝑘 ) or ®𝑥1 ∈ 𝜆( ®𝑥1), · · · , ®𝑥𝑘 ∈ 𝜆( ®𝑥𝑘 ).

Proof. Suppose ®𝑥1, · · · , ®𝑥𝑘 are distinct encodings. On the one hand, if ®𝑥1 ∈ 𝜆( ®𝑥1), · · · , ®𝑥𝑘 ∈ 𝜆( ®𝑥𝑘 ),
then ®𝑥𝑖 must be the return of a gadget call that can generate dominant variables; meanwhile ®𝑥𝑖
and ®𝑥 𝑗 are different returns. Thus, the distributions of ®𝑥1, · · · , ®𝑥𝑘 are mutually independent. On the
other hand, if Ψ( ®𝑥1, · · · , ®𝑥𝑘 ) holds, then the distributions of ®𝑥𝑖 ’s are the same as that of encodings
®𝑧𝑖 ’s. Thus, if ®𝑧𝑖 ’s are mutually independent, then ®𝑥1, · · · , ®𝑥𝑘 are mutually independent. □

By iteratively applying Propositions 4.8 and 4.10, a function 𝜆 can be computed from which we
can under-approximate the summary𝑇𝑔 of a composite gadget 𝑔. Here, we demonstrate the general
intuition on an example, as both the function 𝜆 and summary𝑇𝑔 are computed within the algorithm
for inferring pre-conditions of composite gadgets (cf. Section 5.3).

Example 4.13. Let us consider the gadget XORMULTI in the running example. Initially, 𝜆( ®𝑎) =

𝜆( ®𝑏) = ∅.

(1) For the gadget call ®𝑒 = Refresh( ®𝑎), since Ψ( ®𝑎) does not holds and 𝑇Refresh = {®𝑎, ®𝑐} (cf.
Example 4.6), we have 𝜆(®𝑒) = {®𝑒} according to Proposition 4.8 (cf. Example 4.9).

(2) For the gadget call ®𝑐 = XOR( ®𝑏, ®𝑒), since Ψ( ®𝑏, ®𝑒) does not hold and𝑇XOR = {®𝑎, ®𝑏} (cf. Example 4.6),
we have 𝜆(®𝑐) = ∅.

(3) For the gadget call ®𝑑 = UMA(®𝑒, ®𝑐), since 𝜆(®𝑒) = {®𝑒} and 𝜆(®𝑐) = ∅, Ψ(®𝑒, ®𝑐) does not hold. As
𝑇UMA = {(𝑡6, 𝑡8)} (cf. Example 4.6), we have 𝜆( ®𝑑) = { ®𝑑} according to Proposition 4.8.

Finally, we obtain that 𝑇XORMULTI = 𝜆( ®𝑑) = { ®𝑑}, namely, the gadget XORMULTI can generate
dominant variables itself, and no dominant variables can be transferred from its parameters ®𝑎 and
®𝑏 to the output encoding. Note that in this case whether ®𝑎 and ®𝑏 are dominated encodings and
whether they are mutually independent, are unknown, thus we set 𝜆( ®𝑎) = 𝜆( ®𝑏) = ∅. If the gadget
XORMULTI is called in another gadget where 𝜆( ®𝑎) and 𝜆( ®𝑏) are nonempty, 𝜆 may have different
values (cf. Example 4.15). □
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4.3 Application of Dominated Variables
Dominated variables can help reduce the size of the pre-condition Iwhen computing I for a compos-
ite gadget. More specifically, if the actual parameters of a gadget call have random dominant encod-
ings, they have uniform distributions. Thus, when instantiating I, the corresponding formal parame-
ters can be instantiated by an empty set, rather than the actual parameters. Therefore, Proposition 3.4
can be refined as follows. Let I𝑓 = I𝑔 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 ∪ Iℎ [∅/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ for
the composite gadget 𝑓 :

𝑓 ( ®𝑥1, · · · , ®𝑥𝑚){®𝑦1 = 𝑔( ®𝑥1, · · · , ®𝑥𝑚); ®𝑧 = ℎ( ®𝑦1, ®𝑥2, · · · , ®𝑥𝑛); return ®𝑧; }

where the gadget 𝑔( ®𝑎1, · · · , ®𝑎𝑚){· · · } is I𝑔-NI and the gadget ℎ( ®𝑏1, · · · , ®𝑏𝑛){· · · } is Iℎ-NI.

Proposition 4.14. The gadget 𝑓 is I𝑓 -NI, if there exists ®𝑥 ∈ 𝜆( ®𝑦1) such that ®𝑥 ∈ 𝜆( ®𝑥).

Proof. The proof mainly follows the lines of the proof of Proposition 3.4.
Suppose ®𝑥 ∈ 𝜆( ®𝑦1) such that ®𝑥 ∈ 𝜆( ®𝑥). From ®𝑥 ∈ 𝜆( ®𝑥), we get that ®𝑥 is the return of a gadget

call which can generate dominant variables itself, namely, each share ®𝑥 [ 𝑗] of the encoding ®𝑥 is
dominated by a random variable. By Proposition 4.2, each share ®𝑥 [ 𝑗] of the encoding ®𝑥 has a
uniform distribution. Since, ®𝑥 ∈ 𝜆( ®𝑦1), we get that each share ®𝑦1 [ 𝑗] of the encoding ®𝑦1 is dominated
by a random variable and has a uniform distribution.
To prove that the gadget 𝑓 is I𝑓 -NI, it suffices to prove that every observable variable 𝑥 of 𝑓𝑖𝑛 is

𝐼 -simulatable for some variable set 𝐼 ∈ I𝑓 . We will start by examining the inlined versions of the
variables from the gadgets 𝑔 and ℎ, and then move on to the observable variables defined in the
gadget 𝑓 .

• Consider an inlined version 𝑥@ℓ𝑔 of a variable 𝑥 from the gadget 𝑔. Since the gadget 𝑔
is I𝑔-NI, there exists a variable set 𝐼 ∈ I𝑔 such that the variable 𝑥 in the gadget 𝑔 is 𝐼 -
simulatable. It implies that the variable 𝑥@ℓ𝑔 in the gadget 𝑓𝑖𝑛 is 𝐼 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔-
simulatable. The result immediately follows from the fact that 𝐼 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 ∈
I𝑔 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 ⊆ I𝑓 .

• Consider an inlined version 𝑥@ℓℎ of a variable 𝑥 from the gadget ℎ. We can get that the
variable 𝑥@ℓℎ in the gadget 𝑓𝑖𝑛 is 𝐼 [®𝑦1/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ-simulatable for 𝐼 ∈ Iℎ . More-
over, if the variable set 𝐼 does not involve any shares of the encoding ®𝑏1, then 𝑥@ℓℎ is
𝐼 [∅/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ-simulatable. Otherwise the variable set 𝐼 contains some shares
of the encoding ®𝑏1, since all the shares of the encoding ®𝑏1 have the same uniform distribution,
we can get that 𝑥@ℓℎ is 𝐼 [∅/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ-simulatable as well. The result follows
from the fact that 𝐼 [∅/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ ∈ Iℎ [∅/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ ⊆ I𝑓 .

• Consider an observable variable 𝑥 defined in the gadget 𝑓 . The variable 𝑥 must be an actual
parameter or a return value of one of the gadget call statements ®𝑦1 = 𝑔( ®𝑥1, · · · , ®𝑥𝑚) or
®𝑧 = ℎ( ®𝑦1, ®𝑥2, · · · , ®𝑥𝑛).
If 𝑥 is an actual parameter of ®𝑦1 = 𝑔( ®𝑥1, · · · , ®𝑥𝑚) or ®𝑧 = ℎ( ®𝑦1, ®𝑥2, · · · , ®𝑥𝑛), let 𝑐 be the corre-
sponding formal parameter of 𝑥 . Then the variable 𝑐 in the gadget 𝑔 is 𝐼 -simulatable for some
𝐼 ∈ I𝑔 or the variable 𝑐 in the gadgetℎ is 𝐼 -simulatable for some 𝐼 ∈ Iℎ . Similarly, if the variable
set 𝐼 does not contain any shares of the encoding ®𝑏1, we get that the variable 𝑥 in the gadget
𝑓𝑖𝑛 is 𝐼 ′-simulatable, where 𝐼 ′ is 𝐼 [®𝑥1/®𝑎1, · · · , ®𝑥𝑚/®𝑎𝑚]@ℓ𝑔 or 𝐼 [∅/®𝑏1, ®𝑥2/®𝑏2, · · · , ®𝑥𝑛/®𝑏𝑛]@ℓℎ ,
since 𝑥 and 𝑐 always have the same value. Otherwise, the shares of the encoding ®𝑏1 contained
in the variable set 𝐼 must have the same uniform distribution, we get that 𝑥 in the gadget 𝑓𝑖𝑛
is 𝐼 ′-simulatable as well.
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If 𝑥 is a return value of ®𝑦1 = 𝑔( ®𝑥1, · · · , ®𝑥𝑚) or ®𝑧 = ℎ( ®𝑦1, ®𝑥2, · · · , ®𝑥𝑛), let 𝑐 be the corresponding
return variable of 𝑥 in the gadget 𝑔 or ℎ. We have proved that the variable 𝑐@ℓ𝑔 (resp. 𝑐@ℓℎ)
in the gadget 𝑓𝑖𝑛 is 𝐼 -simulatable if 𝑐 is a return variable of 𝑔 (resp. ℎ) for some 𝐼 ∈ I𝑓 . Since 𝑥
and 𝑐 always have the same value, we get that the variable 𝑥 in the gadget 𝑓𝑖𝑛 is 𝐼 -simulatable.

This completes the proof. □

Example 4.15. Let us consider the gadget call to XORMULTI in the running example. Since ®𝑎 and
®𝑏 are return encodings of two calls to the encoding gadget (i.e., Encoding), we have: 𝜆( ®𝑎) = {®𝑎},
𝜆( ®𝑏) = {®𝑏}, and ®𝑎 and ®𝑏 are mutually independent. We show how to compute IXORMULTI in this
context.
(1) For ®𝑒 = Refresh( ®𝑎), as 𝜆( ®𝑎) = {®𝑎} and𝑇Refresh = {®𝑎, ®𝑐}, we get that Ψ( ®𝑎) holds, 𝜆(®𝑒) = {®𝑎, ®𝑒}

and IRefresh@8@4 = IRefresh [∅/®𝑎] = ∅ according to Propositions 4.8, 4.10 and 4.14.
(2) For ®𝑐 = XOR( ®𝑏, ®𝑒), as 𝜆( ®𝑏) = {®𝑏}, 𝜆(®𝑒) = {®𝑎, ®𝑒} and 𝑇XOR = {®𝑎, ®𝑏}, we get: Ψ( ®𝑏, ®𝑒) holds,

𝜆(®𝑐) = {®𝑎, ®𝑏, ®𝑒} and IXOR@9@4 = IXOR [∅/®𝑎, ∅/®𝑏] = ∅.
(3) For ®𝑑 = UMA(®𝑒, ®𝑐), as 𝜆(®𝑒) = {®𝑎, ®𝑒} and 𝜆(®𝑐) = {®𝑎, ®𝑏, ®𝑒}, we get: Ψ(®𝑒, ®𝑐) holds, 𝜆( ®𝑑) = ®𝑑 and
IUMA@10@4 = IUMA [∅/®𝑎, ∅/®𝑏] = ∅.

Finally, we obtain that IXORMULTI = ∅. Thus, XORMULTI is first-order probing secure. Compared with
the result in Example 4.13 where 𝜆( ®𝑎) = 𝜆( ®𝑏) = ∅, we only deduced that 𝜆(®𝑒) = {®𝑒} and 𝜆(®𝑐) = ∅.
Compared with the result in Example 3.5 where IXORMULTI = {{®𝑎[𝑖]}, {®𝑏 [𝑖], ®𝑒 [𝑖]}, {®𝑒 [𝑖], ®𝑐 [ 𝑗]}|1 ≤
𝑖, 𝑗 ≤ 2}, IXORMULTI turns to ∅ using the dominant variables of the actual parameters ®𝑎 and ®𝑏. □

5 ALGORITHMIC VERIFICATION
In this section, we first present a sound proof system for checking simulatability. Then we introduce
algorithms to infer pre-conditions for simple gadgets and composite gadgets by utilizing the proof
system and composition rules.

5.1 A Sound Proof System for Checking Simulatability
We first show how to use random dominant variables to simplify computations which is leveraged
to derive valid judgements in our proof system. Given a sub-expression 𝑒 ∈ Sub(𝑥) and a random
variable 𝑟 ∈ Var(E(𝑥)), let 𝑥 [𝑟/𝑒] denote the new variable 𝑥 ′ such that E(𝑥 ′) is obtained by
replacing 𝑒 by 𝑟 in E(𝑥). (Note that Sub(𝑥) denotes the set of the sub-expressions of E(𝑥).) For
each sub-expression 𝑒 ∈ Sub(𝑥), if 𝑟 ∈ DomR(𝑒) and 𝑟 does not occur anywhere else in E(𝑥), 𝑥 can

be simplified to 𝑥 ′ = 𝑥 [𝑟/𝑒], denoted as 𝑥
(𝑒,𝑟 )
−→ 𝑥 ′. This process can be repeated until there does not

exist such random dominant variable 𝑟 and sub-expression 𝑒 . By Proposition 4.2, 𝑥 is 𝐼 -simulatable
iff 𝑥 ′ is 𝐼 -simulatable.

𝑥 ∈ 𝐼 ∨ Var(E(𝑥)) ⊆ 𝐼 ∪ 𝑋
𝑓in
𝑟

⊢ 𝐼 { 𝑥
(Supp)

𝑥
(𝑒,𝑟 )
−→ 𝑥 ′ ⊢ 𝐼 { 𝑥 ′

⊢ 𝐼 { 𝑥
(Dom)

Fig. 6. Proof rules.

Given a gadget 𝑓 , the judgment is in the form of

⊢ 𝐼 { 𝑥

where 𝐼 ⊆ 𝑋
𝑓
𝑎 ∪ 𝑋 𝑓𝑖𝑛 and 𝑥 ∈ 𝑋 𝑓𝑖𝑛 . The judgment ⊢ 𝐼 { 𝑥 is valid iff the variable 𝑥 in the gadget 𝑓

is 𝐼 -simulatable.
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Fig. 6 shows two proof rules for deriving valid judgment ⊢ 𝐼 { 𝑥 . The first rule (i.e. Supp)
exploits syntactic information and states that if the variable 𝑥 is in 𝐼 or the support variables of
E(𝑥) are either random variables or in 𝐼 , then ⊢ 𝐼 { 𝑥 is valid. Another rule (i.e. Dom) makes
use of semantic information. If a variable 𝑥 can be simplified to 𝑥 ′ using the random dominant
variable 𝑟 and ⊢ 𝐼 { 𝑥 ′ is valid, then ⊢ 𝐼 { 𝑥 is valid. This proof system will be used to prove I-NI
of simple gadgets in the next subsection.

Theorem 5.1. If ⊢ 𝐼 { 𝑥 can be derived by the proof system, then the variable 𝑥 in the gadget 𝑓 is
𝐼 -simulatable..

Proof. It suffices to prove the soundness of the above two rules.
• Rule (Supp). Suppose the premise 𝑥 ∈ 𝐼 ∨ Var(E(𝑥)) ⊆ 𝐼 ∪ 𝑋

𝑓in
𝑟 holds. If 𝑥 ∈ 𝐼 , since 𝑥 is

𝑥-simulatable, by Proposition 2.3, we get that 𝑥 is 𝐼 -simulatable. If Var(E(𝑥)) ⊆ 𝐼 ∪𝑋
𝑓in
𝑟 , then

the values of the variables in Var(E(𝑥)) \𝑋 𝑓in
𝑟 can be directly obtained from the values of the

variables in 𝐼 . Since the values of the variables in Var(E(𝑥)) ∩ 𝑋
𝑓in
𝑟 are uniformly sampled,

knowing the values of 𝐼 suffices to simulate the distribution of 𝑥 , hence 𝑥 is 𝐼 -simulatable.

• Rule (Dom). Suppose 𝑥
(𝑒,𝑟 )
−→ 𝑥 ′. By Proposition 4.2, we have: 𝑥 is 𝐼 -simulatable iff 𝑥 ′ is

𝐼 -simulatable. The result immediately follows.
We conclude the proof. □

Example 5.2. Consider the gadget UMA in the running example. From E(𝑡1) = ®𝑎[1] ⊙ ®𝑏 [1], E(𝑡2) =
®𝑎[2] ⊙ ®𝑏 [2], E(𝑡3) = ®𝑎[1] ⊙ ®𝑏 [2], and E(𝑡4) = ®𝑎[2] ⊙ ®𝑏 [1], by applying Rule (Supp), we can deduce
that ⊢ {®𝑎[1], ®𝑏 [1]} { 𝑡1, ⊢ {®𝑎[2], ®𝑏 [2]} { 𝑡2, ⊢ {®𝑎[1], ®𝑏 [2]} { 𝑡3, and ⊢ {®𝑎[2], ®𝑏 [1]} { 𝑡4 are
valid, thus 𝑡1 is {®𝑎[1], ®𝑏 [1]}-simulatable, 𝑡2 is {®𝑎[2], ®𝑏 [2]}-simulatable, 𝑡3 is {®𝑎[1], ®𝑏 [2]}-simulatable,
and 𝑡4 is {®𝑎[2], ®𝑏 [1]}-simulatable.

Consider a variable 𝑥 such that E(𝑥) = (𝑎⊕𝑟1⊕𝑟2)⊙ (𝑏⊕𝑟1), where 𝑟1 and 𝑟2 are random variables.
Without applying Rule (Dom), we can only deduce that 𝑥 is {𝑎, 𝑏}-simulatable. By applying Rule
(Dom), the sub-expression (𝑎 ⊕ 𝑟1 ⊕ 𝑟2) can be replaced by the random variable 𝑟2, leading to the
simplified expression E(𝑥 ′) = 𝑟2 ⊙ (𝑏 ⊕ 𝑟1), which further can be simplified to E(𝑥 ′′) = 𝑟2 ⊙ 𝑟1.
Obviously, ⊢ ∅ { 𝑥 ′′ is valid, thus we deduce that all of 𝑥 , 𝑥 ′ and 𝑥 ′′ are ∅-simulatable. □

5.2 Inferring Pre-conditions of Simple Gadgets
Algorithm 1 shows how to infer pre-conditions I for simple gadgets by leveraging the sound proof
system to check simulatability. SGadget takes a simple gadget 𝑓 as input, and outputs (I,𝑇 ) such
that 𝑓 is I-NI and 𝑇 is the summary of the gadget 𝑓 . We use the mapping storedInfo to store
the checking results. Thus, if storedInfo(𝑓 ) exists, it immediately returns the result stored in
storedInfo. Otherwise, it computes (I, 𝑇 ) for the gadget 𝑓 .
The pre-condition I is initialized (Line 6) by the following set

{𝐼 | 𝐼 = Var(E(𝑥)) ⊆ 𝑋
𝑓
𝑎 ∧ 𝑥 ∈ 𝑋

𝑓
𝑎 ∪ 𝑋 𝑓 }.

Intuitively, the computation E(𝑥) of a variable 𝑥 whose support variables are all the shares of
input encodings cannot be simplified. Thus, 𝐼 = Var(E(𝑥)) should be added into the pre-condition
I. After initializing I, to keep I as small as possible, if there exists a set 𝐼 ∈ I such that 𝐼 is the
subset of 𝐼 ′ ∈ I, then 𝐼 is removed from I (Line 8). For each variable 𝑥 ∈ 𝑋 𝑓 , if there does not
exist 𝐼 ∈ I such that ⊢ 𝐼 { 𝑥 is valid via our proof rules, the set {𝑥} is directly added into the
pre-condition I (Lines 9–11). Next, it checks whether 𝑓 can transfer dominant variables from the
input encoding ®𝑎𝑖 to the output encoding ®𝑜 for each ®𝑎𝑖 ∈ {®𝑎1, ®𝑎2, · · · , ®𝑎𝑚}. By Definition 4.4, if 𝑓
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Algorithm 1 Checking simple gadget
1: procedure SGadget(𝑓 )
2: if storedInfo(𝑓 ) exists then
3: return storedInfo(𝑓 )
4: Let ®𝑎1, ®𝑎2, · · · , ®𝑎𝑚 be the formal parameters of 𝑓
5: Let ®𝑜 be the output encoding of 𝑓
6: I = {𝐼 | 𝐼 = Var(E(𝑥)) ⊆ 𝑋

𝑓
𝑎 ∧ 𝑥 ∈ (𝑋 𝑓

𝑎 ∪ 𝑋 𝑓 )}
7: 𝑇 = ∅
8: I = I \ {𝐼 ∈ I | ∃𝐼 ′ ∈ I.𝐼 ⊂ 𝐼 ′}
9: for each variable 𝑥 ∈ 𝑋 𝑓 do
10: if �𝐼 ∈ I 𝑠 .𝑡 . ⊢ 𝐼 { 𝑥 then
11: I = I ∪ {{𝑥}}
12: for each ®𝑎𝑖 ∈ {®𝑎1, ®𝑎2, · · · , ®𝑎𝑚} do
13: if 𝑓 can transfer dominant variables from ®𝑎𝑖 to ®𝑜 then
14: 𝑇 = 𝑇 ∪ {®𝑎𝑖 }
15: if 𝑓 can generates dominant variables then
16: 𝑇 = 𝑇 ∪ {®𝑜}
17: storedInfo(𝑓 ) = (I,𝑇 )
18: return (I,𝑇 )

can transfer dominant variables from ®𝑎𝑖 to the output encoding ®𝑜 , the input encoding ®𝑎𝑖 is added
into the summary 𝑇 (Lines 12–14). Whether the input encoding ®𝑎𝑖 can transfer dominant variables
to the output encoding ®𝑜 is checked according to Definition 4.1, aimed with the simplification

𝑥
(𝑒,𝑟 )
−→ 𝑥 ′. By Definition 4.5, if 𝑓 can generate dominant variables itself, the output encoding ®𝑜

is added into the summary 𝑇 (Lines 15–16). Whether 𝑓 can generate dominant variables itself is
checked easily by checking if ⊢ ∅ { ®𝑜 [ 𝑗 ′] is valid for each share ®𝑜 [ 𝑗 ′] of the output encoding ®𝑜 .
Finally, the result (I,𝑇 ) is stored in storedInfo and then returned. It is easy to see that 𝑓 is I-NI
and 𝑇 is the summary of 𝑓 .

Example 5.3. Consider the simple gadget Refresh in the running example. Algorithm 1 first
initializes the set I as {{®𝑎[1]}, {®𝑎[2]}} at Line 6. The set I cannot be simplified at Line 8. At Lines 9–
11, the proof system will prove that ⊢ ∅ { ®𝑐 [1] and ⊢ ∅ { ®𝑐 [2] are valid, thus neither ®𝑐 [1] nor ®𝑐 [2]
is added into the set I. At Lines 12–14, the input encoding ®𝑎 is added into the summary 𝑇 , because
the share ®𝑐 [𝑖] of the encoding ®𝑐 is dominated by only the share ®𝑎[𝑖] of the input encoding ®𝑎 for
𝑖 = 1, 2. At Lines 15–16, the output encoding ®𝑐 is added into the summary 𝑇 , because ⊢ ∅ { ®𝑐 [1]
and ⊢ ∅ { ®𝑐 [2] are valid. Finally, Algorithm 1 returns the pair ({{®𝑎[1]}, {®𝑎[2]}}, {®𝑎, ®𝑐}).
Consider the gadget XOR in the running example. Algorithm 1 first initializes the set I as

{{®𝑎[1]}, {®𝑎[2]}, {®𝑏 [1]}, {®𝑏 [2]}, {®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}} at Line 6. At Line 8, the set I is simplified
to {{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}}. At Lines 9–11, the proof systemwill prove that ⊢ {®𝑎[1], ®𝑏 [1]} { ®𝑐 [1]
and ⊢ {®𝑎[2], ®𝑏 [2]} { ®𝑐 [2] are valid, thus neither ®𝑐 [1] nor ®𝑐 [2] is added into the set I. At Lines 12–14,
the input encodings ®𝑎 and ®𝑏 are added into the summary 𝑇 , because the share ®𝑐 [𝑖] of the encoding
®𝑐 is dominated by only the share ®𝑎[𝑖] of ®𝑎 and the share ®𝑏 [𝑖] of ®𝑏 for 𝑖 = 1, 2. At Lines 15–16,
the output encoding ®𝑐 cannot be added into the summary 𝑇 , because neither ⊢ ∅ { ®𝑐 [1] nor
⊢ ∅ { ®𝑐 [2] is valid. Finally, Algorithm 1 returns the pair ({{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}}, {®𝑎, ®𝑏}).
Similarly, Algorithm 1 returns ({{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}, {®𝑎[1], ®𝑏 [2]}, {®𝑎[2], ®𝑏 [1]}}, {(𝑡6, 𝑡8)})

for the gadget UMA.
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Algorithm 2 Checking composite gadget
1: procedure Gadget(𝑓 , 𝜆)
2: if 𝑓 is a simple gadget then (I,𝑇 ) =SGadget(𝑓 )
3: else (I,𝑇 ) =CGadget(𝑓 , 𝜆)
4: return (I,𝑇 )
5: procedure CGadget(𝑓 , 𝜆)
6: if storedInfo(𝑓 , 𝜆) exists then
7: return storedInfo(𝑓 , 𝜆)
8: I = ∅
9: 𝜆1 = 𝜆

10: Let ®𝑎1, ®𝑎2, · · · , ®𝑎𝑛 be the formal parameters of 𝑓
11: Let ®𝑜1 be the output encoding of 𝑓
12: for each gadget call ®𝑦 = 𝑔( ®𝑥1, ®𝑥2, · · · , ®𝑥𝑚) at ℓ𝑔 from the first to the last do
13: Let ®𝑏1, · · · , ®𝑏𝑚 be the formal parameters of 𝑔
14: Let ®𝑜2 be the output encoding of 𝑔
15: for 𝑖 ∈ {1, · · · ,𝑚} do
16: if ∃®𝑥 ∈ 𝜆( ®𝑥𝑖 ) ∩ 𝜆( ®𝑥) then 𝜆′ ( ®𝑏𝑖 ) = {®𝑏𝑖 }
17: else 𝜆′ ( ®𝑏𝑖 ) = ∅
18: (I′,𝑇 ′) = Gadget(𝑔, 𝜆′)
19: if ®𝑥1, · · · , ®𝑥𝑚 are distinct then
20: if Ψ( ®𝑥1, ..., ®𝑥𝑚) or ®𝑥1 ∈ 𝜆( ®𝑥1), ..., ®𝑥𝑚 ∈ 𝜆( ®𝑥𝑚) then
21: for 𝑖 ∈ {1, ...,𝑚} do
22: if ®𝑏𝑖 ∈ 𝑇 ′ then 𝜆( ®𝑦) = 𝜆( ®𝑦) ∪ 𝜆( ®𝑥𝑖 )
23: if ®𝑜2 ∈ 𝑇 ′ then
24: 𝜆( ®𝑦) = 𝜆( ®𝑦) ∪ {®𝑦}
25: for 𝑖 ∈ {1, · · · ,𝑚} do
26: ®𝑥 ′

𝑖
= (∃®𝑥 ∈ 𝜆( ®𝑥𝑖 ) ∩ 𝜆( ®𝑥) ? ∅ : ®𝑥𝑖 )

27: I = I ∪ I′ [®𝑥 ′1/®𝑏1, · · · , ®𝑥
′
𝑚/®𝑏𝑚]@ℓ𝑔

28: 𝑇 = 𝜆(®𝑜1)
29: if 𝑇 \ {®𝑎1, ®𝑎2, · · · , ®𝑎𝑛, ®𝑜1} ≠ ∅ then
30: 𝑇 = (𝑇 ∩ {®𝑎1, ®𝑎2, · · · , ®𝑎𝑛, ®𝑜1}) ∪ {®𝑜1}
31: storedInfo(𝑓 , 𝜆1) = (I,𝑇 )
32: return (I,𝑇 )

These results are consistent with the ones given in Example 3.3, namely, Refresh is IRefresh-NI,
XOR is IXOR-NI and UMA is IUMA-NI, where

• IRefresh = {{®𝑎[1]}, {®𝑎[2]}};
• IXOR = {{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}};
• IUMA = {{®𝑎[1], ®𝑏 [1]}, {®𝑎[2], ®𝑏 [2]}, {®𝑎[1], ®𝑏 [2]}, {®𝑎[2], ®𝑏 [1]}}. □

5.3 Inferring Pre-conditions for Composite Gadgets
We propose two procedures Gadget and CGadget in Algorithm 2, where the procedure Gadget
takes a gadget 𝑓 and a function 𝜆 as input and outputs the result (I,𝑇 ) such that 𝑓 is I-NI and
𝑇 is the summary of the gadget 𝑓 . If 𝑓 is a simple gadget, then the procedure Gadget calls the
procedure SGadget at Line 2 (cf. Algorithm 1) and returns the result immediately. Otherwise,
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it calls the procedure CGadget at Line 3 which takes a composite gadget 𝑓 and 𝜆 as input and
outputs (I,𝑇 ) such that the gadget 𝑓 is I-NI and 𝑇 is the summary of the gadget 𝑓 .

Recall that 𝜆 is a function used for computing summaries of gadgets (cf. Section 4.2.2). For each
encoding ®𝑎, 𝜆( ®𝑎) contains all the dominant encodings of ®𝑎, and moreover ®𝑎 ∈ 𝜆( ®𝑎) only if ®𝑎 is the
return of a gadget call that can generate dominant variables. However, 𝜆 is unknown in advance,
thus we will compute the function 𝜆 during analysis for each composite gadget. We also use the
mapping storedInfo to store the checking result, namely storedInfo(𝑓 , 𝜆) records the result of
CGadget(𝑓 , 𝜆), where 𝜆 initially contains only the dominant encodings of the formal parameters
of the gadget 𝑓 and thus can be seen as the calling context of the gadget 𝑓 . We note that the
same gadget may be called multiple times with different calling contexts, thus 𝜆 is involved in
storedInfo.

The procedure CGadget first checks if storedInfo(𝑓 , 𝜆) exists or not, it returns storedInfo(𝑓 , 𝜆)
if it exists (Line 7). Otherwise, it reasons about the gadget 𝑓 with the function 𝜆. First, the pre-
condition I is set to ∅ (Line 8) and 𝜆1 is set to 𝜆 as a backup of calling context 𝜆 (Line 9). For each
gadget call ®𝑦 = 𝑔( ®𝑥1, ®𝑥2, · · · , ®𝑥𝑚) at call-site ℓ𝑔, it computes the calling context 𝜆′ based on 𝜆( ®𝑥𝑖 )
(Lines 15–17), namely, for each formal parameter ®𝑏𝑖 , 𝜆′ ( ®𝑏𝑖 ) is {®𝑏𝑖 } if ∃®𝑥 ∈ 𝜆( ®𝑥𝑖 ) ∩𝜆( ®𝑥), otherwise ∅,
where ®𝑥 ∈ 𝜆( ®𝑥𝑖 ) indicates that the actual parameter ®𝑥𝑖 is dominated by the encoding ®𝑥 and ®𝑥 ∈ 𝜆( ®𝑥)
indicates that ®𝑥 is the return of a gadget call to a gadget that generates dominant variables.
After constructing 𝜆′, the result (I′,𝑇 ′) of the gadget 𝑔 under 𝜆′ is obtained by invoking

Gadget(𝑔, 𝜆′) (Line 18). Then, by Proposition 4.10, if ®𝑥1, · · · , ®𝑥𝑚 are mutually independent and
(either Ψ( ®𝑥1, · · · , ®𝑥𝑚) holds or ®𝑥1 ∈ 𝜆( ®𝑥1), · · · , ®𝑥𝑚 ∈ 𝜆( ®𝑥𝑚)), for each formal parameter ®𝑏𝑖 ∈ 𝑇 ′,
the set 𝜆( ®𝑥𝑖 ) is merged into 𝜆( ®𝑦) (Line 22). Next, by Proposition 4.8, if 𝑔 can generate dominant
variables itself, i.e., ®𝑜2 ∈ 𝑇 ′, ®𝑦 is added into 𝜆( ®𝑦) too (Line 24). After that, the pre-condition I is
computed following Proposition 4.14 (Line 27).

After computing I, it continues to compute the summary𝑇 of the gadget 𝑓 which is initialized as
𝜆(®𝑜1). To ensure that 𝑇 ⊆ 𝑋

𝑓
𝑒𝑛 ∪ {®𝑜1}, it removes all the internal encodings of 𝑓 from the summary

𝑇 and uses ®𝑜1 to indicate that 𝑓 can generate dominant variables itself (cf. Proposition 4.7). Finally,
the result (I,𝑇 ) is stored in storedInfo and returned. Note that after computing I, 𝜆 has been
updated. Thus, we use its backup 𝜆1 to store the result (Line 31).

Theorem 5.4. Given a program 𝑃 with the main gadget

main(𝑎1, · · · , 𝑎𝑚){enstmt+ gstmt+ return ®𝑏; },

let 𝑔 be the gadget 𝑔( ®𝑎1, · · · , ®𝑎𝑚){gstmt+ return ®𝑏; } with the same gadget calls gstmt+ as main,
where ®𝑎1, · · · , ®𝑎𝑚 are the encodings of 𝑎1, · · · , 𝑎𝑚 via calling an encoding gadget (e.g., Encoding).
Let 𝜆 be a function such that 𝜆( ®𝑎𝑖 ) = {®𝑎𝑖 } for ®𝑎𝑖 ∈ {®𝑎1, · · · , ®𝑎𝑚}. If (I,𝑇 ) =Gadget(𝑔, 𝜆) and each
variable set 𝐼 ∈ I is 𝑋𝑝 -simulatable, then 𝑃 is first-order probing secure.

Proof. Since (I,𝑇 ) =Gadget(𝑔, 𝜆), we get that 𝑔 is I-NI. The result immediately follows from
Proposition 3.2 and the fact that ®𝑎1, · · · , ®𝑎𝑚 are the encodings of 𝑎1, · · · , 𝑎𝑚 via calling an encoding
gadget (e.g., Encoding). □

Example 5.5. Consider the composite gadget XORMULTI in the running example which is called
in the main gadget. Procedure CGadget in Algorithm 2 is invoked for the gadget XORMULTI with
𝜆( ®𝑎) = {®𝑎} and 𝜆( ®𝑏) = {®𝑏}. During the for-loop at Lines 12–27, the gadget call ®𝑒 = Refresh( ®𝑎) is
firstly processed as follows:

• Since 𝜆( ®𝑎) = {®𝑎}, we have: 𝜆′ ( ®𝑎) = {®𝑎} at Lines 15–17.
• The pair ({{®𝑎[1]}, {®𝑎[2]}}, {®𝑎, ®𝑐}) is returned at Line 18 (cf. Example 5.3).
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• Since 𝜆( ®𝑎) = {®𝑎} and ®𝑎 ∈ 𝑇 ′ = {®𝑎, ®𝑐}, 𝜆(®𝑒) is set to 𝜆(®𝑒) ∪ 𝜆( ®𝑎), that is {®𝑎}, at Line 22.
• Since ®𝑐 ∈ 𝑇 ′ = {®𝑎, ®𝑐}, {®𝑒} is added into 𝜆(®𝑒), leading to 𝜆(®𝑒) = {®𝑎, ®𝑒} at Line 24.
• Since 𝜆( ®𝑎) = {®𝑎}, ®𝑥 ′𝑖 is set to ∅ at Line 26.
• Finally, I is set to I ∪ {{®𝑎[1]}, {®𝑎[2]}}[∅/®𝑎]@ℓ𝑔 that is ∅ at Line 27

Later, the gadget calls ®𝑒 = Refresh( ®𝑎), ®𝑐 = XOR( ®𝑏, ®𝑒) and ®𝑑 = UMA(®𝑒, ®𝑐) are iteratively processed
similar to the gadget call ®𝑒 = Refresh( ®𝑎). At the exit of the for-loop at Lines 12–27, I is still ∅ and
𝜆( ®𝑑) = { ®𝑑}. Finally, procedure CGadget returns the pair (∅, {𝑑}).

This result is consistent with the one given in Example 4.15, namely, XORMULTI is ∅-NI. □

We remark that pre-conditions of both simple and composite gadgets can always be successfully
and automatically computed without inlining gadget calls and user interactions. However, techni-
cally speaking, in the worst case, the pre-condition of a simple gadget 𝑔 may contain all the input
parameters and internal variables. For instance, if the computation E(𝑥) of each internal variable 𝑥
uses some random variables but is not dominated by any random variables, then I = {{𝑎} | 𝑎 ∈ 𝑋

𝑔
𝑎 }

at Line 6 of Algorithm 1 and further the sets {𝑥} for all 𝑥 ∈ 𝑋𝑔 will be added into the set I at Lines 9–
11 of Algorithm 1. Hence, the set I′ obtained at Line 18 of Algorithm 2 will be {{𝑥} | 𝑥 ∈ 𝑋

𝑔
𝑎 ∪ 𝑋𝑔}.

If the worst case occurs for all the simple gadgets, the pre-condition I of a composite gadget 𝑓 will
contain all the input parameters and internal variables of its inlined version 𝑓𝑖𝑛 , which is the same
as that the pre-condition of 𝑓 is computed on the inlined version 𝑓𝑖𝑛 . We should emphasize that the
worst-case never occurs in our experiments, because the computations E(𝑥) of internal variables
typically either depend only on input parameters (in this case Var(E(𝑥)) ⊆ 𝑋

𝑓
𝑎 is added into the

set I at Line 6 of Algorithm 1) or are perfectly masked by XORing random variables (in this case
⊢ ∅ { 𝑥 is valid at Lines 9–11 of Algorithm 1 and {𝑥} will not be added into I).

6 EXPERIMENTS
We have implemented our approach in a tool named MaskCV. Given a masked program and its
security type annotation of input parameters, MaskCV first preprocesses the program by unfolding
bounded for-loops and transforming into an intermediate representation in SSA form, then infers
pre-conditions and verifies first-order probing security, all of which are done automatically without
any user interactions. In this section, we thoroughly evaluate MaskCV focusing on the following
research questions:
RQ1: How efficient is our approach compared to the state-of-the-art approaches?
RQ2: How effective are the dominated variables?

We mainly use the publicly avaiable benchmarks from QMVerif [53], i.e., 10 versions of masked
implementations of arithmetic AES Sbox and 10 corresponding masked implementations of full
AES. We also implement two versions of bitsliced AES Sbox. The bitsliced AES Sbox was originally
proposed in [57] which contains multiple gadget calls to the Refresh gadget. Later Belaid et al. [18]
proved that the bitsliced AES Sbox is still secure if all the calls to the Refresh gadget are removed,
leading to an efficient and tight bitsliced AES Sbox in terms of gadget calls to the Refresh gadget.
Moreover, we notice that the efficiency in terms of the randomness of the tight bitsliced AES Sbox
can be improved further by replacing the calls to the SecMult gadget by more efficient secure
gadgets, i.e., Para [11] and Comp [14]. Thus, we construct two implementations of bitsliced AES
Sbox bitslicedSbox1 and bitslicedSbox2 by replacing the calls to SecMult by Comp and Para,
respectively. We remark that the first-order security of all those benchmarks cannot be verified by
any of the existing compositional verifiers though some of them support the verification of higher-
order security, except for QMVerif. Details of the benchmarks are shown in Table 2, including the
number of gadgets, the number of gadget calls and the size of annotations used for QMVerif.
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Table 2. Basic Information of benchmarks

Name ♯Gadgets ♯Gadget calls ♯Annotations for QMVerif
Sbox1 10 14 18
Sbox2 10 14 18
Sbox3 11 12 22
Sbox4 11 12 22
Sbox5 10 14 30
Sbox6 10 14 30
Sbox7 10 14 30
Sbox8 10 14 30
Sbox9 11 12 34
Sbox10 11 12 34
AES1 20 3,433 178
AES2 20 3,433 146
AES3 21 3,033 152
AES4 21 3,033 150
AES5 20 3,433 206
AES6 20 3,433 206
AES7 20 3,433 206
AES8 20 3,433 206
AES9 21 3,033 228
AES10 21 3,033 228

bitslicedSbox1 5 125 78
bitslicedSbox2 5 125 78

All experiments were conducted on a server with Ubuntu 16.04, Intel(R) Xeon(R) CPU E5-2690
v4@2.60GHz and 256GB RAM. The reported verification time includes all the computation times for
preprocessing, determining dominated variables, computing pre-conditions and verifying first-order
probing security based on pre-conditions.
RQ1.We compare with the state-of-the-art compositional verifier QMVerif and the state-of-the-art
non-compositional ones LeakageVerif [77] and SILVER [69], where LeakageVerif uses symbolic
analysis and SILVER is based on BDD analysis. Note that SILVER only supports Boolean programs,
thus, we evaluate it only on Boolean programs (i.e., bitslicedSbox1 and bitslicedSbox2) and
mark N/A on arithmetic programs. All the tools QMVerif, LeakageVerif, SILVER and MaskCV
need loop unfolding and all bounded loops are automatically unfolded. QMVerif, SILVER and
MaskCV require the SSA form and support automatically SSA transformation, while LeakageVerif
does not need the SSA form.

The results are shown in Table 3, in which T.O. stands for “time-out” (6 hours) and O.O.M. stands
for “out of memory”. Column 1 shows the benchmark name; Column 2 shows the verification
result; Column 3 and Column 4 (resp. Column 5 and Column 6) show the verification time in
seconds (s) and number of variables checked by QMVerif without pre-conditions (resp. with all the
pre-conditions); Columns 7 and 8 show the verification time and the number of variables checked
by LeakageVerif; Column 9 shows the verification time of SILVER. Column 10 and 11 show the
verification time and number of variables checked by MaskCV with dominated variables (that are
the variables checked at Lines 9–11 in Algorithm 1 and variables of the pre-condition 𝐼 used for
checking first-order probing security of the program). Recall that the verification time reported in
Table 3 includes all the computation times for preprocessing, determining dominated variables,
computing pre-conditions and verifying first-order probing security based on pre-conditions. Since
MaskCV is able to solve each benchmark in no more than 0.04 seconds, we did not report the
individual computational time for each step.
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Table 3. Results of comparison with Existing Approaches, where Time(s) denotes the overall verification time
in seconds (s), T.O. denotes time-out (6 hours), O.O.M. denotes out of memory, and ♯checked denotes the
number of checked variables

Name Result
QMVerif [53]

LeakageVerif [77] SILVER [69] MaskCVWithout Pre-conditions With Pre-conditions
Time(s) ♯checked Time(s) ♯checked Time(s) ♯checked Time(s) Time(s) ♯checked

Sbox1 ✓ 0.01 46 0.01 19 0.04 51 N/A 0.01 22
Sbox2 ✓ 0.01 50 0.01 19 0.07 43 N/A 0.01 23
Sbox3 ✓ 0.01 70 0.01 60 0.08 65 N/A 0.01 68
Sbox4 ✓ 0.01 68 0.01 60 0.09 69 N/A 0.01 67
Sbox5 ✓ 0.01 110 0.01 42 0.15 115 N/A 0.01 45
Sbox6 ✓ 0.01 122 0.01 42 0.10 103 N/A 0.01 48
Sbox7 ✓ 0.01 118 0.01 50 0.17 167 N/A 0.01 48
Sbox8 ✓ 0.01 130 0.01 50 0.19 173 N/A 0.01 51
Sbox9 ✓ 0.01 178 0.01 150 0.16 162 N/A 0.01 174
Sbox10 ✓ 0.01 172 0.01 150 0.16 162 N/A 0.01 171
AES1 ✓ 315 11,142 0.10 2,182 559 10,706 N/A 0.02 29
AES2 ✓ 197 11,942 0.10 2,183 561 10,706 N/A 0.02 30
AES3 ✓ 559 15,942 0.10 2,393 1,836 14,706 N/A 0.02 75
AES4 ✓ 560 15,542 0.10 2,392 2,144 14,706 N/A 0.02 74
AES5 ✓ 2,670 24,724 0.40 4,214 T.O. N/A N/A 0.03 55
AES6 ✓ 3,505 27,124 0.40 4,214 T.O. N/A N/A 0.03 58
AES7 ✓ 2,933 26,324 0.50 4,430 T.O. N/A N/A 0.03 58
AES8 ✓ 3,130 28,724 0.50 4,430 T.O. N/A N/A 0.03 61
AES9 ✓ 2,929 38,324 0.20 3,786 O.O.M. N/A N/A 0.03 184
AES10 ✓ 3,064 37,124 0.20 3,786 O.O.M. N/A N/A 0.04 181

bitslicedSbox1 ✓ 0.02 961 0.02 451 9.30 873 O.O.M. 0.01 27
bitslicedSbox2 ✓ 0.02 1,057 0.02 453 8.47 937 T.O. 0.01 30

We can observe that both MaskCV and QMVerif are able to prove all those benchmarks. But,
MaskCV is significantly more efficient than QMVerif without pre-conditions on large benchmarks
that have a large number of gadget calls (e.g., AES1–AES10) while is comparable or slightly better
when all the pre-conditions are provided to QMVerif. This indicates the effectiveness of our pre-
condition inference approach. By comparing the number of checked variables using QMVerif with
and without user-provided pre-conditions, the number of checked variables (thus the verification
time) is significantly reduced with user-provided pre-conditions. It is because a gadget call needs
not be inlined if the user-provided pre-condition is satisfied by the actual parameters of the gadget
call (but has to be inlined if the user-provided pre-condition is not satisfied by the actual parameters
of the gadget call). Our tool MaskCV automatically infers pre-conditions of all the gadgets, thus
needs not check whether the inferred pre-conditions are satisfied by the actual parameters of the
gadget calls, which further reduces the number of checked variables. Thus, MaskCV is comparable
or slightly better than QMVerif with all the pre-conditions, and significantly more efficient than
QMVerif without the pre-conditions on large benchmarks. We should emphasize that MaskCV is
much easier to use as it is fully automatic whereas QMVerif needs user-provided pre-conditions
to be efficient.
Compared with the state-of-the-art non-compositional verifiers LeakageVerif and SILVER,

MaskCV is more efficient, in particular, on large benchmarks (e.g., AES1–AES10). The reason is
that LeakageVerif checks all the observable variables after inlining gadget calls and the number
of observable variables increases quickly (exponentially in the worst case) after inlining gadget
calls, while MaskCV can directly verify composite gadgets without inlining them. SILVER fails to
verify both bitslicedSbox1 and bitslicedSbox2 because it fails to construct the BDD models
due to the large number of observable variables and the large size of computations.
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Table 4. Results of MaskCV with and without leveraging dominated variables, where ♯Gadgets denotes the
number of the gadgets, ♯G-Gadgets denotes the number of the gadgets that can generate dominant variables,
♯T-Gadgets denotes the number of the gadgets that can transfer dominant variables, ♯G&T-Gadgets denotes
the number of the gadgets that can both generate and transfer dominant variables, and |I| denotes the size of
the pre-condition of the program on which the first-order probing security is verified.

Name ♯Gadgets ♯G-Gadgets ♯T-Gadgets ♯G&T-Gadgets With Dom Without Dom
Time(s) |I| ♯checked Time(s) |I| ♯checked

Sbox1 10 5 7 3 0.01 0 22 0.01 28 66
Sbox2 10 5 7 3 0.01 0 23 0.01 28 67
Sbox3 11 6 6 2 0.01 0 68 0.01 20 96
Sbox4 11 6 6 2 0.01 0 67 0.01 20 95
Sbox5 10 5 7 3 0.01 0 45 0.01 54 135
Sbox6 10 5 7 3 0.01 0 48 0.01 54 138
Sbox7 10 5 7 3 0.01 0 48 0.01 54 138
Sbox8 10 5 7 3 0.01 0 51 0.01 54 141
Sbox9 11 6 6 2 0.01 0 174 0.01 36 228
Sbox10 11 6 6 2 0.01 0 171 0.01 36 225
AES1 20 8 13 5 0.02 0 29 60 7,836 12,673
AES2 20 8 13 5 0.02 0 30 48 7,836 12,674
AES3 21 9 12 4 0.02 0 75 51 6,236 9,519
AES4 21 9 12 4 0.02 0 74 55 6,236 9,518
AES5 20 8 13 5 0.03 0 55 262 14,154 23,821
AES6 20 8 13 5 0.03 0 58 262 14,154 23,824
AES7 20 8 13 5 0.03 0 58 266 14,154 23,824
AES8 20 8 13 5 0.03 0 61 284 14,154 23,827
AES9 21 9 12 4 0.03 0 184 211 10,554 16,750
AES10 21 9 12 4 0.04 0 181 236 10,554 16,747

bitslicedSbox1 5 3 2 1 0.01 0 27 0.38 537 1,101
bitslicedSbox2 5 3 2 1 0.01 0 30 0.37 537 1,104

Answer to RQ1: Our method is significantly more efficient than the state-of-the-art non-
compositional approaches and state-of-the-art compositional approach without user-defined
pre-conditions while achieves competitive efficiency compared with state-of-the-art composi-
tional approach with user-defined pre-conditions.

RQ2. Table 4 presents the results of MaskCV with and without leveraging dominated variables.
Column 1 shows the benchmark name; Columns 2, 3, 4 and 5 show the number of gadgets (♯Gadgets),
the number of gadgets that can generate dominant variables (♯G-Gadgets), the number of gadgets
that can transfer dominant variables (♯T-Gadgets), and the number of gadgets that can both generate
and transfer dominant variables (♯G&T-Gadgets); and Columns 6, 7 and 8 (resp. Columns 9, 10
and 11) show the verification time, the size of the automatically inferred pre-condition I of the
program onwhich first-order security is checked, and the number of variables checked by leveraging
dominated variables (resp. without leveraging dominated variables).
We can observe that dominated variables can significantly reduce the size of the automatically

inferred pre-condition I of the program, which in turn significantly reduces the number of variables
that need to be checked when verifying first-order probing security of the program using the
pre-condition I. Indeed, all the final pre-conditions I of the programs by leveraging dominated
variables become the empty set, because a large number of gadgets can generate dominant variables
and/or transfer dominant variables variables from input parameters to the output encoding. It
means that only the variables of simple gadgets are checked at Lines 9–11 in Algorithm 1 while
the verification of the first-order probing security of the program based on the pre-condition I
is avoided because of I = ∅. Thus, the verification time is significantly reduced by leveraging
dominated variables.
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1 power254( ®𝑥 ){
2 ®𝑧 = power2( ®𝑥 ) ;
3 ®𝑧 = Refresh(®𝑧 ) ;
4 ®𝑦 = SecMult(®𝑧, ®𝑥 ) ;
5 ®𝑤 = power4( ®𝑦) ;
6 ®𝑤 = Refresh( ®𝑤 ) ;
7 ®𝑦 = SecMult( ®𝑦, ®𝑤 ) ;
8 ®𝑦 = power16( ®𝑦) ;
9 ®𝑦 = SecMult( ®𝑦, ®𝑤 ) ;
10 ®𝑦 = SecMult( ®𝑦, ®𝑧 ) ;
11 return ®𝑦;
12 }

Fig. 7. A composite gadget defined in Sbox1

Case study. We exemplify the advantage of dominated variables using the composite gadget
power254 shown in Fig. 7, which is taken from the benchmark Sbox1. The simple gadgets power2,
power4 and power16 compute an encoding ®𝑦 for a given encoding ®𝑥 such that

⊕
®𝑦 = (

⊕
®𝑥)2,⊕

®𝑦 = (
⊕

®𝑥)4, and
⊕

®𝑦 = (
⊕

®𝑥)16, respectively; and the simple gadget SecMult computes an
encoding ®𝑧 for two given encodings ®𝑥 and ®𝑦 such that

⊕
®𝑧 = (

⊕
®𝑥) ⊙ (

⊕
®𝑦).

The sizes of the inferred pre-conditions of the gadgets Refresh, power2, power4, power16 and
SecMult by Algorithm 1 are 2, 2, 2, 2 and 4, respectively. Without leveraging dominated variables,
the size of the inferred pre-condition I of the composite gadget power254 by Algorithm 2 is 26, as
all the pre-conditions of the gadgets in the nine gadget calls are added into I.

Since the gadgets Refresh and SecMult are capable of generating dominant variables, and all the
gadgets Refresh, power2, power4 and power16 can also transfer dominant variables, by leveraging
dominated variables, only the pre-conditions of the gadgets power2 and Refresh and part of the
pre-condition of the gadget SecMult for the first three gadget calls are added into the pre-condition
I of the gadget power254, while the pre-conditions of the gadgets power4, Refresh, power16, and
SecMult in the remaining six gadget calls are not added, because ®𝑥 ′𝑖 is ∅ at Line 26 of Algorithm 2.
Thus, the size of the inferred pre-condition I of power254 by Algorithm 2 is only 6.

Furthermore, when the gadget power254 is invokedwith an actual parameter that is an dominated
encoding, the calling context 𝜆 of the gadget power254 will be 𝜆( ®𝑥) = {®𝑥}. Using this additional
information, the pre-conditions of the gadgets power2, Refresh and SecMult for the first three
gadget calls are not added into the pre-condition I of power254 either. Thus, the pre-condition I of
the gadget power254 inferred by Algorithm 2 will be ∅.

Answer to RQ2: Dominated variables effectively reduces the size of pre-conditions, hence
the verification time.

Threats to validity. Our work focuses on cryptographic programs which, unlike general-purpose
software, are structurally simple. The design of the specific program syntax tailored to the masked
implementations of cryptographic algorithms has been thoroughly discussed in Section 2.1. In
particular, we do not consider conditionals (e.g., if-then-else) which often induce timing side-channel
leaks [71, 96], particularly under speculative execution [32, 70]. To avoid such leaks, programs
often follow the constant-time principle to avoid conditionals. Therefore, it is not a real limitation
and actually has been widely adopted in the literature [8, 9, 12, 17, 18, 24, 26, 30, 31, 38, 47, 69, 98].
For convenience, our tool supports bounded for-loops which are automatically and fully unfolded
before verification, so we only present the core language without loops.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:32 Pengfei Gao, Fu Song, and Taolue Chen

We did not compare with the other state-of-the-art compositional approaches such as [9, 10, 18,
31], because all the existing compositional approaches (except for QMVerif) cannot verify the first-
order security of the publicly available benchmarks considered in this work. We did not consider
other benchmarks that can be handled by existing compositional approaches, as the main purpose
of the current work is to handle programs that cannot be proved by the existing compositional
approaches. Essentially, we gain generality of implementations but may sacrifice verification
performance in some cases. For instance, the implementations of cryptographic algorithms only use
Boolean operations and moreover, each encoding is re-masked by using new random variables (e.g.,
invoking a refresh gadget) before it is used in the second place. Such Boolean programs satisfy
these implicitly imposed pre-conditions in the stronger security notions [9, 10, 12, 16–19, 25, 26, 69],
thus can be quickly proved using the existing compositional approaches, e.g., maskVerif [10], at the
cost of the efficiency of the masked implementations.
A limitation of our work is we only deal with first-order secure programs which may be still

vulnerable against higher-order power side-channel attacks. However, we note that (1) higher-order
attacks are much more difficult to launch successfully, and (2) higher-order secure programs incur
excessive overhead. As a result, first-order security is more suitable especially when the efficiency
is the key. Our work essentially targets at these types of applications run in, e.g., resource-limited
devices [20].

7 RELATEDWORK
Along with the design of efficient masked implementations, various verification approaches have
been proposed. Non-compositional approaches must inline gadget calls which would increase
the size of the program and thus the verification cost. Some representative works are symbolic
analysis [21, 38, 76, 77, 81, 91, 92], the SAT/SMT-based approaches SAT/SMT-based analysis [23, 47–
50], BDD analysis [69] and hybrid approaches combine the symbolic analysis and SAT/SMT-based
approach together [52, 54, 55, 98]. Symbolic analysis based approaches are more efficient than
SAT/SMT-based approaches, however only provide soundness, while SAT/SMT-based approaches
provide both soundness and completeness in theory but limit in scalability. Hybrid approaches are
aimed to bring the best of both worlds, where an SAT/SMT-based approach is applied only when
the symbolic analysis fails.

Compositional approaches directly check composite gadgets, date back to [9] in which stronger
security notions and a sound proof system are proposed. Basically, when a return encoding is
used as actual parameters multiple times, their approach directly sums up all the possible number
of observable variables, leading to an inaccurate conclusion. We detail in Appendix A why their
proof system fails to prove the running example in Fig. 5. Along this direction, various approaches
have been proposed to check simple gadgets [10, 12, 26, 38, 69] w.r.t. the security notions of [9].
SILVER [69] supports probing security, but fails to prove first-order probing security in our ex-
periments. Belaïd et al. [17–19] presented alternative composition approaches of [9] via matrix
analysis, however, it assumes that all the gadgets are ISW gadgets [12], while some efficient gadgets
that are non-ISW, e.g., the first-order masked AND gadget [20]. Cassiers et al. [30, 31] proposed
an alternative stronger security notion PINI such that gadgets composed by PINI gadgets are still
PINI. While all these compositional approaches support higher-order security, only bitwise logical
operations are focused except for [38] and the pre-conditions in those security notions are fixed,
which cannot be fulfilled by some efficient gadgets, where [38] is semi-automatic. Our approach is
wider (e.g., arithmetic operations and non-ISW gadgets) for the first-order security of composite
gadgets. The approach proposed by Gao et al. [53] is applicable to general first-order masked
implementations, but it requires user-defined pre-conditions to be efficient. Our work bridges
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the gap that there lacks an efficient compositional approach that is applicable to general gadgets
without user-defined pre-conditions.

While mitigating techniques have been studied to eliminate power side-channel leaks [2, 9, 13, 17,
25, 46, 92], they either do not use formal verification to provide guarantees [2, 13] or rely on formal
verification [9, 17, 25, 46, 92]. We focus on verification, but could also be extended to eliminate
power side-channel leaks, similar to [9, 17].
We note that there are other types of side-channel attacks such as timing side-channel attacks

which have been widely studied, including detection [7, 29, 79, 82, 83], verification [4, 6, 22, 33,
42, 44, 45, 61] and mitigation [75, 95, 96]. The more recent work focuses on timing side-channel
leaks introduced by micro-architectural features [34, 43, 59, 60, 70, 73] and (JIT) compilation [27,
28, 42, 43, 85], and network-based side channel leaks [65, 66, 88] which contains a large number
of observable aspects (such as the time, size and direction of each packet). As different types of
side-channel attacks have their own characteristics, they are orthogonal to our work. There are
other power leakage models and security notions [10, 16, 23, 51, 78, 92] which are however out of
the scope of this paper. Finally, we remark that this work considers the first-order probing security
of programs written in our domain-specific language while secure programs may become insecure
after compilation [92], the same as in timing side-channel security setting.

8 CONCLUSION
We proposed a novel approach and algorithms to infer pre-conditions for compositional verification
of generic and efficient masked implementations. We implemented our approach in a tool and
conducted extensive experiments on publicly available benchmarks. It significantly outperforms
the state-of-the-arts on masked implementations of full AES when no pre-conditions are provided
by users.
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A APPENDIX
A.1 The type system of Barthe et al. [9]
We explain why the type system of Barthe et al. [9] fails on XORMULTI.
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<latexit sha1_base64="jM6c1IkyrmGLlLh/LLLTk4LpwRM=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmOE8rw/tmtNw5kCrxC1JDUq0h/aXNxIkjWisCcdKDVwn0X6GpWaE07zqpYommEzxmA4MjXFElZ/ND8jRhVFGKBTSvFijufo7keFIqVkUmMliR7XsFeJ/3iDV4bWfsThJNY3J4qMw5UgLVLSBRkxSovnMEEwkM7siMsESE206q5oS3OWTV0m32XCdhnvfrLVuyjoqcAbncAkuXEEL7qANHSCQwzO8wpv1ZL1Y79bHYnTNKjMn8AfW5w8Za5a2</latexit><latexit sha1_base64="jM6c1IkyrmGLlLh/LLLTk4LpwRM=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmOE8rw/tmtNw5kCrxC1JDUq0h/aXNxIkjWisCcdKDVwn0X6GpWaE07zqpYommEzxmA4MjXFElZ/ND8jRhVFGKBTSvFijufo7keFIqVkUmMliR7XsFeJ/3iDV4bWfsThJNY3J4qMw5UgLVLSBRkxSovnMEEwkM7siMsESE206q5oS3OWTV0m32XCdhnvfrLVuyjoqcAbncAkuXEEL7qANHSCQwzO8wpv1ZL1Y79bHYnTNKjMn8AfW5w8Za5a2</latexit><latexit sha1_base64="jM6c1IkyrmGLlLh/LLLTk4LpwRM=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmOE8rw/tmtNw5kCrxC1JDUq0h/aXNxIkjWisCcdKDVwn0X6GpWaE07zqpYommEzxmA4MjXFElZ/ND8jRhVFGKBTSvFijufo7keFIqVkUmMliR7XsFeJ/3iDV4bWfsThJNY3J4qMw5UgLVLSBRkxSovnMEEwkM7siMsESE206q5oS3OWTV0m32XCdhnvfrLVuyjoqcAbncAkuXEEL7qANHSCQwzO8wpv1ZL1Y79bHYnTNKjMn8AfW5w8Za5a2</latexit><latexit sha1_base64="jM6c1IkyrmGLlLh/LLLTk4LpwRM=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmOE8rw/tmtNw5kCrxC1JDUq0h/aXNxIkjWisCcdKDVwn0X6GpWaE07zqpYommEzxmA4MjXFElZ/ND8jRhVFGKBTSvFijufo7keFIqVkUmMliR7XsFeJ/3iDV4bWfsThJNY3J4qMw5UgLVLSBRkxSovnMEEwkM7siMsESE206q5oS3OWTV0m32XCdhnvfrLVuyjoqcAbncAkuXEEL7qANHSCQwzO8wpv1ZL1Y79bHYnTNKjMn8AfW5w8Za5a2</latexit>

b
<latexit sha1_base64="lZcp1V/cybrsHeZ9kMq3f/j5NFI=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmAV5Xh/aNafhzIFWiVuSGpRoD+0vbyRIGtFYE46VGrhOov0MS80Ip3nVSxVNMJniMR0YGuOIKj+bH5CjC6OMUCikebFGc/V3IsORUrMoMJPFjmrZK8T/vEGqw2s/Y3GSahqTxUdhypEWqGgDjZikRPOZIZhIZnZFZIIlJtp0VjUluMsnr5Jus+E6Dfe+WWvdlHVU4AzO4RJcuIIW3EEbOkAgh2d4hTfryXqx3q2PxeiaVWZO4A+szx8a8pa3</latexit><latexit sha1_base64="lZcp1V/cybrsHeZ9kMq3f/j5NFI=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmAV5Xh/aNafhzIFWiVuSGpRoD+0vbyRIGtFYE46VGrhOov0MS80Ip3nVSxVNMJniMR0YGuOIKj+bH5CjC6OMUCikebFGc/V3IsORUrMoMJPFjmrZK8T/vEGqw2s/Y3GSahqTxUdhypEWqGgDjZikRPOZIZhIZnZFZIIlJtp0VjUluMsnr5Jus+E6Dfe+WWvdlHVU4AzO4RJcuIIW3EEbOkAgh2d4hTfryXqx3q2PxeiaVWZO4A+szx8a8pa3</latexit><latexit sha1_base64="lZcp1V/cybrsHeZ9kMq3f/j5NFI=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmAV5Xh/aNafhzIFWiVuSGpRoD+0vbyRIGtFYE46VGrhOov0MS80Ip3nVSxVNMJniMR0YGuOIKj+bH5CjC6OMUCikebFGc/V3IsORUrMoMJPFjmrZK8T/vEGqw2s/Y3GSahqTxUdhypEWqGgDjZikRPOZIZhIZnZFZIIlJtp0VjUluMsnr5Jus+E6Dfe+WWvdlHVU4AzO4RJcuIIW3EEbOkAgh2d4hTfryXqx3q2PxeiaVWZO4A+szx8a8pa3</latexit><latexit sha1_base64="lZcp1V/cybrsHeZ9kMq3f/j5NFI=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmAV5Xh/aNafhzIFWiVuSGpRoD+0vbyRIGtFYE46VGrhOov0MS80Ip3nVSxVNMJniMR0YGuOIKj+bH5CjC6OMUCikebFGc/V3IsORUrMoMJPFjmrZK8T/vEGqw2s/Y3GSahqTxUdhypEWqGgDjZikRPOZIZhIZnZFZIIlJtp0VjUluMsnr5Jus+E6Dfe+WWvdlHVU4AzO4RJcuIIW3EEbOkAgh2d4hTfryXqx3q2PxeiaVWZO4A+szx8a8pa3</latexit>

e
<latexit sha1_base64="7W1a/gtIuP19GRICvfGIk2J2XHA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRITFXSBcYKFsYi0YfURJXj3rRWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUkmhQwUXsh8QBZzF0NFMc+gnEkgUcOgF09vC7z2CVEzED3qWgB+RccxCRok20tA+rXvC+EU88yKiJ0GYQZ7Xh3bNaThz4FXilqSGSrSH9pc3EjSNINaUE6UGrpNoPyNSM8ohr3qpgoTQKRnDwNCYRKD8bH5Aji+MMsKhkObFGs/V34mMRErNosBMFjuqZa8Q//MGqQ6v/YzFSaohpouPwpRjLXDRBh4xCVTzmSGESmZ2xXRCJKHadFY1JbjLJ6+SbrPhOg33vllr3ZR1VNAZOkeXyEVXqIXuUBt1EEU5ekav6M16sl6sd+tjMbpmlZkT9AfW5w8fh5a6</latexit><latexit sha1_base64="7W1a/gtIuP19GRICvfGIk2J2XHA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRITFXSBcYKFsYi0YfURJXj3rRWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUkmhQwUXsh8QBZzF0NFMc+gnEkgUcOgF09vC7z2CVEzED3qWgB+RccxCRok20tA+rXvC+EU88yKiJ0GYQZ7Xh3bNaThz4FXilqSGSrSH9pc3EjSNINaUE6UGrpNoPyNSM8ohr3qpgoTQKRnDwNCYRKD8bH5Aji+MMsKhkObFGs/V34mMRErNosBMFjuqZa8Q//MGqQ6v/YzFSaohpouPwpRjLXDRBh4xCVTzmSGESmZ2xXRCJKHadFY1JbjLJ6+SbrPhOg33vllr3ZR1VNAZOkeXyEVXqIXuUBt1EEU5ekav6M16sl6sd+tjMbpmlZkT9AfW5w8fh5a6</latexit><latexit sha1_base64="7W1a/gtIuP19GRICvfGIk2J2XHA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRITFXSBcYKFsYi0YfURJXj3rRWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUkmhQwUXsh8QBZzF0NFMc+gnEkgUcOgF09vC7z2CVEzED3qWgB+RccxCRok20tA+rXvC+EU88yKiJ0GYQZ7Xh3bNaThz4FXilqSGSrSH9pc3EjSNINaUE6UGrpNoPyNSM8ohr3qpgoTQKRnDwNCYRKD8bH5Aji+MMsKhkObFGs/V34mMRErNosBMFjuqZa8Q//MGqQ6v/YzFSaohpouPwpRjLXDRBh4xCVTzmSGESmZ2xXRCJKHadFY1JbjLJ6+SbrPhOg33vllr3ZR1VNAZOkeXyEVXqIXuUBt1EEU5ekav6M16sl6sd+tjMbpmlZkT9AfW5w8fh5a6</latexit><latexit sha1_base64="7W1a/gtIuP19GRICvfGIk2J2XHA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRITFXSBcYKFsYi0YfURJXj3rRWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUkmhQwUXsh8QBZzF0NFMc+gnEkgUcOgF09vC7z2CVEzED3qWgB+RccxCRok20tA+rXvC+EU88yKiJ0GYQZ7Xh3bNaThz4FXilqSGSrSH9pc3EjSNINaUE6UGrpNoPyNSM8ohr3qpgoTQKRnDwNCYRKD8bH5Aji+MMsKhkObFGs/V34mMRErNosBMFjuqZa8Q//MGqQ6v/YzFSaohpouPwpRjLXDRBh4xCVTzmSGESmZ2xXRCJKHadFY1JbjLJ6+SbrPhOg33vllr3ZR1VNAZOkeXyEVXqIXuUBt1EEU5ekav6M16sl6sd+tjMbpmlZkT9AfW5w8fh5a6</latexit>

c
<latexit sha1_base64="Gkt1q0e/wOO3KsMb8vbBQavB/HU=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmJE8rw/tmtNw5kCrxC1JDUq0h/aXNxIkjWisCcdKDVwn0X6GpWaE07zqpYommEzxmA4MjXFElZ/ND8jRhVFGKBTSvFijufo7keFIqVkUmMliR7XsFeJ/3iDV4bWfsThJNY3J4qMw5UgLVLSBRkxSovnMEEwkM7siMsESE206q5oS3OWTV0m32XCdhnvfrLVuyjoqcAbncAkuXEEL7qANHSCQwzO8wpv1ZL1Y79bHYnTNKjMn8AfW5w8ceZa4</latexit><latexit sha1_base64="Gkt1q0e/wOO3KsMb8vbBQavB/HU=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmJE8rw/tmtNw5kCrxC1JDUq0h/aXNxIkjWisCcdKDVwn0X6GpWaE07zqpYommEzxmA4MjXFElZ/ND8jRhVFGKBTSvFijufo7keFIqVkUmMliR7XsFeJ/3iDV4bWfsThJNY3J4qMw5UgLVLSBRkxSovnMEEwkM7siMsESE206q5oS3OWTV0m32XCdhnvfrLVuyjoqcAbncAkuXEEL7qANHSCQwzO8wpv1ZL1Y79bHYnTNKjMn8AfW5w8ceZa4</latexit><latexit sha1_base64="Gkt1q0e/wOO3KsMb8vbBQavB/HU=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmJE8rw/tmtNw5kCrxC1JDUq0h/aXNxIkjWisCcdKDVwn0X6GpWaE07zqpYommEzxmA4MjXFElZ/ND8jRhVFGKBTSvFijufo7keFIqVkUmMliR7XsFeJ/3iDV4bWfsThJNY3J4qMw5UgLVLSBRkxSovnMEEwkM7siMsESE206q5oS3OWTV0m32XCdhnvfrLVuyjoqcAbncAkuXEEL7qANHSCQwzO8wpv1ZL1Y79bHYnTNKjMn8AfW5w8ceZa4</latexit><latexit sha1_base64="Gkt1q0e/wOO3KsMb8vbBQavB/HU=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmJE8rw/tmtNw5kCrxC1JDUq0h/aXNxIkjWisCcdKDVwn0X6GpWaE07zqpYommEzxmA4MjXFElZ/ND8jRhVFGKBTSvFijufo7keFIqVkUmMliR7XsFeJ/3iDV4bWfsThJNY3J4qMw5UgLVLSBRkxSovnMEEwkM7siMsESE206q5oS3OWTV0m32XCdhnvfrLVuyjoqcAbncAkuXEEL7qANHSCQwzO8wpv1ZL1Y79bHYnTNKjMn8AfW5w8ceZa4</latexit>

d
<latexit sha1_base64="IUjv19gklo1JPaZ0FyiHiTj5mQo=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmI3yvD60a07DmQOtErckNSjRHtpf3kiQNKKxJhwrNXCdRPsZlpoRTvOqlyqaYDLFYzowNMYRVX42PyBHF0YZoVBI82KN5urvRIYjpWZRYCaLHdWyV4j/eYNUh9d+xuIk1TQmi4/ClCMtUNEGGjFJieYzQzCRzOyKyARLTLTprGpKcJdPXiXdZsN1Gu59s9a6KeuowBmcwyW4cAUtuIM2dIBADs/wCm/Wk/VivVsfi9E1q8ycwB9Ynz8eAJa5</latexit><latexit sha1_base64="IUjv19gklo1JPaZ0FyiHiTj5mQo=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmI3yvD60a07DmQOtErckNSjRHtpf3kiQNKKxJhwrNXCdRPsZlpoRTvOqlyqaYDLFYzowNMYRVX42PyBHF0YZoVBI82KN5urvRIYjpWZRYCaLHdWyV4j/eYNUh9d+xuIk1TQmi4/ClCMtUNEGGjFJieYzQzCRzOyKyARLTLTprGpKcJdPXiXdZsN1Gu59s9a6KeuowBmcwyW4cAUtuIM2dIBADs/wCm/Wk/VivVsfi9E1q8ycwB9Ynz8eAJa5</latexit><latexit sha1_base64="IUjv19gklo1JPaZ0FyiHiTj5mQo=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmI3yvD60a07DmQOtErckNSjRHtpf3kiQNKKxJhwrNXCdRPsZlpoRTvOqlyqaYDLFYzowNMYRVX42PyBHF0YZoVBI82KN5urvRIYjpWZRYCaLHdWyV4j/eYNUh9d+xuIk1TQmi4/ClCMtUNEGGjFJieYzQzCRzOyKyARLTLTprGpKcJdPXiXdZsN1Gu59s9a6KeuowBmcwyW4cAUtuIM2dIBADs/wCm/Wk/VivVsfi9E1q8ycwB9Ynz8eAJa5</latexit><latexit sha1_base64="IUjv19gklo1JPaZ0FyiHiTj5mQo=">AAACAHicbVC7TsMwFL3hWcorwMDAYtEiMVVJFxgrWBiLRB9SE1WO67RWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUklohwguZD/AinIW045mmtN+IimOAk57wfS28HuPVCom4gc9S6gf4XHMQkawNtLQPq17wvhFPPMirCdBmI3yvD60a07DmQOtErckNSjRHtpf3kiQNKKxJhwrNXCdRPsZlpoRTvOqlyqaYDLFYzowNMYRVX42PyBHF0YZoVBI82KN5urvRIYjpWZRYCaLHdWyV4j/eYNUh9d+xuIk1TQmi4/ClCMtUNEGGjFJieYzQzCRzOyKyARLTLTprGpKcJdPXiXdZsN1Gu59s9a6KeuowBmcwyW4cAUtuIM2dIBADs/wCm/Wk/VivVsfi9E1q8ycwB9Ynz8eAJa5</latexit>

I1
<latexit sha1_base64="rXtAlltfFlc2AWsrQm/B6To2iw0=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk22mHiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7dxvP3FtRKIecZLyIKZDJSLBKFrJr973vWq/XHFr7gJknXg5qUCOZr/81RskLIu5QiapMV3PTTGYUo2CST4r9TLDU8rGdMi7lioacxNMF8fOyIVVBiRKtC2FZKH+npjS2JhJHNrOmOLIrHpz8T+vm2F0HUyFSjPkii0XRZkkmJD552QgNGcoJ5ZQpoW9lbAR1ZShzadkQ/BWX14nrXrNc2veQ73SuMnjKMIZnMMleHAFDbiDJvjAQMAzvMKbo5wX5935WLYWnHzmFP7A+fwBe9GNyw==</latexit><latexit sha1_base64="rXtAlltfFlc2AWsrQm/B6To2iw0=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk22mHiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7dxvP3FtRKIecZLyIKZDJSLBKFrJr973vWq/XHFr7gJknXg5qUCOZr/81RskLIu5QiapMV3PTTGYUo2CST4r9TLDU8rGdMi7lioacxNMF8fOyIVVBiRKtC2FZKH+npjS2JhJHNrOmOLIrHpz8T+vm2F0HUyFSjPkii0XRZkkmJD552QgNGcoJ5ZQpoW9lbAR1ZShzadkQ/BWX14nrXrNc2veQ73SuMnjKMIZnMMleHAFDbiDJvjAQMAzvMKbo5wX5935WLYWnHzmFP7A+fwBe9GNyw==</latexit><latexit sha1_base64="rXtAlltfFlc2AWsrQm/B6To2iw0=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk22mHiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7dxvP3FtRKIecZLyIKZDJSLBKFrJr973vWq/XHFr7gJknXg5qUCOZr/81RskLIu5QiapMV3PTTGYUo2CST4r9TLDU8rGdMi7lioacxNMF8fOyIVVBiRKtC2FZKH+npjS2JhJHNrOmOLIrHpz8T+vm2F0HUyFSjPkii0XRZkkmJD552QgNGcoJ5ZQpoW9lbAR1ZShzadkQ/BWX14nrXrNc2veQ73SuMnjKMIZnMMleHAFDbiDJvjAQMAzvMKbo5wX5935WLYWnHzmFP7A+fwBe9GNyw==</latexit><latexit sha1_base64="rXtAlltfFlc2AWsrQm/B6To2iw0=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk22mHiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7dxvP3FtRKIecZLyIKZDJSLBKFrJr973vWq/XHFr7gJknXg5qUCOZr/81RskLIu5QiapMV3PTTGYUo2CST4r9TLDU8rGdMi7lioacxNMF8fOyIVVBiRKtC2FZKH+npjS2JhJHNrOmOLIrHpz8T+vm2F0HUyFSjPkii0XRZkkmJD552QgNGcoJ5ZQpoW9lbAR1ZShzadkQ/BWX14nrXrNc2veQ73SuMnjKMIZnMMleHAFDbiDJvjAQMAzvMKbo5wX5935WLYWnHzmFP7A+fwBe9GNyw==</latexit>

I2
<latexit sha1_base64="bDgH+UDOd8HVtCiOqXXH6KPgKRs=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk22mHiAQlcyN4yBxv29i67eyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzS0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfvtJ1SaJ/LRTFIMYjqUPOKMGiv51ft+vdovV9yauwBZJ15OKpCj2S9/9QYJy2KUhgmqdddzUxNMqTKcCZyVepnGlLIxHWLXUklj1MF0ceyMXFhlQKJE2ZKGLNTfE1Maaz2JQ9sZUzPSq95c/M/rZia6DqZcpplByZaLokwQk5D552TAFTIjJpZQpri9lbARVZQZm0/JhuCtvrxOWvWa59a8h3qlcZPHUYQzOIdL8OAKGnAHTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDfVaNzA==</latexit><latexit sha1_base64="bDgH+UDOd8HVtCiOqXXH6KPgKRs=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk22mHiAQlcyN4yBxv29i67eyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzS0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfvtJ1SaJ/LRTFIMYjqUPOKMGiv51ft+vdovV9yauwBZJ15OKpCj2S9/9QYJy2KUhgmqdddzUxNMqTKcCZyVepnGlLIxHWLXUklj1MF0ceyMXFhlQKJE2ZKGLNTfE1Maaz2JQ9sZUzPSq95c/M/rZia6DqZcpplByZaLokwQk5D552TAFTIjJpZQpri9lbARVZQZm0/JhuCtvrxOWvWa59a8h3qlcZPHUYQzOIdL8OAKGnAHTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDfVaNzA==</latexit><latexit sha1_base64="bDgH+UDOd8HVtCiOqXXH6KPgKRs=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk22mHiAQlcyN4yBxv29i67eyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzS0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfvtJ1SaJ/LRTFIMYjqUPOKMGiv51ft+vdovV9yauwBZJ15OKpCj2S9/9QYJy2KUhgmqdddzUxNMqTKcCZyVepnGlLIxHWLXUklj1MF0ceyMXFhlQKJE2ZKGLNTfE1Maaz2JQ9sZUzPSq95c/M/rZia6DqZcpplByZaLokwQk5D552TAFTIjJpZQpri9lbARVZQZm0/JhuCtvrxOWvWa59a8h3qlcZPHUYQzOIdL8OAKGnAHTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDfVaNzA==</latexit><latexit sha1_base64="bDgH+UDOd8HVtCiOqXXH6KPgKRs=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk22mHiAQlcyN4yBxv29i67eyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzS0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfvtJ1SaJ/LRTFIMYjqUPOKMGiv51ft+vdovV9yauwBZJ15OKpCj2S9/9QYJy2KUhgmqdddzUxNMqTKcCZyVepnGlLIxHWLXUklj1MF0ceyMXFhlQKJE2ZKGLNTfE1Maaz2JQ9sZUzPSq95c/M/rZia6DqZcpplByZaLokwQk5D552TAFTIjJpZQpri9lbARVZQZm0/JhuCtvrxOWvWa59a8h3qlcZPHUYQzOIdL8OAKGnAHTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDfVaNzA==</latexit>

I3
<latexit sha1_base64="nhIztUoduR3OO5NgABTYyXifAIg=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaaIeJIAlcyN6yBxv29i67cybkwm+wsdAYW3+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvpn5j09cGxGrB5wk3I/oUIlQMIpWalXv+hfVfrni1tw5yCrxclKBHM1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/Njp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvmZUEmKXLHFojCVBGMy+5wMhOYM5cQSyrSwtxI2opoytPmUbAje8surpF2veW7Nu69XGtd5HEU4gVM4Bw8uoQG30IQWMBDwDK/w5ijnxXl3PhatBSefOYY/cD5/AH7bjc0=</latexit><latexit sha1_base64="nhIztUoduR3OO5NgABTYyXifAIg=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaaIeJIAlcyN6yBxv29i67cybkwm+wsdAYW3+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvpn5j09cGxGrB5wk3I/oUIlQMIpWalXv+hfVfrni1tw5yCrxclKBHM1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/Njp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvmZUEmKXLHFojCVBGMy+5wMhOYM5cQSyrSwtxI2opoytPmUbAje8surpF2veW7Nu69XGtd5HEU4gVM4Bw8uoQG30IQWMBDwDK/w5ijnxXl3PhatBSefOYY/cD5/AH7bjc0=</latexit><latexit sha1_base64="nhIztUoduR3OO5NgABTYyXifAIg=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaaIeJIAlcyN6yBxv29i67cybkwm+wsdAYW3+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvpn5j09cGxGrB5wk3I/oUIlQMIpWalXv+hfVfrni1tw5yCrxclKBHM1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/Njp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvmZUEmKXLHFojCVBGMy+5wMhOYM5cQSyrSwtxI2opoytPmUbAje8surpF2veW7Nu69XGtd5HEU4gVM4Bw8uoQG30IQWMBDwDK/w5ijnxXl3PhatBSefOYY/cD5/AH7bjc0=</latexit><latexit sha1_base64="nhIztUoduR3OO5NgABTYyXifAIg=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaaIeJIAlcyN6yBxv29i67cybkwm+wsdAYW3+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvpn5j09cGxGrB5wk3I/oUIlQMIpWalXv+hfVfrni1tw5yCrxclKBHM1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/Njp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvmZUEmKXLHFojCVBGMy+5wMhOYM5cQSyrSwtxI2opoytPmUbAje8surpF2veW7Nu69XGtd5HEU4gVM4Bw8uoQG30IQWMBDwDK/w5ijnxXl3PhatBSefOYY/cD5/AH7bjc0=</latexit>

S1
1

<latexit sha1_base64="QZGLfdWiOmy7fa0HIQC4SUzdlOk=">AAAB7nicbVBNTwIxEJ31E/EL9eilEUw8kS0XPRK9eMQoHwmspFu60NB2N23XhGz4EV48aIxXf483/40F9qDgSyZ5eW8mM/PCRHBjff/bW1vf2NzaLuwUd/f2Dw5LR8ctE6easiaNRaw7ITFMcMWallvBOolmRIaCtcPxzcxvPzFteKwe7CRhgSRDxSNOiXVSu3Lfx4+40i+V/ao/B1olOCdlyNHol756g5imkilLBTGmi/3EBhnRllPBpsVealhC6JgMWddRRSQzQTY/d4rOnTJAUaxdKYvm6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10VWQcZWklim6WBSlAtkYzX5HA64ZtWLiCKGau1sRHRFNqHUJFV0IePnlVdKqVbFfxXe1cv06j6MAp3AGF4DhEupwCw1oAoUxPMMrvHmJ9+K9ex+L1jUvnzmBP/A+fwCwt454</latexit><latexit sha1_base64="QZGLfdWiOmy7fa0HIQC4SUzdlOk=">AAAB7nicbVBNTwIxEJ31E/EL9eilEUw8kS0XPRK9eMQoHwmspFu60NB2N23XhGz4EV48aIxXf483/40F9qDgSyZ5eW8mM/PCRHBjff/bW1vf2NzaLuwUd/f2Dw5LR8ctE6easiaNRaw7ITFMcMWallvBOolmRIaCtcPxzcxvPzFteKwe7CRhgSRDxSNOiXVSu3Lfx4+40i+V/ao/B1olOCdlyNHol756g5imkilLBTGmi/3EBhnRllPBpsVealhC6JgMWddRRSQzQTY/d4rOnTJAUaxdKYvm6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10VWQcZWklim6WBSlAtkYzX5HA64ZtWLiCKGau1sRHRFNqHUJFV0IePnlVdKqVbFfxXe1cv06j6MAp3AGF4DhEupwCw1oAoUxPMMrvHmJ9+K9ex+L1jUvnzmBP/A+fwCwt454</latexit><latexit sha1_base64="QZGLfdWiOmy7fa0HIQC4SUzdlOk=">AAAB7nicbVBNTwIxEJ31E/EL9eilEUw8kS0XPRK9eMQoHwmspFu60NB2N23XhGz4EV48aIxXf483/40F9qDgSyZ5eW8mM/PCRHBjff/bW1vf2NzaLuwUd/f2Dw5LR8ctE6easiaNRaw7ITFMcMWallvBOolmRIaCtcPxzcxvPzFteKwe7CRhgSRDxSNOiXVSu3Lfx4+40i+V/ao/B1olOCdlyNHol756g5imkilLBTGmi/3EBhnRllPBpsVealhC6JgMWddRRSQzQTY/d4rOnTJAUaxdKYvm6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10VWQcZWklim6WBSlAtkYzX5HA64ZtWLiCKGau1sRHRFNqHUJFV0IePnlVdKqVbFfxXe1cv06j6MAp3AGF4DhEupwCw1oAoUxPMMrvHmJ9+K9ex+L1jUvnzmBP/A+fwCwt454</latexit><latexit sha1_base64="QZGLfdWiOmy7fa0HIQC4SUzdlOk=">AAAB7nicbVBNTwIxEJ31E/EL9eilEUw8kS0XPRK9eMQoHwmspFu60NB2N23XhGz4EV48aIxXf483/40F9qDgSyZ5eW8mM/PCRHBjff/bW1vf2NzaLuwUd/f2Dw5LR8ctE6easiaNRaw7ITFMcMWallvBOolmRIaCtcPxzcxvPzFteKwe7CRhgSRDxSNOiXVSu3Lfx4+40i+V/ao/B1olOCdlyNHol756g5imkilLBTGmi/3EBhnRllPBpsVealhC6JgMWddRRSQzQTY/d4rOnTJAUaxdKYvm6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10VWQcZWklim6WBSlAtkYzX5HA64ZtWLiCKGau1sRHRFNqHUJFV0IePnlVdKqVbFfxXe1cv06j6MAp3AGF4DhEupwCw1oAoUxPMMrvHmJ9+K9ex+L1jUvnzmBP/A+fwCwt454</latexit>

S1
2

<latexit sha1_base64="OayVJ4IAtQrxLR765cnMtoSxrS0=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJUb5SOAke8sebNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuYFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3n7g2IlYPOEm4H9GhEqFgFK3Urtz3a49epV8qu1V3DrJKvJyUIUejX/rqDWKWRlwhk9SYrucm6GdUo2CST4u91PCEsjEd8q6likbc+Nn83Ck5t8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzH4nA6E5QzmxhDIt7K2EjaimDG1CRRuCt/zyKmnVqp5b9e5q5fp1HkcBTuEMLsCDS6jDLTSgCQzG8Ayv8OYkzovz7nwsWtecfOYE/sD5/AGyPo55</latexit><latexit sha1_base64="OayVJ4IAtQrxLR765cnMtoSxrS0=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJUb5SOAke8sebNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuYFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3n7g2IlYPOEm4H9GhEqFgFK3Urtz3a49epV8qu1V3DrJKvJyUIUejX/rqDWKWRlwhk9SYrucm6GdUo2CST4u91PCEsjEd8q6likbc+Nn83Ck5t8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzH4nA6E5QzmxhDIt7K2EjaimDG1CRRuCt/zyKmnVqp5b9e5q5fp1HkcBTuEMLsCDS6jDLTSgCQzG8Ayv8OYkzovz7nwsWtecfOYE/sD5/AGyPo55</latexit><latexit sha1_base64="OayVJ4IAtQrxLR765cnMtoSxrS0=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJUb5SOAke8sebNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuYFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3n7g2IlYPOEm4H9GhEqFgFK3Urtz3a49epV8qu1V3DrJKvJyUIUejX/rqDWKWRlwhk9SYrucm6GdUo2CST4u91PCEsjEd8q6likbc+Nn83Ck5t8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzH4nA6E5QzmxhDIt7K2EjaimDG1CRRuCt/zyKmnVqp5b9e5q5fp1HkcBTuEMLsCDS6jDLTSgCQzG8Ayv8OYkzovz7nwsWtecfOYE/sD5/AGyPo55</latexit><latexit sha1_base64="OayVJ4IAtQrxLR765cnMtoSxrS0=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJUb5SOAke8sebNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuYFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3n7g2IlYPOEm4H9GhEqFgFK3Urtz3a49epV8qu1V3DrJKvJyUIUejX/rqDWKWRlwhk9SYrucm6GdUo2CST4u91PCEsjEd8q6likbc+Nn83Ck5t8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzH4nA6E5QzmxhDIt7K2EjaimDG1CRRuCt/zyKmnVqp5b9e5q5fp1HkcBTuEMLsCDS6jDLTSgCQzG8Ayv8OYkzovz7nwsWtecfOYE/sD5/AGyPo55</latexit>

S2
2

<latexit sha1_base64="k4pabg+orQ3niR/gP+MAQdl1rjk=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJUb5SOAke8sebNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuYFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3n7g2IlYPOEm4H9GhEqFgFK3Urtz3a4+1Sr9UdqvuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5uVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/8TKgkRa7YYlGYSoIxmf1OBkJzhnJiCWVa2FsJG1FNGdqEijYEb/nlVdKqVT236t3VyvXrPI4CnMIZXIAHl1CHW2hAExiM4Rle4c1JnBfn3flYtK45+cwJ/IHz+QOzw456</latexit><latexit sha1_base64="k4pabg+orQ3niR/gP+MAQdl1rjk=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJUb5SOAke8sebNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuYFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3n7g2IlYPOEm4H9GhEqFgFK3Urtz3a4+1Sr9UdqvuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5uVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/8TKgkRa7YYlGYSoIxmf1OBkJzhnJiCWVa2FsJG1FNGdqEijYEb/nlVdKqVT236t3VyvXrPI4CnMIZXIAHl1CHW2hAExiM4Rle4c1JnBfn3flYtK45+cwJ/IHz+QOzw456</latexit><latexit sha1_base64="k4pabg+orQ3niR/gP+MAQdl1rjk=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJUb5SOAke8sebNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuYFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3n7g2IlYPOEm4H9GhEqFgFK3Urtz3a4+1Sr9UdqvuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5uVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/8TKgkRa7YYlGYSoIxmf1OBkJzhnJiCWVa2FsJG1FNGdqEijYEb/nlVdKqVT236t3VyvXrPI4CnMIZXIAHl1CHW2hAExiM4Rle4c1JnBfn3flYtK45+cwJ/IHz+QOzw456</latexit><latexit sha1_base64="k4pabg+orQ3niR/gP+MAQdl1rjk=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJUb5SOAke8sebNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuYFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3n7g2IlYPOEm4H9GhEqFgFK3Urtz3a4+1Sr9UdqvuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5uVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/8TKgkRa7YYlGYSoIxmf1OBkJzhnJiCWVa2FsJG1FNGdqEijYEb/nlVdKqVT236t3VyvXrPI4CnMIZXIAHl1CHW2hAExiM4Rle4c1JnBfn3flYtK45+cwJ/IHz+QOzw456</latexit>

S1
3

<latexit sha1_base64="BD+cOltI3zCbyF1fLO3+9SMTWRg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGKUjwROsrfswYa9vcvunAkh/AgbC42x9ffY+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXFtRKwecJxwP6IDJULBKFqpVb7vXTx65V6x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/Mz52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDKnwiVpMgVWywKU0kwJrPfSV9ozlCOLaFMC3srYUOqKUObUMGG4C2/vEqa1YrnVry7aql2ncWRhxM4hXPw4BJqcAt1aACDETzDK7w5ifPivDsfi9ack80cwx84nz+zxY56</latexit><latexit sha1_base64="BD+cOltI3zCbyF1fLO3+9SMTWRg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGKUjwROsrfswYa9vcvunAkh/AgbC42x9ffY+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXFtRKwecJxwP6IDJULBKFqpVb7vXTx65V6x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/Mz52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDKnwiVpMgVWywKU0kwJrPfSV9ozlCOLaFMC3srYUOqKUObUMGG4C2/vEqa1YrnVry7aql2ncWRhxM4hXPw4BJqcAt1aACDETzDK7w5ifPivDsfi9ack80cwx84nz+zxY56</latexit><latexit sha1_base64="BD+cOltI3zCbyF1fLO3+9SMTWRg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGKUjwROsrfswYa9vcvunAkh/AgbC42x9ffY+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXFtRKwecJxwP6IDJULBKFqpVb7vXTx65V6x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/Mz52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDKnwiVpMgVWywKU0kwJrPfSV9ozlCOLaFMC3srYUOqKUObUMGG4C2/vEqa1YrnVry7aql2ncWRhxM4hXPw4BJqcAt1aACDETzDK7w5ifPivDsfi9ack80cwx84nz+zxY56</latexit><latexit sha1_base64="BD+cOltI3zCbyF1fLO3+9SMTWRg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGKUjwROsrfswYa9vcvunAkh/AgbC42x9ffY+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXFtRKwecJxwP6IDJULBKFqpVb7vXTx65V6x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/Mz52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDKnwiVpMgVWywKU0kwJrPfSV9ozlCOLaFMC3srYUOqKUObUMGG4C2/vEqa1YrnVry7aql2ncWRhxM4hXPw4BJqcAt1aACDETzDK7w5ifPivDsfi9ack80cwx84nz+zxY56</latexit>

S2
3

<latexit sha1_base64="etrLzRk8NwvLmdeBg0JNIODfinE=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGKUjwROsrfswYa9vcvunAkh/AgbC42x9ffY+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXFtRKwecJxwP6IDJULBKFqpVb7vXTxWy71iya24c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzslZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuGVPxEqSZErtlgUppJgTGa/k77QnKEcW0KZFvZWwoZUU4Y2oYINwVt+eZU0qxXPrXh31VLtOosjDydwCufgwSXU4Bbq0AAGI3iGV3hzEufFeXc+Fq05J5s5hj9wPn8AtUqOew==</latexit><latexit sha1_base64="etrLzRk8NwvLmdeBg0JNIODfinE=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGKUjwROsrfswYa9vcvunAkh/AgbC42x9ffY+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXFtRKwecJxwP6IDJULBKFqpVb7vXTxWy71iya24c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzslZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuGVPxEqSZErtlgUppJgTGa/k77QnKEcW0KZFvZWwoZUU4Y2oYINwVt+eZU0qxXPrXh31VLtOosjDydwCufgwSXU4Bbq0AAGI3iGV3hzEufFeXc+Fq05J5s5hj9wPn8AtUqOew==</latexit><latexit sha1_base64="etrLzRk8NwvLmdeBg0JNIODfinE=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGKUjwROsrfswYa9vcvunAkh/AgbC42x9ffY+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXFtRKwecJxwP6IDJULBKFqpVb7vXTxWy71iya24c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzslZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuGVPxEqSZErtlgUppJgTGa/k77QnKEcW0KZFvZWwoZUU4Y2oYINwVt+eZU0qxXPrXh31VLtOosjDydwCufgwSXU4Bbq0AAGI3iGV3hzEufFeXc+Fq05J5s5hj9wPn8AtUqOew==</latexit><latexit sha1_base64="etrLzRk8NwvLmdeBg0JNIODfinE=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGKUjwROsrfswYa9vcvunAkh/AgbC42x9ffY+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXFtRKwecJxwP6IDJULBKFqpVb7vXTxWy71iya24c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzslZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuGVPxEqSZErtlgUppJgTGa/k77QnKEcW0KZFvZWwoZUU4Y2oYINwVt+eZU0qxXPrXh31VLtOosjDydwCufgwSXU4Bbq0AAGI3iGV3hzEufFeXc+Fq05J5s5hj9wPn8AtUqOew==</latexit> O
<latexit sha1_base64="kbwe60IHJMFia9o6VJTbikKRSyM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2dmIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4euY/PqHSPJYPZpKgH9Gh5CFn1Fjpvnpb7Zcrbs2dg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKu1zy35t3VK42rPI4inMApnIMHF9CAG2hCCxgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBfBY0t</latexit><latexit sha1_base64="kbwe60IHJMFia9o6VJTbikKRSyM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2dmIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4euY/PqHSPJYPZpKgH9Gh5CFn1Fjpvnpb7Zcrbs2dg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKu1zy35t3VK42rPI4inMApnIMHF9CAG2hCCxgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBfBY0t</latexit><latexit sha1_base64="kbwe60IHJMFia9o6VJTbikKRSyM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2dmIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4euY/PqHSPJYPZpKgH9Gh5CFn1Fjpvnpb7Zcrbs2dg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKu1zy35t3VK42rPI4inMApnIMHF9CAG2hCCxgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBfBY0t</latexit><latexit sha1_base64="kbwe60IHJMFia9o6VJTbikKRSyM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2dmIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4euY/PqHSPJYPZpKgH9Gh5CFn1Fjpvnpb7Zcrbs2dg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKu1zy35t3VK42rPI4inMApnIMHF9CAG2hCCxgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBfBY0t</latexit>e

<latexit sha1_base64="7W1a/gtIuP19GRICvfGIk2J2XHA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRITFXSBcYKFsYi0YfURJXj3rRWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUkmhQwUXsh8QBZzF0NFMc+gnEkgUcOgF09vC7z2CVEzED3qWgB+RccxCRok20tA+rXvC+EU88yKiJ0GYQZ7Xh3bNaThz4FXilqSGSrSH9pc3EjSNINaUE6UGrpNoPyNSM8ohr3qpgoTQKRnDwNCYRKD8bH5Aji+MMsKhkObFGs/V34mMRErNosBMFjuqZa8Q//MGqQ6v/YzFSaohpouPwpRjLXDRBh4xCVTzmSGESmZ2xXRCJKHadFY1JbjLJ6+SbrPhOg33vllr3ZR1VNAZOkeXyEVXqIXuUBt1EEU5ekav6M16sl6sd+tjMbpmlZkT9AfW5w8fh5a6</latexit><latexit sha1_base64="7W1a/gtIuP19GRICvfGIk2J2XHA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRITFXSBcYKFsYi0YfURJXj3rRWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUkmhQwUXsh8QBZzF0NFMc+gnEkgUcOgF09vC7z2CVEzED3qWgB+RccxCRok20tA+rXvC+EU88yKiJ0GYQZ7Xh3bNaThz4FXilqSGSrSH9pc3EjSNINaUE6UGrpNoPyNSM8ohr3qpgoTQKRnDwNCYRKD8bH5Aji+MMsKhkObFGs/V34mMRErNosBMFjuqZa8Q//MGqQ6v/YzFSaohpouPwpRjLXDRBh4xCVTzmSGESmZ2xXRCJKHadFY1JbjLJ6+SbrPhOg33vllr3ZR1VNAZOkeXyEVXqIXuUBt1EEU5ekav6M16sl6sd+tjMbpmlZkT9AfW5w8fh5a6</latexit><latexit sha1_base64="7W1a/gtIuP19GRICvfGIk2J2XHA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRITFXSBcYKFsYi0YfURJXj3rRWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUkmhQwUXsh8QBZzF0NFMc+gnEkgUcOgF09vC7z2CVEzED3qWgB+RccxCRok20tA+rXvC+EU88yKiJ0GYQZ7Xh3bNaThz4FXilqSGSrSH9pc3EjSNINaUE6UGrpNoPyNSM8ohr3qpgoTQKRnDwNCYRKD8bH5Aji+MMsKhkObFGs/V34mMRErNosBMFjuqZa8Q//MGqQ6v/YzFSaohpouPwpRjLXDRBh4xCVTzmSGESmZ2xXRCJKHadFY1JbjLJ6+SbrPhOg33vllr3ZR1VNAZOkeXyEVXqIXuUBt1EEU5ekav6M16sl6sd+tjMbpmlZkT9AfW5w8fh5a6</latexit><latexit sha1_base64="7W1a/gtIuP19GRICvfGIk2J2XHA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRITFXSBcYKFsYi0YfURJXj3rRWnTiyHaQqysKvsDCAECufwcbf4LQZoOVIlo7OuUe+9wQJZ0o7zre1tr6xubVd2anu7u0fHNpHx10lUkmhQwUXsh8QBZzF0NFMc+gnEkgUcOgF09vC7z2CVEzED3qWgB+RccxCRok20tA+rXvC+EU88yKiJ0GYQZ7Xh3bNaThz4FXilqSGSrSH9pc3EjSNINaUE6UGrpNoPyNSM8ohr3qpgoTQKRnDwNCYRKD8bH5Aji+MMsKhkObFGs/V34mMRErNosBMFjuqZa8Q//MGqQ6v/YzFSaohpouPwpRjLXDRBh4xCVTzmSGESmZ2xXRCJKHadFY1JbjLJ6+SbrPhOg33vllr3ZR1VNAZOkeXyEVXqIXuUBt1EEU5ekav6M16sl6sd+tjMbpmlZkT9AfW5w8fh5a6</latexit>

Fig. 8. Input-output relation of XORMULTI

Fig. 8 shows the input-output relation of XORMULTI. It can easy to conclude that Refresh is
1-SNI, XOR is 1-NI and UMA is 1-SNI. Let 𝑂 denote the set of observed variable from the output of
XORMULTI. Let 𝐼𝑖 denote the set of observed internal variables from 𝑖𝑡ℎ gadget call. Let 𝑆 𝑗

𝑖
denote the

number of input shares needed to simulate further internal nodes. To prove whehter XORMULTI is
1-NI, The global constraint is |𝐼1 | + |𝐼2 | + |𝐼3 | + |𝑂 | ≤ 1. Let us get started from right to left in Fig. 8.

(1) The side condition |𝑂 | + |𝐼3 | ≤ 1 is satisfied. As UMA is 1-SNI, we can obtain |𝑆13 | ≤ |𝐼3 | and
|𝑆23 | ≤ |𝐼3 |.

(2) The side condition |𝑆13 | + |𝐼2 | ≤ 1 is satisfied. As XOR is 1-NI, we can obtain |𝑆12 | ≤ |𝐼2 | + |𝑆13 |
and |𝑆22 | ≤ |𝐼2 | + |𝑆13 |.

(3) The side condition |𝐼1 | + |𝑆23 | + |𝑆22 | ≤ 1 cannot be proved through the constraints as we can
only conclude that |𝐼1 | + |𝑆23 | + |𝑆22 | ≤ |𝐼1 | + 2|𝐼3 | + |𝐼2 |. The proof terminates here.

From above, it is easy to conclude that Barthe’s work can prove neither 1-NI nor 1-SNI of XORMULTI.
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