
PreciseQuantitative Analysis of Binarized Neural Networks:
A BDD-based Approach
YEDI ZHANG, ShanghaiTech University, China

ZHE ZHAO, ShanghaiTech University, China

GUANGKE CHEN, ShanghaiTech University, China

FU SONG
∗†
, ShanghaiTech University, China

TAOLUE CHEN, Birkbeck, University of London, UK

As a new programming paradigm, neural network based machine learning has expanded its application to

many real-world problems. Due to the black-box nature of neural networks, verifying and explaining their

behavior is becoming increasingly important, especially when they are deployed in safety-critical applications.

Existing verification work mostly focuses on qualitative verification which asks whether there exists an

input (in a specified region) for a neural network such that a property (e.g., local robustness) is violated.

However, in many practical applications, such an (adversarial) input almost surely exists which makes a

qualitative answer less meaningful. In this work, we study a more interesting yet more challenging problem, i.e.,

quantitative verification of neural networks, which asks how often a property is satisfied or violated. We target

binarized neural networks (BNNs), the 1-bit quantization of general neural networks. BNNs have attracted

increasing attentions in deep learning recently, as they can drastically reduce memory storage and execution

time with bit-wise operations, which is crucial in recourse-constrained scenarios, e.g., embedded devices

for Internet of Things. Towards quantitative verification of BNNs, we propose a novel algorithmic approach

for encoding BNNs as Binary Decision Diagrams (BDDs), a widely studied model in formal verification and

knowledge representation. By exploiting the internal structure of the BNNs, our encoding translates the

input-output relation of blocks in BNNs to cardinality constraints which are then encoded by BDDs. Based

on the new BDD encoding, we develop a quantitative verification framework for BNNs where precise and

comprehensive analysis of BNNs can be performed. To improve the scalability of BDD encoding, we also

investigate parallelization strategies at various levels. We demonstrate applications of our framework by

providing quantitative robustness verification and interpretability for BNNs. An extensive experimental

evaluation confirms the effectiveness and efficiency of our approach.

CCS Concepts: • Computing methodologies→ Neural networks; • Security and privacy→ Software
security engineering; • Software and its engineering→ Software verification.

Additional Key Words and Phrases: binarized neural networks, binary decision diagrams, formal verification,

robustness, interpretability

∗
Also with Shanghai Engineering Research Center of Intelligent Vision and Imaging.

†
Corresponding author

Authors’ addresses: Yedi Zhang, zhangyd1@shanghaitech.edu.cn, ShanghaiTech University, Shanghai, China; Zhe Zhao,

zhaozhe1@shanghaitech.edu.cn, ShanghaiTech University, Shanghai, China; Guangke Chen, chengk@shanghaitech.edu.cn,

ShanghaiTech University, Shanghai, China; Fu Song, songfu@shanghaitech.edu.cn, ShanghaiTech University, China; Taolue

Chen, t.chen@bbk.ac.uk, Birkbeck, University of London, London, UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1049-331X/2018/9-ART $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/10.1145/1122445.1122456

2 Y. Zhang, et al.

ACM Reference Format:
Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen. 2018. Precise Quantitative Analysis of

Binarized Neural Networks: A BDD-based Approach. ACM Trans. Softw. Eng. Methodol. 1, 1 (September 2018),

51 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Background. Neural network based machine learning has become a new programming para-

digm [69], which arguably takes over traditional software programs in various application domains.

It has achieved state-of-the-art performance in real-world tasks such as autonomous driving [6]

and medical diagnostics [82]. Deep neural networks (DNNs) usually contain a great number of

parameters which are typically stored as 32/64-bit floating-point numbers, and require a massive

amount of floating-point operations to compute the output for a single input [95]. As a result,

it is often challenging to deploy them on resource-constrained embedded devices for, e.g., Inter-

net of Things and mobile devices. To mitigate the issue, quantization, which quantizes 32/64-bit

floating-points to low bit-width fixed-points (e.g., 4-bits) with little accuracy loss [39], emerges as a

promising technique to reduce the resource requirement. In particular, binarized neural networks

(BNNs) [45] represent the case of 1-bit quantization using the bipolar binaries ±1. BNNs can dras-

tically reduce memory storage and execution time with bit-wise operations, hence substantially

improve the time and energy efficiency. They have demonstrated high accuracy for a wide variety

of applications [53, 65, 80].

Despite their great success, the intrinsic black-box nature of DNNs hinders the understanding of

their behaviors, e.g., explanation of DNN’s decision [43]. Moreover, they are notoriously vulnerable

to subtle input perturbations and thus are lacking of robustness [14, 16–18, 23, 30, 54, 75, 76, 91, 94].

This is concerning as such error may lead to catastrophes when they are deployed in safety-critical

applications. For example, a self-driving car can interpret a stop sign as a speed limit sign [30].

As a result, along with traditional verification and validation research in software engineering,

there is a large and growing body of work on developing quality assurance techniques for DNNs,

which has become one of the foci of software engineering researchers and practitioners recently.

Many testing techniques have been proposed to analyze DNNs, e.g., [7, 16, 62, 63, 77, 92, 96, 114];

cf. [116] for a survey. While testing techniques are often effective in finding violations of properties

(e.g., robustness), they cannot prove their absence. In a complementary direction, various formal

techniques have been proposed, such as (local) robustness verification and output range analysis,

which are able to prove absence of violations of properties. Typically, these methods resort to

constraint solving where verification problems are encoded as a set of constraints which can

be solved by off-the-shelf SAT/SMT/MILP solvers [21, 25, 28, 49, 78, 97]. Although this class of

approaches is sound and complete, they usually suffer from scalability issues. In contrast, incomplete

methods usually rely on approximation for better scalability, but may produce false positives. Such

techniques include layer-by-layer approximation [112], layer-by-layer discretization [44], abstract

interpretation [33, 87, 88] and interval analysis [104], to name a few.

Verification for quantized DNNs. Most existing DNN verification techniques focus on real-
numbered DNNs only. Verification of quantized DNNs has not been thoroughly explored so far,

although recent results have highlighted its importance: it was shown that a quantized counterpart

does not necessarily preserve the properties satisfied by the real-numbered DNN after quantiza-

tion [14, 35]. Indeed, the fixed-point number semantics effectively yields a discrete state space

for the verification of quantized DNNs whereas real-numbered DNNs feature a continuous state

space. The discrepancy could invalidate the current verification techniques for real-numbered

DNNs when they are directly applied to their quantized counterparts (e.g., both false negatives and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/10.1145/1122445.1122456

BNNQuanalyst 3

false positives could occur). Therefore, dedicated techniques have to be investigated for rigorously

verifying quantized DNNs.

Broadly speaking, the existing verification techniques for quantized DNNs make use of constraint

solving which is based on either SAT/SMT or (reduced, ordered) binary decision diagrams (BDDs).

A majority of work resorts to SAT/SMT solving. For the 1-bit quantization (i.e., BNNs), typically

BNNs are transformed into Boolean formulas where SAT solving is harnessed [20, 52, 71, 72]. Some

recent work also studies variants of BNNs [47, 74], i.e., BNNs with ternary weights. For quantized

DNNs with multiple bits (i.e., fixed-points), it is natural to encode them as quantifier-free SMT

formulas (e.g., using bit-vector and fixed-point theories [9, 35, 41]), so that off-the-shelf SMT solvers

can be leveraged. In another direction, BDD-based approaches currently can tackle BNNs only [83].

The general method is to encode a BNN and an input region as a BDD, based on which various

analysis can be performed via queries on the BDD. The crux of the approach is how to generate

the BDD model efficiently. In the work [83], the BDD model is constructed by BDD-learning [70],

which, similar to Angluin’s 𝐿∗ learning algorithm [3], requires both membership checking and

equivalence checking. To this end, in [83], the membership checking is done by querying the BDD

for each input; the equivalence checking is done by transforming the BDD model and BNN to two

Boolean formulas, and then checking the equivalence of the two Boolean formulas under the input

region (encoded in Boolean formula) via SAT solving. This construction requires 𝑛 equivalence

queries and 6𝑛2 + 𝑛 · log(𝑚) membership queries, where 𝑛 is the number of BDD nodes and𝑚 is

the number of variables in the BDD. Due to the intractability of SAT solving (i.e., NP-complete),

currently this technique is limited to toy BNNs, e.g., 64 input size, 5 hidden neurons, and 2 output

size with relatively small input regions.

Quantitative verification. The existing work mostly focuses on qualitative verification, which
typically asks whether there exists an input in a specified region for a neural network such that

a property (e.g., local robustness) is violated. Qualitative verification is able to prove various

properties, or otherwise often produce a counterexample when a property is violated. However,

in many practical applications, checking the existence only is not sufficient. Indeed, for local

robustness, such an (adversarial) input almost surely exists [14, 19, 24, 36, 37, 64, 100, 120], which

makes a qualitative answer less meaningful. Instead, quantitative verification, which asks how often

a property is satisfied or violated, is far more useful as it could provide a quantitative guarantee

for neural networks. Such a quantitative guarantee is essential to certify, for instance, certain

implementations of neural network based perceptual components against safety standards of

autonomous vehicles specifying failure rates of these components [48, 51]. Quantitative analysis

of general neural networks is challenging, and has received little attention so far. To the best

of our knowledge, DeepSRGR [115] is the first quantitative robustness verification approach for

real-numbered DNNs. DeepSRGR leverages the abstract interpretation technique, hence is sound

but incomplete. For BNNs, approximate SAT model-counting solvers (♯SAT) are leveraged [8, 73]

based on the SAT encoding for the qualitative counterpart. Though probably approximately correct

(PAC) guarantees can be provided, the verification cost is usually prohibitively high to achieve

higher precision and confidence.

Our contribution. In this article, we propose a BDD-based framework, named BNNQuanalyst, to

support quantitative analysis of BNNs. The main challenge of the analysis is to efficiently build

BDD models from BNNs [73]. In contrast to the prior work [83] which largely treats the BNN as a

blackbox and uses BDD-learning, we directly encode a BNN and the associated input region into

a BDD model. Our encoding is based on the structure characterization of BNNs. In a nutshell, a

BNN is a sequential composition of multiple internal blocks and one output block. Each internal

block comprises a handful of layers and captures a function 𝑓 : {+1,−1}𝑛 → {+1,−1}𝑚 over the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

4 Y. Zhang, et al.

bipolar domain {+1,−1}, where 𝑛 (resp.𝑚) denotes the number of inputs (resp. outputs) of the

block. (Note that the inputs and outputs may not be binarized for the layers inside the blocks.)

By encoding the bipolar domain {+1,−1} as the Boolean domain {0, 1}, the function 𝑓 can be

alternatively rewritten as a function over the standard Boolean domain, i.e., 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 .
A cornerstone of our encoding is the observation that the 𝑖-th output 𝑦𝑖 of each internal block can

be captured by a cardinality constraint of the form

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 such that 𝑦𝑖 ⇔

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 , namely,

the 𝑖-th output 𝑦𝑖 of the internal block is 1 if and only if the cardinality constraint
∑𝑛

𝑗=1 ℓ𝑗 ≥ 𝑘 holds,

where each literal ℓ𝑗 is either 𝑥 𝑗 or ¬𝑥 𝑗 for the input variable 𝑥 𝑗 , and 𝑘 is a constant. An output

of the output block is one of the 𝑠 classification labels, and can be captured by a conjunction of

cardinality constraints

∧𝑚
𝑖=1

∑𝑛𝑚
𝑗=1

ℓ𝑖, 𝑗 ≥ 𝑘𝑖 such that the class is produced by the output block if and

only if the constraint

∧𝑚
𝑖=1

∑𝑛𝑚
𝑗=1

ℓ𝑖, 𝑗 ≥ 𝑘𝑖 holds. We then present an efficient algorithm to encode a

cardinality constraint

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 as a BDD with 𝑂 ((𝑛 − 𝑘) · 𝑘) nodes in 𝑂 ((𝑛 − 𝑘) · 𝑘) time. As a

result, the input-output relation of each block can be encoded as a BDD, the composition of which

yields the BDD model for the entire BNN. A distinguished advantage of our BDD encoding lies

in its support of incremental encoding. In particular, when different input regions are of interest,

there is no need to construct the BDD of the entire BNN from scratch.

To improve the efficiency of BDD encoding, we propose two strategies, namely, input propagation

and divide-and-conquer. The former forward propagates a given input region block-by-block. This

can give the feasible input space of each block, which can reduce the number of BDD nodes when

constructing BDD models from cardinality constraints. The latter is used when constructing the

BDDmodel of an internal block. Namely, we recursively compute the BDDs for the first half and the

second half of the cardinality constraints, which are to be combined by the BDD AND-operation.

The divide-and-conquer strategy does not reduce the number of AND-operations, but can reduce the

size of the intermediate BDDs. To leverage modern CPUs’ computing capability, we also investigate

parallelization strategies at various levels, namely, BDD operations, BDD encoding of each block,

and BDD construction of an entire BNN. We show that these strategies (except for parallel BDD

construction of an entire BNN) can significantly improve the efficiency of BDD encoding for large

BNNs and input regions.

Encoding BNNs as BDDs enables a wide variety of applications in security analysis and decision

explanation of BNNs. In this work, we highlight two of them within our framework, i.e., robust-

ness analysis and interpretability. For the former, we consider two quantitative variants of the

robustness analysis: (1) how many adversarial examples does the BNN have in the input region,

and (2) how many of them are misclassified to each class? We further provide an algorithm to

incrementally compute the (locally) maximal Hamming distance within which the BNN satisfies

the desired robustness properties. For the latter, we consider two problems: (1) why some inputs are

(mis)classified into a class by the BNN and (2) are there any essential features in the input region

that are common for all samples classified into a class?

Experimental results.We implemented our approach in a tool BNNQuanalyst using two BDD

packages: CU Decision Diagram (CUDD) [90] and Sylvan [102], where CUDD is a widely used

sequential BDD package while Sylvan is a promising parallel BDD package. We have evaluated

BNNQuanalyst by encoding and verifying properties of various BNNs trained on two popular

datasets, i.e., MNIST [55] and Fashion-MNIST [113]. The experiments show that BNNQuanalyst

scales to BNNs with 4 internal blocks (i.e., 12 layers), 200 hidden neurons, and 784 input size. To the

best of our knowledge, it is the first work to precisely and quantitatively analyze such large BNNs

that go significantly beyond the state-of-the-art, and is significantly more efficient and scalable than

the BDD-learning-based technique [83]. Then, we demonstrate how BNNQuanalyst can be used in

quantitative robustness analysis and decision explanation of BNNs. For quantitative robustness

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 5

analysis, our experimental results show that BNNQuanalyst can be considerably (hundreds of

times on average) faster and more accurate than the state-of-the-art approximate ♯SAT-based

approach [8]. It can also compute precisely the distribution of predicted classes of the images in

the input region as well as the locally maximal Hamming distances on several BNNs. For decision

explanation, we show the effectiveness of BNNQuanalyst in computing prime-implicant features

and essential features of the given input region for some target classes, where prime-implicant

features are a sufficient condition, if fixed, the prediction is guaranteed no matter how the remaining

features change in the input region, while essential features are a necessary condition, on which all

samples in an input region that are classified into the same class must agree.

In general, our main contributions can be summarized as follows.

• We introduce a novel algorithmic approach for encoding BNNs into BDDs that exactly

preserves the semantics of BNNs, which supports incremental encoding.

• We explore parallelization strategies at various levels to accelerate BDD encoding, most of

which can significantly improve the BDD encoding efficiency.

• We propose a framework for quantitative verification of BNNs and in particular, we demon-

strate the robustness analysis and interpretability of BNNs.

• We implement the framework as an end-to-end tool BNNQuanalyst, and conduct thorough

experiments on various BNNs, demonstrating its efficiency and effectiveness.

Outline. The remainder of this paper is organized as follows. In Section 2, we introduce binarized

neural networks, binary decision diagrams and two binary decision diagram packages used in this

work. Section 3 presents our BDD-based quantitative analysis framework, including some design

choices to improve the overall encoding efficiency. In Section 4, we investigate feasible parallelization

strategies. Section 5 presents two applications of our BDD encoding, namely, robustness analysis

and interpretability. In Section 6, we report the evaluation results. We discuss the related work in

Section 7. Finally, we conclude this work in Section 8.

This article significantly extends the results presented in [118]. (1) We add more detailed descrip-

tions of the algorithms, missing proofs of lemmas and theorems, and provide a more up-to-date

discussion of the related work. (2) We investigate various parallelization strategies to accelerate

BDD encoding, i.e., parallel BDD operations, parallel BDD encoding of blocks and parallel BDD

encoding of an entire BNN (cf. Section 4). We thoroughly evaluate these parallelization strategies

(cf. Section 6.1.4, Section 6.2 and Section 6.3). To the best of our knowledge, it is the first work

which explores parallelization for BNN verification. (3) We empirically study the performance of

our graph-based algorithm and the DP-based algorithm [27] for compiling cardinality constraints

into BDDs (cf. Section 6.1.1), the divide-and-conquer strategy for BDD encoding of blocks (cf.

Section 6.1.2), and our input propagation (cf. Section 6.1.3). (4) We compare our approach with

the BDD-learning-based approach [83] for BDD encoding (cf. Section 6.2.2) and other possible

approaches (Section 6.3.2) for quantitative robustness verification.

2 PRELIMINARIES
In this section, we briefly introduce binarized neural networks (BNNs) and (reduced, ordered)

binary decision diagrams (BDDs), as well as the two BDD packages used in this work.

We denote by R, N, B, and B±1 the set of real numbers, the set of natural numbers, the standard

Boolean domain {0, 1} and the bipolar domain {+1,−1}, respectively. For a given positive integer

𝑛 ∈ N, we let [𝑛] := {1, · · · , 𝑛}. We will useW,W′, · · · to denote (2-dimensional) matrices, x, v, · · ·
to denote (row) vectors, and 𝑥, 𝑣, · · · to denote scalars. We denote byW𝑖,: andW:, 𝑗 the 𝑖-th row and

𝑗-th column of the matrixW. Similarly, we denote by x𝑗 andW𝑖, 𝑗 the 𝑗-th entry of the vector x and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

6 Y. Zhang, et al.

BNN
Block 1

LIN

BN

BIN

Block 2

LIN

BN

BIN

Block d

LIN

BN

BIN

Output

Block

LIN

ARGMAX

x

o

…

Fig. 1. Architecture of a BNN with 𝑑 + 1 blocks

matrixW𝑖,:. In this work, Boolean values 1/0will be used as integers 1/0 in arithmetic computations

without typecasting.

2.1 Binarized Neural Networks
A Binarized Neural Network (BNN) [45] is a neural network where weights and activations are

predominantly binarized over the bipolar domain B±1. In this work, we consider feed-forward

BNNs. As shown in Figure 1, a (feed-forward) BNN can be seen as a sequential composition of

several internal blocks and one output block. Each internal block comprises three layers: a linear

layer (LIN), a batch normalization layer (BN), and a binarization layer (BIN). The output block

comprises a linear layer and an ARGMAX layer. Note that the input/output of the internal blocks

and the input of the output block are all vectors over the bipolar domain B±1.

Definition 2.1. A BNN N : B𝑛1

±1 → B𝑠 with 𝑠 classes (i.e., classification labels) is given by a tuple

of blocks (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1) such that

N = 𝑡𝑑+1 ◦ 𝑡𝑑 ◦ · · · ◦ 𝑡1,

Here, we have that

• for every 𝑖 ∈ [𝑑], 𝑡𝑖 : B𝑛𝑖±1 → B
𝑛𝑖+1
±1 is the 𝑖-th internal block comprising a LIN layer 𝑡𝑙𝑖𝑛𝑖 , a BN

layer 𝑡𝑏𝑛𝑖 and a BIN layer 𝑡𝑏𝑖𝑛𝑖 with 𝑡𝑖 = 𝑡𝑏𝑖𝑛𝑖 ◦ 𝑡𝑏𝑛𝑖 ◦ 𝑡𝑙𝑖𝑛𝑖 ,

• 𝑡𝑑+1 : B
𝑛𝑑+1
±1 → B𝑠 is the output block comprising a LIN layer 𝑡𝑙𝑖𝑛

𝑑+1 and an ARGMAX layer 𝑡𝑎𝑚
𝑑+1

with 𝑡𝑑+1 = 𝑡𝑎𝑚
𝑑+1 ◦ 𝑡

𝑙𝑖𝑛
𝑑+1,

where 𝑡𝑏𝑖𝑛𝑖 , 𝑡𝑏𝑛𝑖 , 𝑡𝑙𝑖𝑛𝑖 for 𝑖 ∈ [𝑑], 𝑡𝑙𝑖𝑛
𝑑+1 and 𝑡

𝑎𝑚
𝑑+1 are given in Table 1.

Intuitively, a LIN layer is a fully connected layer, acted as a linear transformation 𝑡𝑙𝑖𝑛 : B𝑚±1 → R𝑛
over vectors such that 𝑡𝑙𝑖𝑛 (x) = W · x + b, where W ∈ B𝑚×𝑛

±1 is the weight matrix and b ∈ R𝑛 is the

bias vector. A BN layer following a LIN layer forms a linear transformation 𝑡𝑏𝑛 : R𝑛 → R𝑛 such

that 𝑡𝑏𝑛 (x) = y, where for every 𝑗 ∈ [𝑛], y𝑗 = 𝛼 𝑗 · (
x𝑗−𝜇 𝑗
𝜎 𝑗

) + 𝛾 𝑗 , 𝛼 𝑗 and 𝛾 𝑗 denote the 𝑗𝑡ℎ elements

of the weight vector 𝛼 ∈ R𝑛 and the bias vector 𝛾 ∈ R𝑛 , 𝜇 𝑗 and 𝜎 𝑗 denote the mean and standard

deviation (assuming 𝜎𝑖 > 0). A BN layer is used to standardize and normalize the output vector of

the preceding LIN layer. A BIN layer is used to binarize the real-numbered output vector of the

preceding BN layer. In this work, we consider the sign function which is widely used in BNNs to

binarize real-numbered vectors. Thus, a BIN layer with 𝑛 inputs forms a non-linear transformation

𝑡𝑏𝑖𝑛 : R𝑛 → B𝑛±1 such that the 𝑗-the entry of 𝑡𝑏𝑖𝑛 (x) is +1 if x𝑗 ≥ 0, and −1 otherwise. An ARGMAX

layer 𝑡𝑎𝑚 : R𝑠 → B𝑠 follows a LIN layer and outputs the index of the largest entry as the predicted

class which is represented by a one-hot vector. (In case there is more than one such entry, the first

one is returned.) Formally, given a BNN N = (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1) and an input x ∈ B𝑛1

±1, N(x) ∈ B𝑠 is
a one-hot vector in which the index of the non-zero entry is the predicted class.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 7

Table 1. Definitions of layers in BNNs, where 𝑛𝑑+2 = 𝑠 , 𝑡𝑏𝑖𝑛
𝑖

is the sign function and argmax(·) returns the
index of the largest entry which occurs first.

Layer Function Parameters Definition

LIN 𝑡𝑙𝑖𝑛𝑖 : B𝑛𝑖±1 → R𝑛𝑖+1
Weight matrix: W ∈ B𝑛𝑖×𝑛𝑖+1±1
Bias (row) vector: b ∈ R𝑛𝑖+1

𝑡𝑙𝑖𝑛𝑖 (x) = y where ∀𝑗 ∈ [𝑛𝑖+1],
y𝑗 = ⟨x,W:, 𝑗 ⟩ + b𝑗

BN 𝑡𝑏𝑛𝑖 : R𝑛𝑖+1 → R𝑛𝑖+1
Weight vectors: 𝛼 ∈ R𝑛𝑖+1
Bias vector: 𝛾 ∈ R𝑛𝑖+1
Mean vector: 𝜇 ∈ R𝑛𝑖+1
Std. dev. vector: 𝜎 ∈ R𝑛𝑖+1

𝑡𝑏𝑛𝑖 (x) = y where ∀𝑗 ∈ [𝑛𝑖+1],
y𝑗 = 𝛼 𝑗 · (

x𝑗−𝜇 𝑗
𝜎 𝑗

) + 𝛾 𝑗

BIN 𝑡𝑏𝑖𝑛𝑖 : R𝑛𝑖+1 → B𝑛𝑖+1±1 -

𝑡𝑏𝑖𝑛𝑖 (x) = sign(x) = y where ∀𝑗 ∈ [𝑛𝑖+1],

y𝑗 =

{
+1, if x𝑗 ≥ 0;

−1, otherwise.

ARGMAX 𝑡𝑎𝑚
𝑑+1 : R

𝑠 → B𝑠 -

𝑡𝑎𝑚
𝑑+1 (x) = y where ∀𝑗 ∈ [𝑠],
y𝑗 = 1 ⇔ 𝑗 = argmax(x)

2.2 Binary Decision Diagrams
A Binary Decision Diagram (BDD) [12] is a rooted acyclic directed graph, where non-terminal

nodes 𝑣 are labeled by Boolean variables var(𝑣) and terminal nodes (leaves) 𝑣 are labeled with

values val(𝑣) ∈ B, referred to as the 1-leaf and the 0-leaf, respectively. Each non-terminal node 𝑣

has two outgoing edges: hi(𝑣) and lo(𝑣), where hi(𝑣) denotes that the variable var(𝑣) is assigned
by 1 (i.e., var(𝑣) = 1), and lo(𝑣) denotes that the variable var(𝑣) is assigned by 0 (i.e., var(𝑣) = 0).

By a slight abuse of notation, we will also refer to hi(𝑣) and lo(𝑣) as the hi- and lo-children of 𝑣 ,

respectively, when it is clear from the context.

A BDD with a pre-defined total variable ordering is called Ordered Binary Decision Diagram

(OBDD). Assuming that 𝑥1 < 𝑥2 < · · · < 𝑥𝑚 is the variable ordering, OBDD satisfies that for each

pair of nodes 𝑣 and 𝑣 ′, if 𝑣 ′ ∈ {hi(𝑣), lo(𝑣)}, then var(𝑣) < var(𝑣 ′). In the graphical representation of
BDDs, the edges hi(𝑣) and lo(𝑣) are depicted by solid and dashed lines, respectively. Multi-Terminal

Binary Decision Diagrams (MTBDDs) are a generalization of BDDs in which the terminal nodes

are not restricted to be 0 or 1.

A BDD is reduced if the following conditions hold:

(1) it has only one 1-leaf and one 0-leaf, i.e., no duplicate terminal nodes;

(2) it does not contain a node 𝑣 such that hi(𝑣) = lo(𝑣), i.e., the hi- and lo-children of each node

𝑣 should be distinct; and

(3) it does not contain two distinct non-terminal nodes 𝑣 and 𝑣 ′ such that var(𝑣) = var(𝑣 ′),
hi(𝑣) = hi(𝑣 ′) and lo(𝑣) = lo(𝑣 ′), namely, no isomorphic sub-trees.

Hereafter, we assume that BDDs are reduced and ordered.

Bryant [12] showed that BDDs can serve as a canonical form of Boolean functions. Given a

BDD over variables 𝑥1, · · · , 𝑥𝑚 , each non-terminal node 𝑣 with var(𝑣) = 𝑥𝑖 represents a Boolean

function 𝑓𝑣 = (𝑥𝑖 ∧ 𝑓hi(𝑣)) ∨ (¬𝑥𝑖 ∧ 𝑓lo(𝑣)). Operations on Boolean functions can usually be efficiently

implemented via manipulating their BDD representations. A good variable ordering is crucial

for the performance of BDD manipulations while the task of finding an optimal ordering for a

Boolean function is NP-hard in general. In practice, to store and manipulate BDDs efficiently, nodes

are stored in a hash table and recent computed results are stored in a cache to avoid duplicated

computations. In this work, we will use some basic BDD operations such as ITE (If-Then-Else), Xor

(exclusive-OR), Xnor (exclusive-NOR, i.e., 𝑎 Xnor 𝑏 = ¬(𝑎 Xor 𝑏)), SatAll(𝑣) (i.e., returning the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

8 Y. Zhang, et al.

Table 2. Some Basic BDD operations, where 𝑜𝑝 ∈ {And,Or, Xor, Xnor},𝑚 denotes the number of the Boolean

variables and |𝑣 | denotes the number of nodes in the BDD 𝑣 .

Operation Definition Complexity Operation Definition Complexity

𝑣 = New(𝑥) 𝑓𝑣 = 𝑥 𝑂 (1) 𝑣 = Const(1) 𝑓𝑣 = 1 𝑂 (1)
Not(𝑣) ¬𝑓𝑣 𝑂 (|1|) 𝑣 = Const(0) 𝑓𝑣 = 0 𝑂 (1)

Apply(𝑣, 𝑣 ′, 𝑜𝑝) 𝑓𝑣 𝑜𝑝 𝑓𝑣′ 𝑂 (|𝑣 | · |𝑣 ′ |) Exists(𝑣, 𝑋) ∃𝑋 .𝑓𝑣 𝑂 (|𝑣 | · 22𝑚)
SatAll(𝑣) SatAll(𝑓𝑣) 𝑂 (𝑚 · |SatAll(𝑓𝑣) |) RelProd(𝑣, 𝑣 ′, 𝑋) ∃𝑋 .𝑓𝑣′ ◦ 𝑓𝑣 𝑂 (|𝑣 | · |𝑣 ′ | · 22𝑚)

SatCount(𝑣) |SatAll(𝑓𝑣) | 𝑂 (|𝑣 |) ITE(𝑥, 𝑣, 𝑣 ′) (𝑥 ∧ 𝑓𝑣) ∨ (¬𝑥 ∧ 𝑓𝑣′) 𝑂 (|𝑣 | · |𝑣 ′ |)

x1

1

y1

0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

y1

x2

y2

x2 x2

y2 y2 y2 y2 y2 y2 y2

x2

Fig. 2. The OBDD for 𝑓 (𝑥1, 𝑦1, 𝑥2, 𝑦2)

x1

y1

x2

y2

y1

y2

01

Fig. 3. The Reduced OBDD for 𝑓 (𝑥1, 𝑦1, 𝑥2, 𝑦2)

set of all solutions of the Boolean formula 𝑓𝑣) and SatCount(𝑣) (i.e., returning |SatAll(𝑣) |). We

denote by L(𝑣) the set SatAll(𝑓𝑣). For easy reference, more operations and their worst-case time

complexities are given in Table 2 [12, 13, 66], where𝑚 denotes the number of Boolean variables and

|𝑣 | denotes the number of nodes in the BDD 𝑣 . We denote by 𝑜𝑝 (𝑣, 𝑣 ′) the operation Apply(𝑣, 𝑣 ′, 𝑜𝑝),
where 𝑜𝑝 ∈ {And,Or,Xor,Xnor}.

In this work, we use BDDs to symbolically represent sets of Boolean vectors and multiple output

functions. For each BDD 𝑣 over Boolean variables 𝑥1, · · · , 𝑥𝑚 that represents a Boolean function

𝑓𝑣 : {𝑥1, · · · , 𝑥𝑚} → B, the BDD 𝑣 essentially represents the set L(𝑣) ⊆ B𝑚 , i.e., all solutions
of the Boolean formula 𝑓𝑣 (𝑥1, · · · , 𝑥𝑚). The function 𝑓𝑣 is often called the characteristic function

of the set L(𝑣). A multiple output function 𝑓 : B𝑚 → B𝑛 can be seen as a Boolean function

𝑓 ′ : B𝑚+𝑛 → B such that 𝑓 (𝑥1, · · · , 𝑥𝑚) = (𝑦1, · · · , 𝑦𝑛) iff 𝑓 ′(𝑥1, · · · , 𝑥𝑚, 𝑦1, · · · , 𝑦𝑛) = 1, hence can

also be represented by a BDD.

Example 2.2. Consider the Boolean function 𝑓 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = (𝑥1 ⇔ 𝑦1) ∧ (𝑥2 ⇔ 𝑦2). Assume

that the variable ordering is 𝑥1 < 𝑦1 < 𝑥2 < 𝑦2. Figure 2 and Figure 3 respectively show the OBDD

and Reduced OBDD of the Boolean function 𝑓 (𝑥1, 𝑦1, 𝑥2, 𝑦2). The set SatAll(𝑓) of its solutions
is {(1, 1, 1, 1), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 0)}. The Boolean function 𝑓 (𝑥1, 𝑦1, 𝑥2, 𝑦2) can be seen as

a multiple output function 𝑓 ′ : {𝑥1, 𝑥2} → {𝑦1, 𝑦2} such that 𝑓 ′(1, 1) = (1, 1), 𝑓 ′(1, 0) = (1, 0),
𝑓 ′(0, 1) = (0, 1) and 𝑓 ′(0, 0) = (0, 0).

2.3 BDD Packages
In this section, we give a brief introduction of two BDD packages used in this work, i.e., CUDD [90]

and Sylvan [102].

CUDD. CUDD is a widely used decision diagram package implemented in C. To facilitate the

performance of BDD manipulation, CUDD stores all the decision diagram nodes in a unique hash

table and features a cache for storing recent computed results, both of which can be automatically

adjusted at runtime. The unique hash table and some auxiliary data structures make up a decision

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 9

BNNQuanalyst

Region

BNN2CC
BNN

BDD Model

Builder

Region2BDD

CC

BDD
Query Engine

 Robustness

 Interpretability

BDD

Query

Result

CC2BDD

Fig. 4. Overview of BNNQuanalyst

diagram manager (DdManager), which should be initialized by calling an appropriate function with

initial sizes of the subtables and cache.

The CUDD package provides a C++ interface which facilitates application via automatic garbage

collection and operator overloading. Although CUDD allows to execute BDD operations from

multiple threads, each thread has to use a separate DdManager, i.e., a separate unique hash table for

storing decision diagram nodes, which limits its usage for parallel computing [102]. In this work,

CUDD is only used for sequential computing.

Sylvan. Sylvan is a parallel decision diagram package implemented in C. It leverages the working-

stealing framework Lace [103] and scalable parallel data structures to provide parallel operations on

decision diagrams. Similar to CUDD, Sylvan maintains a hash table, an automatic garbage collector

and a cache for managing decision diagram nodes and storing recent computed results. Both the

minimum and maximum sizes of the hash table and cache are initialized by calling an appropriate

function, but the sizes can be automatically adjusted at runtime. In contrast to CUDD which

implements the unique hash table using several subtables and collects garbage in sequence, Sylvan

directly maintains one single hash table and collects garbage in parallel. Though Sylvan implements

less BDD operations than CUDD, it provides many parallel implementations of common BDD

operations, e.g., Apply, Exists, RelProd, SatAll, SatCount and ITE. It also allows developers to

implement parallel BDD operations at the algorithmic level. In this work, Sylvan is primarily used

for parallel computing.

3 FRAMEWORK DESIGN
3.1 Overview of BNNQuanalyst

An overview of BNNQuanalyst is depicted in Figure 4. It comprises five main components:

Region2BDD, BNN2CC, CC2BDD, BDD Model Builder, and Query Engine. For a fixed BNN

N = (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1) and a region 𝑅 of the input space of N , BNNQuanalyst constructs the

BDDs (𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] , where the BDD 𝐺𝑜𝑢𝑡

𝑖 encodes the input-output relation of the BNN N in the

region 𝑅 for the class 𝑖 ∈ [𝑠]. Technically, the region 𝑅 is partitioned into 𝑠 parts represented by the

BDDs (𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] . For each query of the property, BNNQuanalyst analyzes (𝐺𝑜𝑢𝑡

𝑖)𝑖∈[𝑠] and outputs

the query result.

The general workflow of our approach is as follows. First, Region2BDD builds up a BDD 𝐺𝑖𝑛
𝑅

from the region 𝑅 which represents the desired input space of N for analysis. Second, BNN2CC

transforms each block of the BNN N into a set of cardinality constraints (CCs) similar to [8, 72].

Third, BDD Model Builder builds the BDDs (𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] from all the cardinality constraints and

the BDD 𝐺𝑖𝑛
𝑅
. Both Region2BDD and BDD Model Builder invoke CC2BDD which encodes a given

cardinality constraint as a BDD. Finally, Query Engine answers queries by analyzing the BDDs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

10 Y. Zhang, et al.

`1

`2

`k−1

`k

...

`2

`3

`k

`k+1

...

`3

`4

`k+1

`k+2

...

`4

`5

`k+2

`k+3

...

...

...

...

...

...

`n−k

`n−k+1

`n−2

`n−1

...

`n−k+1

`n−k+2

`n−1

`n

...

1

0

Fig. 5. A BDD-like graph representation of the cardinality constraint

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘

Algorithm 1: BDD Construction for cardinality constraints

1 Procedure CC2BDD(CC :

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘)

2 𝐺𝑘+1,1 = 𝐺𝑘+1,2 = · · · = 𝐺𝑘+1,𝑛−𝑘+1 = Const(1);
3 𝐺

1,𝑛−𝑘+2 = 𝐺
2,𝑛−𝑘+2 = · · · = 𝐺𝑘,𝑛−𝑘+2 = Const(0);

4 for (𝑖 = 𝑘 ; 𝑖 ≥ 1; 𝑖 − −) do
5 for (𝑗 = 𝑛 − 𝑘 + 1; 𝑗 ≥ 1; 𝑗 − −) do
6 if (ℓ𝑖+𝑗−1 == x𝑖+𝑗−1) then
7 𝐺𝑖, 𝑗 = ITE(x𝑖+𝑗−1,𝐺𝑖+1, 𝑗 ,𝐺𝑖, 𝑗+1)
8 else
9 𝐺𝑖, 𝑗 = ITE(x𝑖+𝑗−1,𝐺𝑖, 𝑗+1,𝐺𝑖+1, 𝑗)

10 return 𝐺1,1

(𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] . Our Query Engine currently supports two types of application queries: robustness

analysis and interpretability.

In the rest of this section, we first introduce the key component CC2BDD, and then provide

details of the components Region2BDD, BNN2CC, and BDD Model Builder. The Query Engine will

be described in Section 5.

3.2 CC2BDD: Cardinality Constraints to BDDs
A cardinality constraint is a constraint of the form

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 over a vector x of Boolean variables

{𝑥1, · · · , 𝑥𝑛} with length 𝑛, where the literal ℓ𝑗 is either x𝑗 or ¬x𝑗 for each 𝑗 ∈ [𝑛]. A solution of

the constraint

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 is a valuation of the Boolean variables {𝑥1, · · · , 𝑥𝑛} under which the

constraint holds. Note that constraints of the form

∑𝑛
𝑗=1 ℓ𝑗 > 𝑘 ,

∑𝑛
𝑗=1 ℓ𝑗 ≤ 𝑘 and

∑𝑛
𝑗=1 ℓ𝑗 < 𝑘 are

equivalent to

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 + 1,

∑𝑛
𝑗=1 ¬ℓ𝑗 ≥ 𝑛 − 𝑘 and

∑𝑛
𝑗=1 ¬ℓ𝑗 ≥ 𝑛 − 𝑘 + 1, respectively. We assume

that 1 (resp. 0) is a special cardinality constraint that always holds (resp. never holds).

To encode a cardinality constraint

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 as a BDD, we observe that all the possible solutions

of

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 can be compactly represented by a BDD-like graph shown in Figure 5, where each

node is labeled by a literal, and a solid (resp. dashed) edge from a node labeled by ℓ𝑗 means that the

value of the literal ℓ𝑗 is 1 (resp. 0), called positive literal. Thus, each path from the ℓ1-node to the

1-leaf through the ℓ𝑗 -node (where 1 ≤ 𝑗 ≤ 𝑛) captures a set of valuations where ℓ𝑗 followed by a

(horizontal) dashed line is set to be 0 while ℓ𝑗 followed by a (vertical) solid line is set to be 1, and all

the other literals which are not along the path can take arbitrary values. Along a path, the number

of positive literals is counted, and the path ends with the 1-leaf iff the number of positive literals is

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 11

no less than 𝑘 . Clearly, for each of these valuations of a path from the ℓ1-node to the 1-leaf, there

are at least 𝑘 positive literals, hence the constraint

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 holds.

Based on the above observation, we build the BDD for

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 using Algorithm 1. It builds a

BDD for each node in Figure 5, row-by-row (the index 𝑖 in Algorithm 1) and from right to left (the

index 𝑗 in Algorithm 1). For each node at the 𝑖-th row and 𝑗-th column, the label of the node must

be the literal ℓ𝑖+𝑗−1. We build the BDD 𝐺𝑖, 𝑗 = ITE(x𝑖+𝑗−1,𝐺𝑖+1, 𝑗 ,𝐺𝑖, 𝑗+1) if ℓ𝑖+𝑗−1 is of the form x𝑖+𝑗−1
(Line 7), otherwise we build the BDD 𝐺𝑖, 𝑗 = ITE(x𝑖+𝑗−1,𝐺𝑖, 𝑗+1,𝐺𝑖+1, 𝑗) (Line 9). Finally, we obtain
the BDD 𝐺1,1 that encodes the solutions of

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 .

Lemma 3.1. For each cardinality constraint
∑𝑛

𝑗=1 ℓ𝑗 ≥ 𝑘 , a BDD 𝐺 with 𝑂 ((𝑛 − 𝑘) · 𝑘) nodes can
be computed in 𝑂 ((𝑛 − 𝑘) · 𝑘) time such that L(𝐺) is the set of all the solutions of ∑𝑛

𝑗=1 ℓ𝑗 ≥ 𝑘 , i.e.,
u ∈ L(𝐺) iff 𝜉 is a solution of

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 , where 𝜉 (x𝑗) = u𝑗 for each 𝑗 ∈ [𝑛].

Proof. Consider the cardinality constraint

∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 and the variable ordering x1 < · · · <

x𝑛 , the procedure CC2BDD in Algorithm 1 constructs a BDD 𝐺1,1 with 𝑛 Boolean variables

and 𝑘 (𝑛 − 𝑘 + 1) + 2 nodes. The outer-loop executes 𝑘 iterations and the inner-loop executes

𝑛 − 𝑘 + 1 iterations for each iteration of the outer-loop. For each iteration of the inner-loop,

one ITE-operation is performed. Although the time complexity of ITE(x𝑖+𝑗−1,𝐺𝑖+1, 𝑗 ,𝐺𝑖, 𝑗+1) (resp.
ITE(x𝑖+𝑗−1,𝐺𝑖, 𝑗+1,𝐺𝑖+1, 𝑗)) is 𝑂 (|𝐺𝑖+1, 𝑗 | · |𝐺𝑖, 𝑗+1 |) in general, the variable ordering 𝑥1 < · · · < 𝑥𝑛
ensures that only one node 𝑣 with New(𝑣) = x𝑖+𝑗−1 and two edges between the node 𝑣 and the

roots of the BDDs 𝐺𝑖+1, 𝑗 and 𝐺𝑖, 𝑗+1 are added, which can be done in 𝑂 (1) time, as all the roots of

𝐺𝑖+1, 𝑗 and 𝐺𝑖, 𝑗+1 are either leaves or labeled by the Boolean variable x𝑖+𝑗 . Thus, the BDD 𝐺1,1 can

be constructed in 𝑂 ((𝑛 − 𝑘) · 𝑘) time.

To prove that L(𝐺1,1) is the set of all the solutions of
∑𝑛

𝑗=1 ℓ𝑗 ≥ 𝑘 , we prove the following claim:

For any indices 𝑖 and 𝑗 such that 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛 − 𝑘 + 1, any valuation 𝜉 of∑𝑛
𝑗=1 ℓ𝑗 ≥ 𝑘 , if there are at least (resp. less than) 𝑘 − 𝑖 + 1 positive literals among the literals

{ℓ𝑖+𝑗−1, · · · , ℓ𝑛} under the valuation 𝜉 , then the path starting from the root of the BDD𝐺𝑖, 𝑗 and

following the valuation 𝜉 ends at the 1-leaf (resp. 0-leaf).

We apply induction on the indices 𝑖 and 𝑗 .

Base case 𝑖 = 𝑘 and 𝑗 = 𝑛 − 𝑘 + 1. The BDD 𝐺𝑘,𝑛−𝑘+1 is built via

• ITE(x𝑛,𝐺𝑘+1,𝑛−𝑘+1,𝐺𝑘,𝑛−𝑘+2) if ℓ𝑛 is x𝑛 , or
• ITE(x𝑛,𝐺𝑘,𝑛−𝑘+2,𝐺𝑘+1,𝑛−𝑘+1) if ℓ𝑛 is ¬x𝑛 .

Recall that𝐺𝑘+1,𝑛−𝑘+1 = Const(1) and𝐺𝑘,𝑛−𝑘+2 = Const(0). If (ℓ𝑛 is x𝑛 and 𝜉 (x𝑛) = 1) or (ℓ𝑛 is ¬x𝑛
and 𝜉 (x𝑛) = 0), then ℓ𝑛 holds under the valuation 𝜉 and the edge starting from the root of the BDD

𝐺𝑘,𝑛−𝑘+1 with label 𝜉 (x𝑛) points to the root of 𝐺𝑘+1,𝑛−𝑘+1, i.e., the 1-leaf. If (ℓ𝑛 is x𝑛 and 𝜉 (x𝑛) = 0)

or (ℓ𝑛 is ¬x𝑛 and 𝜉 (x𝑛) = 1), then ℓ𝑛 does not hold under the valuation 𝜉 and the edge starting from

the root of BDD 𝐺𝑘,𝑛−𝑘+1 with label 𝜉 (x𝑛) points to the root of 𝐺𝑘,𝑛−𝑘+2, i.e., the 0-leaf. The claim
follows.

Induction step 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛 − 𝑘 + 1 such that 𝑖 ≠ 𝑘 or/and 𝑗 ≠ 𝑛 − 𝑘 + 1. The
BDD 𝐺𝑖, 𝑗 is built via ITE(x𝑖+𝑗−1,𝐺𝑖+1, 𝑗 ,𝐺𝑖, 𝑗+1) if ℓ𝑖+𝑗−1 is x𝑖+𝑗−1 or ITE(x𝑖+𝑗−1,𝐺𝑖, 𝑗+1,𝐺𝑖+1, 𝑗) if ℓ𝑖+𝑗−1
is ¬x𝑖+𝑗−1.

• If (ℓ𝑖+𝑗−1 is x𝑖+𝑗−1 and 𝜉 (x𝑖+𝑗−1) = 1) or (ℓ𝑖+𝑗−1 is ¬x𝑖+𝑗−1 and 𝜉 (x𝑖+𝑗−1) = 0), then the literal

ℓ𝑖+𝑗−1 holds under the valuation 𝜉 and the edge from the root of the BDD 𝐺𝑖, 𝑗 with label

𝜉 (x𝑖+𝑗−1) points to the root of the BDD 𝐺𝑖+1, 𝑗 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

12 Y. Zhang, et al.

x1

x2

x3

x2

x3

x4

x3

x4

x5

x4

x5

x6

1

0

Fig. 6. The BDD of the cardinality constraint 𝑥1 + ¬𝑥2 + 𝑥3 + ¬𝑥4 + 𝑥5 + ¬𝑥6 ≥ 3

– If 𝑖 = 𝑘 , then 𝑗 < 𝑛 − 𝑘 + 1, 𝐺𝑖+1, 𝑗 is Const(1) and there is at least one (𝑘 − 𝑖 + 1 = 1)

positive literal (e.g., ℓ𝑖+𝑗−1) among the literals {ℓ𝑖+𝑗−1, · · · , ℓ𝑛}. Since the root of Const(1)
is the 1-leaf, the result follows.

– If 𝑖 < 𝑘 , by applying the induction hypothesis to 𝑖 + 1, we get that if there are at least (resp.

less than) 𝑘 − 𝑖 positive literals among the literals {ℓ𝑖+𝑗 , · · · , ℓ𝑛} under the valuation 𝜉 , then

the path starting from the root of the BDD 𝐺𝑖+1, 𝑗 and following the valuation 𝜉 ends at the

1-leaf (resp. 0-leaf). Since the literal ℓ𝑖+𝑗−1 holds under the valuation 𝜉 , we get that if there

are at least (resp. less than) 𝑘 − 𝑖 positive literals among the literals {ℓ𝑖+𝑗 , · · · , ℓ𝑛} under
the valuation 𝜉 , then there are at least (resp. less than) 𝑘 − 𝑖 + 1 positive literals among

the literals {ℓ𝑖+𝑗−1, · · · , ℓ𝑛} under the valuation 𝜉 and the path starting from the root of the

BDD 𝐺𝑖, 𝑗 and following the valuation 𝜉 ends at the 1-leaf (resp. 0-leaf).

• If (ℓ𝑖+𝑗−1 is x𝑖+𝑗−1 and 𝜉 (x𝑖+𝑗−1) = 0) or (ℓ𝑖+𝑗−1 is ¬x𝑖+𝑗−1 and 𝜉 (x𝑖+𝑗−1) = 1), then the literal

ℓ𝑖+𝑗−1 does not hold under the valuation 𝜉 and the edge from the root of the BDD𝐺𝑖, 𝑗 with

label 𝜉 (x𝑖+𝑗−1) points to the root of the BDD 𝐺𝑖, 𝑗+1.
– If 𝑗 = 𝑛 − 𝑘 + 1, then 𝑖 < 𝑘 , 𝐺𝑖, 𝑗+1 is Const(0) and there are less than (𝑘 − 𝑖 + 1) positive
literal among the literals {ℓ𝑖+𝑗−1, · · · , ℓ𝑛}. Since the root of Const(0) is the 0-leaf, the result
follows.

– If 𝑗 < 𝑛 − 𝑘 + 1, by applying the induction hypothesis to 𝑗 + 1, we get that if there are

at least (resp. less than) 𝑘 − 𝑖 + 1 positive literals among the literals {ℓ𝑖+𝑗 , · · · , ℓ𝑛} under
the valuation 𝜉 , then the path starting from the root of the BDD 𝐺𝑖, 𝑗+1 and following the

valuation 𝜉 ends at the 1-leaf (resp. 0-leaf). Thus, the result follows from the facts that the

literal ℓ𝑖+𝑗−1 does not hold under the valuation 𝜉 and the edge from the root of the BDD

𝐺𝑖, 𝑗 with label 𝜉 (x𝑖+𝑗−1) points to the root of the BDD 𝐺𝑖, 𝑗+1.

□

Example 3.2. Consider the cardinality constraint 𝑥1+¬𝑥2+𝑥3+¬𝑥4+𝑥5+¬𝑥6 ≥ 3, by Algorithm 1,

we obtain the BDD shown in Figure 6.

Compared to the prior work [10, 67] which transforms general arithmetic constraints into

BDDs, we devise a dedicated BDD encoding algorithm for the cardinality constraints without

applying the reduction, thus our algorithm is more efficient. An alternative approach, called “DP-

based” algorithm [27], recursively constructs the desired BDD from a cardinality constraint via

dynamic programming. Although the DP-based algorithm shares the similar idea to ours during

the BDD construction (i.e., counting the number of positive literals), our “graph-based” algorithm

significantly outperforms, as shown in Section 6.1.1.

3.3 Region2BDD: Input Regions to BDDs
In this paper, we consider the following two types of input regions.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 13

• Input region based on the Hamming distance. For an input u ∈ B𝑛1

±1 and an integer 𝑟 ≥ 0,

let 𝑅(u, 𝑟) := {x ∈ B𝑛1

±1 | HD(x, u) ≤ 𝑟 }, where HD(x, u) denotes the Hamming distance

between x and u. Intuitively, 𝑅(u, 𝑟) includes the input vectors which differ from u by at most

𝑟 positions.

• Input region with fixed indices. For an input u ∈ B𝑛1

±1 and a set of indices 𝐼 ⊆ [𝑛1], let
𝑅(u, 𝐼) := {x ∈ B𝑛1

±1 | ∀𝑖 ∈ [𝑛1] \ 𝐼 . u𝑖 = x𝑖 }. Intuitively, 𝑅(u, 𝐼) includes the input vectors
which differ from u only at the indices in 𝐼 .

Note that both 𝑅(u, 𝑛1) and 𝑅(u, [𝑛1]) denote the full input space B𝑛1

±1.
Recall that each input sample is an element from the space B𝑛1

±1, namely, value at each index

of an input sample is +1 or -1. To represent the region 𝑅 by a BDD, we transform each value ±1
into a Boolean value 1/0. To this end, for each input u ∈ B𝑛1

±1, we create a new sample u(𝑏) ∈ B𝑛1

such that for every 𝑖 ∈ [𝑛1], u𝑖 = 2u(𝑏)
𝑖

− 1. Therefore, 𝑅(u, 𝑟) and 𝑅(u, 𝐼) will be represented by

𝑅(u(𝑏) , 𝑟) and 𝑅(u(𝑏) , 𝐼), respectively. Hereafter, for ease of presentation, 𝑅(u(𝑏) , 𝑟) and 𝑅(u(𝑏) , 𝐼)
are denoted by 𝑅(u, 𝑟) and 𝑅(u, 𝐼). The transformation functions 𝑡𝑙𝑖𝑛𝑖 , 𝑡𝑏𝑛𝑖 , 𝑡𝑏𝑖𝑛𝑖 and 𝑡𝑎𝑚

𝑑+1 of the LIN,
BN, BIN, and ARGMAX layers (cf. Table 1) will be handled accordingly. Note that for convenience,

vectors over the Boolean domain B may be directly given by u or x instead of u(𝑏)
or x(𝑏) when it

is clear from the context.

Region encoding under Hamming distance. Given an input u ∈ B𝑛1
and an integer 𝑟 ≥ 0, the

region 𝑅(u, 𝑟) = {x ∈ B𝑛1 | HD(x, u) ≤ 𝑟 } can be expressed by a cardinality constraint

∑𝑛1

𝑗=1
ℓ𝑗 ≤ 𝑟

(which is equivalent to

∑𝑛1

𝑗=1
¬ℓ𝑗 ≥ 𝑛1 − 𝑟), where for every 𝑗 ∈ [𝑛1], ℓ𝑗 = x𝑗 if u𝑗 = 0, otherwise

ℓ𝑗 = ¬x𝑗 . For instance, consider u = (1, 1, 1, 0, 0) and 𝑟 = 2, we have

HD(u, x) = 1 ⊕ x1 + 1 ⊕ x2 + 1 ⊕ x3 + 0 ⊕ x4 + 0 ⊕ x5 = ¬x1 + ¬x2 + ¬x3 + x4 + x5.

Thus, 𝑅((1, 1, 1, 0, 0), 2) can be expressed by the cardinality constraint ¬x1 +¬x2 +¬x3 + x4 + x5 ≤ 2,

or equivalently x1 + x2 + x3 + ¬x4 + ¬x5 ≥ 3.

By Algorithm 1, the cardinality constraint of 𝑅(u, 𝑟) can be encoded by a BDD 𝐺𝑖𝑛
u,𝑟 such that

L(𝐺𝑖𝑛
u,𝑟) = 𝑅(u, 𝑟). Following Lemma 3.1, we get that:

Lemma 3.3. For an input region 𝑅 given by an input u ∈ B𝑛1 and an integer 𝑟 ≥ 0, a BDD𝐺𝑖𝑛
u,𝑟 with

𝑂 (𝑟 · (𝑛1 − 𝑟)) nodes can be computed in 𝑂 (𝑟 · (𝑛1 − 𝑟)) time such that L(𝐺𝑖𝑛
u,𝑟) = 𝑅(u, 𝑟).

Proof. We first prove that the input region 𝑅(u, 𝑟) = {x ∈ B𝑛1 | HD(u, x) ≤ 𝑟 } given by an

input u ∈ B𝑛1
and a Hamming distance 𝑟 is equal to the set of all the solutions of the cardinality

constraint

∑𝑛1

𝑗=1
ℓ𝑗 ≤ 𝑟 .

Consider an input u′ ∈ B𝑛1
. For every literal ℓ𝑗 , since ℓ𝑗 = x𝑗 if u𝑗 = 0 and ℓ𝑗 = ¬x𝑗 otherwise,

the literal ℓ𝑗 is positive iff u′
𝑗 is different from u𝑗 . Since a valuation 𝜉 is a solution of

∑𝑛1

𝑗=1
ℓ𝑗 ≤ 𝑟

iff there are at most 𝑟 positive literals under the valuation 𝜉 , and u′ ∈ 𝑅(u, 𝑟) iff u and u′
differ at

most 𝑟 positions, we have that u′ ∈ 𝑅(u, 𝑟) iff 𝜉 is a solution of

∑𝑛1

𝑗=1
ℓ𝑗 ≤ 𝑟 , where 𝜉 (x𝑗) = u′

𝑗 for

every 𝑗 ∈ [𝑛1].
By Lemma 3.1, a BDD 𝐺𝑖𝑛

u,𝑟 with 𝑂 (𝑟 · (𝑛1 − 𝑟)) nodes can be constructed in 𝑂 (𝑟 · (𝑛1 − 𝑟)) time

such that u′ ∈ L(𝐺𝑖𝑛
u,𝑟) iff 𝜉 is a solution of

∑𝑛1

𝑗=1
¬ℓ𝑗 ≥ 𝑛1 − 𝑟 , where 𝜉 (x𝑗) = u′𝑗 for every 𝑗 ∈ [𝑛1].

The result then follows from that

∑𝑛1

𝑗=1
ℓ𝑗 ≤ 𝑟 is equivalent to

∑𝑛1

𝑗=1
¬ℓ𝑗 ≥ 𝑛1 − 𝑟 by replacing each

literal ℓ𝑗 with 1 − ¬ℓ𝑗 . □

Region encoding under fixed indices. Given an input u ∈ B𝑛1
and a set of indices 𝐼 ⊆ [𝑛1], the

region 𝑅(u, 𝐼) = {x ∈ B𝑛1 | ∀𝑖 ∈ [𝑛1] \ 𝐼 . u𝑖 = x𝑖 } can be represented by the BDD 𝐺𝑖𝑛
u,𝐼 , where

𝐺𝑖𝑛
u,𝐼 ≜ And𝑖∈[𝑛1]\𝐼

(
(u𝑖 == 1)?New(x𝑖) : Not(New(x𝑖))

)
.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

14 Y. Zhang, et al.

Intuitively, 𝐺𝑖𝑛
u,𝐼 states that the value at the index 𝑖 ∈ [𝑛1] \ 𝐼 should be the same as the one in u

while the value at the index 𝑖 ∈ 𝐼 is unrestricted. For instance, consider u = (1, 0, 0, 0) and 𝐼 = {3, 4},
we have:

𝑅((1, 0, 0, 0), {3, 4}) = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)} = x1 ∧ ¬x2 .

Lemma 3.4. For an input region 𝑅 given by an input u ∈ B𝑛1 and a set of indices 𝐼 ⊆ [𝑛1], a BDD
𝐺𝑖𝑛
u,𝐼 with 𝑂 (𝑛1 − |𝐼 |) nodes can be computed in 𝑂 (𝑛1) time such that L(𝐺𝑖𝑛

u,𝐼) = 𝑅(u, 𝐼).

Proof. Consider an input u′ ∈ B𝑛1
. u′ ∈ 𝑅(u, 𝐼) iff u𝑖 = u′

𝑖 for all 𝑖 ∈ [𝑛1] \ 𝐼 . By the definition

of 𝐺𝑖𝑛
u,𝐼 , u

′ ∈ L(𝐺𝑖𝑛
u,𝐼) iff u𝑖 = u′𝑖 for all 𝑖 ∈ [𝑛1] \ 𝐼 . Therefore L(𝐺𝑖𝑛

u,𝐼) = 𝑅(u, 𝐼).
By the definition of𝐺𝑖𝑛

u,𝐼 ,𝐺
𝑖𝑛
u,𝐼 can be built from by applying 𝑛1 − |𝐼 | New-operations, 𝑛1 − |𝐼 | And-

operations, and at most 𝑛1−|𝐼 | Not-operations (cf. Table 2 for BDD operations). TheNew-operation

and Not-operation can be done in 𝑂 (1) time. To achieve 𝑂 (1) time for each And-operation, the

variables are processed according to the variable ordering x1 < · · · < x𝑛1
, namely, x𝑖+1 is processed

earlier than x𝑖 . Therefore, the BDD𝐺𝑖𝑛
u,𝐼 can be computed in𝑂 (𝑛1) time. Finally,𝐺𝑖𝑛

u,𝐼 has 𝑛1 − |𝐼 | + 2

nodes. This is because, for every 𝑖 ∈ [𝑛1], x𝑖 along the path to the 1-leaf in 𝐺𝑖𝑛
u,𝐼 can only be u𝑖 if

𝑖 ∉ 𝐼 or any value if 𝑖 ∈ 𝐼 . □

3.4 BNN2CC: BNNs to Cardinality Constraints
As mentioned before, to encode the BNN N = (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1) as BDDs (𝐺𝑜𝑢𝑡

𝑖)𝑖∈[𝑠] , we transform
the BNN N into cardinality constraints from which the desired BDDs (𝐺𝑜𝑢𝑡

𝑖)𝑖∈[𝑠] are constructed.
To this end, we first transform each internal block 𝑡𝑖 : B

𝑛𝑖
±1 → B

𝑛𝑖+1
±1 into 𝑛𝑖+1 cardinality constraints,

each of which corresponds to one entry of the output vector of the internal block 𝑡𝑖 . Then we

transform the output block 𝑡𝑑+1 : B
𝑛𝑑+1
±1 → B𝑠 into 𝑠 (𝑠 −1) cardinality constraints, where one output

class yields (𝑠 − 1) cardinality constraints.

For each vector-valued function 𝑡 , we denote by 𝑡↓𝑗 the (scalar-valued) function returning the

𝑗-th entry of the output vector of 𝑡 . Specifically, we use 𝑡𝑏𝑖𝑛
𝑖↓𝑗 and 𝑡𝑏𝑛

𝑖↓𝑗 to denote the element-wise

counterparts of the Binarization and Batch Normalization functions respectively. Namely, 𝑡𝑏𝑖𝑛
𝑖↓𝑗 (resp.

𝑡𝑏𝑛
𝑖↓𝑗) takes the 𝑗-th entry of the input vector of 𝑡𝑏𝑖𝑛𝑖 (resp. 𝑡𝑏𝑛𝑖) as input and returns the 𝑗-th entry of

the output vector of 𝑡𝑏𝑖𝑛𝑖 (resp. 𝑡𝑏𝑛𝑖).

Transformation for internal blocks. Consider the internal block 𝑡𝑖 : B𝑛𝑖±1 → B
𝑛𝑖+1
±1 for 𝑖 ∈ [𝑑].

Recall that for every 𝑗 ∈ [𝑛𝑖+1] and x ∈ B𝑛𝑖±1, 𝑡𝑖↓𝑗 (x) = 𝑡𝑏𝑖𝑛
𝑖↓𝑗 (𝑡

𝑏𝑛
𝑖↓𝑗 (⟨x,W:, 𝑗 ⟩ + b𝑗)), and each input

x ∈ B𝑛1

±1 can be replaced by 2x(𝑏) − 1 ∈ B𝑛1
(cf. Section 3.3), where 1 denotes the vector of 1’s

with width 𝑛𝑖 . To be consistent, we reformulate the function 𝑡𝑖↓𝑗 : B
𝑛𝑖
±1 → B±1 as the function

𝑡
(𝑏)
𝑖↓𝑗 : B𝑛𝑖 → B such that for every x(𝑏) ∈ B𝑛𝑖 :

𝑡
(𝑏)
𝑖↓𝑗 (x

(𝑏)) = 1

2

× (𝑡𝑏𝑖𝑛
𝑖↓𝑗 (𝑡

𝑏𝑛
𝑖↓𝑗 (⟨2x

(𝑏) − 1,W:, 𝑗 ⟩ + b𝑗)) + 1).

Intuitively, an input x ∈ B𝑛𝑖±1 of the function 𝑡𝑖↓𝑗 is transformed into the input x(𝑏) = 1

2
×(x+1) ∈ B𝑛𝑖

of the function 𝑡
(𝑏)
𝑖↓𝑗 , where the output 𝑡𝑖↓𝑗 (x) ∈ B±1 becomes 𝑡

(𝑏)
𝑖↓𝑗 (x

(𝑏)) = 1

2
(𝑡𝑖↓𝑗 (x) + 1) ∈ B. Note

that for convenience, vectors over the Boolean domain B may be directly given by u or x instead of

u(𝑏)
or x(𝑏) in the following part when it is clear from the context.

To encode the function 𝑡
(𝑏)
𝑖↓𝑗 as a BDD, we show how to encode the function 𝑡

(𝑏)
𝑖↓𝑗 as an equivalent

cardinality constraint via a series of equivalent transformations, based on which the BDD is built by

applying Algorithm 1. We first get ride of the functions 𝑡𝑏𝑖𝑛
𝑖↓𝑗 and 𝑡𝑏𝑛

𝑖↓𝑗 according to their definitions,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 15

namely, for every x ∈ B𝑛𝑖 , the function 𝑡
(𝑏)
𝑖↓𝑗 is reformulated as

𝑡
(𝑏)
𝑖↓𝑗 (x) = 1

2
× (𝑡𝑏𝑖𝑛

𝑖↓𝑗 (𝑡
𝑏𝑛
𝑖↓𝑗 (⟨2x − 1,W:, 𝑗 ⟩ + b𝑗)) + 1)

= 1

2
× (𝑡𝑏𝑖𝑛

𝑖↓𝑗 (𝑡
𝑏𝑛
𝑖↓𝑗 (

∑𝑛𝑖
𝑘=1

(2x𝑘 − 1) ·W𝑘,𝑗 + b𝑗)) + 1)

= 1

2
× (𝑡𝑏𝑖𝑛

𝑖↓𝑗 (𝛼 𝑗 · (
∑𝑛𝑖

𝑘=1
(2x𝑘−1) ·W𝑘,𝑗+b𝑗−𝜇 𝑗

𝜎 𝑗
) + 𝛾 𝑗) + 1)

=

{
1, if 𝛼 𝑗 · (

∑𝑛𝑖
𝑘=1

(2x𝑘−1) ·W𝑘,𝑗+b𝑗−𝜇 𝑗
𝜎 𝑗

) + 𝛾 𝑗 ≥ 0;

0, otherwise.

By the above reformulation, the function 𝑡
(𝑏)
𝑖↓𝑗 now can be represented by the following constraint

𝑡
(𝑏)
𝑖↓𝑗 (x) = 1 iff 𝛼 𝑗 · (

∑𝑛𝑖
𝑘=1

(2x𝑘 − 1) ·W𝑘,𝑗 + b𝑗 − 𝜇 𝑗

𝜎 𝑗

) + 𝛾 𝑗 ≥ 0.

To convert the constraint 𝛼 𝑗 · (
∑𝑛𝑖

𝑘=1
(2x𝑘−1) ·W𝑘,𝑗+b𝑗−𝜇 𝑗

𝜎 𝑗
) + 𝛾 𝑗 ≥ 0 to an equivalent cardinality

constraint, we consider different cases of 𝛼 𝑗 , i.e., 𝛼 𝑗 > 0, 𝛼 𝑗 < 0 and 𝛼 𝑗 = 0, based on which 𝛼 𝑗 can

be eliminated from the constraint.

• Case 𝛼 𝑗 > 0. The constraint 𝛼 𝑗 · (
∑𝑛𝑖

𝑘=1
(2x𝑘−1) ·W𝑘,𝑗+b𝑗−𝜇 𝑗

𝜎 𝑗
) + 𝛾 𝑗 ≥ 0 can be rewritten as

𝑛𝑖∑︁
𝑘=1

x𝑘 ·W𝑘,𝑗 ≥
1

2

· (
𝑛𝑖∑︁
𝑘=1

W𝑘,𝑗 + 𝜇 𝑗 − b𝑗 −
𝛾 𝑗 · 𝜎 𝑗

𝛼 𝑗

). (1)

By partitioning the set [𝑛𝑖] of indices into two subsets W+
:, 𝑗 and W−

:, 𝑗 , where

W+
:, 𝑗 = {𝑘 ∈ [𝑛𝑖] | W𝑘,𝑗 = +1} and W−

:, 𝑗 = {𝑘 ∈ [𝑛𝑖] | W𝑘,𝑗 = −1}.
Intuitively, W+

:, 𝑗 contains the indices 𝑘 ∈ [𝑛𝑖] such that the weight W𝑘,𝑗 is +1, while W−
:, 𝑗

contains the indices 𝑘 ∈ [𝑛𝑖] such that the weight W𝑘,𝑗 is −1. Using W+
:, 𝑗 and W−

:, 𝑗 , the

expression

∑𝑛𝑖
𝑘=1

x𝑘 · W𝑘,𝑗 can be written as

∑
𝑘∈W+

:, 𝑗
x𝑘 − ∑

𝑘∈W−
:, 𝑗
x𝑘 and the expression∑𝑛𝑖

𝑘=1
W𝑘,𝑗 can be written as |W+

𝑘,𝑗
| − |W−

𝑘,𝑗
|. Therefore, the constraint in Equation (1) can be

written as the constraint∑︁
𝑘∈W+

:, 𝑗

x𝑘 −
∑︁

𝑘∈W−
:, 𝑗

x𝑘 ≥ 1

2

· (|W+
𝑘,𝑗

| − |W−
𝑘,𝑗

| + 𝜇 𝑗 − b𝑗 −
𝛾 𝑗 · 𝜎 𝑗

𝛼 𝑗

). (2)

After replacing −x𝑘 by ¬x𝑘 − 1 for every 𝑘 ∈ W−
:, 𝑗 , the constraint in Equation (2) can be

reformulated into the constraint∑︁
𝑘∈W+

:, 𝑗

x𝑘 +
∑︁

𝑘∈W−
:, 𝑗

¬x𝑘 ≥ 1

2

· (|W+
𝑘,𝑗

| − |W−
𝑘,𝑗

| + 𝜇 𝑗 − b𝑗 −
𝛾 𝑗 · 𝜎 𝑗

𝛼 𝑗

) + |W−
𝑘,𝑗

|,

This transformation eliminates the subtraction operation − from

∑
𝑘∈W+

:, 𝑗
x𝑘 − ∑

𝑘∈W−
:, 𝑗
x𝑘

using the negation operation ¬. The resulting constraint now can be further rewritten as the

following cardinality constraint:∑︁
𝑘∈W+

:, 𝑗

x𝑘 +
∑︁

𝑘∈W−
:, 𝑗

¬x𝑘 ≥ ⌈1
2

· (𝑛𝑖 + 𝜇 𝑗 − b𝑗 −
𝛾 𝑗 · 𝜎 𝑗

𝛼 𝑗

)⌉ .

Remark thatW+
:, 𝑗 ,W

−
:, 𝑗 and ⌈ 1

2
· (𝑛𝑖 + 𝜇 𝑗 − b𝑗 −

𝛾 𝑗 ·𝜎 𝑗

𝛼 𝑗
)⌉ are independent of the input x and thus

can be computed during the equivalent transformations.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

16 Y. Zhang, et al.

• Case 𝛼 𝑗 < 0. The constraint 𝛼 𝑗 · (
∑𝑛𝑖

𝑘=1
(2x𝑘−1) ·W𝑘,𝑗+b𝑗−𝜇 𝑗

𝜎 𝑗
) + 𝛾 𝑗 ≥ 0 can be rewritten as

𝑛𝑖∑︁
𝑘=1

x𝑘 ·W𝑘,𝑗 ≤
1

2

· (
𝑛𝑖∑︁
𝑘=1

W𝑘,𝑗 + 𝜇 𝑗 − b𝑗 −
𝛾 𝑗 · 𝜎 𝑗

𝛼 𝑗

),

which can further be reformulated into the following constraint using W+
:, 𝑗 andW−

:, 𝑗 ,∑︁
𝑘∈W−

:, 𝑗

x𝑘 −
∑︁

𝑘∈W+
:, 𝑗

x𝑘 ≥ 1

2

· (|W−
𝑘,𝑗

| − |W+
𝑘,𝑗

| − 𝜇 𝑗 + b𝑗 +
𝛾 𝑗 · 𝜎 𝑗

𝛼 𝑗

). (3)

After replacing −x𝑘 by ¬x𝑘 − 1 for every 𝑘 ∈ W+
:, 𝑗 , the subtraction operation − is eliminated

from

∑
𝑘∈W−

:, 𝑗
x𝑘 −

∑
𝑘∈W+

:, 𝑗
x𝑘 using the negation operation ¬ and the constraint in Equation (3)

is reformulated into the constraint∑︁
𝑘∈W−

:, 𝑗

x𝑘 +
∑︁

𝑘∈W+
:, 𝑗

¬x𝑘 ≥ 1

2

· (|W−
𝑘,𝑗

| − |W+
𝑘,𝑗

| − 𝜇 𝑗 + b𝑗 +
𝛾 𝑗 · 𝜎 𝑗

𝛼 𝑗

) + |W+
𝑘,𝑗

|,

which is rewritten as the cardinality constraint∑︁
𝑘∈W−

:, 𝑗

x𝑘 +
∑︁

𝑘∈W+
:, 𝑗

¬x𝑘 ≥ ⌈1
2

· (𝑛𝑖 − 𝜇 𝑗 + b𝑗 +
𝛾 𝑗 · 𝜎 𝑗

𝛼 𝑗

)⌉ .

• Case 𝛼 𝑗 = 0. The constraint 𝛼 𝑗 · (
∑𝑛𝑖

𝑘=1
(2x𝑘−1) ·W𝑘,𝑗+b𝑗−𝜇 𝑗

𝜎 𝑗
) + 𝛾 𝑗 ≥ 0 becomes 𝛾 𝑗 ≥ 0.

Based on the above equivalent transformations, we define the cardinality constraint 𝐶𝑖, 𝑗 as

follows:

𝐶𝑖, 𝑗 ≜


∑𝑛𝑖

𝑘=1
ℓ𝑘 ≥ ⌈ 1

2
· (𝑛𝑖 + 𝜇 𝑗 − b𝑗 −

𝛾 𝑗 ·𝜎 𝑗

𝛼 𝑗
)⌉, if 𝛼 𝑗 > 0;

1, if 𝛼 𝑗 = 0 ∧ 𝛾 𝑗 ≥ 0;

0, if 𝛼 𝑗 = 0 ∧ 𝛾 𝑗 < 0;∑𝑛𝑖
𝑘=1

¬ℓ𝑘 ≥ ⌈ 1
2
· (𝑛𝑖 − 𝜇 𝑗 + b𝑗 +

𝛾 𝑗 ·𝜎 𝑗

𝛼 𝑗
)⌉, if 𝛼 𝑗 < 0;

where for every 𝑘 ∈ [𝑛𝑖],

ℓ𝑘 ≜

{
x𝑘 , ifW𝑘,𝑗 = +1;
¬x𝑘 , ifW𝑘,𝑗 = −1.

Proposition 3.5. 𝑡
(𝑏)
𝑖↓𝑗 ⇔ 𝐶𝑖, 𝑗 .

Hereafter, for each internal block 𝑡𝑖 : B
𝑛𝑖
±1 → B

𝑛𝑖+1
±1 where 𝑖 ∈ [𝑑], we denote by BNN2CC(𝑡𝑖) the

cardinality constraints {𝐶𝑖,1, · · · ,𝐶𝑖,𝑛𝑖+1 }.
Transformation for the output block. For the output block 𝑡𝑑+1 : B

𝑛𝑑+1
±1 → B𝑠 , similar to the

transformation for internal blocks, we first transform the function 𝑡𝑑+1 into an equivalent cardinality
constraint based on which a BDD can be built by applying Algorithm 1. Since 𝑡𝑑+1 = 𝑡𝑎𝑚

𝑑+1 ◦ 𝑡
𝑙𝑖𝑛
𝑑+1,

then for every 𝑗 ∈ [𝑠], we can reformulate 𝑡𝑑+1↓𝑗 : B
𝑛𝑑+1
±1 → B as the function 𝑡

(𝑏)
𝑑+1↓𝑗 : B

𝑛𝑑+1 → B
such that for every x ∈ B𝑛𝑑+1 ,

𝑡
(𝑏)
𝑑+1↓𝑗 (x) = 𝑡𝑑+1↓𝑗 (2x − 1) = 𝑡𝑎𝑚

𝑑+1↓𝑗 (𝑡
𝑙𝑖𝑛
𝑑+1 (2x − 1)) .

According to the definition of the function 𝑡𝑎𝑚
𝑑+1, 𝑡

(𝑏)
𝑑+1↓𝑗 (x) = 1 iff for every 𝑗 ′ ∈ [𝑠] such that

𝑗 ≠ 𝑗 ′, one of the following conditions holds:

• 𝑗 ′ < 𝑗 and 𝑡𝑙𝑖𝑛
𝑑+1↓𝑗 (2x − 1) > 𝑡𝑙𝑖𝑛

𝑑+1↓𝑗 ′ (2x − 1);
• 𝑗 ′ > 𝑗 and 𝑡𝑙𝑖𝑛

𝑑+1↓𝑗 (2x − 1) ≥ 𝑡𝑙𝑖𝑛
𝑑+1↓𝑗 ′ (2x − 1).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 17

By getting ride of the function 𝑡𝑙𝑖𝑛
𝑑+1↓𝑗 ′ according to its definition, the function 𝑡

(𝑏)
𝑑+1↓𝑗 can be

encoded using the following constraint:

𝑡
(𝑏)
𝑑+1↓𝑗 (x) = 1 iff

©­«
∀𝑗 ′ ∈ [𝑗 − 1] . ∑𝑛𝑑+1

𝑘=1
(2x𝑘 − 1) · (W𝑘,𝑗 −W𝑘,𝑗 ′) > b𝑗 ′ − b𝑗

and

∀𝑗 ′ ∈ { 𝑗 + 1, · · · , 𝑠}. ∑𝑛𝑑+1
𝑘=1

(2x𝑘 − 1) · (W𝑘,𝑗 −W𝑘,𝑗 ′) ≥ b𝑗 ′ − b𝑗

ª®¬ ,
where the latter holds iff

©­­«
∀𝑗 ′ ∈ [𝑗 − 1] . ∑𝑛𝑑+1

𝑘=1
x𝑘 · W𝑘,𝑗−W𝑘,𝑗′

2
> 1

4
(b𝑗 ′ − b𝑗 +

∑𝑛𝑑+1
𝑘=1

(W𝑘,𝑗 −W𝑘,𝑗 ′))
and

∀𝑗 ′ ∈ { 𝑗 + 1, · · · , 𝑠}. ∑𝑛𝑑+1
𝑘=1

x𝑘 · W𝑘,𝑗−W𝑘,𝑗′
2

≥ 1

4
(b𝑗 ′ − b𝑗 +

∑𝑛𝑑+1
𝑘=1

(W𝑘,𝑗 −W𝑘,𝑗 ′))

ª®®¬ . (4)

For each pair (𝑗, 𝑗 ′) of indices, we partition the set [𝑛𝑑+1] into three subsets

• Pos𝑗, 𝑗 ′ = {𝑘 ∈ [𝑛𝑑+1] | W𝑘,𝑗 −W𝑘,𝑗 ′ = 2},
• Neg𝑗, 𝑗 ′ = {𝑘 ∈ [𝑛𝑑+1] | W𝑘,𝑗 −W𝑘,𝑗 ′ = −2} and
• Zero𝑗, 𝑗 ′ = {𝑘 ∈ [𝑛𝑑+1] | W𝑘,𝑗 = W𝑘,𝑗 ′}.

Let ♯Pos𝑗, 𝑗 ′ and ♯Neg𝑗, 𝑗 ′ denote the size of the subsets Pos𝑗, 𝑗 ′ and Neg𝑗, 𝑗 ′ , respectively. We will

convert the constraints in Equation (4) to an equivalent cardinality constraint𝐶
𝑗, 𝑗 ′

𝑑+1 by distinguishing
the cases 𝑗 ′ ∈ [𝑗 − 1] or 𝑗 ′ ∈ { 𝑗 + 1, · · · , 𝑠}.

• If 𝑗 ′ ∈ [𝑗 − 1], using the subsets Pos𝑗, 𝑗 ′ and Neg𝑗, 𝑗 ′ , the constraint
∑𝑛𝑑+1

𝑘=1
x𝑘 · W𝑘,𝑗−W𝑘,𝑗′

2
>

1

4
(b𝑗 ′ − b𝑗 +

∑𝑛𝑑+1
𝑘=1

(W𝑘,𝑗 −W𝑘,𝑗 ′)) can be written as∑︁
𝑘∈Pos𝑗,𝑗′

x𝑘 −
∑︁

𝑘∈Neg𝑗,𝑗′
x𝑘 >

1

4

(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ − 2♯Neg𝑗, 𝑗 ′). (5)

After replacing −x𝑘 by ¬x𝑘 − 1 for every 𝑘 ∈ Neg𝑗, 𝑗 ′ , the constraint in Equation (5) is

reformulated as the constraint∑︁
𝑘∈Pos𝑗,𝑗′

x𝑘 +
∑︁

𝑘∈Neg𝑗,𝑗′
¬x𝑘 >

1

4

(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′). (6)

Now, we transform the strict inequlity > of the constraint in Equation (6) into inequlity ≥ by

distinguishing if
1

4
(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′) is an integer or not.

– If
1

4
(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′) is an integer, the constraint in Equation (6) is the same

as ∑︁
𝑘∈Pos𝑗,𝑗′

x𝑘 +
∑︁

𝑘∈Neg𝑗,𝑗′
¬x𝑘 ≥ 1

4

(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′) + 1.

– If
1

4
(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′) is not an integer, the constraint in Equation (6) is the

same as ∑︁
𝑘∈Pos𝑗,𝑗′

x𝑘 +
∑︁

𝑘∈Neg𝑗,𝑗′
¬x𝑘 ≥ ⌈1

4

(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′)⌉,

as ⌈ 1
4
(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′)⌉ > 1

4
(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

18 Y. Zhang, et al.

Therefore, we define the cardinality constraint 𝐶
𝑗, 𝑗 ′

𝑑+1 for 𝑗
′ ∈ [𝑗 − 1] as follows

𝐶
𝑗, 𝑗 ′

𝑑+1 ≜


∑𝑛𝑑+1

𝑘=1
ℓ𝑘 ≥ 1

4
(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′) + 1, if

1

4
(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′+

2♯Neg𝑗, 𝑗 ′) is an integer;∑𝑛𝑑+1
𝑘=1

ℓ𝑘 ≥ ⌈ 1
4
(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′)⌉, otherwise;

where for every 𝑘 ∈ [𝑛𝑑+1],

ℓ𝑘 ≜


x𝑘 , if W𝑘,𝑗 −W𝑘,𝑗 ′ = +2;
¬x𝑘 , if W𝑘,𝑗 −W𝑘,𝑗 ′ = −2;
0, if W𝑘,𝑗 −W𝑘,𝑗 ′ = 0.

• If 𝑗 ′ ∈ { 𝑗 +1, · · · , 𝑠}, using the subsets Pos𝑗, 𝑗 ′ and Neg𝑗, 𝑗 ′ , the constraint
∑𝑛𝑑+1

𝑘=1
x𝑘 ·

W𝑘,𝑗−W𝑘,𝑗′
2

≥
1

4
(b𝑗 ′ − b𝑗 +

∑𝑛𝑑+1
𝑘=1

(W𝑘,𝑗 −W𝑘,𝑗 ′)) can be rewritten as∑︁
𝑘∈Pos𝑗,𝑗′

x𝑘 −
∑︁

𝑘∈Neg𝑗,𝑗′
x𝑘 ≥ 1

4

(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ − 2♯Neg𝑗, 𝑗 ′). (7)

After replacing −x𝑘 by ¬x𝑘 − 1 for every 𝑘 ∈ Neg𝑗, 𝑗 ′ , the constraint in Equation (7) is

reformulated into the constraint∑︁
𝑘∈Pos𝑗,𝑗′

x𝑘 +
∑︁

𝑘∈Neg𝑗,𝑗′
¬x𝑘 ≥ 1

4

(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′),

which can be rewritten as the following cardinality constraint∑︁
𝑘∈Pos𝑗,𝑗′

x𝑘 +
∑︁

𝑘∈Neg𝑗,𝑗′
¬x𝑘 ≥ ⌈1

4

(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′)⌉ .

Therefore, we define the cardinality constraint 𝐶
𝑗, 𝑗 ′

𝑑+1 for 𝑗
′ ∈ { 𝑗 + 1, · · · , 𝑠} as follows:

𝐶
𝑗, 𝑗 ′

𝑑+1 ≜
𝑛𝑑+1∑︁
𝑘=1

ℓ𝑘 ≥ ⌈1
4

(b𝑗 ′ − b𝑗 + 2♯Pos𝑗, 𝑗 ′ + 2♯Neg𝑗, 𝑗 ′)⌉ .

Let 𝐶
𝑗

𝑑+1 denote the constraint
∧

𝑗 ′∈[𝑠] . 𝑗 ′≠𝑗 𝐶
𝑗, 𝑗 ′

𝑑+1.

Proposition 3.6. 𝑡
(𝑏)
𝑑+1↓𝑗 ⇔ 𝐶

𝑗

𝑑+1.

Hereafter, for each output class 𝑗 ∈ [𝑠], we denote by BNN2CC
𝑗 (𝑡𝑑+1) the set of cardinality

constraints {𝐶 𝑗,1

𝑑+1, · · ·𝐶
𝑗, 𝑗−1
𝑑+1 ,𝐶

𝑗, 𝑗+1
𝑑+1 , · · · ,𝐶 𝑗,𝑠

𝑑+1}.
BNNs in cardinality constraint form. By applying the above transformation to all the blocks of

the BNNN = (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1), we obtain its cardinality constraint formN (𝑏) = (𝑡 (𝑏)
1

, · · · , 𝑡 (𝑏)
𝑑

, 𝑡
(𝑏)
𝑑+1)

such that

N (𝑏) = 𝑡
(𝑏)
𝑑+1 ◦ 𝑡

(𝑏)
𝑑

◦ · · · ◦ 𝑡 (𝑏)
1

,

where

• for each 𝑖 ∈ [𝑑], 𝑡 (𝑏)
𝑖

is (symbolically) represented by cardinality constraints BNN2CC(𝑡𝑖),
and

• 𝑡
(𝑏)
𝑑+1 is represented by sets of cardinality constraints (BNN2CC1 (𝑡𝑑+1), · · · , BNN2CC𝑠 (𝑡𝑑+1)).

Theorem 3.7. For every input u ∈ B𝑛1

±1, N(u) = N (𝑏) (u(𝑏)), where u = 2u(𝑏) − 1.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 19

x1

x2

x3

y1

y2

o1

o2

b1 b2α1 µ1 γ1 σ1

0.2

−0.5

0.02

−0.03

−0.5 0.02 2 −0.8

0.63−0.031.5

N (x)

Cardinality Constraints

y1 = sign(0.01× (−x1 + x2 + x3 + 2.7))

y2 = sign(0.01× (−x1 − x2 + x3 − 1))

o1 ⇔ y1 − y2 ≥ 0.7

o2 ⇔ y1 − y2 < 0.7

y
(b)
1 ⇔ C1,1 = ¬x(b)

1 + x
(b)
2 + x

(b)
3 ≥ 1

y
(b)
2 ⇔ C1,2 = ¬x(b)

1 + ¬x(b)
2 + x

(b)
3 ≥ 2

o1 ⇔ C1,2
2 = y

(b)
1 + ¬y(b)

2 ≥ 2

o2 ⇔ C2,1
2 = ¬y(b)

1 + y
(b)
2 ≥ 1

−1

+1

−1

−1
−1

+1
+1 +1

+1

+1

Fig. 7. An illustrating example

Proof. We first show that 𝑡𝑖+1 ◦ 𝑡𝑖 (2x−1) = 2𝑡
(𝑏)
𝑖+1 ◦ 𝑡

(𝑏)
𝑖

(x) −1 for each 𝑖 ∈ [𝑑 − 1] and each input

𝑥 ∈ B𝑛𝑖 . Recall that 𝑡𝑖↓𝑗 (2x−1) = 2𝑡
(𝑏)
𝑖↓𝑗 (x) −1 for 𝑗 ∈ [𝑛𝑖+1]. Thus, we have 𝑡𝑖 (2x−1) = 2𝑡

(𝑏)
𝑖

(x) −1,

which implies that 𝑡𝑖+1 (𝑡𝑖 (2x−1)) = 𝑡𝑖+1 (2𝑡 (𝑏)𝑖
(x)−1). Let y = 𝑡

(𝑏)
𝑖

(x) ∈ B𝑛𝑖+1 . Then 𝑡𝑖+1 (2𝑡 (𝑏)𝑖
(x)−1)

is 𝑡𝑖+1 (2y − 1). Since 𝑡𝑖+1 (2y − 1) = 2𝑡
(𝑏)
𝑖+1 (y) − 1, we get that 𝑡𝑖+1 (𝑡𝑖 (2x − 1)) = 2𝑡

(𝑏)
𝑖+1 (𝑡

(𝑏)
𝑖

(x)) − 1.
Let N≤𝑑 = 𝑡𝑑 ◦ · · · ◦ 𝑡1 and N (𝑏)

≤𝑑 = 𝑡
(𝑏)
𝑑

◦ · · · ◦ 𝑡
(𝑏)
1

. Then, for any input u ∈ B𝑛1

±1, we have:

N≤𝑑 (u) = N≤𝑑 (2u(𝑏) − 1) = 2N𝑏
≤𝑑 (u

(𝑏)) − 1.
Recall that 𝑡

(𝑏)
𝑑+1↓𝑗 (x) = 𝑡𝑑+1↓𝑗 (2x − 1) for every x ∈ B𝑛𝑑+1 , implying that 𝑡

(𝑏)
𝑑+1 (x) = 𝑡𝑑+1 (2x −

1). Thus, we get that N (𝑏) (u(𝑏)) = 𝑡
(𝑏)
𝑑+1 (N

𝑏
≤𝑑 (u

(𝑏))) = 𝑡𝑑+1 (2N𝑏
≤𝑑 (u

(𝑏)) − 1) = 𝑡𝑑+1 (N≤𝑑 (u)) =

N(u). □

Example 3.8. Consider the BNN N = (𝑡1, 𝑡2) with one internal block 𝑡1 and one output block 𝑡2
as shown in Figure 7 (bottom left), where the entries of the weight matrix W are associated to the

edges, and the other parameters are given in the top left table. The input-output relation of the

blocks 𝑡1 and 𝑡2 are given in the top right table. The cardinality constraints are given in the bottom

right table.

Consider an input x ∈ B3±1, we have: y1 = sign(0.01 × (−x1 + x2 + x3 + 2.7)), namely, y1 = +1 iff
−x1 + x2 + x3 + 2.7 ≥ 0. By replacing x𝑖 with 2 × x(𝑏)

𝑖
− 1 for 𝑖 ∈ [3] and x(𝑏)

1
with 1 − ¬x(𝑏)

1
, we get

that y1 = +1 iff −x(𝑏)
1

+ x(𝑏)
2

+ x(𝑏)
3

+ 0.85 ≥ 0, which is equivalent to ¬x(𝑏)
1

+ x(𝑏)
2

+ x(𝑏)
3

≥ 1. Thus,

we get that y(𝑏)
1

⇔ ¬x(𝑏)
1

+ x(𝑏)
2

+ x(𝑏)
3

≥ 1. Similarly, we can deduce that o1 = 1 iff y1 − y2 ≥ 0.7

and hence o1 ⇔ y(𝑏)
1

− y(𝑏)
2

≥ 0.35, which is equivalent to y(𝑏)
1

+ ¬y(𝑏)
2

≥ 2.

3.5 BDD Model Builder
In general, the construction of the BDDs (𝐺𝑜𝑢𝑡

𝑖)𝑖∈[𝑠] from the BNN N (𝑏)
and the input region

𝑅 is done iteratively throughout the blocks. Initially, the BDD for the first block is built, which

can be seen as the input-output relation 𝑡
(𝑏)
1

for the first internal block. In the 𝑖-th iteration, as

the input-output relation 𝑡
(𝑏)
𝑖−1 ◦ · · · ◦ 𝑡

(𝑏)
1

of the first (𝑖 − 1) internal blocks has been encoded into

the BDD, we compose this BDD with the BDD for the block 𝑡𝑖 which is built from its cardinality

constraints 𝑡
(𝑏)
𝑖

, resulting in the BDD for the first 𝑖 internal blocks 𝑡
(𝑏)
𝑖

◦ 𝑡 (𝑏)
𝑖−1 ◦ · · · ◦ 𝑡

(𝑏)
1

. Finally,

we obtain the BDDs (𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] of the BNN N , with respect to the input region 𝑅, where for each

𝑖 ∈ [𝑠], the BDD 𝐺𝑜𝑢𝑡
𝑖 encodes the input-output relation 𝑡

(𝑏)
𝑑+1↓𝑖 ◦ 𝑡

(𝑏)
𝑑

◦ · · · ◦ 𝑡 (𝑏)
1

.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

20 Y. Zhang, et al.

Algorithm 2: BDD Construction of BNNs with Input Propagation

1 Procedure BNN2BDD(BNN : N = (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1), Region : 𝑅(u, 𝜏))
2 𝐺𝑖𝑛 = 𝐺𝑖𝑛

u,𝜏 (cf. Section 3.3);

3 N (𝑏) = (𝑡 (𝑏)
1

, · · · , 𝑡 (𝑏)
𝑑

, 𝑡
(𝑏)
𝑑+1) (cf. Section 3.4);

4 for (𝑖 = 1; 𝑖 ≤ 𝑑 ; 𝑖 + +) do
5 𝐺 ′ =InterBlk2BDD(𝑡 (𝑏)

𝑖
,𝐺𝑖𝑛);

6 𝐺𝑖𝑛 = Exists(𝐺 ′, x𝑖) ; // x𝑖 denote input variables of 𝑡
(𝑏)
𝑖

7 𝐺 = (𝑖 == 1) ? 𝐺 ′
: RelProd(𝐺,𝐺 ′, x𝑖);

8 (𝐺𝑖)𝑖∈[𝑠] = OutBlk2BDD(𝑡 (𝑏)
𝑑+1,𝐺

𝑖𝑛);
9 for (𝑖 = 1; 𝑖 ≤ 𝑠; 𝑖 + +) do

10 𝐺𝑜𝑢𝑡
𝑖

= RelProd(𝐺,𝐺𝑖 , x𝑑+1);
11 return (𝐺𝑜𝑢𝑡

𝑖
)𝑖∈[𝑠]

To improve the efficiency of BDD encoding, we propose two strategies, i.e., divide-and-conquer

and input propagation.

3.5.1 Divide-and-Conquer Strategy. To encode the input-output relation of an internal block 𝑡𝑖

into BDD from its cardinality constraints 𝑡
(𝑏)
𝑖

= {𝐶𝑖,1, · · · ,𝐶𝑖,𝑛𝑖+1 }, it amounts to computing the

following function And𝑗 ∈[𝑛𝑖+1]CC2BDD(𝐶𝑖, 𝑗) which requires (𝑛𝑖+1 − 1) AND-operations. A simple

and straightforward approach is to initially compute a BDD𝐺 =CC2BDD(𝐶𝑖,1) and then iteratively

computes the conjunction 𝐺 = And(𝐺,C2BDD(𝐶𝑖, 𝑗)) of 𝐺 and CC2BDD(𝐶𝑖, 𝑗) for 2 ≤ 𝑗 ≤ 𝑛𝑖+1.
Alternatively, we use a divide-and-conquer (D&C) strategy to recursively compute the BDDs for

the first half and the second half of the cardinality constraints respectively, and then apply the

AND-operation to merge the results. The divide-and-conquer strategy does not reduce the number

of AND-operations, but can reduce the sizes of the intermediate BDDs, and thus improve the

efficiency of BDD encoding for the entire block. This has been confirmed by the experiments (cf.

Section 6.1.2).

3.5.2 Input Propagation Strategy. It becomes prohibitively costly to construct the BDD directly

from the cardinality constraints 𝑡
(𝑏)
𝑖

= {𝐶𝑖,1, · · · ,𝐶𝑖,𝑛𝑖+1 } when 𝑛𝑖 and 𝑛𝑖+1 are large, as the BDDs
constructed via the procedure CC2BDD(𝐶𝑖, 𝑗) (cf. Algorithm 1) for 𝑗 ∈ [𝑛𝑖+1] need to consider all

the inputs in B𝑛𝑖 . To improve efficiency of BDD encoding, we apply feasible input propagation

(IP) which propagates a given input region block-by-block, resulting in the feasible inputs of each

block, with respect to the output of its preceding block 𝑡𝑖−1. When we construct the BDD for the

block 𝑡𝑖 , we only consider its feasible inputs. Although it introduces additional BDD operations

(e.g., Exists and And), the feasible inputs of each block can significantly reduce the number of

BDD nodes when the feasible outputs of the preceding block 𝑡𝑖−1 is relatively smaller compared

with the full input space B𝑛𝑖 that the block 𝑡𝑖 needs to consider. The effectiveness of this strategy

has been confirmed in our experiments (cf. Section 6.1.3).

3.5.3 Algorithmic BDD Encoding of BNNs. Algorithm 2 shows the overall BDD encoding procedure.

Given a BNNN = (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1) with 𝑠 output classes and an input region 𝑅(u, 𝜏), the algorithm
outputs the BDDs (𝐺𝑜𝑢𝑡

𝑖)𝑖∈[𝑠] , encoding the input-output relation of the BNNN with respect to the

input region𝑅(u, 𝜏), where𝐺𝑜𝑢𝑡
𝑖 for the output class 𝑖 ∈ [𝑠] encodes the function 𝑡 (𝑏)

𝑑+1↓𝑖◦𝑡
(𝑏)
𝑑

◦· · ·◦𝑡 (𝑏)
1

.

In details, it first builds the BDD representation 𝐺𝑖𝑛
u,𝜏 of the input region 𝑅(u, 𝜏) (Line 2) and the

cardinality constraints from BNN N (𝑏)
(Line 3).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 21

The first loop (Lines 4–7) builds a BDD encoding the input-output relation of the entire internal

blocks w.r.t.𝐺𝑖𝑛
u,𝜏 . It first invokes the procedure InterBlk2BDD(𝑡𝑏𝑖 ,𝐺𝑖𝑛) to build a BDD𝐺 ′

encoding

the input-output relation of the 𝑖-th block 𝑡𝑏𝑖 w.r.t. the feasible inputs L(𝐺𝑖𝑛) (Line 5). Remark that

the feasible inputs 𝐺𝑖𝑛
of the block 𝑡𝑏𝑖 is the feasible outputs of the (𝑖 − 1)-th block 𝑡𝑏𝑖−1 (the input

region 𝐺𝑖𝑛
u,𝜏 when 𝑖 = 1). By doing so, we have

L(𝐺 ′) = {(x𝑖 , x𝑖+1) ∈ L(𝐺𝑖𝑛) × B𝑛𝑖+1 | 𝑡 (𝑏)
𝑖

(x𝑖) = x𝑖+1}.

From the BDD𝐺 ′
, we compute the feasible outputs𝐺𝑖𝑛

of the block 𝑡
(𝑏)
𝑖

by existentially quantifying

all the input variables x𝑖 of the block 𝑡 (𝑏)
𝑖

(Line 6). The BDD 𝐺𝑖𝑛
serves as the set of feasible inputs

of the block 𝑡
(𝑏)
𝑖+1 at the next iteration. We next assign𝐺 ′

to𝐺 if the current block is the first internal

block (i.e., 𝑖 = 1), otherwise we compute the relational product of 𝐺 and 𝐺 ′
, the resulting BDD 𝐺

encodes the input-output relation of the first 𝑖 internal blocks w.r.t. 𝐺𝑖𝑛
u,𝜏 (Line 7). (Note that the

input variables x𝑖 of the block 𝑡 (𝑏)
𝑖

, that are the output variables of the block 𝑡
(𝑏)
𝑖−1 , in the relational

product are existentially quantified.) Thus, we have

L(𝐺) ={(x1, x𝑖+1) ∈ L(𝐺𝑖𝑛
u,𝜏) × B𝑛𝑖+1 | (𝑡

(𝑏)
𝑖

◦ · · · ◦ 𝑡 (𝑏)
1

) (x1) = x𝑖+1},
L(𝐺𝑖𝑛) ={x𝑖+1 ∈ B𝑛𝑖+1 | ∃x1 ∈ L(𝐺𝑖𝑛

u,𝜏).(x1, x𝑖+1) ∈ L(𝐺)}.

At the end of the first for-loop, we obtain the BDD 𝐺 encoding the input-output relation of the

entire internal blocks and its feasible outputs 𝐺𝑖𝑛
w.r.t. 𝐺𝑖𝑛

u,𝜏 , namely,

L(𝐺) ={(x1, x𝑑+1) ∈ L(𝐺𝑖𝑛
u,𝜏) × B𝑛𝑑+1 | (𝑡

(𝑏)
𝑑

◦ · · · ◦ 𝑡 (𝑏)
1

) (x1) = x𝑑+1},
L(𝐺𝑖𝑛) ={x𝑑+1 ∈ B𝑛𝑑+1 | ∃x1 ∈ L(𝐺𝑖𝑛

u,𝜏).(x1, x𝑑+1) ∈ L(𝐺)}.

At Line 8, we build the BDDs (𝐺𝑖)𝑖∈[𝑠] for the output block 𝑡
(𝑏)
𝑑+1 by invoking the procedure

OutBlk2BDD(𝑡 (𝑏)
𝑑+1,𝐺

𝑖𝑛), one BDD 𝐺𝑖 per output class 𝑖 ∈ [𝑠] such that

L(𝐺𝑖) ={x𝑑+1 ∈ L(𝐺𝑖𝑛) | 𝑡 (𝑏)
𝑑+1↓𝑖 (x

𝑑+1) = 1}.

Finally, the second for-loop (Lines 9–10) builds the BDDs (𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] , each of which encodes the

input-output relation of the entire BNN and a class 𝑖 ∈ [𝑠] w.r.t. the input region𝐺𝑖𝑛
u,𝜏 . By computing

the relational product of the BDDs 𝐺 and 𝐺𝑖 , we obtain the BDD 𝐺𝑜𝑢𝑡
𝑖 for the class 𝑖 ∈ [𝑠]. Recall

that the BDD 𝐺 encodes the input-output relation of the entire internal blocks w.r.t. the input

region𝐺𝑖𝑛
u,𝜏 . Thus, an input x ∈ 𝑅(u, 𝜏) is classified into the class 𝑖 by the BNNN iff x(𝑏) ∈ L(𝐺𝑜𝑢𝑡

𝑖).
Note that by modifying Line 2 to “𝐺𝑖𝑛 = Const(1)”, we can disable the feasible input propagation

in Algorithm 2.

Procedure InterBlk2BDD. The procedure InterBlk2BDD is shown in Algorithm 3 which encodes

a sequence of cardinality constraints into a BDD based on the divide-and-conquer strategy. Given

a set of cardinality constraints {𝐶𝑚, · · · ,𝐶𝑛} (note that indices matter, and𝑚 = 1, 𝑛 = |𝑛𝑖+1 | for
block 𝑡𝑖 at initialization) and a BDD𝐺𝑖𝑛

encoding feasible inputs, InterBlk2BDD returns a BDD

𝐺 . The BDD 𝐺 encodes the input-output relation of the Boolean function 𝑓𝑚,𝑛 such that for every

x𝑖 ∈ L(𝐺𝑖𝑛), 𝑓𝑚,𝑛 (x𝑖) is the truth vector of the cardinality constraints {𝐶𝑚, · · · ,𝐶𝑛} under the
valuation x𝑖 . When𝑚 = 1 and 𝑛 = 𝑛𝑖+1, 𝑓𝑚,𝑛 is the same as 𝑡

(𝑏)
𝑖

, i.e.,

L(𝐺) = {x𝑖 × x𝑖+1 ∈ 𝐺𝑖𝑛 × B𝑛𝑖+1 | 𝑡 (𝑏)
𝑖

(x𝑖) = x𝑖+1}.

where x𝑖 , x𝑖+1 denotes the input and output variables of 𝑡
(𝑏)
𝑖

respectively.

In detail, the procedure InterBlk2BDD computes the desired BDD in a binary search fashion.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

22 Y. Zhang, et al.

Algorithm 3: BDD Construction of the 𝑖-th Internal Block

1 Procedure InterBlk2BDD(CCs : {𝐶𝑚, · · · ,𝐶𝑛}, Region : 𝐺𝑖𝑛)
2 if 𝑛 ==𝑚 then
3 𝐺1 =CC2BDD(𝐶𝑚);
4 𝐺 = Xnor(New(x𝑖+1𝑚),𝐺1) ; // x𝑖+1𝑚 denotes the 𝑚-th entry of the output of 𝑡

(𝑏)
𝑖

5 else if 𝑛 ==𝑚 + 1 then
6 𝐺1 =CC2BDD(𝐶𝑚); 𝐺1 = Xnor(New(x𝑖+1𝑚),𝐺1);
7 𝐺2 =CC2BDD(𝐶𝑛); 𝐺2 = Xnor(New(x𝑖+1𝑛),𝐺2);
8 𝐺 = And(𝐺𝑖𝑛,𝐺1); 𝐺 = And(𝐺,𝐺2);
9 else

10 𝐺1 =InterBlk2BDD({𝐶𝑚, · · · ,𝐶 ⌊ 𝑛−𝑚
2

⌋+𝑚},𝐺𝑖𝑛);
11 𝐺2 =InterBlk2BDD({𝐶 ⌊ 𝑛−𝑚

2
⌋+𝑚+1, · · · ,𝐶𝑛},𝐺𝑖𝑛);

12 𝐺 = And(𝐺1,𝐺2);
13 return 𝐺

Algorithm 4: BDD Construction of Output Blocks

1 Procedure OutBlk2BDD(𝑡 (𝑏)
𝑑+1, Region : 𝐺𝑖𝑛)

2 for (𝑖 = 1; 𝑖 ≤ 𝑠; 𝑖 + +) do
3 𝐺𝑖 = 𝐺𝑖𝑛

;

4 for (𝑗 = 1; 𝑗 ≤ 𝑠 − 1; 𝑗 + +) do
5 𝐺𝑖 =And(𝐺𝑖 ,CC2BDD(𝑡 (𝑏)

𝑑+1↓𝑖, 𝑗));
6 return (𝐺𝑖)𝑖∈[𝑠]

• If 𝑛 == 𝑚, it first builds the BDD 𝐺1 for the cardinality constraint 𝐶𝑚 by invoking the

procedure CC2BDD so thatL(𝐺1) represents the solutions of𝐶𝑚 . Then𝐺1 is transformed into

the BDD Xnor(New(x𝑖+1𝑚),𝐺1), encoding the input-output relation of 𝑡
(𝑏)
𝑖↓𝑚 , thus 𝑡

(𝑏)
𝑖↓𝑚 (x) = 1

iff x ∈ L(𝐺1). Note that we regard x𝑖+1𝑚 as a newly added BDD variable when applying the

Xnor-operation, thus𝐺1 has 𝑛𝑖 BDD variables, the same as the length of input vectors to the

𝑖-th internal block 𝑡𝑖 .

• If 𝑛 ==𝑚 + 1, it first builds the BDDs 𝐺1 and 𝐺2 for the two cardinality constraints 𝐶𝑚 and

𝐶𝑛 such that L(𝐺1) and L(𝐺2) represent the sets of solutions of𝐶𝑚 and𝐶𝑛 . Then, the BDDs

𝐺1 and 𝐺2 are transformed into the BDDs Xnor(New(x𝑖+1𝑚),𝐺1) and Xnor(New(x𝑖+1𝑛),𝐺2),
encoding 𝑡

(𝑏)
𝑖↓𝑚 and 𝑡

(𝑏)
𝑖↓𝑛 , respectively. Then, we compute the conjunction𝐺 of the BDDs𝐺𝑖𝑛

,𝐺1

and𝐺2. Note that, here we first compute And(𝐺𝑖𝑛,𝐺1), then the resulting BDD is conjuncted

with 𝐺2.

• Otherwise, we build the BDDs𝐺1 and𝐺2 for {𝐶𝑚, · · · ,𝐶 ⌊ 𝑛−𝑚
2

⌋+𝑚} and {𝐶 ⌊ 𝑛−𝑚
2

⌋+𝑚+1, · · · ,𝐶𝑛},
and then compute the conjunction 𝐺 of them. Thus, for every (x𝑖 , x𝑖+1) ∈ L(𝐺), x𝑖+1 is the
truth vector of the constraints {𝐶𝑚, · · · ,𝐶𝑛} under the valuation x𝑖 .

Procedure OutBlk2BDD. The procedure OutBlk2BDD is shown in Algorithm 4 which encodes

the cardinality constraints of the output block into the BDDs (𝐺𝑖)𝑖∈[𝑠] , one BDD𝐺𝑖 per class 𝑖 ∈ [𝑠].
Different from the BDD encoding of the internal blocks, for each output class 𝑖 ∈ [𝑠] of the output
block 𝑡

(𝑏)
𝑑+1, OutBlk2BDD directly conjuncts the feasible inputs 𝐺𝑖𝑛

with the (𝑠 − 1) BDDs of the
cardinality constraints 𝑡

(𝑏)
𝑑+1↓𝑖 = {𝐶𝑖,1

𝑑+1, · · ·𝐶
𝑖,𝑖−1
𝑑+1 ,𝐶

𝑖,𝑖+1
𝑑+1 , · · · ,𝐶

𝑖,𝑠

𝑑+1}, which encodes the input-output

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 23

relation of the output block for the class 𝑖 . We could also use the divide-and-conquer strategy

for the output block, but it does not improve efficiency, as the number of classes is much smaller

compared to the sizes of the outputs of the internal blocks and the divide-and-conquer strategy

introduces additional AND-operations.

We should emphasize that instead of encoding the input-output relation of the BNN N as a

sole BDD or MTBDD, we opt to use a family of BDDs (𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] , each of which corresponds to

one output class of N . Building a single BDD or MTBDD for the BNN is possible from (𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] ,

but our approach gives the flexibility especially when a specific target class is interested, which is

common for robustness analysis.

Theorem 3.9. Given a BNN N with 𝑠 output classes and an input region 𝑅(u, 𝜏), we can compute
BDDs (𝐺𝑜𝑢𝑡

𝑖)𝑖∈[𝑠] such that the BNN N classifies an input x ∈ 𝑅(u, 𝜏) into the class 𝑖 ∈ [𝑠] iff
x(𝑏) ∈ L(𝐺𝑜𝑢𝑡

𝑖).
Proof. By Lemma 3.3 and Lemma 3.4, Line 2 in Algorithm 2 encodes the input region 𝑅(u, 𝜏)

into a BDD𝐺𝑖𝑛
u,𝜏 such that L(𝐺𝑖𝑛

u,𝜏) = 𝑅(u, 𝜏). By Theorem 3.7, an input x ∈ 𝑅(u, 𝜏) is classified into

class 𝑖 ∈ [𝑠] iff 𝑡
(𝑏)
𝑑+1↓𝑖 ((𝑡

(𝑏)
𝑑

◦ · · · ◦ 𝑡 (𝑏)
1

) (x(𝑏))) = 1, where x = 2x(𝑏) − 1. It remains to prove that

L(𝐺𝑜𝑢𝑡
𝑖) = {x(𝑏) ∈ L(𝐺𝑖𝑛

u,𝜏) | 𝑡
(𝑏)
𝑑+1↓𝑖 ((𝑡

(𝑏)
𝑑

◦ · · · ◦ 𝑡 (𝑏)
1

) (x(𝑏))) = 1} for each class 𝑖 ∈ [𝑠].
The first for loop (Lines 4–7) in Algorithm 2 builds a BDD 𝐺 encoding the input-output relation

of the entire internal blocks, namely,

L(𝐺) = {(x1, x𝑑+1) ∈ L(𝐺𝑖𝑛
u,𝜏) × B𝑛𝑑+1 | (𝑡

(𝑏)
𝑑+1 ◦ · · · ◦ 𝑡

(𝑏)
1

) (x1) = x𝑑+1}.

For each class 𝑖 ∈ [𝑠], the BDD 𝐺𝑖 constructed at Line 8 in Algorithm 2 for the output block 𝑡
(𝑏)
𝑑+1

satisfies that L(𝐺𝑖) = {x𝑑+1 ∈ L(𝐺𝑖𝑛) | 𝑡 (𝑏)
𝑑+1↓𝑖 (x

𝑑+1) = 1}. Finally, by computing the relational

product of 𝐺 and 𝐺𝑖 for each class 𝑖 ∈ [𝑠] at Line 10 in Algorithm 2, the BDD 𝐺𝑜𝑢𝑡
𝑖 is equivalent to

∃x𝑑+1.And(𝐺,𝐺𝑖). Thus, L(𝐺𝑜𝑢𝑡
𝑖) = {x(𝑏) ∈ L(𝐺𝑖𝑛

u,𝜏) | 𝑡
(𝑏)
𝑑+1↓𝑖 ((𝑡

(𝑏)
𝑑

◦ · · · ◦ 𝑡 (𝑏)
1

) (x(𝑏))) = 1}. □

Our encoding explicitly involves𝑂 (𝑑 +𝑠) RelProd-operations,𝑂 (𝑠2+∑𝑖∈[𝑑] 𝑛𝑖) And-operations,
𝑂 (∑𝑖∈[𝑑] 𝑛𝑖) Xnor-operations and 𝑂 (𝑑) Exists-operations.

4 PARALLELIZATION STRATEGIES
In this section, we investigate parallelization strategies at various levels, aiming to improve the

encoding efficiency further. In general, we classify them into three levels: low-level BDD operations,

high-level BDD encoding of blocks, and BDD construction of the entire BNN.

4.1 Parallel BDD operations
Designing an effective and efficient parallel decision diagram implementation for BDDs is non-

trivial. We resort to Sylvan, a novel parallel decision diagram implementation, that parallelizes

the most common BDD operations and features parallel garbage collection. There are other BDD

implementations (e.g., BeeDeeDee [61]) supporting multi-threaded BDD manipulation. We choose

Sylvan based on the comparative study of BDD implementations for probabilistic symbolic model

checking [101].

As a matter of fact, the speedup of the parallel BDD operations provided by Sylvan depends

on the number of workers used by Sylvan and the size of the underlying problem (i.e., BNN

and input region). Increasing the number of workers does not necessarily improve the encoding

efficiency, as the overhead induced by the synchronisation between workers may outweigh. Indeed,

as stated in [102], the limited parallel scalability is expected when the amount of parallelism in the

computation task is not sufficient. Our experiments observe that, with the increase of the number

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

24 Y. Zhang, et al.

Algorithm 5: Parallel BDD Construction of the 𝑖-th Internal Block

1 Procedure InterBlk2BDDPara(CCs : {𝐶𝑚, · · · ,𝐶𝑛}, InputSpace : 𝐺𝑖𝑛)
2 if 𝑛 ==𝑚 then
3 𝐺1 =CC2BDD(𝐶𝑚);
4 𝐺 = Xnor(New(x𝑖+1𝑚),𝐺1) ; // x𝑖+1𝑚 denotes the 𝑚-th entry of the output of 𝑡

(𝑏)
𝑖

5 else if 𝑛 ==𝑚 + 1 then
6 𝐺1 =CC2BDD(𝐶𝑚); 𝐺1 = Xnor(New(x𝑖+1𝑚),𝐺1);
7 𝐺2 =CC2BDD(𝐶𝑛); 𝐺2 = Xnor(New(x𝑖+1𝑛),𝐺2);
8 𝐺 = And(𝐺𝑖𝑛,𝐺1); 𝐺 = And(𝐺,𝐺2);
9 else

10 construct the BDDs 𝐺1 and 𝐺2 in parallel:
11 𝐺1 =InterBlk2BDDPara({𝐶𝑚, · · · ,𝐶 ⌊ 𝑛−𝑚

2
⌋+𝑚},𝐺𝑖𝑛);

12 𝐺2 =InterBlk2BDDPara({𝐶 ⌊ 𝑛−𝑚
2

⌋+𝑚+1, · · · ,𝐶𝑛},𝐺𝑖𝑛);
13 𝐺 = And(𝐺1,𝐺2);
14 return 𝐺

Algorithm 6: Parallel BDD Construction for Output Blocks

1 Procedure OutBlk2BDDPara(𝑡 (𝑏)
𝑑+1, InputSpace : 𝐺𝑖𝑛)

2 construct the BDDs 𝐺𝑖 ’s for 𝑖 ∈ [𝑠] in parallel:
3 𝐺𝑖 = 𝐺𝑖𝑛

;

4 for (𝑗 = 1; 𝑗 ≤ 𝑠 − 1; 𝑗 + +) do
5 𝐺𝑖 =And(𝐺𝑖 ,CC2BDD(𝑡 (𝑏)

𝑑+1↓𝑖, 𝑗));
6 return (𝐺𝑖)𝑖∈[𝑠]

of workers, the improvement is limited for small BNNs and input regions, but significant for large

BNNs and input regions.

4.2 Parallel BDD Encoding of Blocks
In order to improve the encoding efficiency further, we investigate parallelization strategies at the

level of BDD encoding for both internal and output blocks. Our goal is to increase parallelism in

the BDD encoding for each block so that the efficiency can be improved with the increase of the

number of workers.

Parallelization for internal blocks. To improve the efficiency of BDD encoding for internal

blocks, we propose a parallel divide-and-conquer strategy, as shown in Algorithm 5. It is similar to

the sequential procedure InterBlk2BDD shown in Algorithm 3, except that the BDDs𝐺1 and𝐺2 for

{𝐶𝑚, · · · ,𝐶 ⌊ 𝑛−𝑚
2

⌋+𝑚} and {𝐶 ⌊ 𝑛−𝑚
2

⌋+𝑚+1, · · · ,𝐶𝑛} are constructed in parallel. In our implementation,

we use the SPAWN API provided by Lace in Sylvan to spawn two tasks to construct the BDDs𝐺1

and 𝐺2 simultaneously, and use the SYNC API to synchronize the two tasks. Finally, the BDDs 𝐺1

and𝐺2 are conjuncted together. The key advantage of the parallel divide-and-conquer strategy is

the ability to largely reduce the overall synchronization when constructing the BDD for an internal

block. As a result, the encoding efficiency increases with the increase of the number of workers

for small BNNs and small input regions, confirmed by our experiments (cf. Section 6.1.4). When

combined with parallel BDD operations, the encoding efficiency increases with the increase of the

number of workers for arbitrary BNNs and arbitrary input regions, hence features a more stable

acceleration.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 25

Algorithm 7: Parallel BDD Construction of BNNs without Input Propagation

1 Procedure BNN2BDDPara(BNN : N = (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1), Region : 𝑅(u, 𝜏))
2 𝐺𝑖𝑛 = 𝐺𝑖𝑛

u,𝜏 ;

3 N (𝑏) = (𝑡 (𝑏)
1

, · · · , 𝑡 (𝑏)
𝑑

, 𝑡
(𝑏)
𝑑+1);

4 construct the BDDs 𝐺 ′
𝑖
’s for 𝑖 ∈ [𝑑] in parallel:

5 𝐺𝑖𝑛 = (𝑖 == 1) ? 𝐺𝑖𝑛
u,𝜏 : Const(1);

6 𝐺 ′
𝑖
=InterBlk2BDDPara(𝑡 (𝑏)

𝑖
,𝐺𝑖𝑛) (cf. Algorithm 5);

7 𝐺 = 𝐺 ′
1
;

8 for (𝑖 = 2; 𝑖 ≤ 𝑑 ; 𝑖 + +) do
9 𝐺 = RelProd(𝐺,𝐺 ′

𝑖
, x𝑖);

10 (𝐺𝑖)𝑖∈[𝑠] = OutBlk2BDDPara(𝑡 (𝑏)
𝑑+1,𝐺

𝑖𝑛);
11 for (𝑖 = 1; 𝑖 ≤ 𝑠; 𝑖 + +) do
12 𝐺𝑜𝑢𝑡

𝑖
= RelProd(𝐺,𝐺𝑖 , x𝑑+1);

13 return (𝐺𝑜𝑢𝑡
𝑖

)𝑖∈[𝑠]

Parallelization for output blocks. To parallelize the BDD encoding of an output block, a straight-

forward approach is to construct the BDD 𝐺𝑖 in parallel by leveraging the parallel divide-and-

conquer strategy for a class 𝑖 ∈ [𝑠], as done for internal blocks in Algorithm 5. However, such a

strategy cannot improve the encoding efficiency. One possible reason is that the overhead induced

by the additional And-operations still occupies a large proportion of the total encoding time, as

the size of feasible input BDD 𝐺𝑖𝑛
can be quite large for the output block. Alternatively, we choose

to construct the BDDs 𝐺𝑖 ’s for the classes 𝑖 ∈ [𝑠] in parallel, as shown in Algorithm 6.

4.3 Parallel BDD Construction of an Entire BNN
We investigate the potential parallelization strategies at the level of BDD construction for the entire

BNN. However, it is non-trivial to parallelize the composition of BDDs of the blocks, i.e., the first

for-loop (Lines 4–7) in Algorithm 2, as the feasible inputs of a block is computed as the feasible

outputs of its preceding block. Thus, to parallelize the BDD construction of an entire BNN, we have

to disable the feasible input propagation, as shown in Algorithm 7. This definitely results in the

loss of benefit induced by input propagation. Thus, we expected that this strategy is effective for

large input space, e.g., the full input space B𝑛1

±1, for which input propagation becomes less effective.

However, our experiments show that this is not the case, as the parallelization at this level reduces

the number of workers that can be used for parallel BDD encoding of blocks and BDD operations.

Remark. We have also made some other attempts to improve the overall BDD encoding efficiency,

including (1) parallelize the composition of two BDDs, e.g., the second for-loop in Algorithm 2

and the for-loops in Algorithm 7; (2) move the second for-loop of Algorithm 7 into the procedure

OutBlk2BDDPara which composes the BDD 𝐺 of the internal blocks with the BDD 𝐺𝑖 of the

output block w.r.t. the class 𝑖 . However, these strategies could not improve the overall encoding

efficiency, and sometimes even incurred additional overhead.

5 APPLICATIONS: ROBUSTNESS ANALYSIS AND INTERPRETABILITY
In this section, we highlight two applications within BNNQuanalyst, i.e., robustness analysis and

interpretability of BNNs.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

26 Y. Zhang, et al.

5.1 Robustness Analysis
Definition 5.1. Given a BNN N and an input region 𝑅(u, 𝜏), the BNN is (locally) robust w.r.t.

the region 𝑅(u, 𝜏) if each sample x ∈ 𝑅(u, 𝜏) is classified into the same class of the input u, i.e.,
∀x ∈ 𝑅(u, 𝜏),N(x) = N(u).

An adversarial example in the region 𝑅(u, 𝜏) is a sample x ∈ 𝑅(u, 𝜏) such that x is classified into

a class, that differs from the predicted class of the input u, i.e., N(x) ≠ N(u).

As mentioned in Section 1, qualitative verification which checks whether a BNN is robust is

insufficient inmany practical applications. In this paper, we are interested in quantitative verification
of robustness which asks how many adversarial examples are there in the input region of the BNN for
each class. To answer this question, given a BNN N and an input region 𝑅(u, 𝜏), we first obtain
the BDDs (𝐺𝑜𝑢𝑡

𝑖)𝑖∈[𝑠] by applying Algorithm 2 (or its parallel variants) and then count the number

of adversarial examples for each class in the input region 𝑅(u, 𝜏). Note that counting adversarial
examples amounts to computing |𝑅(u, 𝜏) | − |L(𝐺𝑜𝑢𝑡

𝑔) |, where 𝑔 denotes the predicted class of u,
and |L(𝐺𝑜𝑢𝑡

𝑔) | can be computed in time 𝑂 (|𝐺𝑜𝑢𝑡
𝑔 |).

We remark that the robustness and adversarial examples are defined w.r.t. the predicted class of

the input u instead of its class given in the dataset, which is the same as NPAQ [8] but different

from [118].

Inmany real world applications, more refined analysis is needed. For instance, it may be acceptable

to misclassify a dog as a cat, but unacceptable to misclassify a tree as a car [79]. This suggests that

the robustness of BNNs may depend on the classes into which samples are misclassified. To address

this, we consider the notion of targeted robustness.

Definition 5.2. Given a BNNN , an input region 𝑅(u, 𝜏) and the class 𝑡 , the BNN is 𝑡-target-robust
w.r.t. the region 𝑅(u, 𝜏) if every sample x ∈ 𝑅(u, 𝜏) is never classified into the class 𝑡 , i.e., N(x) ≠ 𝑡 .

(Note that we assume that the predicted class of u differs from the class 𝑡 .)

The quantitative verification problem of 𝑡-target-robustness of a BNN asks how many adversarial
examples in the input region 𝑅(u, 𝜏) are misclassified to the class 𝑡 by the BNN. To answer this

question, we first obtain the BDD 𝐺𝑜𝑢𝑡
𝑡 and then count the number of adversarial examples by

computing |L(𝐺𝑜𝑢𝑡
𝑡) |.

Note that, if one wants to compute the (locally) maximal safe Hamming distance that satisfies a

robustness property for an input sample (e.g., the proportion of adversarial examples is below a

given threshold), our framework can incrementally compute such a distance without constructing

the BDD models of the entire BNN from scratch.

Definition 5.3. Given a BNNN , an input region 𝑅(u, 𝑟) and the threshold 𝜖 ≥ 0, 𝑟1 is the (locally)

maximal safe Hamming distance of 𝑅(u, 𝜏), if one of the follows holds:
• 𝑟1 is the maximal one such that 𝑟1 < 𝑟 and 𝑃𝑟 (𝑅adv (u, 𝑟1)) ≤ 𝜖 if 𝑃𝑟 (𝑅adv (u, 𝑟)) > 𝜖 ;

• 𝑟1 is the maximal one such that 𝑟1 ≥ 𝑟 and 𝑃𝑟 (𝑅adv (u, 𝑟 ′)) ≤ 𝜖 for all 𝑟 ′ : 𝑟 ≤ 𝑟 ′ ≤ 𝑟1 if

𝑃𝑟 (𝑅adv (u, 𝑟)) ≤ 𝜖 ;

where 𝑃𝑟 (𝑅adv (u, 𝑟)) is the probability
∑

𝑖∈[𝑠] .𝑖≠𝑔 |L (𝐺𝑜𝑢𝑡
𝑖

) |
|𝑅 (u,𝑟) | for𝑔 being the predicted class of u, assuming

a uniform distribution over the entire sample space.

Algorithm 8 shows the procedure to incrementally compute the maximal safe Hamming distance

for a given threshold 𝜖 ≥ 0, input region 𝑅(u, 𝑟) and predicted class 𝑔 of u. Basically, it searches for
the maximal safe Hamming distance by either increasing or decreasing the distance 𝑟 depending

on whether 𝑃𝑟 (𝑅adv (u, 𝑟)) > 𝜖 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 27

Algorithm 8: Compute the maximal safe Hamming distance

1 ProcedureMaxHD(BNN : N = (𝑡1, · · · , 𝑡𝑑 , 𝑡𝑑+1), Region : 𝑅(u, 𝑟), Threshold : 𝜖, Class : 𝑔)
2 (𝐺𝑜𝑢𝑡

𝑖
)𝑖∈[𝑠] =BNN2BDD(N , 𝑅(u, 𝑟));

3 if (𝑃𝑟 (𝑅adv (u, 𝑟)) > 𝜖) then // decrease 𝑟

4 while (𝑟 > 0) do
5 𝑟 = 𝑟 − 1;

6 (𝐺𝑜𝑢𝑡
𝑖

)𝑖∈[𝑠] = (And(𝐺𝑖𝑛
u,𝑟 ,𝐺

𝑜𝑢𝑡
𝑖

))𝑖∈[𝑠] ;
7 if (𝑃𝑟 (𝑅adv (u, 𝑟)) ≤ 𝜖) then
8 return 𝑟

9 else // increase 𝑟

10 while (𝑟 < 𝑛1) do // 𝑛1 is the input size of the BNN N
11 𝑟 = 𝑟 + 1;

12 (𝐵𝑜𝑢𝑡
𝑖

)𝑖∈[𝑠] =BNN2BDD(N , 𝑅(u, 𝑟) \ 𝑅(u, 𝑟 − 1));
13 (𝐺𝑜𝑢𝑡

𝑖
)𝑖∈[𝑠] = (Or(𝐵𝑜𝑢𝑡

𝑖
,𝐺𝑜𝑢𝑡

𝑖
))𝑖∈[𝑠] ;

14 if (𝑃𝑟 (𝑅adv (u, 𝑟)) > 𝜖) then
15 return 𝑟 − 1

16 return 𝑟

• If 𝑃𝑟 (𝑅adv (u, 𝑟)) > 𝜖 , we iteratively decrease 𝑟 by 1 and compute the intersection between

the new input region 𝑅(u, 𝑟) and original BDD model 𝐺𝑜𝑢𝑡
𝑖 for each class 𝑖 ∈ [𝑠], until

𝑃𝑟 (𝑅adv (u, 𝑟)) ≤ 𝜖 or 𝑟 = 0.

• If 𝑃𝑟 (𝑅adv (u, 𝑟)) ≤ 𝜖 , we iteratively increase 𝑟 by 1, obtain the BDDs (𝐵𝑜𝑢𝑡𝑖)𝑖∈[𝑠] of the BNN
w.r.t. the input region 𝑅(u, 𝑟) \ 𝑅(u, 𝑟 − 1), and compute the union of 𝐵𝑜𝑢𝑡𝑖 and 𝐺𝑜𝑢𝑡

𝑖 for each

class 𝑖 ∈ [𝑠], until 𝑃𝑟 (𝑅adv (u, 𝑟)) > 𝜖 or 𝑟 = 𝑛1. Recall that the input region 𝑅(u, 𝑟) can
be expressed by a constraint

∑𝑛1

𝑗=1
ℓ𝑗 ≤ 𝑟 (cf. Section 3.3). Thus, 𝑅(u, 𝑟) \ 𝑅(u, 𝑟 − 1) can be

expressed by the conjunction of two constraints

∑𝑛1

𝑗=1
ℓ𝑗 ≤ 𝑟 and

∑𝑛1

𝑗=1
ℓ𝑗 > 𝑟 − 1, which can

be further reformulated into two cardinality constraints

∑𝑛1

𝑗=1
¬ℓ𝑗 ≥ 𝑛1 − 𝑟 and

∑𝑛1

𝑗=1
ℓ𝑗 ≥ 𝑟 .

The BDD encoding of the input region 𝑅(u, 𝑟) \ 𝑅(u, 𝑟 − 1) can be constructed by applying

the And-operation to the BDDs of

∑𝑛1

𝑗=1
¬ℓ𝑗 ≥ 𝑛1 − 𝑟 and

∑𝑛1

𝑗=1
ℓ𝑗 ≥ 𝑟 .

5.2 Interpretability
In general, interpretability addresses the question of why some inputs in the input region are
(mis)classified by the BNN into a specific class? We consider the interpretability of BNNs using two

complementary explanations, i.e., prime implicant explanations and essential features.

Definition 5.4. Given a BNN N , an input region 𝑅(u, 𝜏) and a class 𝑔,

• a prime implicant explanation (PI-explanation) of the decision made by the BNN N on the

input L(𝐺𝑜𝑢𝑡
𝑔) is a minimal set of literals {ℓ1, · · · , ℓ𝑘 } such that for every x ∈ 𝑅(u, 𝜏), if x

satisfies ℓ1 ∧ · · · ∧ ℓ𝑘 , then x is classified into the class 𝑔 by N .

• the essential features for the inputsL(𝐺𝑜𝑢𝑡
𝑔) are literals {ℓ1, · · · , ℓ𝑘 } such that every x ∈ 𝑅(u, 𝜏),

if x is classified into the class 𝑔 by N , then x satisfies ℓ1 ∧ · · · ∧ ℓ𝑘 .

Intuitively, a PI-explanation {ℓ1, · · · , ℓ𝑘 } indicates that {var(ℓ1), · · · , var(ℓ𝑘)} are the key such

that, when fixed, the prediction is guaranteed no matter how the remaining features change. Thus,

a PI-explanation can be seen as a sufficient condition to be classified into the class. Remark that

there may be more than one PI-explanation for a set of inputs. When 𝑔 is set to be the predicted

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

28 Y. Zhang, et al.

Table 3. BNN benchmarks based on MNIST and Fashion-MNIST (F-MNIST), where 𝑛1 : · · · : 𝑛𝑑+1 : 𝑠 in the

column (Architecture) denotes that the BNN model has 𝑑 + 1 blocks, 𝑛1 inputs and 𝑠 outputs; the 𝑖-th block

for 𝑖 ∈ [𝑑 + 1] has 𝑛𝑖 inputs and 𝑛𝑖+1 outputs with 𝑛𝑑+2 = 𝑠 .

Dataset Name Architecture Accuracy Name Architecture Accuracy

P1 16:25:20:10 14.88 % P7 100:100:10 75.16%

P2 16:64:32:20:10 25.14% P8 100:50:20:10 71.1%

P3 25:25:25:20:10 33.67% P9 100:100:50:10 77.37%

MNIST

P4 36:15:10:10 27.12% P10 400:100:10 83.4%

P5 64:10:10 49.16% P11 784:100:10 85.13%

P6 100:50:10 73.25% P12 784:50:50:50:50:10 86.95%

P13 100:100:10 50.01% P15 100:100:50:10 50.40%

F-MNIST

P14 100:50:20:10 39.42% P16 784:100:10 50.25%

class of the benign input u, a PI-explanation on the input region𝐺𝑜𝑢𝑡
𝑔 suggests why these samples

are correctly classified into 𝑔.

The essential features {ℓ1, · · · , ℓ𝑘 } denote the key features such that all samples x ∈ 𝑅(u, 𝜏) that
are classified into the class 𝑔 by the BNN N must agree on these features. Essential features differ

from PI-explanations, where the former can be seen as a necessary condition, while the latter can

be seen as a sufficient condition.

The CUDD package provides APIs to identify prime implicants (e.g., Cudd_bddPrintCover and

Cudd_FirstPrime) and essential variables (e.g., Cudd_FindEssential). Therefore, prime implicants

and essential features can be computed via queries on the BDDs (𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] . (Note that the Syl-

van package does not provide such APIs, but this problem could be solved by storing the BDDs

(𝐺𝑜𝑢𝑡
𝑖)𝑖∈[𝑠] constructed by Sylvan in a file, which is then loaded by CUDD.)

6 EVALUATION
We have implemented the framework, giving rise to a new tool BNNQuanalyst. The implementation

is based on CUDD [90] as the default BDD package and Sylvan [102] for parallel computing. We use

Python as the front-end to process BNNs and C++ as the back-end to perform the BDD encoding

and analysis. In the rest of this section, we report the experimental results on the BNNs trained

using the MNIST dataset, including the performance of BDD encoding, robustness analysis based

on both Hamming distance and fixed indices, and interpretability.

Benchmarks on MNIST and Fashion-MNIST. We use the PyTorch deep learning platform

provided by NPAQ [8] to train and test 12 BNNs (P1-P12) with varying sizes based on the MNIST

dataset, and 4 BNNs (P13-P16) on the Fashion-MNIST dataset. Similar to NPAQ [8], we first resize

the original 28 × 28 images to the input size 𝑛1 of the BNN (i.e., the corresponding image is of the

dimension

√
𝑛1 ×

√
𝑛1) via Bilinear interpolation [11] and then binarize the normalized pixels of the

images. Table 3 gives the details of the 16 BNN models based on two datasets, each of which has

10 classes (i.e., 𝑠 = 10). Column 1 shows the dataset used for training and evaluation. Columns 2

and 5 give the name of the BNN model. Columns 3 and 6 show the architecture of the BNN model,

where 𝑛1 : · · · : 𝑛𝑑+1 : 𝑠 denotes that the BNN model has 𝑑 + 1 blocks, 𝑛1 inputs and 𝑠 outputs; the

𝑖-th block for 𝑖 ∈ [𝑑 + 1] has 𝑛𝑖 inputs and 𝑛𝑖+1 outputs with 𝑛𝑑+2 = 𝑠 . Therefore, the number of the

internal blocks ranges from 1 to 4 (i.e., 3 to 12 layers), the dimension of inputs ranges from 25 to

784, and the number of hidden neurons per LIN layer in each block ranges from 10 to 100. Columns

4 and 7 give the accuracy of the BNN model on the test set of the two datasets. We can observe

that the accuracy of the BNN models increases with the size of the inputs, the number of layers

and the number of hidden neurons per layer for each dataset. We remark that the small BNNs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 29

Fig. 8. Images from MNIST (top) and Fashion-MNIST (bottom) used to evaluate our approach.

(e.g., P1–P5) with low accuracy are used to understand (i) the effectiveness of input propagation

strategy under full input space (cf. Section 6.1.3), (ii) the effectiveness of different parallelization

strategies under full input space (cf. Section 6.1.4), and (iii) the efficiency of our BDD encoding

under full input space (cf. Section 6.2.1). Figure 8 shows 20 images from the test sets of two datasets

(10 images from MNIST and 10 images from Fashion-MNIST, where one image per class) to evaluate

our approach unless explicitly stated. Similar to prior work [8, 15, 71, 105, 106], those images are

chosen randomly. Specifically, the image of digit 𝑖 from the test set of MNIST is called by 𝑖-image.

Experimental setup. The experiments were conducted on a 20-core machine (with two-way

hyper-threading) with 2×2.2GHz Intel 10-core Xeon Silver 4114 processors and 376 GB of main

memory of which 256 GB are used for evaluation. We kept the default values for the BDD packages

except that: (1) the initial cache size is set to 2
18
entries for both CUDD and Sylvan, (2) the maximum

sizes of the BDD node hash table and operation cache for CUDD are set to 0 (i.e., no limitation),

and (3) the maximum cache size, initial and maximum size of the BDD node hash table for Sylvan

are set to 2
30
, 2

22
and 2

33
entries (called buckets in Sylvan). The variable ordering of BDDs used

for input regions is the natural row-by-row, left-to-right of the pixels in the images, the same as

the prior work [83]; the variable ordering of BDDs used for each internal block and composition

of internal blocks follow the orders of inputs and outputs, where the input variables are smaller

than output variables; and the variable ordering of BDDs used for the output block follows the

orders of inputs. The time limit for each experiment is set to be 8 hours. For parallel computing, the

maximum number of workers is limited up to 39 (out of 40) where the remaining one is reserved

for the other computation tasks and system processes.

6.1 Effectiveness of Strategies
We first compare the performance of our graph-based algorithm (i.e., Algorithm 1) and the DP-based

algorithm [27] for the BDD encoding of cardinality constraints. We then evaluate the effectiveness

of input propagation, divide-and-conquer and parallelization strategies for BDD encoding of BNNs.

We repeated each experiment 3 times and report the rounded average time in seconds of 3 runs.

For the sake of presentation, we define abbreviated names of sequential and parallel algorithms

with various strategies in Table 4.

6.1.1 Graph-based Alg. vs. DP-based Alg. We compare the performance of our graph-based algo-

rithm and the DP-based algorithm using the cardinality constraints obtained from the input regions.

The input regions use the 0-image with the input sizes 100 and 784, where the Hamming distance

ranges from 10 to 40 with step 10 for the input size 100, and ranges from 50 to 200 with step 50 for

the input size 784.

The results are reported in Table 5 using CUDD. We can observe that our graph-based algorithm

is at least 20 times faster than the DP-based algorithm [27]. The improvement is much significant

for large cardinality constraints, e.g., for the instances 784-HD-150 and 784-HD-200.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

30 Y. Zhang, et al.

Table 4. Abbreviated names of sequential and parallel algorithms with various strategies.

Abbreviation Description

DP-based Alg. Dynamic programming based algorithm for BDD encoding of cardinality constraints [27]

Graph-based Alg. Our algorithm for BDD encoding of cardinality constraints, i.e., Algorithm 1

L0-D&C Algorithm 2 with CUDD

L0-Iteration Algorithm 2 with CUDD, but without the divide-and-conquer strategy

L1-D&C Algorithm 2 with Sylvan

L1-Iteration Algorithm 2 with Sylvan, but without the divide-and-conquer strategy

L2-D&C

Algorithm 2 with Sylvan, where InterBlk2BDD and OutBlk2BDD are replaced by

InterBlk2BDDPara (cf. Algorithm 5) and OutBlk2BDDPara (cf. Algorithm 6)

L2-D&C-NoIP L2-D&C but without input propagation

L3-D&C Algorithm 7 with Sylvan

Table 5. Execution time (in seconds) of our graph-based algorithm and the DP-based algorithm for BDD

encoding of cardinality constraints using CUDD, where x-HD-y denotes the cardinality constraint obtained

from the input region with the input size 𝑥 and Hamming distance 𝑦.

100-HD-10 100-HD-20 100-HD-30 100-HD-40

DP-based Alg. 0.021 0.037 0.059 0.059

Graph-based Alg. 0.001 0.001 0.001 0.002

784-HD-50 784-HD-100 784-HD-150 784-HD-200

DP-based Alg. 11.05 37.45 617.3 1123.45

Graph-based Alg. 0.023 0.041 0.052 0.061

0 5 10 15 20 25 30 35 40
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 DP-based

Graph-based

(a) 100-HD-10

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6
DP-based
Graph-based

(b) 100-HD-20

0 5 10 15 20 25 30 35 40
0
1
2
3
4
5
6
7

DP-based
Graph-based

(c) 100-HD-30

0 5 10 15 20 25 30 35 40
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 DP-based

Graph-based

(d) 100-HD-40

0 5 10 15 20 25 30 35 40
0

50

100

150

200 DP-based
Graph-based

(e) 784-HD-50

0 5 10 15 20 25 30 35 40
0

50

100

150

200 DP-based
Graph-based

(f) 784-HD-100

0 5 10 15 20 25 30 35 40
0

100

200

300

400 DP-based
Graph-based

(g) 784-HD-150

0 5 10 15 20 25 30 35 40
0

200
400
600
800

1000
1200
1400 DP-based

Graph-based

(h) 784-HD-200

Fig. 9. Execution time (in seconds) of our graph-based algorithm and the DP-based algorithm for BDD encod-

ing of cardinality constraints using Sylvan, where the numbers of workers (x-axis) are 1, 2, 4, 6, 8, · · · , 36, 38, 39.

We also conduct the same experiments using Sylvan, where the number of workers is set to

1, 2, 4, 6, 8, · · · , 36, 38, 39. The results are depicted in Figure 9. We can observe that our graph-based

algorithm also performs significantly better than the DP-based algorithm [27]. However, with the

increased number of workers, the performance of both algorithms downgraded, in particular, for

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 31

Table 6. Execution time (in seconds) of L0-Iteration and L0-D&C for BDD encoding of BNNs, where P𝑥-HD-𝑦

denotes the BNN model P𝑥 and Hamming distance 𝑦.

P8-HD-2 P8-HD-3 P8-HD-4 P9-HD-2 P9-HD-3 P9-HD-4

L0-Iteration 0.44 6.67 165.5 10.14 347.59 6318.7

L0-D&C 0.17 1.88 71.4 2.66 86.13 1598.6

0 5 10 15 20 25 30 35 40

0.6

0.8

1.0

1.2

1.4

1.6 L1-Iteration
L1-D&C

(a) P8-HD-2

0 5 10 15 20 25 30 35 40

1.0

1.5

2.0

2.5

3.0

3.5

4.0
L1-Iteration
L1-D&C

(b) P8-HD-3

0 5 10 15 20 25 30 35 40
0

10
20
30
40
50
60
70
80 L1-Iteration

L1-D&C

(c) P8-HD-4

0 5 10 15 20 25 30 35 40
2

4

6

8

10

12

14
L1-Iteration
L1-D&C

(d) P9-HD-2

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140 L1-Iteration
L1-D&C

(e) P9-HD-3

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500
L1-Iteration
L1-D&C

(f) P9-HD-4

Fig. 10. Execution time (in seconds) of L1-Iteration and L1-D&C for BDD encoding of BNNs, where the

numbers of workers (x-axis) are 1, 2, 4, 6, 8, · · · , 36, 38, 39.

small cardinality constraints (cf. Figures 9(a)—9(d).) This is mainly caused by the overhead induced

by the synchronisation between workers on the parallel BDD operations mentioned previously.

6.1.2 Effectiveness of the Divide-and-Conquer Strategy. To study the effectiveness of the divide-

and-conquer strategy, we compare the performance between L0-Iteration and L0-D&C both of

which use sequential BDD operations (i.e., CUDD), and between L1-Iteration and L1-D&C both of

which use parallel BDD operations (i.e., Sylvan), on the BNN models P8 and P9 using the 0-image

under Hamming distance 𝑟 = 2, 3, 4. Note that 𝑟 is limited up to 4, because when it is larger than 4,

(i) the BDD encoding often runs out of time for both strategies, and (ii) for the BDD encoding that

terminates within the time limit, the result of the comparison is similar to that of 𝑟 = 4. Similarly,

we skip 𝑟 = 1 because the result of the comparison is similar to that of 𝑟 = 2. On the other hand,

we choose P8 and P9 as the subjects for evaluation, because (i) they are relatively larger and all the

BDD encoding tasks with different number of workers terminate within the time limit (8 hours)

when 𝑟 ≤ 4, and (ii) the experimental results on P8 and P9 can demonstrate the effectiveness of the

divide-and-conquer strategy for different number of workers and input regions.

Table 6 reports the average execution time (in seconds) of L0-Iteration and L0-D&C, where the

latter uses the divide-and-conquer strategy (cf. Table 4). We can observe that in this setting, our

divide-and-conquer strategy is very effective, with more than 2.5 times speedup.

Figure 10 reports the average execution time (in seconds) of L1-Iteration and L1-D&C, where

the numbers of workers are 1, 2, 4, 6, 8, · · · , 36, 38, 39. We can observe that our divide-and-conquer

strategy is often very effective when parallel BDD operations are used, in particular for large

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

32 Y. Zhang, et al.

Table 7. Execution time (in seconds) of L2-D&C and L2-D&C-NoIP for BDD encoding of BNNs using the

0-image under Hamming distance r=2,3,4, where -TO- denotes time out (8 hours), -MO- denotes out of

memory (256 GB) and s1, s10, s20, s39 indicate the number of workers.

Name r

L2-D&C L2-D&C-NoIP

s1 s10 s20 s39 s1 s10 s20 s39

2 0.42 0.57 0.74 0.66 -TO- -TO- -MO- -MO-

P8 3 1.17 0.80 0.98 0.83 -TO- -TO- -MO- -MO-

4 39.90 6.27 4.18 2.87 -TO- -TO- -MO- -MO-

2 1.74 1.77 1.83 2.09 -TO- -TO- -TO- -TO-

P9 3 35.97 6.72 5.51 4.04 -TO- -TO- -TO- -TO-

4 603.6 79.76 52.97 36.79 -TO- -TO- -TO- -TO-

0 5 10 15 20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
L2-D&C
L2-D&C-NoIP

(a) P1 with full input space

0 5 10 15 20 25 30 35 40
0

25
50
75

100
125
150
175
200 L2-D&C

L2-D&C-NoIP

(b) P3 with full input space

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500
L2-D&C
L2-D&C-NoIP

(c) P4 with full input space

Fig. 11. Execution time (in seconds) of L2-D&C and L2-D&C-NoIP for BDD encoding of BNNs under full

input space, where the numbers of workers (x-axis) are 1, 2, 4, 6, 8, · · · , 36, 38, 39.

Hamming distances (i.e., 3 and 4). However, with the increased number of workers, the performance

of parallel BDD encoding downgraded, e.g., Figure 10(a), 10(b) and 10(d), due to the overhead

induced by the synchronisation between workers. The divide-and-conquer strategy even becomes

worse than the iteration-based one when the number of worker is very large (e.g., 39) in Figure 10(a)

and 10(b), because the divide-and-conquer strategy requires additional AND-operations that induce

synchronisation between workers.

6.1.3 Effectiveness of Input Propagation. To study the effectiveness of input propagation, we

conduct experiments using L2-D&C and L2-D&C-NoIP on the BNN models P8 and P9 with the

0-image under the Hamming distances 2, 3 and 4, and on the BNN models P1, P3 and P4 with

the 0-image under full input space. Recall that both L2-D&C and L2-D&C-NoIP use parallel BDD

encoding of blocks and BDD operations, but only L2-D&C uses input propagation. Note that we

evaluate on BNNs of varied sizes and input regions to thoroughly understand the effectiveness of

the input propagation strategy which may depend upon both input regions and BNN sizes. Other

BNN models are not considered due to the huge computational cost and current results are able to

demonstrate the effectiveness of input propagation.

Table 7 shows the results of L2-D&C and L2-D&C-NoIP on the BNN models P8 and P9 under the

Hamming distances 2, 3 and 4, where the number of workers is set to 1, 10, 20 and 39, and the best

ones are highlighted in boldface. Note that -TO- denotes time out (8 hours) and -MO- denotes out

of memory (256 GB). It is easy to see that our input propagation is very effective.

Figure 11 shows the results of L2-D&C and L2-D&C-NoIP on the small BNN models P1, P3 and P4

under the full input space, where the number of workers (x-axis) is set to 1, 2, 4, 6, 8, · · · , 36, 38, 39.
Unsurprisingly, the effectiveness of input propagation varies with BNNmodels, due to the difference

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 33

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 L1-D&C
L2-D&C

(a) P8-HD-2

0 5 10 15 20 25 30 35 40
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0 L1-D&C
L2-D&C

(b) P8-HD-3

0 5 10 15 20 25 30 35 40

10

20

30

40 L1-D&C
L2-D&C

(c) P8-HD-4

0 5 10 15 20 25 30 35 40

2

4

6

8

10

12 L1-D&C
L2-D&C

(d) P9-HD-2

0 5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
L1-D&C
L2-D&C

(e) P9-HD-3

0 5 10 15 20 25 30 35 40

200

400

600

800
L1-D&C
L2-D&C

(f) P9-HD-4

Fig. 12. Execution time (in seconds) of L1-D&C and L2-D&C for BDD encoding of BNNs, where the numbers

of workers are 1, 2, 4, 6, 8, · · · , 36, 38, 39.

of the architectures in P1, P3 and P4. Recall that the input propagation improves the encoding

efficiency when the feasible outputs of the preceding block 𝑡𝑖−1 (the input region when 𝑖 = 1)

is relatively small compared with the full input space B𝑛𝑖 that the block 𝑡𝑖 needs to consider (cf.

Section 3.5). On P3 and P4, the feasible inputs of the internal blocks are close to their full input space,

thus the input propagation does not make sense, and actually incurs overhead due to additional

BDD operations (i.e., And and Exists).

In contrast to P3 and P4, P1 has an increase and then decrease in the number of hidden neurons

of the layers, thus the input propagation is still effective on P1. Indeed, the input propagation

reduces the full output space 2
25

of the first block (i.e., the input space of the second block) to

the feasible outputs 2
16
(i.e., the input region). We remark that L2-D&C-NoIP quickly runs out of

time on P2 when encoding the second block even with 39 workers due to 64 hidden neurons in its

LIN layer, while it can be done in seconds when input propagation is enabled, i.e., L2-D&C. Thus,

results on P2 are not depicted in Figure 11.

6.1.4 Effectiveness of parallelization strategies. By comparing the results between L0-Iteration

and L1-Iteration (resp. L0-D&C and L1-D&C) on the BNN models P8 and P9 using the 0-image

under Hamming distances 2, 3 and 4 (cf. Table 6 and Figure 10 in Section 6.1.2), we can observe

that parallel BDD operations (i.e., Sylvan) is very effective for large input regions, (i.e., Hamming

distance 𝑟 = 3, 4). However, the improvement of sole parallel BDD operations may downgrade with

the increased number of workers. Below we study the effectiveness of the other two parallelization

strategies, namely, parallel BDD encoding of blocks (i.e., Algorithms 5 and 6) on P8 and P9, and

parallel BDD encoding of an entire BNN (i.e., Algorithm 7) on P1, P3 and P4. Due to the similar

reasons as mentioned above, we do not consider other BNN models.

To understand the effectiveness of parallel BDD encoding of blocks, we compare L1-D&C and

L2-D&C on the BNNmodels P8 and P9 under Hamming distance 𝑟 = 2, 3, 4. Recall that both L1-D&C

and L2-D&C use parallel BDD operations, but only L2-D&C uses parallel BDD encoding of blocks.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

34 Y. Zhang, et al.

0 5 10 15 20 25 30 35 40

1

2

3

4
L2-D&C-NoIP
L3-D&C

(a) P1 with full input space

0 5 10 15 20 25 30 35 40

20

40

60

80

100 L2-D&C-NoIP
L3-D&C

(b) P3 with full input space

0 5 10 15 20 25 30 35 40

200

400

600

800
L2-D&C-NoIP
L3-D&C

(c) P4 with full input space

Fig. 13. BDD encoding under full input space with L2-D&C-NoIP and L3-D&C, where on the x-axis

(1, 2, · · · , 40) denotes the number of workers, and y-axis denotes the computation time (seconds).

The results are shown in Figure 12. We can observe that our parallel BDD encoding of blocks is

often very effective. Furthermore, increasing the number of workers in L2-D&C always improves

the overall encoding efficiency for large BNNs and Hamming distance, e.g., Figure 12(c), Figure 12(e)

and Figure 12(f).

To understand the effectiveness of parallel BDD encoding of entire BNNs, we compare L2-D&C-

NoIP and L3-D&C on the relatively small BNN models P1, P3 and P4 under the full input region,

Recall that both L2-D&C-NoIP and L3-D&C use parallel BDD operations and BDD encoding of

blocks without input propagation, but only L3-D&C uses parallel BDD encoding of entire BNNs.

The results are shown in Figure 13. The overall BDD encoding efficiency can be improved with the

increased number of workers due to parallel BDD operations and BDD encoding of blocks, but the

parallel BDD encoding of the entire BNNs did not improve the overall performance.

Summary of effectiveness of strategies.While L2-D&C with the largest number of workers (i.e.,

39) does not always outputform the others, L2 (parallel BDD operations + parallel BDD encoding

of blocks) always performs better than L1 (sole parallel BDD operations) and L3 (parallel BDD

operations + parallel BDD encoding of blocks + parallel BDD construction of an entire BNN) (cf.

Figure 12 and Figure 13 in Section 6.1.4). The divide-and-conquer strategy (i.e., D&C) performs

better than the iteration-based one in most cases (cf. Table 6 and Figure 10 in Section 6.1.2), while

it performs worse than the iteration-based one when the number of workers is very large (e.g., 39)

and the input region is quite small (e.g., 𝑟 = 2). On the other hand, the input propagation strategy

can improve the encoding efficiency when the feasible output of the preceding block (or input

region) is relatively small compared with the full input space of the encoding block (cf. Table 7 and

Figure 11 in Section 6.1.3). Furthermore, the optimal number of workers for L2-D&C increases with

the size of input region (cf. Table 7, Figure 11 and Figure 12). We summarize the findings as follows.

• When encoding an internal block, the divide-and-conquer strategy can improve the encoding

efficiency in most cases;

• When encoding a block, the input propagation can improve the encoding efficiency when

the feasible output of the preceding block (or input region) is relatively small compared with

the full input space of the encoding block;

• L2 (i.e., parallel BDD operations + parallel BDD encoding of blocks) performs better than

L1 (i.e., sole parallel BDD operations) and L3 (i.e., parallel BDD operations + parallel BDD

encoding of blocks + parallel BDD construction of an entire BNN);

• The optimal number of workers for L2-D&C (i.e., L2 with both divide-and-conquer strategy

and input propagation strategy) increases with the size of input region of interest.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 35

Table 8. Execution time (in seconds) of L0-D&C and L2-D&C for BDD encoding of entire BNNs using full

input space and number of BDD nodes, where s𝑥 denotes that number of workers is 𝑥 .

Name L0-D&C

L2-D&C ∑
𝑖∈[𝑠] |𝐺𝑜𝑢𝑡

𝑖 |
s1 s39

P1 1.20 0.76 0.26 16,834

P2 31.12 13.21 0.96 19,535

P3 425.2 207.2 13.06 5,071,376

P4 10,947 2,412 110.8 153,448,311

P5 -TO- -TO- -TO- –

6.2 Performance of BDD Encoding for Entire BNNs
We evaluate BNNQuanalyst for BDD encoding of entire BNNs using three types of input regions:

full input space, input regions based on Hamming distances and fixed indices. According to the

results in Section 6.1, we only consider the sequential BDD encoding using CUDD (i.e., L0-D&C)

and parallel BDD encoding using Sylvan (i.e., L2-D&C) with 1 worker (s1) and 39 workers (s39).

6.2.1 BDD Encoding using Full Input Space. We evaluate BNNQuanalyst on the BNNs (P1–P5)

with the full input space. We remark that the other large BNNs (P6–P16) cannot be handled by

BNNQuanalyst when the full input space is considered.

The average results of 10 images are reported in Table 8, where the best ones are highlighted in

boldface and
∑

𝑖∈[𝑠] |𝐺𝑜𝑢𝑡
𝑖 | denotes the total number of nodes in BDDs (𝐺𝑜𝑢𝑡

𝑖)𝑖∈[𝑠] . BNNQuanalyst

can construct the BDD models of P1–P4, but fails on P5 due to its large input size (i.e., 64). We

can observe that both the execution time and the number of BDD nodes increase quickly with

the size of BNNs. By comparing the results between L0-D&C and L2-D&C (s39), we confirm the

effectiveness of our parallelization strategies for BDD operations and BDD encoding of internal

and output blocks. Interestingly, L2-D&C (s1) also performs better than L0-D&C that uses CUDD.

6.2.2 BDD Encoding under Hamming Distance. We evaluate BNNQuanalyst on the relatively larger

BNNs (P5–P16). For each BNN model, we consider all the 10 MNIST (resp. Fashion-MNIST) images

shown in Figure 8 for P5–P12 (resp. P13–P16), and report average result of 10 images, excluding the

computations that run out of time or memory. For each BNN model and image, the input regions

are given by the image and Hamming distance 𝑟 = 2, 3, 4, 5.

The results are shown in Table 9, where the best ones are highlighted in boldface. Overall, the
execution time increases with the Hamming distance 𝑟 . The comparison between L0-D&C and

L2-D&C with 1 worker (s1) and 39 workers (s39) is summarized as follows:

• Both L0-D&C (i.e., columns cudd) and L2-D&C succeeded on all the cases when 𝑟 ≤ 3;

• L0-D&C succeeded on 108 out of 120 cases when 𝑟 = 4, and 69 out of 120 cases when 𝑟 = 5;

• L2-D&C (s1) succeeded on 112 out of 120 cases when 𝑟 = 4, and 86 of 120 cases when 𝑟 = 5;

• L2-D&C (s39) succeeded on 119 out of 120 cases when 𝑟 = 4, and 95 of 120 cases when 𝑟 = 5;

• For small-scale problems (i.e., P5 or r=2 or P12 with r=3), in most cases, L0-D&C and L2-D&C

(s1) are almost comparable, but are better than L2-D&C (s39);

• For other problems, L2-D&C (s39) is much better than the other two.

Regarding the architecture of BNNs, we observe that the execution time increases with the

number of hidden neurons (P6 vs. P7, P8 vs. P9 and P14 vs P15), while the effect of the number

of layers is diverse (P6 vs. P8, P7 vs. P9 and P13 vs P15). From P11 and P12, we note that the

number of hidden neurons per layer is likely the key impact factor of the BDD encoding efficiency.

Interestingly, BNNQuanalyst works well on BNNs with large input sizes and large number of

hidden layers (i.e., on P12).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

36 Y. Zhang, et al.

Table 9. Execution time (in seconds) of L0-D&C and L2-D&C for BDD encoding of entire BNNs under

Hamming distance, where (#𝑖) (resp. [#𝑖]) indicates the number of computations that run out of time in 8

hours (resp. memory in 256 GB).

Name

r=2 r=3 r=4 r=5

cudd s1 s39 cudd s1 s39 cudd s1 s39 cudd s1 s39

P5 0.02 0.04 0.41 0.03 0.05 0.63 0.16 0.17 0.69 1.03 0.88 0.98

P6 0.35 0.41 1.25 6.18 5.43 2.01 144.6 121.1 9.43 2,635 1,606 84.48
P7 0.80 0.70 1.17 29.35 32.75 3.26 964.0 778.0 63.96 (#2) 17,156 13,952 733.8
P8 0.27 0.26 1.11 3.47 2.75 1.71 94.80 61.44 5.62 1,715 821.6 50.05
P9 2.92 2.11 2.77 83.90 42.85 5.94 1,747 670.9 44.66 (#7) 20,851 (#3) 17,256 [#2] 1,086
P10 5.47 5.19 18.99 205.5 177.8 30.26 (#2) 10,791 (#2) 6,414 401.3 (#10) (#4)[#6] [#8] 8,938
P11 22.14 22.89 70.06 809.9 515.4 102.2 (#6) 11,203 (#4) 8,964 [#1] 1,962 (#10) (#3)[#7] (#1)[#7] 5,702
P12 9.82 9.48 35.73 10.92 10.26 44.65 73.81 40.49 37.93 2,659 746.8 272.1
P13 1.05 0.84 1.07 64.20 29.48 2.18 1,645 789.7 36.56 (#2) 24,501 15,648 733.7
P14 0.32 0.29 0.39 34.00 4.42 0.56 614.5 108.1 7.00 13,904 1,456 97.24
P15 1.82 1.20 1.23 345.3 35.47 4.66 10,283 686.2 60.24 [#10] (#1) 11,761 (#1) 1,621
P16 24.46 15.18 43.28 929.8 429.4 56.88 (#4) 11,403 (#2) 8,268 782.3 (#10) (#9)[#1] (#2)[#4] 14,561

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(a) A digit 0 image classified as ‘0’ by

the BNN P0

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(b) A digit 8 image classified as ‘8’ by

the BNN P0

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(c) A smile image classified as ‘0’ by

the BNN P0

Fig. 14. The three images of size 8 × 8 from [83].

Compared with BDD-learning-based method [83]. The results in Table 9 demonstrate the

efficiency and scalability of BNNQuanalyst on BDD encoding of BNNs. Compared with the BDD-

learning-based approach [83], our approach is considerably more efficient and scalable, since the

BDD-learning-based approach takes 403 seconds to encode a BNN with input size 64, 5 hidden

neurons, and output size 2 when r=6, while ours takes about 2 seconds (not list in the table) even for

a larger BNN P5. To directly and fairly compare with this approach, we also conduct experiments

on the BNN P0 provided in [83]. P0 is a binary classifier using the architecture 64:5:2, trained on

the USPS digits dataset [46] for distinguishing digit 0 images (class 0) and digit 8 images (class 1)

with 94% accuracy. The input regions of interest are given by three images and Hamming distance

𝑟 = 1, ..., 7. The three input images of size 8×8 are provided by [83] and shown in Figure 14, where

the smile image is classified as digit 0 by P0. We use L0-D&C and L2-D&C in BNNQuanalyst.

The results are reported in Table 10, where the BDD 𝐺 produced by [83] encodes the input-

output relation of P0 on the input region and both output classes, and the BDD 𝐺𝑜𝑢𝑡
𝑖 produced

by BNNQuanalyst encodes the input-output relation of P0 on the input region and the class 𝑖 for

𝑖 = 0, 1. More specifically,

• any image u in the given input region is classified into the class 0 (resp. 1) by P0 iff u ∉ L(𝐺)
(resp. u ∈ L(𝐺)), however, it is not guaranteed that images u outside of the given input

region are classified into class 0 (resp. 1) by P0 iff u ∉ L(𝐺) (resp. u ∈ L(𝐺)).
• any image u in the given input region is classified into the class 𝑖 by P0 iff u ∈ L(𝐺𝑜𝑢𝑡

𝑖), while
for any image u outside the given input region, u ∉ L(𝐺𝑜𝑢𝑡

𝑖).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 37

Table 10. BDD encoding results of BNN P0 under different Hamming distances 𝑟 for 3 input images.

Digit 0 Digit 8 Smile

r

[83] BNNQuanalyst [83] BNNQuanalyst [83] BNNQuanalyst

|𝐺 | Time(s) |𝐺𝑜𝑢𝑡
1

| Time(s) |𝐺 | Time(s) |𝐺𝑜𝑢𝑡
0

| Time(s) |𝐺 | Time(s) |𝐺𝑜𝑢𝑡
1

| Time(s)

cudd s1 s39 cudd s1 s39 cudd s1 s39

1 1 0.18 1 <0.01 0.04 0.17 1 0.27 1 <0.01 0.04 0.13 1 0.19 1 <0.01 0.05 0.07

2 1 0.30 1 <0.01 0.04 0.14 1 0.38 1 <0.01 0.04 0.11 258 29.09 499 0.01 0.06 0.10

3 1 0.48 1 <0.01 0.05 0.16 1 0.63 1 0.01 0.04 0.16 1,437 430.4 1,621 0.02 0.07 0.14

4 1 1.54 1 <0.01 0.05 0.19 1 1.30 1 0.01 0.04 0.17 6,048 3,481 5,875 0.04 0.10 0.12

5 1 1.66 1 <0.01 0.05 0.19 243 120.8 546 0.01 0.06 0.12 12,297 25,645 13,127 0.09 0.13 0.08
6 509 436.7 718 <0.01 0.06 0.17 765 606.1 1,221 0.02 0.07 0.12 – -TO- 31,067 0.25 0.22 0.09
7 2,202 2,210 2,437 0.01 0.06 0.21 2,431 3,231 2,907 0.03 0.08 0.10 – -TO- 55,898 0.52 0.22 0.19

Therefore, the number of nodes in𝐺 may differ from one in𝐺𝑜𝑢𝑡
𝑖 even for the same input region. We

can observe that BNNQuanalyst significantly outperforms the BDD-learning-based method [83].

Interestingly, [83] takes more time on the smile image than the other two. It may be due to that the

smile image is far away from the real digit 0.

6.2.3 BDD encoding under Fixed Indices. Similar to Section 6.2.2, we evaluate BNNQuanalyst on

the relatively large BNNs (P5–P16) using 10 images for each BNN and report the average result of

10 images, excluding those that run out of time or memory. For each model and image, the input

regions are given by the randomly chosen index set 𝐼 whose size ranges from 10 to 25.

The results are shown in Table 11. We can observe similar results to the BDD encoding under

Hamming distance. For instance, the execution time increases with the number of indices. For

small-scale problems (i.e., |𝐼 | = 10) or P10–P12 and P16 with |𝐼 | = 15, L2-D&C (s1) often performs

better than the other two. For other problems, L2-D&C (s39) often performs much better than the

other two. The execution time increases with the number of hidden neurons (P6 vs. P7, P8 vs. P9,

and P14 vs. P15). Remarkably, the execution time also increases with the number of layers (P6 vs.

P8, P7 vs. P9, and P13 vs. P15), which is different from the results on the BDD encoding under

Hamming distance.

6.3 Robustness Analysis
We evaluate BNNQuanalyst on the robustness of BNNs, including robustness verification under

different Hamming distances and maximal safe Hamming distance computing.

6.3.1 Robustness verification with Hamming distance. We evaluate BNNQuanalyst on BNNs (P7,

P8, P9, and P12) using 30 images from the MNIST dataset. Note that, besides the 10 digit images

shown in Figure 8, we randomly choose another 20 images from the MNIST dataset. Other BNN

models are not considered due to the huge computational cost and furthermore we will see later

that the most computational cost of BNNQuanalyst is BDD encoding which has been extensively

evaluated in Section 6.2. The input regions are given by the Hamming distance 𝑟 ranging from 2

to 4, resulting in totally 360 verification tasks. We use L0-D&C, L2-D&C (s1) and L2-D&C (s39) in

BNNQuanalyst.

Since the BDD-learning-based method [83] is significantly less efficient than our approach, we

only compare withNPAQ [8]. The main difference betweenNPAQ and BNNQuanalyst is thatNPAQ

encodes a verification task as a Boolean formula without input propagation and uses an approximate

SAT model-counting solver to answer the quantitative verification query with PAC-style guarantees

while BNNQuanalyst encodes a verification task as BDDs with input propagation and uses the

BDD operation SatCount to exactly answer the quantitative verification query. Namely, NPAQ

sets a tolerable error 𝜀 and a confidence parameter 𝛿 . The final estimated results of NPAQ have the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

38 Y. Zhang, et al.

Table 11. Execution time (in seconds) of L0-D&C and L2-D&C for BDD encoding of entire BNNs under fixed

indices, where (#𝑖) (resp. [#𝑖]) indicates the number of computations that run out of time (resp. memory).

Name

|𝐼 |=10 |𝐼 |=15 |𝐼 |=20 |𝐼 |=25
cudd s1 s39 cudd s1 s39 cudd s1 s39 cudd s1 s39

P5 0.03 0.04 0.43 0.05 0.06 0.11 0.31 0.28 0.16 4.87 5.39 0.59
P6 0.24 0.20 0.67 1.20 0.79 0.54 43.38 27.68 1.86 844.0 577.4 28.05
P7 0.64 0.43 1.57 6.08 4.81 2.21 291.8 211.8 12.07 7,916 4,742 219.4
P8 0.25 0.19 0.81 1.51 0.96 0.80 37.56 21.99 2.30 1,074 818.3 43.51
P9 1.42 0.85 2.03 21.68 9.93 2.52 716.4 267.7 17.49 (#1) 18,143 7,739 378.6
P10 5.43 4.04 16.16 8.09 5.92 16.57 85.55 94.59 21.31 2,198 1,666 99.86
P11 21.62 19.75 60.08 24.03 21.41 60.67 73.40 65.85 63.02 1,460 1,120 120.0
P12 10.12 8.40 28.49 10.94 8.73 27.76 15.38 11.88 28.36 69.44 58.38 30.71
P13 0.57 0.45 1.03 7.49 3.48 1.34 386.43 182.9 10.16 15,616 5,538 302.5
P14 0.22 0.21 0.36 5.13 0.80 0.49 126.2 20.56 2.30 5,231 635.3 48.26
P15 1.30 0.83 1.38 66.60 19.06 2.31 1,983 426.6 20.68 (#9) 23,354 11,939 485.4
P16 26.42 15.04 44.75 29.27 27.90 43.04 166.8 73.63 47.60 5,564 1,951 102.7

bounded error 𝜀 with confidence of at least 1 − 𝛿 , i.e.,

𝑃𝑟 [(1 + 𝜀)−1 × RealNum ≤ EstimatedNum ≤ (1 + 𝜀) × RealNum] ≥ 1 − 𝛿 (8)

In our experiments, we set 𝜀 = 0.8 and 𝛿 = 0.2, as done by NPAQ [8].

Table 12 reports the results of the 294 instances (out of the 360 verification tasks) that can be

solved by NPAQ, where the best ones are highlighted in boldface. Note that BNNQuanalyst solved

all of them using either L0-D&C, L2-D&C (s1), or L2-D&C (s39). Columns (#Adv) give the average

number of the adversarial examples for the 30 input images found by NPAQ and BNNQuanalyst.

Columns (Time(s)) show the average execution time in seconds using NPAQ, L0-D&C, L2-D&C (s1)

and L2-D&C (s39). Column (Diff #Adv) shows the error rate 𝜏 = EstimatedNum−RealNum
RealNum ofNPAQ, where

RealNum is from BNNQuanalyst, and EstimatedNum is from NPAQ. The last three columns show

the speedups of BNNQuanalyst compared with NPAQ. Remark that the numbers of adversarial

examples are 0 for P12 on input regions with 𝑟 = 3 and 𝑟 = 4 that can be solved by NPAQ. There do

exist input regions for P12 that cannot be solved byNPAQ but have adversarial examples (see below).

One may notice that L2-D&C (s1) performs better than L2-D&C (s39) on P12 for all the Hamming

distances 𝑟 = 2, 3, 4 which contradicts the results reported in Table 9. It is because Table 12 only

shows the average execution time of the verification tasks that are successfully solved by NPAQ.

Indeed, L2-D&C (39) performs better than L2-D&C (s1) on average when all the 30 verification

tasks for P12 under 𝑟 = 4 are considered.

The average number of BDD nodes in 𝐺𝑜𝑢𝑡
𝑔 and the average solving time by BNNQuanalyst are

reported in Table 13, where 𝑔 denotes the predicted class of the input image. Note that the average

execution time reported in Table 12 includes the time used for BDD encoding and adversarial

example counting while the average solving time reported in Table 13 only includes the time used

for adversarial example counting. By comparing the execution time in Table 12 and solving time in

Table 13, we can observe that most verification time of BNNQuanalyst is spent in BDD encoding.

We also observe that while the number of BDD nodes blows up quickly with the input size of the

BNN when the full input space is considered (cf. Table 8), it grows moderately when the input

region is relatively small even for large BNNs (e.g., with Hamming distance 𝑟 = 2, 3, 4), as shown in

Table 13.

Compared with NPAQ. NPAQ runs out of time (8 hours) on 66 verification tasks (i.e., in P9 with

𝑟 = 4 and P12 with 𝑟 = 2, 3, 4), while BNNQuanalyst successfully verified all the 360 verification

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 39

Table 12. Robustness verification under Hamming distance, where (#𝑖) indicates the number of verification

tasks that run out of time whose execution time is not counted in the table.

Name r

NPAQ [8] BNNQuanalyst Diff Speedup

#Adv Time(s) #Adv

cudd

Time(s)

s1 s39

#Adv cudd s1 s39

2 887 317.1 882 0.79 0.76 1.16 0.57% 400 416 272

P7 3 37,161 1,143 35,587 21.76 33.67 2.43 4.42% 52 33 469
4 1,016,050 4,090 996,677 706.6 576.2 38.05 1.94% 5 6 106

2 907 148.9 884 0.23 0.21 0.58 2.60% 646 708 256

P8 3 37,040 427.3 36,490 2.23 2.03 0.89 1.51% 191 209 479
4 1,127,424 2,102 1,093,783 67.74 52.13 3.82 3.08% 30 39 549

2 688 477.5 673 1.97 1.63 1.85 2.23% 241 292 257

P9 3 35,744 2,762 33,915 57.20 35.24 4.03 5.39% 47 77 684
4 (#2) 898,528 5,197 869,715 1,285 672.4 43.84 3.31% 3 7 118

2 (#14) 4,032 14,355 3,756 8.94 8.55 27.98 7.35% 1,605 1,678 512

P12 3 (#23) 0 20,029 0 10.73 10.23 44.27 0% 1,866 1,957 451

4 (#27) 0 22,538 0 10.12 9.43 36.63 0% 2,226 2,389 614

Table 13. The average number of BDD nodes in

𝐺𝑜𝑢𝑡
𝑔 and average solving time of BNNQuanalyst

w.r.t. Table 12.

Name r |𝐺𝑜𝑢𝑡
𝑔 | Solving Time (s)

cudd s1 s39

2 2,115 <0.01 <0.01 <0.01
P7 3 42,545 0.07 0.02 <0.01

4 625,142 1.40 0.19 0.08

2 2,022 <0.01 <0.01 <0.01
P8 3 40,139 0.11 0.01 0.01

4 679,148 2.55 0.39 0.14

2 2,345 <0.01 <0.01 <0.01
P9 3 55,208 0.16 0.03 0.01

4 870,294 4.56 0.46 0.16

2 5,793 0.01 <0.01 0.01

P12 3 3,125 <0.01 <0.01 <0.01
4 3,901 <0.01 <0.01 <0.01

0 50 100 150 200 250 300
0.4

0.2

0.0

0.2

0.4

0.6

0.8

Fig. 15. Distribution of error rates of NPAQ.

tasks. On BNNs that were solved by both NPAQ and BNNQuanalyst, BNNQuanalyst is often

significantly faster and more accurate than NPAQ. Specifically,

• L0-D&C (i.e., CUDD) is 3–2,226 times faster than NPAQ;

• L2-D&C (s1) is 6–2,389 times faster than NPAQ;

• L2-D&C (s39) is 106–684 times faster than NPAQ.

We remark that our input propagation plays a key role in outperforming NPAQ, otherwise the

number of BDD nodes would blow up quickly with the number of hidden neurons per layer and

input size (cf. Table 8). Recall that the input propagation is implemented using the Exists-operation

and RelProd-operation whose worst-case time complexity is exponential in the number of Boolean

variables, but they work well in our experiments. NPAQ encodes the entire BNN and input region

into a Boolean formula without input propagation. However, it is non-trivial to directly perform

input propagation at Boolean logic level for large Boolean formulas.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

40 Y. Zhang, et al.

0 1 2 3 4 5 6 7 8 9
Images

0

1000

2000

3000

4000

5000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(a) P9 under Hamming distance 𝑟 = 2.

0 1 2 3 4 5 6 7 8 9
Images

0
20000
40000
60000
80000

100000
120000
140000
160000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(b) P9 under Hamming distance 𝑟 = 3.

0 1 2 3 4 5 6 7 8 9
Images

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(c) P9 under Hamming distance 𝑟 = 4.

0 1 2 3 4 5 6 7 8 9
Images

0

50000

100000

150000

200000

250000

300000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(d) P12 under Hamming distance 𝑟 = 2.

0 1 2 3 4 5 6 7 8 9
Images

0
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(e) P12 under Hamming distance 𝑟 = 3.

0 1 2 3 4 5 6 7 8 9
Images

0
2000000000
4000000000
6000000000
8000000000

10000000000
12000000000
14000000000
16000000000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(f) P12 under Hamming distance 𝑟 = 4.

Fig. 16. Details of robustness verification on P9 and P12 with 10 images and Hamming distance 𝑟 = 2, 3, 4.

Quality validation ofNPAQ. Recall thatNPAQ only supports approximate quantitative robustness

verification with probably approximately correctness. Our exact approach can be used to validate

the quality of such approximate approaches. Figure 15 shows the distribution of error rates ofNPAQ

on all the 294 instances, where the x-axis denotes the instances successfully verified by NPAQ, and

the y-axis is the corresponding error rate of the verification result. According to Equation (8), the

error rate 𝜏 should satisfy the following equation: 𝑃𝑟 (𝜏 ∈ [−0.44, 0.80]) ≥ 0.8. We can observe that

the error rates of all the 294 instances fell in the range of [−0.2, 0.2].
Details of robustness and targeted robustness. Figure 16 depicts the distributions of digits
classified by the BNN models P9 and P12 under Hamming distance 𝑟 = 2, 3, 4 using the ten MNIST

images in Figure 8, where the x-axis 𝑖 = 0, · · · , 9 denotes the 𝑖-image. We can observe that P9

is robust for the 1-image when 𝑟 = 2, but is not robust for the other images. (Note P9 is not

robust for 1-image when 𝑟 ≥ 3, which is hard to be visualized in Figure 16(b) and Figure 16(c)

due to the small number of adversarial examples.) Interestingly, most adversarial examples of the

0-image are misclassified into the digit 2, most adversarial examples of the 5-image and 9-image are

misclassified into the digit 4, and most adversarial examples of the 8-image are misclassified into

the digit 1. With the increase of the Hamming distance, more and more neighbors of the 7-image

are misclassified into the digit 3. Though the BNN model P9 is not robust on most input images,

indeed it is 𝑡-target-robust for many target digits 𝑡 , e.g., P9 is 𝑡-target-robust for the 9-image when

𝑡 ≤ 2 and 𝑟 = 2. We find that P12 is much more robust than P9, as P12 shows robustness for all

cases except for the 7-image when 𝑟 = 2, {2, 7}-images when 𝑟 = 3, and {2, 7, 8, 9}-images when

𝑟 = 4. Furthermore, we find that P12 is always 𝑡-target robust for all the images when 𝑡 ∉ {3, 4, 9}.
(Note that similar to P9, the small number of adversarial examples of P12 for the 2-image when

𝑟 ≥ 3 and {8, 9}-images when 𝑟 = 4 is also hard to visualize in Figures 16(e) and 16(f).)

6.3.2 Comparing with other possible approaches. Recall that NPAQ directly encodes a verification

task into a Boolean formula in conjunctive normal forms (CNF) to which an approximate model-

counting solver is applied, whereas BNNQuanalyst directly encodes a BNN under an input region

with input propagation as a BDD to which the BDD operation SatCount is applied. Since Boolean

formula and BDD are two exchangeable representations, two questions turn to be interesting: (i)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 41

Table 14. Robustness verification under Hamming distance using different approaches, where -TO- (resp.

-SO-) indicates that the computation runs out of time (8 hours) (resp. out of storage (100 GB) when saving

the CNF formula 𝑓𝐺𝑜𝑢𝑡
𝑔

). N/A means that the data is not available.

Name

r

Encoding Results of Four Approaches Solving Time(s)

BNN2CNF CNF2BDD BNN2BDD BDD2CNF

𝑓 𝐺 𝐺𝑜𝑢𝑡
𝑔 𝑓𝐺𝑜𝑢𝑡

𝑔
#Vars #Clauses Time(s) |𝐺 | Time(s) |𝐺𝑜𝑢𝑡

𝑔 | Time(s) #Vars #Clauses Time(s)

2 717,590 1,315,602 54.34 N/A -TO- 2,994 0.79 100 140,753 0.42 310.5 N/A <0.01 146.7

P7 3 717,623 1,315,731 56.03 N/A -TO- 64,842 29.80 100 2,865,065 9.95 866.8 N/A <0.01 9,182

4 717,656 1,315,858 56.51 N/A -TO- 1,143,994 1,024 100 44,645,415 170.3 3,899 N/A 4.92 -TO-

2 337,646 601,556 44.88 N/A -TO- 809 0.33 100 159,236 0.48 101.0 N/A <0.01 191.0

P8 3 337,679 601,685 44.74 N/A -TO- 10,613 2.16 100 3,837,306 13.77 549.6 N/A 0.02 15,892

4 337,712 601,812 43.74 N/A -TO- 363,343 77.58 100 68,637,805 273.5 2,755 N/A 1.11 -TO-

2 908,082 1,638,938 62.04 N/A -TO- 3,188 2.89 100 141,031 1.35 518.6 N/A <0.01 317.1

P9 3 908,115 1,639,067 65.29 N/A -TO- 83,677 82.13 100 2,897,549 16.46 1,136 N/A 0.20 -TO-

4 908,147 1,639,194 60.12 N/A -TO- 1,120,119 1,773 100 59,234,719 329.2 -TO- N/A 4.18 -TO-

2 5,756,197 9,533,668 78.20 N/A -TO- 2,347 9.53 N/A N/A -SO- 6,169 N/A <0.01 N/A

P12 3 5,756,460 9,534,711 77.13 N/A -TO- 3,125 10.25 N/A N/A -SO- 17,199 N/A <0.01 N/A

4 5,756,751 9,535,753 73.19 N/A -TO- 3,901 19.60 N/A N/A -SO- -TO- N/A <0.01 N/A

how efficient if the BDD model is built from the Boolean formula generated by NPAQ and solved by

the BDD operation SatCount? and (ii) how efficient if the Boolean formula is constructed from the

BDD model generated by BNNQuanalyst and solved by applying an approximate model-counting

solver?

To answer these questions, we implement two verification approaches, i.e., NPAQ2BDD (con-

sisting of three sub-procedures: BNN2CNF + CNF2BDD + Solving) and BDD2NPAQ (consisting of

three sub-procedures: BNN2BDD + BDD2CNF + Solving). We conduct experiments on the BNNs

(P7, P8, P9 and P12) using the 0-image with Hamming distance 𝑟 = 2, 3, 4 for computational cost

consideration. The implementation details are as follows.

• BNN2CNF: We use NPAQ to encode a verification task into a Boolean formula 𝑓 in CNF;

• CNF2BDD: Given a formula 𝑓 produced by BNN2CNF, we encode all the clauses of 𝑓 into

BDDs based on which we compute the final BDD model 𝐺 of 𝑓 by applying the And-

operations with a divide-and-conquer strategy, similar to Section 3.5.1;

• BNN2BDD: We use BNNQuanalyst with L0-D&C to build a BDD model𝐺𝑜𝑢𝑡
𝑔 of a verification

task, where 𝑔 denotes the predicted class of the input image used for defining an input region;

• BDD2CNF: Given a BDD 𝐺𝑜𝑢𝑡
𝑔 produced by BNN2BDD, we encode it as a Boolean formula

𝑓𝐺𝑜𝑢𝑡
𝑔

using the API (i.e., Dddmp_cuddBddStoreCnf) provided by CUDD;

• Solving:We use the approximatemodel-counting solver inNPAQ for solving Boolean formulas

and use the BDD operation SatCount for solving all the final BDDs.

Note that we use L0-D&C (i.e., CUDD) only because Sylvan cannot produce a Boolean formula

automatically, NPAQ is BNN2CNF + Solving and BNNQuanalyst is BNN2CNF + Solving.

Table 14 reports the results, where Columns (Time(s)) give the execution time for each sub-

procedure in seconds, and the last four columns give the solving time. Columns 3-4 (resp. Columns

10-11) give the number of variables (#Vars) and clauses (#Clauses) of the Boolean formula 𝑓 (resp.

𝑓𝐺𝑜𝑢𝑡
𝑔

) produced by BNN2CNF (resp. BDD2CNF), respectively. Columns (|𝐺 |) (resp. (|𝐺𝑜𝑢𝑡
𝑔 |)) gives

the number of BDD nodes of 𝐺 (resp. 𝐺𝑜𝑢𝑡
𝑔) produced by CNF2BDD (resp. BNN2BDD).

We can observe that the Boolean formulas produced by BNN2CNF are too large to be handled

by CNF2BDD within the time limit (8 hours). Thus, NPAQ2BDD (i.e., BNN2BDD + BDD2CNF +

Solving) is not realistic and building BDD model directly from BNNs (i.e., BNNQuanalyst) is better

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

42 Y. Zhang, et al.

Table 15. Maximal safe Hamming distance using Sylvan with 39 workers, where -TO- denotes time out (8

hours) and -MO- denotes out of memory (256 GB).

Image
P7 P8 P9 P12

𝜖 = 0 𝜖 = 0.03 𝜖 = 0 𝜖 = 0.03 𝜖 = 0 𝜖 = 0.03 𝜖 = 0 𝜖 = 0.03

SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s)

0 0 4.11 0 4.25 1 2.00 3 9.13 0 5.97 0 6.31 6 -TO- 6 -TO-

1 1 4.32 2 3.78 0 1.93 0 2.15 2 5.80 5 -MO- 4 112.5 6 -TO-

2 0 2.74 0 3.33 0 2.14 1 3.22 0 5.75 0 5.57 2 43.77 6 -TO-

3 1 3.09 1 3.02 1 1.52 2 2.86 1 5.72 2 6.16 5 307.4 6 9,398

4 0 3.73 0 4.06 0 2.84 0 2.74 0 8.45 2 7.30 5 263.9 6 7,895

5 0 3.11 0 3.34 1 1.76 1 2.47 0 6.40 0 5.24 6 183.3 6 142.5

6 3 14.51 5 -TO- 1 2.05 2 2.34 1 7.30 2 6.76 6 625.2 6 681.4

7 0 3.83 0 4.25 1 1.57 2 2.46 1 7.66 2 7.28 1 38.87 1 30.28

8 0 4.28 0 4.82 0 3.25 0 4.14 0 8.25 0 8.98 3 100.9 6 -TO-

9 0 4.30 0 4.01 0 2.92 0 1.46 0 8.94 0 7.34 3 63.74 6 5,479

than building BDD model from Boolean formulas produced by NPAQ (i.e., NPAQ2BDD). On the

other hand, though the number of Boolean variables of the Boolean formulas 𝑓𝐺𝑜𝑢𝑡
𝑔

produced by

BDD2CNF is fixed to the input size (100 for P7, P8 and P9, 784 for P12), the number of clauses of

𝑓𝐺𝑜𝑢𝑡
𝑔

is often larger than that of the Boolean formulas 𝑓 produced by BNN2CNF (except for P7, P8

and P9 with 𝑟 = 2). In particular, BDD2CNF fails to transform BDDs into Boolean formulas on P12.

Consequently, for hard verification tasks (i.e., large BNNs and input regions), building Boolean

formulas directly from BNNs (i.e., NPAQ) is better than building Boolean formulas from the BDD

models produced by BNN2BDD, and BDD2NPAQ performs significantly worse than NPAQ.

6.3.3 Maximal safe Hamming distance. As a representative of such an analysis, we evaluate our

tool BNNQuanalyst on 4 BNNs (P7, P8, P9, and P12) with 10 images for 2 robustness thresholds

(𝜖 = 0 and 𝜖 = 0.03), and use s39 as our BDD encoding engine. The initial Hamming distance 𝑟 is 3.

Intuitively, 𝜖 = 0 (resp. 𝜖 = 0.03) means that up to 0% (resp. 3%) samples in the input region can be

adversarial.

Table 15 shows the results, where columns (SD) and (Time(s)) give the maximal safe Hamming

distance and the execution time, respectively. BNNQuanalyst solved 73 out of 80 instances. (For the

remaining 7 instances, BNNQuanalyst ran 6 out of time and 1 out of memory, but was still able to

compute a larger safe Hamming distance. For these cases, we only record the currently calculated

result). We can observe that the maximal safe Hamming distance increases with the threshold 𝜖 on

several BNNs and input regions. Moreover, P12 is more robust than the others, which is consistent

with its highest accuracy (cf. Table 3).

6.4 Interpretability
We demonstrate the capability of BNNQuanalyst on interpretability using the BNN P12 and the

{0, 1, 8, 9}-images because P12 has the largest input size 784 which makes the explanations more

visual-friendly. We use L𝑥 (𝐺𝑜𝑢𝑡
𝑦) to denote the set of all inputs in the input region given by the

𝑥-image (based on Hamming distance or fixed indices) that are classified into the digit 𝑦.

PI-explanations. For demonstration, we assume that the input region is given by the fixed set

𝐼 = {1, 2, · · · , 28} of indices which denotes the first row of pixels of 28 × 28 images. We compute

two PI-explanations of the inputs L0 (𝐺𝑜𝑢𝑡
0

) and L1 (𝐺𝑜𝑢𝑡
4

) respectively. The PI-explanations are
depicted in Figures 17(a) and 17(b), where the black (resp. blue) color denotes that the value of

the corresponding pixel is 1 (resp. 0), and the yellow means that the value of the corresponding

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 43

0 5 10 15 20 25

0

5

10

15

20

25

(a) PI of 0-image to digit 0.

0 5 10 15 20 25

0

5

10

15

20

25

(b) PI of 1-image to digit 4.

0 5 10 15 20 25

0

5

10

15

20

25

(c) EFs of 8-image to digit 4.

0 5 10 15 20 25

0

5

10

15

20

25

(d) EFs of 9-image to digit 4.

Fig. 17. Graphic representation of PI-explanations and essential features.

pixel can take arbitrary values. Figure 17(a) (resp. Figure 17(b)) suggests that, by the definition of

the PI-explanation, all the images in the input region given by the 0-image (resp. 1-image) and

𝐼 obtained by assigning arbitrary values to the yellow-colored pixels are always classified (resp.

misclassified) into the digit 0 (resp. digit 4), while changing one black-colored or blue-colored

pixel may change the predication result since a PI-explanation is a minimal set of literals. From

Figure 17(a), we find that the first row of pixels has no influence on the prediction of the 0-image,

which means no matter how we perturb the pixels from the first row of the 0-image, we can always

get the same and correct prediction result by P12.

Essential features. For the input region given by the Hamming distance 𝑟 = 4, we compute two

sets of essential features for the inputs L8 (𝐺𝑜𝑢𝑡
4

) and L9 (𝐺𝑜𝑢𝑡
4

), i.e., the adversarial examples in

the two input regions that are misclassified into the digit 4. The essential features are depicted

in Figures 17(c) and 17(d). Recall that the black (resp. blue) color means that the value of the

corresponding pixel is 1 (resp. 0), and the yellow color means that the value of the corresponding

pixel can take arbitrary values. Figure 17(c) (resp. Figure 17(d)) indicates that the inputs L8 (𝐺𝑜𝑢𝑡
4

)
(resp. L9 (𝐺𝑜𝑢𝑡

4
)) must agree on these black- and blue-colored pixels.

7 RELATEDWORK
In this section, we discuss the related work to BNNQuanalyst on qualitative/quantitative analysis

and interpretability of DNNs. As there is a vast amount of literature regarding these topics, we will

only discuss the most related ones.

Qualitative analysis of DNNs. For the verification of real-numbered DNNs, we broadly classify

the existing approaches into three categories: (1) constraint solving based, (2) optimization-based,

and (3) program analysis based.

The first class of approaches represents the early efforts which reduce to constraint solving.

Pulina and Tacchella [78] verified whether the output of the DNN is within an interval by reducing

to the satisfiability checking of a Boolean combination of linear arithmetic constraints which can be

then solved via SMT solvers. However, their reduction yields an over-approximation of the original

problem, thus may produce spurious adversarial examples. Spurious adversarial examples are used

to trigger refinements to improve verification accuracy and retraining of DNNs to automate the

correction of misbehaviors. Katz et al. [49] and Ehlers [28] independently implemented two SMT

solvers, Reluplex and Planet, for exactly verifying properties of DNNs that are expressible with

respective constraints. Recently, Reluplex was re-implemented in a new framework Marabou [50]

with significant improvements.

For the second class of approaches which reduce to an optimization problem, Lomuscio and

Maganti [60] verified whether some output is reachable from a given input region by reducing to

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

44 Y. Zhang, et al.

mixed-integer linear programming (MILP) via optimization solvers. To speed up DNN verification

via MILP solving, Cheng et al. [21] proposed heuristics for MILP encoding and parallelization of

MILP solvers. Dutta et al. [25] proposed an algorithm to estimate the output region for a given input

region which iterates between a global search with MILP solving and a local search with gradient

descent. Tjeng et al. [97] proposed a tighter formulation for non-linearities in MILP and a novel

presolve algorithm to improve performance. Recently, Bunel et al. [15] presented a branch and bound

algorithm to verify DNNs on properties expressible in Boolean formulas over linear inequalities.

They claimed that both previous SAT/SMT and MILP-based approaches are its special cases. Convex

optimization has also been used to verify DNNs with over-approximations [26, 110, 112].

For the third class, researchers have adapted various methods from traditional static analysis

to DNNs. A typical example is to use abstract interpretation, possibly aided with a refinement

procedure to tighten approximations [2, 33, 38, 56, 57, 59, 86–88, 98, 99, 115]. These methods vary in

the abstract domain (e.g., box, zonotope, polytope, and star-set), efficiency, precision, and activation

functions. (Remark that [87, 88] considered floating-points instead of real numbers.) Another type

is to compute convergent output bounds by exploring neural networks layer-by-layer. Huang

et al. [44] proposed an exhaustive search algorithm with an SMT-based refinement. Later, the

search problem was solved via Monte-Carlo tree search [109, 111]. Xiang et al. [108] proposed

to approximate the bounds based on the linear approximations for the neurons and Lipschitz

constants [40]. Wang et al. [104] presented symbolic interval analysis to tighten approximations.

Recently, abstraction-based frameworks have been proposed [4, 29, 58, 121] which aim to reduce

the size of DNNs, making them more amenable to verification.

Existing techniques for qualitative analysis of quantized DNNs are mostly based on constraint

solving, in particular, SAT/SMT/MILP solving. SAT-based approaches transform BNNs into Boolean

formulas, where SAT solving is harnessed [20, 52, 71, 72]. Following this line, verification of three-

valued BNNs [47, 74] and quantized DNNs with multiple bits [9, 35, 41, 119] were also studied. Very

recently, the SMT-based framework Marabou for real-numbered DNNs [50] has been extended to

support partially or strictly binarized DNNs [1].

Quantitative analysis of DNNs. Comparing to the qualitative analysis, the quantitative analysis of

neural networks is currently very limited. Two sampling-based approaches were proposed to certify

the robustness of adversarial examples [7, 106], which require only blackbox access to the models,

hence can be applied on both DNNs and BNNs. Yang et al. [115] proposed a spurious region-guided

refinement approach for real-numbered DNN verification. The quantitative robustness verification

is achieved by over-approximating the Lebesgue measure of the spurious regions. The authors

claimed that it is the first work to quantitative robustness verification of DNNs with soundness

guarantee.

Following the SAT-based qualitative analysis of BNNs [71, 72], SAT-based quantitative analysis

approaches were proposed [8, 34, 73] for verifying robustness and fairness, and assessing heuristic-

based explanations of BNNs. In particular, approximate SAT model-counting solvers are utilized.

Though some of them provide probably approximately correct (PAC) style guarantees, tremendous

verification cost has to pay to achieve higher precision and confidence. As demonstrated in Section 6,

our BDD-based approach is considerably more accurate and efficient than the SAT-based one [8].

In general, we remark that the BDD construction is computationally expensive but the follow-

up analysis is often much more efficient, while the SAT encoding is efficient (polynomial-time)

but ♯SAT queries are often computationally expensive (♯P-hard). The computational cost of our

approach is more dependent on the number of neurons per linear layer but less relevant to the

number of layers (cf. Section 6.2.2), while the computational cost of the SAT-based approach [8] is

dependent on both of them.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 45

Shih et al. [83] proposed a BDD-based approach to tackle BNNs, similar to our work, in spirit. In

this BDD-learning-based approach, membership queries are implemented by querying the BDD

for each input, equivalence queries are implemented by transforming the BDD and BNN to two

Boolean formulas, and checking the equivalence of two Boolean formulas under the input region

(in a Boolean formula) via SAT solving. This construction requires 𝑛 equivalence queries and

6𝑛2 + 𝑛 · log(𝑚) membership queries, where 𝑛 (resp.𝑚) is the number of nodes (resp. variables) in

the final BDD. Due to the intractability of SAT solving (i.e., NP-complete), currently the technique

is limited to quite toy BNNs.

Interpretability of DNNs. Though interpretability of DNNs is crucial for explaining predictions,

it is very challenging to tackle due to the blackbox nature of DNNs. There is a large body of work on

the interpretability of DNNs (cf. [43, 68] for a survey). One line of DNN interpretability is based on

individual inputs which aims to give an explanation of the decision made for each given input. Bach

et al. [5] proposed to compute the feature scores of an input via a layer-wise relevance backward

propagation. Ribeiro et al. [81] proposed to learn a representative model locally for each input by

approximating the classifier. Sundararajan et al. [93] proposed to compute an integrated gradient

on each feature of the input which could be used to represent the contribution of that feature to

prediction. Following this line, saliency map based methods were also proposed [22, 31, 84, 85, 89],

varying in the way of computing the saliency map. Simonyan et al. [85] proposed to compute an

image-specific saliency map for each class via a single gradient-based backward propagation. Later,

Smilkov et al. [89] sharpened this map further by randomly perturbing the input with noises and

then computing the average of resulting maps. Another line of DNN interpretability is to learn an

interpretable model, such as binary decision trees [32, 117] and finite-state automata [107]. Then,

an intuitive explanation could be obtained by directly querying these models.

Our interpretability analysis method is conducted by querying BDD models. In contrast to prior

work which focuses on DNNs and only approximates the original model in the input region, we

focus on BNNs and give a precise BDD encoding w.r.t. the given input region. The BDD encoding

allows us to give a precise PI-explanation and essential feature analysis for an input region, which

cannot be done on DNNs. Similar to ours, the BDD-learning based method [42] has also used

PI-explanation for BNN interpretability, but the essential features were not studied therein.

8 CONCLUSION
In this article, we have proposed a novel BDD-based framework for the quantitative analysis

of BNNs. The framework relies on the structure characterization of BNNs, and comprises a set

of strategies such as input propagation, divide-and-conquer and parallelization at various levels

to improve the overall encoding efficiency. We implemented our framework as a prototype tool

BNNQuanalyst and conducted extensive experiments on BNN models with varying sizes and input

regions trained on the popular dataset MNIST. Experimental results on quantitative robustness

analysis demonstrated that BNNQuanalyst is more scalable than the existing BDD-learning based

approach, and significantly efficient and accurate than the existing SAT-based approach NPAQ.

This work represents the first but a key step of the long-term program to develop an efficient

and scalable BDD-based quantitative analysis framework for BNNs. For the future work, we plan to

evaluate our framework on more applications, improve its encoding efficiency further and extend

it to handle general quantized DNNs.

ACKNOWLEDGEMENT
This work is supported by the National Key Research Program (2020AAA0107800), the National

Natural Science Foundation of China (NSFC) under Grants No. 62072309 and No. 61872340, an

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

46 Y. Zhang, et al.

oversea grant from the State Key Laboratory of Novel Software Technology, Nanjing University

(KFKT2022A03), and Birkbeck BEI School Project (EFFECT).

REFERENCES
[1] Guy Amir, Haoze Wu, Clark W. Barrett, and Guy Katz. 2020. An SMT-Based Approach for Verifying Binarized Neural

Networks. CoRR abs/2011.02948 (2020).

[2] Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. 2019. Optimization and abstraction: a syner-

gistic approach for analyzing neural network robustness. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 731–744.

[3] Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples. Information and Computation 75, 2

(1987), 87–106.

[4] Pranav Ashok, Vahid Hashemi, Jan Kretínský, and Stefanie Mohr. 2020. DeepAbstract: Neural Network Abstraction for

Accelerating Verification. In Proceedings of the 18th International Symposium on Automated Technology for Verification
and Analysis. 92–107.

[5] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech

Samek. 2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS
one 10, 7 (2015), e0130140.

[6] Baidu. 2021. Apollo. https://apollo.auto.

[7] Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, and Prateek Saxena. 2021. Scalable Quantitative Verification

For Deep Neural Networks. In Proceedings of th 43rd IEEE/ACM International Conference on Software Engineering.
312–323.

[8] Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S Meel, and Prateek Saxena. 2019. Quantitative verification of

neural networks and its security applications. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 1249–1264.

[9] Marek S. Baranowski, Shaobo He, Mathias Lechner, Thanh Son Nguyen, and Zvonimir Rakamaric. 2020. An SMT

Theory of Fixed-Point Arithmetic. In Proceedings of the 10th International Joint Conference on Automated Reasoning.
13–31.

[10] Constantinos Bartzis and Tevfik Bultan. 2003. Construction of efficient BDDs for bounded arithmetic constraints. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 394–408.
[11] Alan C. Bovik. 2009. The essential guide to image processing. Elsevier.
[12] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Comput. 35, 8

(1986), 677–691.

[13] Randal E. Bryant. 1992. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM Comput.
Surv. 24, 3 (1992), 293–318.

[14] Lei Bu, Zhe Zhao, Yuchao Duan, and Fu Song. 2021. Taking Care of The Discretization Problem: A Comprehensive

Study of the Discretization Problem and A Black-Box Adversarial Attack in Discrete Integer Domain. IEEE Transactions
on Dependable and Secure Computing (2021), 1–18. https://doi.org/10.1109/TDSC.2021.3088661

[15] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar. 2020. Branch and

Bound for Piecewise Linear Neural Network Verification. J. Mach. Learn. Res. 21 (2020), 42:1–42:39.
[16] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness of Neural Networks. In Proceedings

of the 2017 IEEE Symposium on Security and Privacy. 39–57.
[17] Guangke Chen, Sen Chen, Lingling Fan, Xiaoning Du, Zhe Zhao, Fu Song, and Yang Liu. 2021. Who is Real Bob?

Adversarial Attacks on Speaker Recognition Systems. In Proceedings of the 42nd IEEE Symposium on Security and
Privacy.

[18] Guangke Chen, Zhe Zhao, Fu Song, Sen Chen, Lingling Fan, and Yang Liu. 2021. SEC4SR: A Security Analysis

Platform for Speaker Recognition. CoRR abs/2109.01766 (2021).

[19] Guangke Chen, Zhe Zhao, Fu Song, Sen Chen, Lingling Fan, and Yang Liu. 2022. AS2T: Arbitrary Source-To-Target

Adversarial Attack on Speaker Recognition Systems. IEEE Transactions on Dependable and Secure Computing (2022),

1–17. https://doi.org/10.1109/TDSC.2022.3189397

[20] Chih-Hong Cheng, Georg Nührenberg, Chung-Hao Huang, and Harald Ruess. 2018. Verification of Binarized Neural

Networks via Inter-neuron Factoring - (Short Paper). In Proceedings of the 10th International Conference on Verified
Software. Theories, Tools, and Experiments. 279–290.

[21] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Maximum Resilience of Artificial Neural Networks.

In Proceedings of the 15th International Symposium on Automated Technology for Verification and Analysis (ATVA).
251–268.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

https://apollo.auto
https://doi.org/10.1109/TDSC.2021.3088661
https://doi.org/10.1109/TDSC.2022.3189397

BNNQuanalyst 47

[22] Piotr Dabkowski and Yarin Gal. 2017. Real time image saliency for black box classifiers. Advances in neural information
processing systems 30 (2017).

[23] Nilesh N. Dalvi, Pedro M. Domingos, Mausam, Sumit K. Sanghai, and Deepak Verma. 2004. Adversarial classification.

In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 99–108.
[24] Elvis Dohmatob. 2018. Limitations of adversarial robustness: strong No Free Lunch Theorem. CoRR abs/1810.04065

(2018).

[25] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018. Output Range Analysis for Deep

Feedforward Neural Networks. In Proceedings of the 10th International Symposium NASA Formal Methods (NFM).
121–138.

[26] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, and Pushmeet Kohli. 2018. A Dual

Approach to Scalable Verification of Deep Networks. In Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence. 550–559.

[27] Niklas Eén and Niklas Sörensson. 2006. Translating pseudo-boolean constraints into SAT. Journal on Satisfiability,
Boolean Modeling and Computation 2, 1-4 (2006), 1–26.

[28] Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In Proceedings of the
15th International Symposium on Automated Technology for Verification and Analysis. 269–286.

[29] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An Abstraction-Based Framework for Neural Network

Verification. In Proceedings of the 32nd International Conference on Computer Aided Verification. 43–65.
[30] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi

Kohno, and Dawn Song. 2018. Robust Physical-World Attacks on Deep Learning Visual Classification. In Proceedings
of 2018 IEEE Conference on Computer Vision and Pattern Recognition. 1625–1634.

[31] Ruth C Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. In

Proceedings of the IEEE international conference on computer vision. 3429–3437.
[32] Nicholas Frosst and Geoffrey E. Hinton. 2017. Distilling a Neural Network Into a Soft Decision Tree. In Proceedings of

the 1st International Workshop on Comprehensibility and Explanation in AI and ML.
[33] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin T. Vechev.

2018. AI
2
: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In Proceedings of the

2018 IEEE Symposium on Security and Privacy. 3–18.
[34] Bishwamittra Ghosh, Debabrota Basu, and Kuldeep S. Meel. 2020. Justicia: A Stochastic SAT Approach to Formally

Verify Fairness. CoRR abs/2009.06516 (2020).

[35] Mirco Giacobbe, Thomas A. Henzinger, and Mathias Lechner. 2020. How Many Bits Does it Take to Quantize Your

Neural Network?. In Proceedings of the 26th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 79–97.

[36] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin D. Cubuk. 2019. Adversarial Examples Are a Natural

Consequence of Test Error in Noise. In Proceedings of the 36th International Conference on Machine Learning. 2280–
2289.

[37] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg, and Ian J.

Goodfellow. 2018. Adversarial Spheres. In Proceedings of the 6th International Conference on Learning Representations.
[38] Xingwu Guo, Wenjie Wan, Zhaodi Zhang, Min Zhang, Fu Song, and Xuejun Wen. 2021. Eager Falsification for

Accelerating Robustness Verification of DeepNeural Networks. In Proceedings of the 32nd IEEE International Symposium
on Software Reliability Engineering. 345–356.

[39] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015. Deep Learning with Limited

Numerical Precision. In Proceedings of the 32nd International Conference on Machine Learning. 1737–1746.
[40] Matthias Hein and Maksym Andriushchenko. 2017. Formal Guarantees on the Robustness of a Classifier against

Adversarial Manipulation. In Proceedings of the Annual Conference on Neural Information Processing Systems. 2266–
2276.

[41] Thomas A Henzinger, Mathias Lechner, and Dorde Žikelić. 2020. Scalable Verification of Quantized Neural Networks

(Technical Report). arXiv preprint arXiv:2012.08185 (2020).
[42] Hao Hu, Marie-José Huguet, and Mohamed Siala. 2022. Optimizing Binary Decision Diagrams with MaxSAT for

classification. (2022).

[43] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu, and Xinping Yi.

2020. A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and

defence, and interpretability. Computer Science Review 37 (2020), 100270.

[44] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety Verification of Deep Neural Networks. In

Proceedings of the 29th International Conference on Computer Aided Verification (CAV). 3–29.
[45] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized Neural Networks.

In Proceedings of the Annual Conference on Neural Information Processing Systems. 4107–4115.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

48 Y. Zhang, et al.

[46] Jonathan J. Hull. 1994. A Database for Handwritten Text Recognition Research. IEEE Trans. Pattern Anal. Mach. Intell.
16, 5 (1994), 550–554. https://doi.org/10.1109/34.291440

[47] Kai Jia and Martin Rinard. 2020. Efficient Exact Verification of Binarized Neural Networks. In Proceedings of the
Annual Conference on Neural Information Processing Systems.

[48] Nidhi Kalra and Susan M Paddock. 2016. Driving to safety: How many miles of driving would it take to demonstrate

autonomous vehicle reliability? Transportation Research Part A: Policy and Practice 94 (2016), 182–193.
[49] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Reluplex: An Efficient SMT

Solver for Verifying Deep Neural Networks. In Proceedings of the 29th International Conference on Computer Aided
Verification. 97–117.

[50] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu

Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett. 2019. The Marabou

Framework for Verification and Analysis of Deep Neural Networks. In Proceedings of the 31st International Conference
on Computer Aided Verification. 443–452.

[51] Philip Koopman and Beth Osyk. 2019. Safety argument considerations for public road testing of autonomous vehicles.

SAE International Journal of Advances and Current Practices in Mobility 1 (2019), 512–523.

[52] Svyatoslav Korneev, Nina Narodytska, Luca Pulina, Armando Tacchella, Nikolaj Bjørner, and Mooly Sagiv. 2018.

Constrained Image Generation Using Binarized Neural Networks with Decision Procedures. In Proceedings of the 21st
International Conference on Theory and Applications of Satisfiability Testing. 438–449.

[53] Jaeha Kung, David C. Zhang, Gooitzen S. van der Wal, Sek M. Chai, and Saibal Mukhopadhyay. 2018. Efficient Object

Detection Using Embedded Binarized Neural Networks. Journal of Signal Processing Systems 90, 6 (2018), 877–890.
[54] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial examples in the physical world. In Proceedings

of International Conference on Learning Representations.
[55] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.

[56] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun Zhang. 2019. Analyzing Deep Neural

Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification. In Proceedings of the 26th
International Symposium on Static Analysis (SAS). 296–319.

[57] Renjue Li, Jianlin Li, Cheng-Chao Huang, Pengfei Yang, Xiaowei Huang, Lijun Zhang, Bai Xue, and Holger Hermanns.

2020. PRODeep: a platform for robustness verification of deep neural networks. In Proceedings of the 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 1630–1634.

[58] Jiaxiang Liu, Yunhan Xing, Xiaomu Shi, Fu Song, Zhiwu Xu, and Zhong Ming. 2022. Abstraction and Refinement:

Towards Scalable and Exact Verification of Neural Networks. CoRR abs/2207.00759 (2022). https://doi.org/10.48550/

arXiv.2207.00759

[59] Wan-Wei Liu, Fu Song, Tang-Hao-Ran Zhang, and Ji Wang. 2020. Verifying ReLU Neural Networks from a Model

Checking Perspective. Journal of Computer Science and Technology 35, 6 (2020), 1365–1381.

[60] Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis for feed-forward ReLU neural

networks. CoRR abs/1706.07351 (2017).

[61] Alberto Lovato, Damiano Macedonio, and Fausto Spoto. 2014. A Thread-Safe Library for Binary Decision Diagrams.

In Proceedings of the 12th International Conference on Software Engineering and Formal Methods. 35–49.
[62] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu,

Jianjun Zhao, and Yadong Wang. 2018. DeepGauge: multi-granularity testing criteria for deep learning systems. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 120–131.
[63] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2018. MODE: automated neural

network model debugging via state differential analysis and input selection. In Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
175–186.

[64] Saeed Mahloujifar, Dimitrios I. Diochnos, and Mohammad Mahmoody. 2019. The Curse of Concentration in Robust

Learning: Evasion and Poisoning Attacks from Concentration of Measure. In Proceedings of the AAAI Conference on
Artificial Intelligence. 4536–4543.

[65] Bradley McDanel, Surat Teerapittayanon, and H. T. Kung. 2017. Embedded Binarized Neural Networks. In Proceedings
of the 2017 International Conference on Embedded Wireless Systems and Networks. 168–173.

[66] Kenneth L. McMillan. 1993. Symbolic model checking. Kluwer. https://doi.org/10.1007/978-1-4615-3190-6

[67] Shin-Ichi Minato and Fabio Somenzi. 1997. Arithmetic boolean expression manipulator using BDDs. Formal methods
in system design 10, 2 (1997), 221–242.

[68] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. 2020. Interpretable Machine Learning - A Brief History,

State-of-the-Art and Challenges. CoRR abs/2010.09337 (2020).

[69] Laurence Moroney. 2021. Introduction to tensorflow for artificial intelligence, machine learning, and deep learning.

https://www.coursera.org/learn/introduction-tensorflow.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/10.1109/34.291440
https://doi.org/10.48550/arXiv.2207.00759
https://doi.org/10.48550/arXiv.2207.00759
https://doi.org/10.1007/978-1-4615-3190-6

BNNQuanalyst 49

[70] Atsuyoshi Nakamura. 2005. An efficient query learning algorithm for ordered binary decision diagrams. Information
and Computation 201, 2 (2005), 178–198.

[71] Nina Narodytska. 2018. Formal Analysis of Deep Binarized Neural Networks. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence. 5692–5696.

[72] Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. 2018. Verifying

Properties of Binarized Deep Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence.
6615–6624.

[73] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and João Marques-Silva. 2019. Assessing

Heuristic Machine Learning Explanations with Model Counting. In Proceedings of the 22nd International Conference
on Theory and Applications of Satisfiability Testing. 267–278.

[74] Nina Narodytska, Hongce Zhang, Aarti Gupta, and Toby Walsh. 2020. In Search for a SAT-friendly Binarized Neural

Network Architecture. In Proceedings of the 8th International Conference on Learning Representations.
[75] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami.

2017. Practical Black-Box Attacks against Machine Learning. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. 506–519.

[76] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. 2016.

The Limitations of Deep Learning in Adversarial Settings. In Proceedings of IEEE European Symposium on Security and
Privacy. 372–387.

[77] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated Whitebox Testing of Deep

Learning Systems. In Proceedings of the 26th Symposium on Operating Systems Principles. 1–18.
[78] Luca Pulina and Armando Tacchella. 2010. An Abstraction-Refinement Approach to Verification of Artificial Neural

Networks. In Proceedings of the 22nd International Conference on Computer Aided Verification (CAV). 243–257.
[79] Chongli Qin, Krishnamurthy (Dj) Dvijotham, Brendan O’Donoghue, Rudy Bunel, Robert Stanforth, Sven Gowal,

Jonathan Uesato, Grzegorz Swirszcz, and Pushmeet Kohli. 2019. Verification of Non-Linear Specifications for Neural

Networks. In Proceedings of the 7th International Conference on Learning Representations.
[80] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet Classification

Using Binary Convolutional Neural Networks. In Proceedings of the 14th European Conference on Computer Vision.
525–542.

[81] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should i trust you?" Explaining the predictions

of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 1135–1144.

[82] Dinggang Shen, Guorong Wu, and Heung-Il Suk. 2017. Deep learning in medical image analysis. Annual Review of
Biomedical Engineering 19 (2017), 221–248.

[83] Andy Shih, Adnan Darwiche, and Arthur Choi. 2019. Verifying binarized neural networks by angluin-style learning.

In Proceedings of the 2019 International Conference on Theory and Applications of Satisfiability Testing. 354–370.
[84] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning important features through propagating

activation differences. In International conference on machine learning. PMLR, 3145–3153.

[85] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep inside convolutional networks: Visualising

image classification models and saliency maps. In In Workshop at International Conference on Learning Representations.
Citeseer.

[86] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. 2019. Beyond the Single Neuron Convex

Barrier for Neural Network Certification. In Proceedings of the Annual Conference on Neural Information Processing
Systems. 15072–15083.

[87] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. 2018. Fast and Effective

Robustness Certification. In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS).
10825–10836.

[88] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019. An abstract domain for certifying neural

networks. Proceedings of the ACM on Programming Languages (POPL) 3 (2019), 41:1–41:30.
[89] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. 2017. Smoothgrad: removing

noise by adding noise. arXiv preprint arXiv:1706.03825 (2017).
[90] Fabio Somenzi. 2015. CUDD: CU Decision Diagram Package Release 3.0.0.

[91] Fu Song, Yusi Lei, Sen Chen, Lingling Fan, and Yang Liu. 2021. Advanced evasion attacks and mitigations on practical

ML-based phishing website classifiers. Int. J. Intell. Syst. 36, 9 (2021), 5210–5240.
[92] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic

testing for deep neural networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 109–119.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

50 Y. Zhang, et al.

[93] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic Attribution for Deep Networks. In Proceedings of
the 34th International Conference on Machine Learning. 3319–3328.

[94] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

2014. Intriguing properties of neural networks. In Proceedings of International Conference on Learning Representations.
[95] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In

Proceedings of the 36th International Conference on Machine Learning. 6105–6114.
[96] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: automated testing of deep-neural-network-

driven autonomous cars. In Proceedings of the 40th International Conference on Software Engineering. 303–314.
[97] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2019. Evaluating Robustness Of Neural Networks With Mixed Integer

Programming. In Proceedings of the 7th International Conference on Learning Representations.
[98] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. 2020. Verification of Deep Convolutional

Neural Networks Using ImageStars. In Proceedings of the 32nd International Conference on Computer Aided Verification.
18–42.

[99] Hoang-Dung Tran, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and

Taylor T. Johnson. 2019. Star-Based Reachability Analysis of Deep Neural Networks. In Proceedings of the 3rd World
Congress on Formal Methods. 670–686.

[100] Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aäron van den Oord. 2018. Adversarial Risk and the

Dangers of Evaluating Against Weak Attacks. In Proceedings of the 35th International Conference on Machine Learning.
5032–5041.

[101] Tom van Dijk, Ernst Moritz Hahn, David N. Jansen, Yong Li, Thomas Neele, Mariëlle Stoelinga, Andrea Turrini, and

Lijun Zhang. 2015. A Comparative Study of BDD Packages for Probabilistic Symbolic Model Checking. In Proceedings
of the 1st International Symposium on Dependable Software Engineering: Theories, Tools, and Applications. 35–51.

[102] Tom van Dijk and Jaco van de Pol. 2015. Sylvan: Multi-core decision diagrams. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 677–691.

[103] Tom van Dijk and Jaco C. van de Pol. 2014. Lace: Non-blocking Split Deque for Work-Stealing. In Proceedings of the
International Workshops on Parallel Processing. 206–217.

[104] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Formal Security Analysis of Neural

Networks using Symbolic Intervals. In Proceedings of the 27th USENIX Security Symposium. 1599–1614.

[105] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. 2021. Beta-CROWN:

Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification. In

Proceedings of the Annual Conference on Neural Information Processing Systems. 29909–29921.
[106] Stefan Webb, Tom Rainforth, Yee Whye Teh, and M. Pawan Kumar. 2019. A Statistical Approach to Assessing Neural

Network Robustness. In Proceedings of the 7th International Conference on Learning Representations.
[107] Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. Extracting Automata from Recurrent Neural Networks Using

Queries and Counterexamples. In Proceedings of the 35th International Conference on Machine Learning. 5244–5253.
[108] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning, and Inderjit S.

Dhillon. 2018. Towards Fast Computation of Certified Robustness for ReLU Networks. In Proceedings of the 35th
International Conference on Machine Learning. 5273–5282.

[109] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-Guided Black-Box Safety Testing of Deep

Neural Networks. In Proceedings of the 24th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 408–426.

[110] Eric Wong and J. Zico Kolter. 2018. Provable Defenses against Adversarial Examples via the Convex Outer Adversarial

Polytope. In Proceedings of the 35th International Conference on Machine Learning. 5283–5292.
[111] Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2020. A game-based approximate

verification of deep neural networks with provable guarantees. Theoretical Computer Science 807 (2020), 298–329.
[112] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2018. Output Reachable Set Estimation and Verification

for Multilayer Neural Networks. IEEE Transactions on Neural Networks and Learning Systems 29, 11 (2018), 5777–5783.
[113] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel image dataset for benchmarking machine

learning algorithms. arXiv preprint arXiv:1708.07747 (2017).

[114] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and

Simon See. 2019. DeepHunter: a coverage-guided fuzz testing framework for deep neural networks. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 146–157.

[115] Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, and Lijun Zhang. 2020.

Improving Neural Network Verification through Spurious Region Guided Refinement. CoRR abs/2010.07722 (2020).

[116] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine Learning Testing: Survey, Landscapes and Horizons.

IEEE Trans. Software Eng. 48, 2 (2022), 1–36.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

BNNQuanalyst 51

[117] Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. 2019. Interpreting CNNs via Decision Trees. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 6261–6270.

[118] Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen. 2021. BDD4BNN: A BDD-Based Quantitative

Analysis Framework for Binarized Neural Networks. In Proceedings of the 33rd International Conference on Computer
Aided Verification. 175–200.

[119] Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, and Taolue Chen. 2022. QVIP: An ILP-based Formal

Verification Approach for Quantized Neural Networks. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering.

[120] Zhe Zhao, Guangke Chen, Jingyi Wang, Yiwei Yang, Fu Song, and Jun Sun. 2021. Attack as defense: characterizing

adversarial examples using robustness. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 42–55.

[121] Zhe Zhao, Yedi Zhang, Guangke Chen, Fu Song, Taolue Chen, and Jiaxiang Liu. [n.d.]. CENTRAL: Accelerating

CEGAR-based Neural Network Verification via Adversarial Attacks, booktitle = Proceedings of the 29th Static Analysis

Symposium, year = 2022.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Binarized Neural Networks
	2.2 Binary Decision Diagrams
	2.3 BDD Packages

	3 Framework Design
	3.1 Overview of BNNQuanalyst
	3.2 CC2BDD: Cardinality Constraints to BDDs
	3.3 Region2BDD: Input Regions to BDDs
	3.4 BNN2CC: BNNs to Cardinality Constraints
	3.5 BDD Model Builder

	4 Parallelization Strategies
	4.1 Parallel BDD operations
	4.2 Parallel BDD Encoding of Blocks
	4.3 Parallel BDD Construction of an Entire BNN

	5 Applications: Robustness Analysis and Interpretability
	5.1 Robustness Analysis
	5.2 Interpretability

	6 Evaluation
	6.1 Effectiveness of Strategies
	6.2 Performance of BDD Encoding for Entire BNNs
	6.3 Robustness Analysis
	6.4 Interpretability

	7 Related Work
	8 Conclusion
	References

