
Quantitative Verification of Masked Arithmetic
Programs against Side-Channel Attacks?

Pengfei Gao1, Hongyi Xie1, Jun Zhang1, Fu Song1B, Taolue Chen2

1 School of Information Science and Technology,
ShanghaiTech University, China

2 Department of Computer Science and Information Systems,
Birkbeck, University of London, UK

Abstract. Power side-channel attacks, which can deduce secret data
via statistical analysis, have become a serious threat. Masking is an ef-
fective countermeasure for reducing the statistical dependence between
secret data and side-channel information. However, designing masking
algorithms is an error-prone process. In this paper, we propose a hybrid
approach combing type inference and model-counting to verify masked
arithmetic programs against side-channel attacks. The type inference
allows an efficient, lightweight procedure to determine most observable
variables whereas model-counting accounts for completeness. In case that
the program is not perfectly masked, we also provide a method to quan-
tify the security level of the program. We implement our methods in a
tool QMVerif and evaluate it on cryptographic benchmarks. The ex-
periment results show the effectiveness and efficiency of our approach.

1 Introduction

Side-channel attacks aim to infer secret data (e.g. cryptographic keys) by exploit-
ing statistical dependence between secret data and non-functional observations
such as execution time [33], power consumption [34], and electromagnetic radi-
ation [46]. They have become a serious threat in application domains such as
cyber-physical systems. As a typical example, the power consumption of a device
executing the instruction c = p⊕k usually depends on the secret k, and this can
be exploited via differential power analysis (DPA) [37] to deduce k.

Masking is one of the most widely-used and effective countermeasure to
thwart side-channel attacks. Masking is essentially a randomization technique for
reducing the statistical dependence between secret data and side-channel infor-
mation (e.g. power consumption). For example, using Boolean masking scheme,
one can mask the secret data k by applying the exclusive-or (⊕) operation with a
random variable r, yielding a masked secret data k⊕ r. It can be readily verified
that the distribution of k⊕r is independent of the value of k when r is uniformly
distributed. Besides Boolean masking scheme, there are other masking schemes

? This work is supported by NSFC(61532019, 61761136011), EPSRC(EP/P00430X/1),
and ARC(DP160101652, DP180100691).

2 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen

such as additive masking schemes (e.g. (k+ r) mod n) and multiplicative mask-
ing schemes (e.g. (k × r) mod n). A variety of masking implementations such
as AES and its non-linear components (S-boxes) have been published over the
years. However, designing effective and efficient masking schemes is still a no-
toriously difficult task, especially for non-linear functions. This has motivated
a large amount of work on verifying whether masked implementations, as ei-
ther (hardware) circuits or (software) programs, are statistically independent
of secret inputs. Typically, masked hardware implementations are modeled as
(probabilistic) Boolean programs where all variables range over the Boolean do-
main (i.e. GF(2)), while masked software implementations, featuring a richer set
of operations, require to be modeled as (probabilistic) arithmetic programs.

Verification techniques for masking schemes can be roughly classified into
type system based approaches [38,3,4,5,16,14,19] and model-counting based ap-
proaches [25,24,50]. The basic idea of type system based approaches is to infer
a distribution type for observable variables in the program that are potentially
exposed to attackers. From the type information one may be able to show that
the program is secure. This class of approaches is generally very efficient mainly
because of their static analysis nature. However, they may give inconclusive an-
swers as most existing type systems do not provide completeness guarantees.

Model-counting based approaches, unsurprisingly, encode the verification
problem as a series of model-counting problems, and typically leverage SAT/SMT
solvers. The main advantage of this approach is its completeness guarantees.
However, the size of the model-counting constraint is usually exponential in the
number of (bits of) random variables used in masking, hence the approach poses
great challenges to its scalability. We mention that, within this category, some
work further exploits Fourier analysis [11,15], which considers the Fourier ex-
pansion of the Boolean functions. The verification problem can then be reduced
to checking whether certain coefficients of the Fourier expansion are zero or
not. Although there is no hurdle in principle, to our best knowledge currently
model-counting based approaches are limited to Boolean programs only.

While verification of masking for Boolean programs is well-studied [50,24],
generalizing them to arithmetic programs brings additional challenges. First of
all, arithmetic programs admit more operations which are absent from Boolean
programs. A typical example is field multiplication. In the Boolean domain, it
is nothing more than ⊕ which is a bit operation. However for GF(2n) (typically
n = 8 in cryptographic algorithm implementations), the operation is nontrivial
which prohibits many optimization which would otherwise be useful for Boolean
domains. Second, verification of arithmetic programs often suffers from serious
scalability issues, especially when the model-counting based approaches are ap-
plied. We note that transforming arithmetic programs into equivalent Boolean
versions is theoretically possible, but suffer from several deficiencies: (1) one
has to encode complicated arithmetic operations (e.g. finite field multiplication)
as bitwise operations; (2) the resulting Boolean program needs to be checked
against higher-order attacks which are supposed to observe multiple observa-

Verification of Masked Arithmetic Programs 3

tions simultaneously. This is a far more difficult problem. Because of this, we
believe such as approach is practically, if not infeasible, unfavourable.

Perfect masking is ideal but not necessarily holds when there are flaws or only
a limited number of random variables are allowed for efficiency consideration. In
case that the program is not perfectly masked (i.e., a potential side channel does
exist), naturally one wants to tell how severe it is. For instance, one possible
measure is the resource the attacker needs to invest in order to infer the secret
from the side channel. For this purpose, we adapt the notion of Quantitative
Masking Strength, with which a correlation of the number of power traces to
successfully infer secret has been established empirically [26,27].

Main contributions. We mainly focus on the verification of masked arithmetic
programs. We advocate a hybrid verification method combining type system
based and model-counting based approaches, and provide additional quantitative
analysis. We summarize the main contributions as follows.

– We provide a hybrid approach which integrates type system based and
model-counting based approaches into a framework, and support a sound
and complete reasoning of masked arithmetic programs.

– We provide quantitative analysis in case when the masking is not effective,
to calculate a quantitative measure of the information leakage.

– We provide various heuristics and optimized algorithms to significantly im-
prove the scalability of previous approaches.

– We implement our approaches in a software tool and provide thorough eval-
uations. Our experiments show orders of magnitude of improvement with
respect to previous verification methods on common benchmarks.

We find, perhaps surprisingly, that for model-counting, the widely adopted ap-
proaches based on SMT solvers (e.g. [25,24,50]) may not be the best approach, as
our experiments suggest that an alternative brute-force approach is comparable
for Boolean programs, and significantly outperforms for arithmetic programs.

Related work. The d-threshold probing model is the de facto standard leakage
model for order-d power side-channel attacks [32]. This paper focuses on the case
that d = 1. Other models like noise leakage model [17,45], bounded moment
model [6], and threshold probing model with transitions/glitch [20,15] could
be reduced to the threshold probing model, at the cost of introducing higher
orders [3]. Other work on side channels such as execution-time, faults, and cache
do exist ([33,1,2,12,28,7,8,31] to cite a few), but is orthogonal to our work.

Type systems have been widely used in the verification of side channel at-
tacks with early work [38,9], where masking compilers are provided which can
transform an input program into a functionally equivalent program that is re-
sistant to first-order DPA. However, these systems either are limited to certain
operations (i.e., ⊕ and table look-up), or suffer from unsoundness and incom-
pleteness under the threshold probing model. To support verification of higher-
order masking, Barthe et al. introduced the notion of noninterference (NI, [3]),
and strong t-noninterference (SNI, [4]), which were extended to give a unified
framework for both software and hardware implementations in maskVerif [5].

4 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen

Further work along this line includes improvements for efficiency [14,19], gener-
alization for assembly-level code [15], and extensions with glitches for hardware
programs [29]. As mentioned earlier, these approaches are incomplete, i.e., secure
programs may fail to pass their verification.

[25,24] proposed a model-counting based approach for Boolean programs by
leveraging SMT solvers, which is complete but limited in scalability. To improve
efficiency, a hybrid approach integrating type-based and model-counting based
approaches [25,24] was proposed in [50], which is similar to the current work in
spirit. However, it is limited to Boolean programs and qualitative analysis only.
[26,27] extended the approach of [25,24] for quantitative analysis, but is limited
to Boolean programs. The current work not only extends the applicability but
also achieves significant improvement in efficiency even for Boolean programs
(cf. Section 5). We also find that solving model-counting via SMT solvers [24,50]
may not be the best approach, in particular for arithmetic programs.

Our work is related to quantitative information flow (QIF) [35,44,49,43,13]
which leverages notions from information theory (typically Shannon entropy
and mutual information) to measure the flow of information in programs. The
QIF framework has also been specialized to side-channel analysis [42,41,36]. The
main differences are, first of all, QIF targets fully-fledged programs (including
branching and loops) so program analysis techniques (e.g. symbolic execution)
are needed, while we deal with more specialized (transformed) masked programs
in straight-line forms; second, to measure the information leakage quantitatively,
our measure is based on the notion QMS which is correlated with the number
of power traces needed to successfully infer the secret, while QIF is based on a
more general sense of information theory; third, for calculating such a measure,
both works rely on model-counting. In QIF, the constraints over the input are
usually linear, but the constraints in our setting involve arithmetic operations in
rings and fields. Randomized approximate schemes can be exploited in QIF [13]
which is not suitable in our setting. Moreover, we mention that in QIF, input
variables should in principle be partitioned into public and private variables,
and the former of which needs to be existentially quantified. This was briefly
mentioned in, e.g., [36], but without implementation.

2 Preliminaries

Let us fix a bounded integer domain D = {0, · · · , 2n − 1}, where n is a fixed
positive integer. Bit-wise operations are defined over D, but we shall also consider
arithmetic operations over D which include +,−,× modulo 2n for which D is
consider to be a ring and the Galois field multiplication � where D is isomorphic
to GF(2)[x]/(p(x)) (or simply GF(2n)) for some irreducible polynomial p. For
instance, in AES one normally uses GF(28) and p(x) = x8 + x4 + x3 + x2 + 1.

2.1 Cryptographic Programs

We focus on programs written in C-like code that implement cryptographic algo-
rithms such as AES, as opposed to arbitrary software programs. To analyze such

Verification of Masked Arithmetic Programs 5

programs, it is common to assume that they are given in straight-line forms (i.e.,
branching-free) over D [24,3]. The syntax of the program under consideration is
given as follows, where c ∈ D.

Operation: O 3 ◦ ::= ⊕ | ∧ | ∨ | � | + | − | ×
Expression: e ::= c | x | e ◦ e | ¬e | e� c | e� c
Statememt: stmt ::= x← e | stmt; stmt
Program: P (Xp, Xk, Xr) ::= stmt; return x1, ..., xm

A program P consists of a sequence of assignments followed by a return state-
ment. An assignment x← e assigns the value of the expression e to the variable
x, where e is built up from a set of variables and constants using (1) bit-wise
operations negation (¬), and (∧), or (∨), exclusive-or (⊕), left shift � and
right shift �; (2) modulo 2n arithmetic operations: addition (+), subtraction
(−), multiplication (×); and (3) finite-field multiplication (�) (over GF(2n))3.
We denote by O∗ the extended set O ∪ {�,�} of operations.

Given a program P , let X = Xp]Xk]Xi]Xr denote the set of variables used
in P , where Xp, Xk and Xi respectively denote the set of public input, private
input and internal variables, and Xr denotes the set of (uniformly distributed)
random variables for masking private variables. We assume that the program is
given in the single static assignment (SSA) form (i.e., each variable is defined
exactly once) and each expression uses at most one operator. (One can easily
transform an arbitrary straight-line program into an equivalent one satisfying
these conditions.) For each assignment x← e in P , the computation E(x) of x
is an expression obtained from e by iteratively replacing all the occurrences of the
internal variables in e by their defining expressions in P . SSA form guarantees
that E(x) is well-defined.

Semantics. A valuation is a function σ : Xp∪Xk → D assigning to each variable
x ∈ Xp∪Xk a value c ∈ D. Let Θ denote the set of all valuations. Two valuations
σ1, σ2 ∈ Θ are Y -equivalent, denoted by σ1 ≈Y σ2, if σ1(x) = σ2(x) for all x ∈ Y .

Given an expression e in terms of Xp ∪Xk ∪Xr and a valuation σ ∈ Θ, we
denote by e(σ) the expression obtained from e by replacing all the occurrences
of variables x ∈ Xp ∪ Xk by their values σ(x), and denote by JeKσ the distri-
bution of e (with respect to the uniform distribution of random variables e(σ)
may contain). Concretely, JeKσ(v) is the probability of the expression e(σ) being
evaluated to v for each v ∈ D. For each variable x ∈ X and valuation σ ∈ Θ,
we denote by JxKσ the distribution JE(x)Kσ. The semantics of the program P is
defined as a (partial) function JP K which takes a valuation σ ∈ Θ and an internal
variable x ∈ Xi as inputs, returns the distribution JxKσ of x.

Threat models and security notions. We assume that the adversary has
access to public input Xp, but not to private input Xk or random variables Xr,
of a program P . However, the adversary may have access to an internal variable
x ∈ Xi via side-channels. Under these assumptions, the goal of the adversary is
to deduce the information of Xk.

3 Note that addition/subtraction over Galois fields is essentially bit-wise exclusive-or.

6 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen

1 Cube(k, r0, r1){
2 x = k ⊕ r0 ;
3 x0 = x� x ;
4 x1 = r0 � r0 ;
5 x2 = x0 � r0 ;

6 x3 = x1 � x ;
7 x4 = r1 ⊕ x2 ;
8 x5 = x4 ⊕ x3 ;
9 x6 = x0 � x ;

10 x7 = x6 ⊕ r1 ;

11 x8 = x1 � r0 ;
12 x9 = x8 ⊕ x5 ;
13 return (x7, x9) ;
14 }

Fig. 1. A buggy version of Cube from [47]

Definition 1. Let P be a program. For every internal variable x ∈ Xi,

– x is uniform in P , denoted by x-UF, if JP K(σ)(x) is uniform for all σ ∈ Θ.
– x is statistically independent in P , denoted by x-SI, if JP K(σ1)(x) = JP K(σ2)(x)

for all (σ1, σ2) ∈ Θ2
Xp

, where Θ2
Xp

:= {(σ1, σ2) ∈ Θ ×Θ | σ1 ≈Xp σ2}.

Proposition 1. If the program P is x-UF, then P is x-SI.

Definition 2. For a program P , a variable x is perfectly masked (a.k.a. secure
under 1-threshold probing model [32]) in P if it is x-SI, otherwise x is leaky.

P is perfectly masked if all internal variables in P are perfectly masked.

2.2 Quantitative Masking Strength

When a program is not perfectly masked, it is important to quantify how secure
it is. For this purpose, we adapt the notion of Quantitative Masking Strength
(QMS) from [26,27] to quantify the strength of masking countermeasures.

Definition 3. The quantitative masking strength QMSx of a variable x ∈ X, is

defined as: 1−max(σ1,σ2)∈Θ2
Xp
,c∈D

(
JxKσ1

(c)− JxKσ2
(c)
)
.

Accordingly, the quantitative masking strength of the program P is defined by
QMSP := minx∈Xi

QMSx.

The notion of QMS generalizes that of perfect masking, i.e., P is x-SI iff
QMSx = 1. The importance of QMS has been highlighted in [26,27] where it is
empirically shown that, for Boolean programs the number of power traces needed
to determine the secret key is exponential in the QMS value. This study suggests
that computing an accurate QMS value for leaky variables is highly desirable.

Example 1. Let us consider the program in Fig. 1, which implements a buggy
Cube in GF(28) from [47]. Given a secret key k, to avoid first-order side-channel
attacks, k is masked by a random variable r0 leading to two shares x = k⊕r0 and
r0. Cube(k, r0, r1) returns two shares x7 and x9 such that x7⊕x9 = k3 := k�k�k,
where r1 is another random variable.

Cube computes k� k by x0 = x� x and x1 = r0 � r0 (Lines 3-4), as k� k =
x0 ⊕ x1. Then, it computes k3 by a secure multiplication of two pairs of shares
(x0, x1) and (x, r0) using the random variable r1 (Lines 5-12). However, this
program is vulnerable to first-order side-channel attacks, as it is neither x2-SI
nor x3-SI. As shown in [47], we shall refresh (x0, x1) before computing k2�k by

Verification of Masked Arithmetic Programs 7

inserting x0 = x0⊕r2 and x1 = x1⊕r2 after Line 4, where r2 is a random variable.
We use this buggy version as a running example to illustrate our techniques.

As setup for further use, we have: Xp = ∅, Xk = {k}, Xr = {r0, r1} and
Xi = {x, x0, · · · , x9}. The computations E(·) of internal variables are:
E(x) = k ⊕ r0 E(x0) = (k ⊕ r0)� (k ⊕ r0) E(x1) = r0 � r0
E(x2) = ((k ⊕ r0)� (k ⊕ r0))� r0 E(x3) = (r0 � r0)� (k ⊕ r0)
E(x4) = r1 ⊕ (((k ⊕ r0)� (k ⊕ r0))� r0) E(x6) = ((k ⊕ r0)� (k ⊕ r0))� (k ⊕ r0)
E(x5) = (r1 ⊕ ((k ⊕ r0)� (k ⊕ r0))� r0)⊕ ((r0 � r0)� (k ⊕ r0))
E(x7) = (((k ⊕ r0)� (k ⊕ r0))� (k ⊕ r0))⊕ r1 E(x8) = (r0 � r0)� r0
E(x9) = ((r0 � r0)� r0)⊕ ((r1 ⊕ ((k ⊕ r0)� (k ⊕ r0)� r0))⊕ ((r0 � r0)� (k ⊕ r0)))

3 Three Key Techniques

In this section, we introduce three key techniques: type system, model-counting
based reasoning and reduction techniques, which will be used in our algorithm.

3.1 Type System

We present a type system for formally inferring distribution types of internal
variables, inspired by prior work [40,3,14,50]. We start with some basic notations.

Definition 4 (Dominant variables). Given an expression e, a random vari-
able r is called a dominant variable of e if the following two conditions hold: (i)
r occurs in e exactly once, and (ii) each operator on the path between the leaf r
and the root in the abstract syntax tree of e is from either {⊕,¬,+,−} or {×,�}
such that one of the children of the operator is a non-zero constant.

Remark that in Definition 4, for efficiency consideration, we take a purely syntac-
tic approach meaning that we do not simplify e when checking the condition (i)
that r occurs once. For instance, x is not a dominant variable in ((x⊕y)⊕x)⊕x,
although intuitively e is equivalent to y ⊕ x.

Given an expression e, let Var(e) be the set of variables occurring in e, and
RVar(e) := Var(e)∩Xr. We denote by Dom(e) ⊆ RVar(e) the set of all dominant
random variables of e, which can be computed in linear time in the size of e.

Proposition 2. Given a program P with E(x) defined for each variable x of P ,
if Dom(E(x)) 6= ∅, then P is x-UF.

Definition 5 (Distribution Types). Let T = {RUD,SID,SDD,UKD} be the
set of distribution types, where for each variable x ∈ X,

– E(x) : RUD meaning that the program is x-UF;
– E(x) : SID meaning that the program is x-SI;
– E(x) : SDD meaning that the program is not x-SI;
– E(x) : UKD meaning that the distribution type of x is unknown.

where RUD is a subtype of SID (cf. Proposition 1).

8 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen

Dom(e) 6= ∅
` e : RUD

(Dom)
` e1 ? e2 : τ

` e2 ? e1 : τ
(Com) ` e : τ

` ¬e : τ
(Ide1)

` e : SID
` e • e : SID

(Ide2) ` e � e : SID
(Ide3) ` e : SDD

` e ./ e : SDD
(Ide4)

Var(e) ∩Xk = ∅
` e : SID

(NoKey)
x ∈ Xk

` x : SDD
(Key)

` e1 : RUD ` e2 : RUD
Dom(e1) \ RVar(e2) 6= ∅

` e1 ◦ e2 : SID
(Sid1)

` e1 : SID ` e2 : SID
RVar(e1) ∩ RVar(e2) = ∅

` e1 • e2 : SID
(Sid2)

` e1 : SDD ` e2 : RUD
Dom(e2) \ RVar(e1) 6= ∅
` e1 ◦ e2 : SDD

(Sdd)

No rule is
appliable to e

` e : UKD
(Ukd)

Fig. 2. Type inference rules, where ? ∈ O, ◦ ∈ {∧,∨,�,×}, • ∈ O∗, ./∈ {∧,∨} and
� ∈ {⊕,−}.

Type judgements, as usual, are defined in the form of ` e : τ, where e is an
expression in terms of Xr ∪Xk ∪Xp, and τ ∈ T denotes the distribution type of
e. A type judgement ` e : RUD (resp. ` e : SID and ` e : SDD) is valid iff P is
x-UF (resp. x-SI and not x-SI) for all variables x such that E(x) = e. A sound
proof system for deriving valid type judgements is given in Figure 2.

Rule (Dom) states that e containing some dominant variable has type RUD
(cf. Proposition 2). Rule (Com) captures the commutative law of operators ? ∈
O. Rules (Idei) for i = 1, 2, 3, 4 are straightforward. Rule (NoKey) states that
e has type SID if e does not use any private input. Rule (Key) states that each
private input has type SDD. Rule (Sid1) states that e1 ◦ e2 for ◦ ∈ {∧,∨,�,×}
has type SID, if both e1 and e2 have type RUD, and e1 has a dominant variable
r which is not used by e2. Indeed, e1 ◦ e2 can be seen as r ◦ e2, then for each
valuation η ∈ Θ, the distributions of r and e2(η) are independent. Rule (Sid2)
states that e1 • e2 for • ∈ O∗ has type SID, if both e1 and e2 have type SID (as
well as its subtype RUD), and the sets of random variables used by e1 and e2
are disjoint. Likewise, for each valuation η ∈ Θ, the distributions on e1(η) and
e2(η) are independent. Rule (Sdd) states that e1 ◦ e2 for ◦ ∈ {∧,∨,�,×} has
type SDD, if e1 has type SDD, e2 has type RUD, and e2 has a dominant variable
r which is not used by e1. Intuitively, e1 ◦ e2 can be safely seen as e1 ◦ r.

Finally, if no rule is applicable to an expression e, then e has unknown dis-
tribution type. Such a type is needed because our type system is—by design—
incomplete. However, we expect—and demonstrate empirically—that for cryp-
tographic programs, most internal variables have a definitive type other than
UKD. As we will show later, to resolve UKD-typed variables, one can resort to
model-counting (cf. Section 3.2).

Theorem 1. If ` E(x) : RUD (resp. ` E(x) : SID and ` E(x) : SDD) is valid,
then P is x-UF (resp. x-SI and not x-SI).

Example 2. Consider the program in Figure 1, we have:

` E(x) : RUD; ` E(x0) : SID; ` E(x1) : SID; ` E(x2) : UKD;
` E(x3) : UKD; ` E(x4) : RUD; ` E(x5) : RUD; ` E(x6) : UKD;
` E(x7) : RUD; ` E(x8) : SID; ` E(x9) : RUD.

Verification of Masked Arithmetic Programs 9

3.2 Model-Counting based Reasoning

Recall that for x ∈ Xi, QMSx := 1−max(σ1,σ2)∈Θ2
Xp
,c∈D(JxKσ1

(c)− JxKσ2
(c)).

To compute QMSx, one naive approach is to use brute-force to enumerate all
possible valuations σ and then to compute distributions JxKσ again by enumer-
ating the assignments of random variables. This approach is exponential in the
number of (bits of) variables in E(x).

Another approach is to lift the SMT-based approach [26,27] from Boolean
setting to the arithmetic one. We first consider a “decision” version of the prob-
lem, i.e., checking whether QMSx ≥ q for a given rational number q ∈ [0, 1]. It is
not difficult to observe that this can be reduced to checking the satisfiability of
the following logic formula:

∃σ1, σ2 ∈ Θ2
Xp
.∃c ∈ D.

(
](c = JxKσ1

)−](c = JxKσ2
)
)
> ∆q

x, (1)

where](c = JxKσ1
) and](c = JxKσ2

) respectively denote the number of satisfying
assignments of c = JxKσ1

and c = JxKσ2
, ∆q

x = (1−q)×2m, and m is the number
of bits of random variables in E(x).

We further encode (1) as a (quantifier-free) first-order formula Ψ qx to be solved
by an off-the-shelf SMT solver (e.g. Z3 [23]):

Ψ qx := (
∧
f :RVar(E(x))→D(Θf ∧Θ′f)) ∧Θb2i ∧Θ′b2i ∧Θ

q
diff

where

– Program logic (Θf and Θ′f): for every f : RVar(E(x)) → D, Θf encodes
cf = E(x) into a logical formula with each occurrence of a random variable
r ∈ RVar(E(x)) being replaced by its value f(r), where cf is a fresh variable.
There are |D||RVar(E(x))| distinct copies, but share the same Xp and Xk. Θ′f
is similar to Θf except that all variables k ∈ Xk and cf are replaced by fresh
variables k′ and c′f respectively.

– Boolean to integer (Θb2i and Θ′b2i): Θb2i :=
∧
f :RVar(E(x))→D If = (c =

cf) ? 1 : 0. It asserts that for each f : RVar(E(x)) → D, a fresh integer
variable If is 1 if c = cf , otherwise 0. Θ′b2i is similar to Θb2i except that If
and cf are replaced by I ′f and c′f respectively.

– Different sums (Θqdiff):
∑
f :RVar(E(x))→D If −

∑
f :RVar(E(x))→D I

′
f > ∆q

x.

Theorem 2. Ψ qx is unsatisfiable iff QMSx ≥ q, and the size of Ψ qx is polynomial
in |P | and exponential in |RVar(E(x))| and |D|.

Based on Theorem 2, we present an algorithm for computing QMSx in Section 4.2.
Note that the qualitative variant of Ψ qx (i.e. q = 1) can be used to decide

whether x is statistically independent by checking whether QMSx = 1 holds. This
will be used in Algorithm 1.

Example 3. By applying the model-counting based reasoning to the program in
Figure 1, we can conclude that x6 is perfectly masked, while x2 and x3 are leaky.
This cannot be done by our type system or the ones in [3,4]. To give a sample
encoding, consider the variable x3 for q = 1

2 and D = {0, 1, 2, 3}. We have that

Ψ
1
2
x3 is

10 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen
c0 = (0� 0)� (k ⊕ 0) ∧ c′0 = (0� 0)� (k′ ⊕ 0) ∧
c1 = (1� 1)� (k ⊕ 1) ∧ c′1 = (1� 1)� (k′ ⊕ 1) ∧
c2 = (2� 2)� (k ⊕ 2) ∧ c′2 = (2� 2)� (k′ ⊕ 2) ∧
c3 = (3� 3)� (k ⊕ 3) ∧ c′3 = (3� 3)� (k′ ⊕ 3) ∧

(
I0 = (c = c0) ? 1 : 0 ∧ I1 = (c = c1) ? 1 : 0 ∧
I2 = (c = c2) ? 1 : 0 ∧ I3 = (c = c3) ? 1 : 0 ∧

)
(
I ′0 = (c = c′0) ? 1 : 0 ∧ I ′1 = (c = c′1) ? 1 : 0 ∧
I ′2 = (c = c′2) ? 1 : 0 ∧ I ′3 = (c = c′3) ? 1 : 0 ∧

)
(I0 + I1 + I2 + I3)− (I ′0 + I ′1 + I ′2 + I ′3) > (1− 1

2
)2

3.3 Reduction Heuristics

In this section, we provide various heuristics to reduce the size of formulae. These
can be both applied to type inference and model-counting based reasoning.

Ineffective variable elimination. A variable x is ineffective in an expression e
if for all valuations σ1, σ2 ∈ Θ such that σ1 ≈Var(e)\{x} σ2, we have σ1(e) = σ2(e).
Otherwise, we say x is effective in e. Clearly if x is ineffective in e, then e and
e[c/x] are equivalent for any c ∈ D while e[c/x] contains less variables, where
e[c/x] is obtained from e by replacing all occurrences of x with c.

Checking whether x is effective or not in e can be performed by a satisfiability
checking of the logical formula: e[c/x] 6= e[c′/x]. Obviously, e[c/x] 6= e[c′/x] is
satisfiable iff x is effective in e.

Algebraic laws. For every sub-expression e′ of the form e1⊕ e1, e2− e2, e ◦ 0 or
0 ◦ e with ◦ ∈ {×,�,∧} in the expression e, it is safe to replace e′ by 0, namely,
e and e[0/e′] are equivalent. Note that the constant 0 is usually introduced by
instantiating ineffective variables by 0 when eliminating ineffective variables.

Dominated Subexpression Elimination. Given an expression e, if e′ is a
r-dominated sub-expression in e and r does not occur in e elsewhere, then it is
safe to replace each occurrence of e′ in e by the random variable r. Intuitively,
e′ as a whole can be seen as a random variable when evaluating e. Besides
this elimination, we also allow to add mete-theorems specifying forms of sub-
expressions e′ that can be replaced by a fresh variable. For instance, r ⊕ ((2 ×
r) ∧ e′′) in e, when the random variable r does not appear elsewhere, can be
replaced by the random variable r.

Let ê denote the expression obtained by applying the above heuristics on the
expression e.

Transformation Oracle. We suppose there is an oracle Ω which, whenever
possible, transforms an expression e into an equivalent expression Ω(e) such
that the type inference can give a non-UKD type to Ω(e).

Lemma 1. E(x)(σ) and Ê(x)(σ) have same distribution for any σ ∈ Θ.

Example 4. Consider the variable x6 in the program in Figure 1, (k ⊕ r0) is
r0-dominated sub-expression in E(x6) = ((k ⊕ r0) � (k ⊕ r0)) � (k ⊕ r0), then,

we can simplify E(x6) into Ê(x6) = r0 � r0 � r0. Therefore, we can deduce that

` E(x6) : SID by applying the NoKey rule on Ê(x6).

Verification of Masked Arithmetic Programs 11

Algorithm 1: PMChecking(P,Xp, Xk, Xr, Xi)

1 Function PMChecking(P,Xp, Xk, Xr, Xi)
2 foreach x ∈ Xi do
3 if ` E(x) : UKD is valid then

4 if ` Ê(x) : UKD is valid then

5 if Ω(Ê(x)) exists then

6 Let ` E(x) : τ be valid for valid ` Ω(Ê(x)) : τ ;

7 else if ModelCountingBasedSolver(Ê(x))=SAT then
8 Let ` E(x) : SDD be valid;
9 else Let ` E(x) : SID be valid;

10 else Let ` E(x) : τ be valid for valid ` Ê(x) : τ ;

4 Overall Algorithms

In this section, we present algorithms to check perfect masking and to compute
the QMS values.

4.1 Perfect Masking Verification

Given a program P with the sets of public (Xp), secret (Xk), random (Xr) and
internal (Xi) variables, PMChecking, given in Algorithm 1, checks whether P
is perfectly masked or not. It iteratively traverses all the internal variables. For
each variable x ∈ Xi, it first applies the type system to infer its distribution
type. If ` E(x) : τ for τ 6= UKD is valid, then the result is conclusive. Otherwise,

we will simplify the expression E(x) and apply the type inference to Ê(x).

If it fails to resolve the type of x and Ω(Ê(x)) does not exist, we apply
the model-counting based (SMT-based or brute-force) approach outlined in Sec-

tion 3.2, in particular, to check the expression Ê(x). There are two possible

outcomes: either Ê(x) is SID or SDD. We enforce E(x) to have the same distri-

butional type as Ê(x) which might facilitate the inference for other expressions.

Theorem 3. P is perfectly masked iff ` E(x) : SDD is not valid for any x ∈ Xi,
when Algorithm 1 terminates.

We remark that, if the model-counting is disabled in Algorithm 1 where
UKD-typed variables are interpreted as potentially leaky, Algorithm 1 would de-
generate to a type inference procedure that is fast and potentially more accurate
than the one in [3], owing to the optimization introduced in Section 3.3.

4.2 QMS Computing

After applying Algorithm 1, each internal variable x ∈ Xi is endowed by a
distributional type of either SID (or RUD which implies SID) or SDD. In the
former case, x is perfectly masked meaning observing x would gain nothing for

12 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen

Algorithm 2: Procedure QMSComputing(P,Xp, Xk, Xr, Xi)

1 Function QMSComputing(P,Xp, Xk, Xr, Xi)
2 PMChecking(P,Xp, Xk, Xr, Xi);
3 foreach x ∈ Xi do
4 if ` E(x) : SID is valid then QMSx := 1;
5 else

6 if RVar(Ê(x)) = ∅ then QMSx := 0;
7 else

8 low := 0; high := 2n×|RVar(Ê(x))|;
9 while low < high do

10 mid := d low+high

2
e; q := mid

2n×|RVar(Ê(x))|
;

11 if SMTSolver(Ψ̂q
x) =SAT then high := mid− 1;

12 else low := mid;

13 QMSx := low

2n×|RVar(Ê(x))|
;

side-channel attackers. In the latter case, however, x becomes a side-channel and
it is natural to ask how many power traces are required to infer secret from x of
which we have provided a measure formalized via QMS.

QMSComputing, given in Algorithm 2, computes QMSx for each x ∈ Xi.
It first invokes the function PMChecking for perfect masking verification. For
SID-typed variable x ∈ Xi, we can directly infer that QMSx is 1. For each leaky

variable x ∈ Xi, we first check whether Ê(x) uses any random variables or not. If
it does not use any random variables, we directly deduce that QMSx is 0. Other-
wise, we use either the brute-force enumeration or an SMT-based binary search
to compute QMSx. The former one is trivial, hence not presented in Algorithm 2.
The latter one is based on the fact that QMSx = i

2n·|RVar(Ê(x))|
for some integer

0 ≤ i ≤ 2n·|RVar(Ê(x))|. Hence the while-loop in Algorithm 2 executes at most

O(n · |RVar(Ê(x))|) times for each x.
Our SMT-based binary search for computing QMS values is different from

the one proposed by Eldib et al. [26,27]. Their algorithm considers Boolean
programs only and computes QMS values by directly binary searching the QMS
value q between 0 to 1 with a pre-defined step size ε (ε = 0.01 in [26,27]).
Hence, it only approximate the actual QMS value and the binary search iterates
O(log(1

ε)) times for each internal variable. Our approach works for more general
arithmetic programs and computes the accurate QMS value.

5 Practical Evaluation

We have implemented our methods in a tool named QMVerif, which uses
Z3 [23] as the underlying SMT solver (fixed size bit-vector theory). We conducted
experiments perfect masking verification and QMS computing on both Boolean
and arithmetic programs. Our experiments were conducted on a server with
64-bit Ubuntu 16.04.4 LTS, Intel Xeon CPU E5-2690 v4, and 256GB RAM.

Verification of Masked Arithmetic Programs 13

Table 1. Results on masked Boolean programs for perfect masking verification.

Name |Xi|]SDD]Count
QMVerif

SCInfer [50]
SMT B.F.

P12 197k 0 0 2.9s 2.7s 3.8s
P13 197k 4.8k 4.8k 2m 8s 2m 6s 47m 8s
P14 197k 3.2k 3.2k 1m 58s 1m 45s 53m 40s
P15 198k 1.6k 3.2k 2m 25s 2m 43s 69m 6s
P16 197k 4.8k 4.8k 1m 50s 1m 38s 61m 15s
P17 205k 17.6k 12.8k 1m 24s 1m 10s 121m 28s

5.1 Experimental Results on Boolean Programs

We use the benchmarks from the publicly available cryptographic software im-
plementations of [25], which consists of 17 Boolean programs (P1-P17). We con-
ducted experiments on P12-P17, which are the regenerations of MAC-Keccak
reference code submitted to the SHA-3 competition held by NIST. (We skipped
tiny examples P1-P11 which can be verified in less than 1 second.) P12-P17 are
transformed into programs in straight-line forms.

Perfect masking verification. Table 1 shows the results of perfect masking
verification on P12-P17, where Columns 2-4 show basic statistics, in particular,
they respectively give the number of internal variables, leaky internal variables,
and internal variables which required model-counting based reasoning. Columns
5-6 respectively show the total time of our tool QMVerif using SMT-based and
brute-force methods. Column 7 shows the total time of the tool SCInfer [50].

We can observe that: (1) our reduction heuristics significantly improve perfor-
mance compared with SCInfer [50] (generally 22–104 times faster for imperfect
masked programs; note that SCInfer is based on SMT model-counting), and
(2) the performance of the SMT-based and brute-force counting methods for
verifying perfect masking of Boolean programs is largely comparable.

Computing QMS. For comparison purposes, we implemented the algorithm
of [25,24] for computing QMS values of leaky internal variables. Table 2 shows the
results of computing QMS values on P13-P17 (P12 is excluded because it does
not contain any leaky internal variable), where Column 2 shows the number of
leaky internal variables, Columns 3-7 show the total number of iterations in the
binary search (cf. Section 4.2), time, the minimal, maximal and average of QMS
values using the algorithm from [25,24]. Similarly, Columns 8-13 shows statistics
of our tool QMVerif, in particular, Column 9 (resp. Column 10) shows the time
of using SMT-based (resp. brute-force) method. The time reported in Table 2
excludes the time used for perfect masking checking.

We can observe that (1) the brute-force method outperforms the SMT-based
method for computing QMS values, and (2) our tool QMVerif using SMT-
based methods takes significant less iterations and time, as our binary search step
depends on the number of bits of random variables, but not a pre-defined value
(e.g. 0.01) as used in [25,24]. In particular, the QMS values of leaky variables
whose expressions contain no random variables, e.g., P13 and P17, do not need
binary search.

14 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen

Table 2. Results of masked Boolean programs for computing QMS Values.

Name]SDD
SC Sniffer [26,27] QMVerif

]Iter Time Min Max Avg.]Iter SMT B.F. Min Max Arg.

P13 4.8k 480k 97m 23s 0.00 1.00 0.98 0 0 0 0.00 1.00 0.98
P14 3.2k 160k 40m 13s 0.51 1.00 0.99 9.6k 2m 56s 39s 0.50 1.00 0.99
P15 1.6k 80k 23m 26s 0.51 1.00 1.00 4.8k 1m 36s 1m 32s 0.50 1.00 1.00
P16 4.8k 320k 66m 27s 0.00 1.00 0.98 6.4k 1m 40s 8s 0.00 1.00 0.98
P17 17.6k 1440k 337m 46s 0.00 1.00 0.93 4.8k 51s 1s 0.00 1.00 0.94

Table 3. Results of masked arithmetic programs, where P.M.V. denotes perfect mask-
ing verification, B.F. denotes brute-force, 12 S.F. denotes that Z3 emits segmentation
fault after verifying 12 internal variables.

Description |Xi|]SDD]Count
P.M.V. QMS

SMT B.F. SMT B.F. Value

SecMult [47] 11 0 0 ≈0s ≈0s - - 1
Sbox (4) [22] 66 0 0 ≈0s ≈0s - - 1
B2A [30] 8 0 1 17s 2s - - 1
A2B [30] 46 0 0 ≈0s ≈0s - - 1
B2A [21] 82 0 0 ≈0s ≈0s - - 1
A2B [21] 41 0 0 ≈0s ≈0s - - 1
B2A [18] 11 0 1 1m 35s 10m 59s - - 1
B2A [10] 16 0 0 ≈0s ≈0s - - 1
Sbox [47] 45 0 0 ≈0s ≈0s - - 1

Sbox [48] 772 2 1 ≈0s ≈0s 0.9s ≈0s 0
k3 11 2 2 96m 59s 0.2s 32s 0.988
k12 15 2 2 101m 34s 0.3s 27s 0.988
k15 21 4 4 93m 27s (12 S.F.) 28m 17s ≈64h 0.988, 0.980
k240 23 4 4 93m 27s (12 S.F.) 30m 9s ≈64h 0.988, 0.980
k252 31 4 4 93m 27s (12 S.F.) 32m 58s ≈64h 0.988, 0.980
k254 39 4 4 93m 27s (12 S.F.) 30m 9s ≈64h 0.988, 0.980

5.2 Experimental Results on Arithmetic Programs

We collect arithmetic programs which represent non-linear functions of masked
cryptographic software implementations from the literature. In Table 3, Col-
umn 1 lists the name of the functions under consideration, where k3, . . . , k254

are buggy fragments of first-order secure exponentiation [47] without the first
RefreshMask function; A2B and B2A are shorthand for ArithmeticToBoolean
and BooleanToArithmetic, respectively. Columns 2-4 show basic statistics. For
all the experiments, we set D = {0, · · · , 28 − 1}.

Perfect masking verification. Columns 5-6 in Table 3 show the results of
perfect masking verification on these programs using SMT-based and brute-force
methods respectively.

We observe that (1) some UKD-typed variables (e.g., in B2A [30], B2A [18]
and Sbox [48], meaning that the type inference is inconclusive in these cases)
are resolved (as SID-type) by model-counting, and (2) on the programs (except
B2A [18]) where model-counting based reasoning is required (i.e.,]Count is non-
zero), the brute-force method is significantly faster than the SMT-based method.
In particular, for programs k15, . . . , k254, Z3 crashed with segment fault after ver-
ifying 12 internal variables in 93min, while the brute-force method comfortably

Verification of Masked Arithmetic Programs 15

returns the result. To further explain the performance of these two classes of
methods, we manually examine these programs and find that the expressions
of the UKD-typed variable (using type inference) in B2A [18] (where the SMT-
based method is faster) only use exclusive-or (⊕) operations and one subtraction
(−) operation, while the expressions of the other UKD-typed variables (where
the brute-force method is faster) involve the finite field multiplication (�).

We remark that the transformation oracle and meta-theorems (cf. Section 3.3)
are only used for A2B [30] by manually utilizing the equations of Theorem 3
in [30]. We have verified the correctness of those equations by SMT solvers. In
theory model-counting based reasoning could verify A2B [30]. However, in our
experiments both SMT-based and brute-force methods failed to terminate in 3
days, though brute-force methods had verified more internal variables. For in-
stance, on the expression ((2× r1)⊕ (x− r)⊕ r1)∧ r where x is a private input
and r, r1 are random variables, Z3 cannot terminate in 2 days, while brute-force
methods successfully verified in a few minutes. We also tested the SMT solver
Boolector [39] (the winner of SMT-COMP 2018 on QF-BV, Main Track), which
crashed with being out of memory. Undoubtedly more systematic experiments
are required in the future, but our results suggest that, contrary to the common
belief, currently SMT-based approaches are not promising, which calls for more
scalable techniques.

Computing QMS. Columns 7-9 in Table 3 show the results of computing QMS
values, where Column 7 (resp. Column 8) shows the time of the SMT-based (resp.
brute-force) method for computing QMS values (excluding the time for perfect
masking verification) and Column 9 shows QMS values of all leaky variables
(note that duplicated values are omitted).

6 Conclusion

We have proposed a hybrid approach combing type inference and model-counting
to verify masked arithmetic programs against first-order side-channel attacks.
The type inference allows an efficient, lightweight procedure to determine most
observable variables whereas model-counting accounts for completeness, bring-
ing the best of two worlds. We also provided model-counting based methods to
quantify the amount of information leakage via side channels. We have presented
the tool support QMVerif which has been evaluated on standard cryptographic
benchmarks. The experimental results showed that our method significantly out-
performed state-of-the-art techniques in terms of both accuracy and scalability.

Future work includes further improving SMT-based model counting tech-
niques which currently provide no better, if not worse, performance than the
näıve brutal-force approach. Furthermore, generalizing the work in the current
paper to the verification of higher-order masking schemes remains to be a very
challenging task.

16 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen

References

1. J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. Verifying
constant-time implementations. In USENIX Security Symposium, pages 53–70,
2016.

2. T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei. De-
composition instead of self-composition for proving the absence of timing channels.
In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 362–375, 2017.

3. G. Barthe, S. Beläıd, F. Dupressoir, P. Fouque, B. Grégoire, and P. Strub. Verified
proofs of higher-order masking. In Proceedings of the 34th Annual International
Conference on the Theory and Applications of Cryptographic (EUROCRYPT),
pages 457–485, 2015.

4. G. Barthe, S. Beläıd, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and R. Zuc-
chini. Strong non-interference and type-directed higher-order masking. In ACM
Conference on Computer and Communications Security, pages 116–129, 2016.

5. G. Barthe, S. Beläıd, P. Fouque, and B. Grégoire. maskverif: a formal tool for an-
alyzing software and hardware masked implementations. IACR Cryptology ePrint
Archive, 2018:562, 2018.

6. G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F. Standaert, and P. Strub. Parallel
implementations of masking schemes and the bounded moment leakage model.
In Proceedings of the 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Advances in Cryptology, pages 535–566,
2017.

7. G. Barthe, F. Dupressoir, P. Fouque, B. Grégoire, and J. Zapalowicz. Synthesis
of fault attacks on cryptographic implementations. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, pages 1016–
1027, 2014.

8. G. Barthe, B. Köpf, L. Mauborgne, and M. Ochoa. Leakage resilience against
concurrent cache attacks. In Proceedings of the 3rd International Conference on
Principles of Security and Trust, Held as Part of the European Joint Conferences
on Theory and Practice of Software, pages 140–158, 2014.

9. A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne. Sleuth: Automated verifica-
tion of software power analysis countermeasures. In Workshop on Cryptographic
Hardware and Embedded Systems, pages 293–310, 2013.

10. L. Bettale, J. Coron, and R. Zeitoun. Improved high-order conversion from boolean
to arithmetic masking. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):22–
45, 2018.

11. S. Bhasin, C. Carlet, and S. Guilley. Theory of masking with codewords in hard-
ware: low-weight dth-order correlation-immune boolean functions. IACR Cryptol-
ogy ePrint Archive, 2013:303, 2013.

12. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In International Cryptology Conference on Advances in Cryptology (CRYPTO),
pages 513–525, 1997.

13. F. Biondi, M. A. Enescu, A. Heuser, A. Legay, K. S. Meel, and J. Quilbeuf. Scalable
approximation of quantitative information flow in programs. In Proceedings of
the 19th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 71–93, 2018.

14. E. Bisi, F. Melzani, and V. Zaccaria. Symbolic analysis of higher-order side channel
countermeasures. IEEE Trans. Computers, 66(6):1099–1105, 2017.

Verification of Masked Arithmetic Programs 17

15. R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. For-
mal verification of masked hardware implementations in the presence of glitches.
In Proceedings of the 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Advances in Cryptology, pages 321–353,
2018.

16. J. Breier, X. Hou, and Y. Liu. Fault attacks made easy: Differential fault analysis
automation on assembly code. Cryptology ePrint Archive, Report 2017/829, 2017.
https://eprint.iacr.org/2017/829.

17. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, pages 398–412, 1999.

18. J. Coron. High-order conversion from boolean to arithmetic masking. In Proceed-
ings of the 19th International Conference on Cryptographic Hardware and Embed-
ded Systems (CHES), pages 93–114, 2017.

19. J. Coron. Formal verification of side-channel countermeasures via elementary cir-
cuit transformations. In Proceedings of the 16th International Conference on Ap-
plied Cryptography and Network Security, pages 65–82, 2018.

20. J. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K. Vadnala. Con-
version of security proofs from one leakage model to another: A new issue. In
Proceedings of the Third International Workshop on Constructive Side-Channel
Analysis and Secure Design, pages 69–81, 2012.

21. J. Coron, J. Großschädl, and P. K. Vadnala. Secure conversion between boolean and
arithmetic masking of any order. In Proceedings of the 16th International Workshop
on Cryptographic Hardware and Embedded Systems (CHES), pages 188–205, 2014.

22. J. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security
and mask refreshing. In International Workshop on Fast Software Encryption,
pages 410–424, 2013.

23. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
pages 337–340, 2008.

24. H. Eldib, C. Wang, and P. Schaumont. Formal verification of software counter-
measures against side-channel attacks. ACM Transactions on Software Engineering
and Methodology, 24(2):11, 2014.

25. H. Eldib, C. Wang, and P. Schaumont. SMT-based verification of software coun-
termeasures against side-channel attacks. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems, pages 62–77, 2014.

26. H. Eldib, C. Wang, M. Taha, and P. Schaumont. QMS: Evaluating the side-channel
resistance of masked software from source code. In ACM/IEEE Design Automation
Conference, pages 209:1–6, 2014.

27. H. Eldib, C. Wang, M. M. I. Taha, and P. Schaumont. Quantitative masking
strength: Quantifying the power side-channel resistance of software code. IEEE
Trans. on CAD of Integrated Circuits and Systems, 34(10):1558–1568, 2015.

28. H. Eldib, M. Wu, and C. Wang. Synthesis of fault-attack countermeasures for cryp-
tographic circuits. In International Conference on Computer Aided Verification,
pages 343–363, 2016.

29. S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Standaert. Composable
masking schemes in the presence of physical defaults and the robust probing model.
IACR Cryptology ePrint Archive, 2017:711, 2017.

30. L. Goubin. A sound method for switching between boolean and arithmetic masking.
In Proceedings of the Third International Workshop on Cryptographic Hardware
and Embedded Systems, pages 3–15, 2001.

https://eprint.iacr.org/2017/829

18 Pengfei Gao, Hongyi Xie, Jun Zhang, Fu SongB, Taolue Chen

31. S. Guo, M. Wu, and C. Wang. Adversarial symbolic execution for detecting
concurrency-related cache timing leaks. In Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2018.

32. Y. Ishai, A. Sahai, and D. A. Wagner. Private circuits: Securing hardware against
probing attacks. In International Cryptology Conference on Advances in Cryptology
(CRYPTO), pages 463–481, 2003.

33. P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In International Cryptology Conference on Advances in Cryptology
(CRYPTO), pages 104–113, 1996.

34. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proceedings of
International Cryptology Conference on Advances in Cryptology (CRYPTO), pages
388–397, 1999.

35. P. Malacaria and J. Heusser. Information theory and security: Quantitative infor-
mation flow. In Formal Methods for Quantitative Aspects of Programming Lan-
guages, 10th International School on Formal Methods for the Design of Computer,
Communication and Software Systems, (SFM), pages 87–134, 2010.

36. P. Malacaria, M. H. R. Khouzani, C. S. Pasareanu, Q. Phan, and K. S. Luckow.
Symbolic side-channel analysis for probabilistic programs. In Proceedings of the
31st IEEE Computer Security Foundations Symposium (CSF), pages 313–327,
2018.

37. A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
virtex-ii fpgas. In Proceedings of ACM Conference on Computer and Communica-
tions Security (CCS), pages 111–124, 2011.

38. A. Moss, E. Oswald, D. Page, and M. Tunstall. Compiler assisted masking. In
Proceedings of the 14th International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), pages 58–75, 2012.

39. A. Niemetz, M. Preiner, and A. Biere. Boolector 2.0 system description. Journal on
Satisfiability, Boolean Modeling and Computation, 9:53–58, 2014 (published 2015).

40. I. B. E. Ouahma, Q. Meunier, K. Heydemann, and E. Encrenaz. Symbolic approach
for side-channel resistance analysis of masked assembly codes. In Security Proofs
for Embedded Systems, 2017.

41. C. S. Pasareanu, Q. Phan, and P. Malacaria. Multi-run side-channel analysis using
symbolic execution and Max-SMT. In Proceedings of the IEEE 29th Computer
Security Foundations Symposium (CSF), pages 387–400, 2016.

42. Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan. Synthesis of
adaptive side-channel attacks. In Proceedings of the 30th IEEE Computer Security
Foundations Symposium (CSF), pages 328–342, 2017.

43. Q. Phan and P. Malacaria. Abstract model counting: a novel approach for quan-
tification of information leaks. In Proceedings of the 9th ACM Symposium on In-
formation, Computer and Communications Security (ASIACCS), pages 283–292,
2014.

44. Q. Phan, P. Malacaria, C. S. Pasareanu, and M. d’Amorim. Quantifying informa-
tion leaks using reliability analysis. In Proceedings of 2014 International Sympo-
sium on Model Checking of Software (SPIN), pages 105–108, 2014.

45. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In Proceedings of the 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Advances in Cryptology, pages 142–
159, 2013.

Verification of Masked Arithmetic Programs 19

46. J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In Proceedings of International Conference on
Research in Smart Cards (E-smart), pages 200–210, 2001.

47. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In Work-
shop on Cryptographic Hardware and Embedded Systems, pages 413–427, 2010.

48. K. Schramm and C. Paar. Higher order masking of the AES. In Proceedings of the
RSA Conference on Topics in Cryptology (CT-RSA), pages 208–225, 2006.

49. C. G. Val, M. A. Enescu, S. Bayless, W. Aiello, and A. J. Hu. Precisely measuring
quantitative information flow: 10k lines of code and beyond. In Proceedings of IEEE
European Symposium on Security and Privacy (EuroS&P), pages 31–46, 2016.

50. J. Zhang, P. Gao, F. Song, and C. Wang. SCInfer: Refinement-based verification of
software countermeasures against side-channel attacks. In Proceedings of the 30th
International Conference on Computer Aided Verification (CAV), Held as Part of
the Federated Logic Conference, pages 157–177, 2018.

	Quantitative Verification of Masked Arithmetic Programs against Side-Channel Attacks
	Introduction
	Preliminaries
	Cryptographic Programs
	Quantitative Masking Strength

	Three Key Techniques
	Type System
	Model-Counting based Reasoning
	Reduction Heuristics

	Overall Algorithms
	Perfect Masking Verification
	QMS Computing

	Practical Evaluation
	Experimental Results on Boolean Programs
	Experimental Results on Arithmetic Programs

	Conclusion

