
Separation Logic with Linearly
Compositional Inductive Predicates

and Set Data Constraints

Chong Gao1,2, Taolue Chen3, and Zhilin Wu1(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

wuzl@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China
3 Department of Computer Science and Information Systems,

Birkbeck, University of London, London, UK

Abstract. We identify difference-bound set constraints (DBS), an anal-
ogy of difference-bound arithmetic constraints for sets. DBS can express
not only set constraints but also arithmetic constraints over set ele-
ments. We integrate DBS into separation logic with linearly composi-
tional inductive predicates, obtaining a logic thereof where set data con-
straints of linear data structures can be specified. We show that the
satisfiability of this logic is decidable. A crucial step of the decision pro-
cedure is to compute the transitive closure of DBS-definable set relations,
to capture which we propose an extension of quantified set constraints
with Presburger Arithmetic (RQSPA). The satisfiability of RQSPA is
then shown to be decidable by harnessing advanced automata-theoretic
techniques.

1 Introduction

Separation Logic (SL) is a well-established approach for deductive verification
of programs that manipulate dynamic data structures [25,28]. Typically, SL is
used in combination with inductive definitions (SLID), which provides a natural
and convenient means to specify dynamic data structures. To reason about the
property (e.g. sortedness) of data values stored in data structures, it is also
necessary to incorporate data constraints into the inductive definitions.

One of the most fundamental questions for a logical theory is whether its sat-
isfiability is decidable. SLID with data constraints is no exception. This problem
becomes more challenging than one would probably expect, partially due to the
inherent intricacy brought up by inductive definitions and data constraints. It
is somewhat surprising that only disproportional research has addressed this
question (cf. Related work). In practice, most available tools based on SLID only
support heuristics without giving completeness guarantees, especially when data

Partially supported by the NSFC grants (No. 61472474, 61572478, 61872340), UK
EPSRC grant (EP/P00430X/1), and the INRIA-CAS joint research project VIP.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 206–220, 2019.
https://doi.org/10.1007/978-3-030-10801-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_17

Separation Logic with Linearly Compositional Inductive Predicates 207

constraints are involved. Complete decision procedures for satisfiability, however,
have been found important in software engineering tasks such as symbolic exe-
cution, specification debugging, counterexample generation, etc., let along the
theoretical insights they usually shed on the logic system.

The dearth of complete decision procedures for SLID with data constraints
has prompted us to launch a research program as of 2015, aiming to iden-
tify decidable and sufficiently expressive instances. We have made encouraging
progress insofar. In [15], we set up a general framework, but could only tackle
linear data structures with data constraints in difference-bound arithmetic. In
[34], we were able to tackle tree data structures by exploiting machineries such
as order graphs and counter machines, though the data constraints therein
remained to be in difference-bound arithmetic.

An important class of data constraints that is currently elusive in our inves-
tigations is set constraints. They are mandatory for reasoning about, e.g., invari-
ants of data collections stored in data structures. For instance, when specifying
the correctness of a sorting algorithm on input lists, whilst the sortedness of the
list can be described by difference-bound arithmetic constraints, the property
that the sorting algorithm does not change the set of data values on the list
requires inductive definitions with set data constraints. Indeed, reviewers of the
papers [15,34] constantly raised the challenge of set constraints, which compelled
us to write the current paper.

Main Contributions. Our first contribution is to carefully design the difference-
bound set constraints (DBS), and to integrate them into the linearly composi-
tional inductive predicates introduced in [15], yielding SLIDS

LC: SL with linearly
compositional inductive predicates and set data constraints. The rationale of DBS
is two-fold: (1) it must be sufficiently expressive to represent common set data
constraints as well as arithmetic constraints over set elements one usually needs
when specifying linear data structures, (2) because of the inductive predicates, it
must be sufficiently “simple” to be able to capture the transitive closure of DBS-
definable set relations1 in an effective means, in order to render the satisfiability
of SLIDS

LC decidable. As the second contribution, we show that the transitive
closure of DBS can indeed be captured in the restricted extension of quantified
set constraints with Presburger arithmetic (RQSPA) introduced in this paper.
Finally, our third contribution is to show that the satisfiability of RQSPA is
decidable by establishing a connection of RQSPA with Presburger automata
[29]. This extends the well-known connection of Monadic Second-Order logic on
words (MSOW) and finite-state automata a la Büchi and Elgot [5,11]. These
contributions, together with a procedure which constructs an abstraction (as an
RQSPA formula) from a given SLIDS

LC formula and which we adapt from our
previous work [15], show the satisfiability of SLIDS

LC is decidable.
We remark that sets are conceptually related to second—rather than first—

order logics. While the transitive closure of logic formulae with first-order
variables is somehow well-studied (especially for simple arithmetic; cf. Related
Work), the transitive closure of logic formulae with second-order variables is
1 This shall be usually referred to as “transitive closure of DBS” to avoid clumsiness.

208 C. Gao et al.

rarely addressed in literature. (They easily lead to undecidability.) To our best
knowledge, the computation of transitive closures of DBS here represents one
of the first practically relevant examples of the computation of this type for a
class of logic formulae with second-order variables, which may be of independent
interests.

Related Work. We first review the work on SLID with data constraints. (Due
to space limit, the work on SLID without data constraints will be skipped.)
In [7,8,23], SLID with set/multiset/size data constraints were considered, but
only (incomplete) heuristics were provided. To reason about invariants of data
values stored in lists, SL with list segment predicates and data constraints in
universally quantified Presburger arithmetic was considered [1]. The work [26,27]
provided decision procedures for SLID with data constraints by translating into
many-sorted first-order logic with reachability predicates. In particular, in [27,
Section 6], extensions of basic logic GRIT are given to cover set data constraints
as well as order constraints over set elements. However, it seems that this app-
roach does not address arithmetic constraints over set elements (cf. the “Limi-
tations” paragraph in the end of Sect. 6 in [27]). For instance, a list where the
data values in adjacent positions are consecutive can be captured in SLIDS

LC

(see the predicate plseg in Sect. 3), but appears to go beyond the work [26,27].
Moreover, there is no precise characterisation of the limit of extensions under
which the decidability retains. The work [13] introduced the concept of composi-
tional inductive predicates, which may alleviate the difficulties of the entailment
problem for SLID. Nevertheless, [13] only provided sound heuristics rather than
decision procedures. More recently, the work [21,31] investigated SLID with
Presburger arithmetic data constraints.

Furthermore, several logics other than separation logic have been consid-
ered to reason about both shape properties and data constraints of data struc-
tures. The work [30] proposed a generic decision procedure for recursive algebraic
data types with abstraction functions encompassing lengths (sizes) of data struc-
tures, sets or multisets of data values as special cases. Nevertheless, the work
[30] focused on functional programs while this work aims to verify imperative
programs, which requires to reason about partial data structures such as list seg-
ments (rather than complete data structures such as lists). It is unclear how the
decision procedure in [30] can be generalised to partial data structures. The work
[22] introduced STRAND, a fragment of monadic second-order logic, to reason
about tree structures. Being undecidable in general, several decidable fragments
were identified. STRAND does not provide an explicit means to describe sets of
data values, although it allows using set variables to represent sets of locations.

Our work is also related to classical logics with set constraints, for which
we can only give a brief (but by no means comprehensive) summary. Presburger
arithmetic extended with sets was studied dating back to 80’s, with highly unde-
cidability results [6,16]. However, decidable fragments do exist: [33] studied the
non-disjoint combination of theories that share set variables and set operations.
[20] considered QFBAPA<

∞, a quantifier-free logic of sets of real numbers sup-
porting integer sets and variables, linear arithmetic, the cardinality operator,

Separation Logic with Linearly Compositional Inductive Predicates 209

infimum and supremum. [17,32] investigated two extensions of the Bernays-
Schönfinkel-Ramsey fragment of first-order predicate logic (BSR) with simple
linear arithmetic over integers and difference-bound constraints over reals (but
crucially, the ranges of the universally quantified variables must be bounded).
Since the unary predicate symbols in BSR are uninterpreted and represent sets
over integers or reals, the two extensions of BSR can also be used to specify
the set constraints on integers or reals. [10] presented a decision procedure for
quantifier-free constraints on restricted intensional sets (i.e., sets given by a prop-
erty rather than by enumerating their elements). None of these logics are able
to capture the transitive closure of DBS as RQSPA does. MSOW extended
with linear cardinality constraints was investigated in [18]. Roughly speaking,
RQSPA can be considered as an extension of MSOW with linear arithmetic
expressions on the maximum or minimum value of free set variables. Therefore,
the two extensions in [18] and this paper are largely incomparable.

In contrast to set constraints, the computation of transitive closures of rela-
tions definable in first-order logic (in particular, difference-bound and octagonal
arithmetic constraints) has been considered in for instance, [2–4,9,19].

2 Logics for Sets

We write Z, N for the set of integers and natural numbers; SZ and SN for finite
subsets of Z and N. For n ∈ N, [n] stands for {1, · · · , n}. We shall work exclusively
on finite subsets of Z or N unless otherwise stated. For any finite A �= H, we
write min(A) and max(A) for the minimum and maximum element of A. These
functions, however, are not defined over empty sets.

In the sequel, we introduce a handful of logics for sets which will be used
later in this paper. We mainly consider two data types, i.e., integer type Z and
(finite) set type SZ. Typically, c, c′, · · · ∈ Z and A,A′, · · · ∈ SZ. Accordingly,
two types of variables occur: integer variables (ranged over by x, y, · · ·) and set
variables (ranged over by S, S′, · · ·). Furthermore, we reserve �� ∈ {=,≤,≥} for
comparison operators between integers,2 and � ∈ {=,⊆,⊇,⊂,⊃} for comparison
operators between sets. We start with difference-bound set constraints (DBS).

Definition 1 (Difference-bound set constraints). Formulae of DBS are
defined by the rules:

ϕ ::= S = S′ ∪ Ts | Ti �� Ti + c | ϕ ∧ ϕ
Ts ::= H | {min(S)} | {max(S)} | Ts ∪ Ts (set terms)
Ti ::= min(S) | max(S) (integer terms)

Remark. DBS is a rather limited logic, but it has been carefully devised to serve
the data formulae in inductive predicates of SLIDS

LC[P] (cf. Sect. 3). In particular,
we remark that only conjunction, but not disjunction, of atomic constraints is
2 The operators < and > can be seen as abbreviations, for instance, x < y is equivalent

to x ≤ y − 1, which will be used later on as well.

210 C. Gao et al.

allowed. The main reason is, once the disjunction is introduced, the computation
of transitive closures becomes infeasible simply because one would be able to
encode the computation of Minsky’s two-counter machines. �

To capture the transitive closure of DBS, we introduce Restricted extension of
Quantified Set constraints with Presburger Arithmetic3 (RQSPA). Intuitively,
an RQSPA formula is a quantified set constraint extended with Presburger
Arithmetic satisfying the following restriction: each atomic formula containing
quantified variables must be a difference-bound arithmetic constraint.

Definition 2 (Restricted extension of Quantified Set constraints with
Presburger Arithmetic). Formulae of RQSPA are defined by the rules:

Φ ::= Ts � Ts | Ti �� Ti + c | Tm �� 0 | Φ ∧ Φ | ¬Φ | ∀x. Φ | ∀S. Φ,

Ts ::= H | S | {Ti} | Ts ∪ Ts | Ts ∩ Ts | Ts \ Ts,

Ti ::= c | x | min(Ts) | max(Ts),
Tm ::= c | x | max(Ts) | min(Ts) | Tm + Tm | Tm − Tm.

Here, Ts (resp. Ti) represents set (resp. integer) terms which are more general
than those in DBS, and Tm terms are Presburger arithmetic expressions. Let
Vars(Φ) (resp. free(Φ)) denote the set of variables (resp. free variables) occurring
in Φ. We require that all set variables in atomic formulae Tm �� 0 are
free. To make the free variables explicit, we usually write Φ(x ,S) for a RQSPA
formula Φ. Free variable names are assumed not to clash with the quantified ones.

Example 1. max(S1 ∪ S2) − min(S1) − max(S2) < 0 and ∀S1∀S2.(S2 �= H →
max(S2) ≤ max(S1 ∪ S2)) are RQSPA formulae, while ∀S2. max(S1 ∪ S2) −
min(S1) − max(S2) < 0 is not. �

The work [6], among others, studied Presburger arithmetic extended with Sets
(PS), which is quantifier-free RQSPA formulae. In this paper, PS will serve
the data formula part of SLIDS

LC[P], and we reserve Δ,Δ′, . . . to denote formulae
from PS (see Sect. 3).

Semantics. All of these logics (DBS, RQSPA, PS) can be considered as
instances of weak monadic second-order logic, and thus their semantics are
largely self-explanatory. In particular, set variables are interpreted as finite sub-
sets of Z and integer variables are interpreted as integers. We emphasize that,
if a set term Ts is interpreted as H, min(Ts) and max(Ts) are undefined. As
a result, we stipulate that any atomic formula containing an undefined
term is interpreted as false.

For an RQSPA formula Φ(x ,S) with x =(x1, · · · , xk) and S =(S1, · · · , Sl),
L(Φ(x ,S)) denotes

{(n1, · · · , nk, A1, · · · , Al) ∈ Z
k × S

l
Z
| Φ(n1, · · · , nk, A1, · · · , Al)}.

3 An unrestricted extension of quantified set constraints with Presburger Arithmetic
is undecidable, as shown in [6].

Separation Logic with Linearly Compositional Inductive Predicates 211

As expected, typically we use DBS formulae to define relations between (tuples
of) sets from S

k
Z
. We say a relation R ⊆ S

k
Z
× S

k
Z

a difference-bound set relation
if there is a DBS formula ϕ(S ,S ′) over set variables S and S ′ such that R =
{(A,A′) ∈ S

k
Z
× S

k
Z

| ϕ(A,A′)}. The transitive closure of R is defined in a
standard way, viz.,

⋃

i≥0

Ri, where R0 = {(A,A) | A ∈ S
k
Z
} and Ri+1 = Ri · R.

3 Linearly Compositional SLID with Set Data
Constraints

In this section, we introduce separation logic with linearly compositional induc-
tive predicates and set data constraints, denoted by SLIDS

LC[P], where P is an
inductive predicate. In addition to the integer and set data types introduced in
Sect. 2, we also consider the location data type L. As a convention, l, l′, · · · ∈ L

denote locations and E,F,X, Y, · · · range over location variables. We consider
location fields associated with L and data fields associated with Z.

SLIDS
LC[P] formulae may contain inductive predicates, each of which is of

the form P (α;β; ξ) and has an associated inductive definition. The parameters
are classified into three groups: source parameters α, destination parameters
β, and static parameters ξ. We require that the source parameters α and the
destination parameters β are matched in type, namely, the two tuples have the
same length � > 0 and for each i ∈ [�], αi and βi have the same data type.
Static parameters are typically used to store some static (global) information of
dynamic data structures, e.g., the target location of tail pointers. Moreover, we
assume that for each i ∈ [�], αi is of either the location type, or the set type.
(There are no parameters of the integer type.) Without loss of generality, it is
assumed that the first components of α and β are location variables; we usually
explicitly write E,α and F,β.

SLIDS
LC[P] formulae comprise three types of formulae: pure formulae Π, data

formulae Δ, and spatial formulae Σ. The data formulae are simply PS intro-
duced in Sect. 2, while Π and Σ are defined by the following rules,

Π ::= E = F | E �= F | Π ∧ Π (pure formulae)
Σ ::= emp | E �→ (ρ) | P (E,α;F,β; ξ) | Σ ∗ Σ (spatial formulae)
ρ ::= (f,X) | (d, Ti) | ρ, ρ (fields)

where Ti is an integer term as in Definition 2, and f (resp. d) is a location
(resp. data) field. For spatial formulae Σ, formulae of the form emp, E �→ (ρ), or
P (E,α;F,β; ξ) are called spatial atoms. In particular, formulae of the form E �→
(ρ) and P (E,α;F,β; ξ) are called points-to and predicate atoms respectively.
Moreover, E is the root of these points-to or predicate atoms.

Linearly Compositional Inductive Predicates. An inductive predicate P is lin-
early compositional if the inductive definition of P is given by the following two
rules,

212 C. Gao et al.

– base rule R0 : P (E,α;F,β; ξ) ::= E = F ∧ α = β ∧ emp,
– inductive rule R1 : P (E,α;F,β; ξ) ::= ∃X∃S . ϕ∧E �→ (ρ)∗P (Y,γ;F,β; ξ).

The left-hand (resp. right-hand) side of a rule is called the head (resp. body) of
the rule.

In the sequel, we specify some constraints on the inductive rule R1 which are
vital to obtain complete decision procedures for the satisfiability problem.

C1 None of the variables from F,β occur elsewhere in the right-hand side of
R1, that is, in ϕ, E �→ (ρ).

C2 The data constraint ϕ in the body of R1 is a DBS formula.
C3 For each atomic formula in ϕ, there is i such that all the variables in the

atomic formula are from {αi, γi}.
C4 Each variable occurs in each of P (Y,γ;F,β; ξ) and ρ at most once.
C5 ξ contains only location variables and all location variables from α∪ ξ ∪X

occur in ρ.
C6 Y ∈ X and γ ⊆ {E} ∪X ∪ S .

Note that, by C6, none of the variables from α∪ξ occur in γ. Moreover, from C5
and C6, Y occurs in ρ, which guarantees that in each model of P (E,α;F,β; ξ),
the sub-heap represented by P (E,α;F,β; ξ), seen as a directed graph, is con-
nected. We also note that the body of R1 does not contain pure formulae. We
remark that these constraints are undeniably technical. However, in practice the
inductive predicates satisfying these constraints are usually sufficient to define
linear data structures with set data constraints, cf. Example 2.

For an inductive predicate P , let Flds(P) denote the set of all fields occurring
in the inductive rules of P . For a spatial atom a, let Flds(a) denote the set of
fields that a refers to: if a = E �→ (ρ), then Flds(a) is the set of fields occurring
in ρ; if a = P (−), then Flds(a) = Flds(P).

We write SLIDS
LC[P] for the collection of separation logic formulae φ = Π ∧

Δ ∧ Σ satisfying the following constraints: (1) P is a linearly compositional
inductive predicate, and (2) each predicate atom of Σ is of the form P (−), and
for each points-to atom occurring in Σ, the set of fields of this atom is Flds(P).

For an SLIDS
LC[P] formula φ, let Vars(φ) (resp. LVars(φ), resp. DVars(φ), resp.

SVars(φ)) denote the set of (resp. location, resp. integer, resp. set) variables
occurring in φ. Moreover, we use φ[μ/α] to denote the simultaneous replacement
of the variables αj by μj in φ. We adopt the standard classic, precise semantics
of SLIDS

LC[P] in terms of states. In particular, a state is a pair (s, h), where s is
an assignment and h is a heap. The details can be found in [14].

Example 2. We collect a few examples of linear data structures with set data
constraints definable in SLIDS

LC[P]:

Separation Logic with Linearly Compositional Inductive Predicates 213

sdllseg for sorted doubly linked list segments,
sdllseg(E, P, S;F, L, S′) ::= E = F ∧ P = L ∧ S = S′ ∧ emp,
sdllseg(E, P, S;F, L, S′) ::= ∃X, S′′. S = S′′ ∪ {min(S)} ∧

E �→ ((next, X), (prev, P), (data,min(S))) ∗ sdllseg(X, E, S′′;F, L, S′).
plseg for list segments where the data values are consecutive,

plseg(E, S; F, S′) ::= E = F ∧ S = S′ ∧ emp,
plseg(E, S; F, S′) ::= ∃X, S′′. S = S′′ ∪ {min(S)} ∧ min(S′′) = min(S) + 1 ∧

E �→ ((next, X), (data, min(S))) ∗ plseg(X, S′′; F, S′).
ldllseg for doubly list segments, to mimic lengths with sets,

ldllseg(E, P, S; F, L, S′) ::= E = F ∧ P = L ∧ S = S′ ∧ emp,
ldllseg(E, P, S; F, L, S′) ::= ∃X, S′′. S = S′′ ∪ {max(S)} ∧ max(S′′) = max(S) − 1∧

E �→ ((next, X), (prev, P)) ∗ ldllseg(X, E, S′′; F, L, S′).

4 Satisfiability of SLIDS
LC[P]

The satisfiability problem is to decide whether there is a state (an assignment-
heap pair) satisfying φ for a given SLIDS

LC[P] formula φ. We shall follow the
approach adopted in [12,15], i.e., to construct Abs(φ), an abstraction of φ that
is equisatisfiable to φ. The key ingredient of the construction is to compute the
transitive closure of the data constraints extracted from the inductive rule of P .

Let φ = Π ∧ Δ ∧ Σ be an SLIDS
LC[P] formula. Suppose Σ = a1 ∗ · · · ∗ an,

where each ai is either a points-to atom or a predicate atom. For predicate atom
ai = P (Z1,μ;Z2,ν;χ) we assume that the inductive rule for P is

R1 : P (E,α;F,β; ξ) ::=∃X∃S . ϕ ∧ E �→ (ρ) ∗ P (Y,γ;F,β; ξ). (1)

We extract the data constraint ϕP (dt(α), dt(β)) out of R1. Formally, we
define ϕP (dt(α), dt(β)) as ϕ[dt(β)/dt(γ)], where dt(α) (resp. dt(γ), dt(β)) is
the projection of α (resp. γ, β) to data variables. For instance, ϕldllseg(S, S′) :=
(S = S′′ ∪ {max(S)} ∧ max(S′′) = max(S) − 1) [S′/S′′] = S = S′ ∪ {max(S)} ∧
max(S′) = max(S) − 1.

We can construct Abs(φ) with necessary adaptations from [15]. For each spa-
tial atom ai, Abs(φ) introduces a Boolean variable to denote whether ai corre-
sponds to a nonempty heap or not. With these Boolean variables, the semantics
of separating conjunction are encoded in Abs(φ). Moreover, for each predicate
atom ai, Abs(φ) contains an abstraction of ai, where the formulae Ufld1(ai) and
Ufld≥2(ai) are used. Intuitively, Ufld1(ai) and Ufld≥2(ai) correspond to the sep-
aration logic formulae obtained by unfolding the rule R1 once and at least twice
respectively. We include the construction here so one can see the role of the
transitive closure in Abs(φ). The details of Abs(φ) can be found in [14].

Let ai = P (Z1,μ;Z2,ν;χ) and R1 be the inductive rule in Eq. (1). If E
occurs in γ in the body of R1, we use idx(P,γ,E) to denote the unique index j
such that γj = E. (The uniqueness follows from C4.)

Definition 3 (Ufld1(ai) and Ufld≥2(ai)). Ufld1(ai) and Ufld≥2(ai) are defined
by distinguishing the following two cases:

214 C. Gao et al.

– If E occurs in γ in the body of R1, then Ufld1(ai) := (E = βidx(P,γ,E) ∧
ϕP (dt(α), dt(β)))[Z1/E,μ/α, Z2/F,ν/β,χ/ξ] and Ufld≥2(ai) :=
⎛
⎝

E �= βidx(P,γ,E)
∧ E �= γ2,idx(P,γ,E)

∧
ϕP [dt(γ1)/dt(β)] ∧ ϕP [dt(γ1)/dt(α), dt(γ2)/dt(β)] ∧
(TC[ϕP])[dt(γ2)/dt(α)]

⎞
⎠ [Z1/E, μ/α, Z2/F, ν/β, χ/ξ],

where γ1 and γ2 are fresh variables.
– Otherwise, let Ufld1(ai) := ϕP [Z1/E,μ/α, Z2/F,ν/β,χ/ξ] and

Ufld≥2(ai) :=

⎛
⎝

ϕP [dt(γ1)/dt(β)] ∧
ϕP [dt(γ1)/dt(α), dt(γ2)/dt(β)] ∧
(TC[ϕP])[dt(γ2)/dt(α)]

⎞
⎠ [Z1/E, μ/α, Z2/F, ν/β, χ/ξ],

where γ1 and γ2 are fresh variables.

Here, TC[ϕP](dt(α), dt(β)) denotes the transitive closure of ϕP . In Sect. 5, it will
be shown that TC[ϕP](dt(α), dt(β)) can be written as an RQSPA formula. As a
result, since we are only concerned with satisfiability and can treat the location
data type L simply as integers Z, Abs(φ) can also be read as an RQSPA formula.
In Sect. 6, we shall show that the satisfiability of RQSPA is decidable. Following
this chain of reasoning, we conclude that the satisfiability of SLIDS

LC[P] formulae
is decidable.

5 Transitive Closure of Difference-Bound Set Relations

In this section, we show how to compute the transitive closure of the difference-
bound set relation R given by a DBS formula ϕR(S ,S ′). Our approach is, in a
nutshell, to encode TC[ϕR](S ,S ′) into RQSPA. We shall only sketch part of a
simple case, i.e., in ϕR(S, S′) only one source and destination set parameter are
present. The details are however given in [14].

Recall that, owing to the simplicity of DBS, the integer terms Ti in ϕR(S, S′)
can only be min(S), max(S), min(S′) or max(S′), whereas the set terms Ts are
H, {min(S)}, {min(S′)}, {max(S)}, {max(S′)}, or their union. For reference,
we write ϕR(S, S′) = ϕR,1 ∧ ϕR,2, where ϕR,1 is an equality of set terms (i.e.,
they are of the form S = S′ ∪ Ts or S′ = S ∪ Ts), and ϕR,2 is a conjunction
of constraints over integer terms (i.e., a conjunction of formulae Ti ≤ Ti + c).
ϕR,1 and ϕR,2 will be referred to as the set and integer subformula of ϕR(S, S′)
respectively. We shall focus on the case ϕR,1 := S = S′ ∪ Ts. The symmetrical
case ϕR,1 := S′ = S ∪ Ts can be adapted easily.

The integer subformula ϕR,2 can be represented by an edge-weighted directed
graph G(ϕR,2), where the vertices are all integer terms appearing in ϕR,2, and
there is an edge from T1 to T2 with weight c iff T1 = T2 + c (equivalent to
T2 = T1 − c), or T1 ≤ T2 + c, or T2 + c ≥ T1 appears in ϕR,2. The weight
of a path in G(ϕR,2) is the sum of the weights of the edges along the path.
A negative cycle in G(ϕR,2) is a cycle with negative weight. It is known that
ϕR,2 is satisfiable iff G(ϕR,2) contains no negative cycles [24]. Suppose ϕR,2 is
satisfiable. We define the normal form of ϕR,2, denoted by Norm(ϕR,2), as the

Separation Logic with Linearly Compositional Inductive Predicates 215

conjunction of the formulae T1 ≤ T2 + c such that T1 �= T2, T2 is reachable from
T1 in G(ϕR,2), and c is path from T1 to T2 with the minimal weight in G(ϕR,2).

S (resp. S′) is said to be surely nonempty in ϕR if min(S) or max(S)
(resp. min(S′) or max(S′)) occurs in ϕR; otherwise, S (resp. S′) is
possibly empty in ϕR. Recall that, according to the semantics, an occurrence
of min(S) or max(S) (resp. min(S′) or max(S′)) in ϕR implies that S (resp. S′)
is interpreted as a nonempty set in every satisfiable assignment. Provided that
S′ is nonempty, we know that min(S′) and max(S′) belong to S′. Therefore, for
simplicity, here we assume that in S = S′ ∪ Ts, Ts contains neither min(S′) nor
max(S′). The situation that Ts contains min(S′) and max(S′) can be dealt with
in a similar way.

Saturation. For technical convenience, we introduce a concept of saturation. The
main purpose of saturation is to regularise Ts and ϕR,2, which would make the
transitive closure construction more “syntactic”.

Definition 4. Let ϕR(S, S′) := S = S′ ∪ Ts ∧ ϕR,2 be a DBS formula. Then
ϕR(S, S′) is saturated if ϕR(S, S′) satisfies the following conditions

– ϕR,2 is satisfiable and in normal forms,
– Ts ⊆ {max(S),min(S)},
– if S (resp. S′) is surely nonempty in ϕR, then ϕR,2 contains a conjunct

min(S) ≤ max(S) − c for some c ≥ 0 (resp. min(S′) ≤ max(S′) − c′ for
some c′ ≥ 0),

– if both S and S′ are surely nonempty in ϕR, then
• ϕR,2 contains two conjuncts min(S) ≤ min(S′) − c and max(S′) ≤

max(S) − c′ for some c, c′ ≥ 0,
• min(S) �∈ Ts iff ϕR,2 contains the conjuncts min(S) ≤ min(S′) and

min(S′) ≤ min(S),
• max(S) �∈ Ts iff ϕR,2 contains the conjuncts max(S′) ≤ max(S) and

max(S) ≤ max(S′),
– if ϕR,2 contains the conjuncts min(S) ≤ max(S) and max(S) ≤ min(S), then

max(S) �∈ Ts (possibly min(S) ∈ Ts).

For a formula ϕR(S, S′) := S = S′ ∪ Ts ∧ ϕR,2, one can easily saturate ϕR,
yielding a saturated formula Strt(ϕR(S, S′)). (It is possible, however, to arrive
at an unsatisfiable formula, then we are done.)

Proposition 1. Let ϕR(S, S′) := ϕR,1 ∧ ϕR,2 be a DBS formula such that
ϕR,1 := S = S′ ∪ Ts and ϕR,2 is satisfiable. Then ϕR can be transformed, in
polynomial time, to an equisatisfiable formula Strt(ϕR(S, S′)), and if the integer
subformula of Strt(ϕR(S, S′)) is satisfiable, then Strt(ϕR(S, S′)) is saturated.

In the sequel, we assume that ϕR(S, S′) := ϕR,1 ∧ϕR,2 is satisfiable and sat-
urated. For notational convenience, for A ⊆ {min(S),max(S),min(S′),max(S′)}
with |A| = 2, let �ϕR,2�A denote the conjunction of atomic formulae in ϕR,2

where all the elements of A occur.

216 C. Gao et al.

Evidently, �ϕR,2�A gives a partition of atomic formulae of ϕR,2. Namely,

ϕR,2 =
∧

A⊆{min(S),max(S),min(S′),max(S′)},|A|=2
�ϕR,2�A.

We proceed by a case-by-case analysis of ϕR,1. There are four cases: (I) ϕR,1 :=
S = S′, (II) ϕR,1 := S = S′ ∪ {min(S)}, (III) ϕR,1 = S = S′ ∪ {max(S)} and
(IV) ϕR,1 = S = S′ ∪ {min(S),max(S)}. Case (I) is trivial, and Case (III) is
symmetrical to (II). However, both (II) and (IV) are technically involved. We
shall only give a “sample” treatment of these cases, i.e., part of arguments for
Case (II); the full account of Case (II) and (IV) are given in [14].

To start with, Case (II) can be illustrated schematically

as | −
S′

︷ ︸︸ ︷
| − − −−−−|

︸ ︷︷ ︸
S

. We observe that S is surely nonempty in ϕR. We then

distinguish two subcases depending on whether S′ is possibly empty or surely
nonempty in ϕR. Here we give the details of the latter subcase because it is more
interesting. In this case, both S and S′ are surely nonempty in ϕR. By Defini-
tion 4 (4–5), ϕR,2 contains a conjunct min(S) ≤ min(S′) − c for some c ≥ 0, as
well as max(S′) ≤ max(S) and max(S) ≤ max(S′) (i.e., max(S′) = max(S)).
Therefore, we can assume

ϕR,2 = max(S′) ≤ max(S) ∧ max(S) ≤ max(S′) ∧ �ϕR,2�min(S),min(S′) ∧
�ϕR,2�min(S),max(S) ∧ �ϕR,2�min(S′),max(S′).

Note that in ϕR,2 above, the redundant subformulae �ϕR,2�min(S),max(S′) and
�ϕR,2�min(S′),max(S) have been omitted.

The formula �ϕR,2�min(S),min(S′) is said to be strict if it contains a conjunct
min(S) ≤ min(S′) − c for some c > 0. Otherwise, it is said to be non-strict.
Intuitively, if �ϕR,2�min(S),min(S′) is strict, then for n, n′ ∈ Z, the validity of
(�ϕR,2�min(S),min(S′))[n/min(S), n′/min(S′)] implies that n < n′. For the sketch
we only present the case that �ϕR,2�min(S),min(S′) is strict ; the other cases are
similar and can be found in [14].

Evidently, TC[ϕR](S, S′) can be written as (S = S′) ∨ ∨

n≥1

ϕ
(n)
R , where ϕ

(n)
R

is obtained by unfolding ϕR for n times, that is,

ϕ
(n)
R = ∃S1, · · · , Sn+1.

(
S1 = S ∧ Sn+1 = S′ ∧∧
i∈[n]

(Si = Si+1 ∪ {min(Si)} ∧ ϕR,2[Si/S, Si+1/S′])

)
,

where ϕR,2[Si/S, Si+1/S′] is obtained from ϕR,2 by replacing S (resp. S′) with
Si (resp. Si+1).

Clearly, ϕ
(1)
R = ϕR, and

ϕ
(2)
R = ∃S2. (S = S2 ∪ {min(S)} ∧ S2 = S′ ∪ {min(S2)} ∧ ϕR,2[S2/S′] ∧

ϕR,2[S2/S]).

Separation Logic with Linearly Compositional Inductive Predicates 217

For ϕ
(n)
R where n ≥ 3, we first simplify ϕ

(n)
R to construct a finite formula for

TC[ϕR](S, S′). The subformula
∧

i∈[n]

(Si = Si+1∪{min(Si)}∧ϕR,2[Si/S, Si+1/S′])

can be rewritten as

∧
i∈[n]

⎛
⎝Si = Si+1 ∪ {min(Si)} ∧ max(Si) = max(Si+1) ∧

(ϕR,2
min(S),min(S′)[Si/S, Si+1/S′]) ∧ (ϕR,2
min(S),max(S)[Si/S]) ∧
(ϕR,2
min(S′),max(S′)[Si+1/S′])

⎞
⎠ .

Because Si = Si+1 ∪ {min(Si)} for each i ∈ [n], we have max(S1) = · · · =
max(Sn) and min(S1) ≤ · · · ≤ min(Sn). Since �ϕR,2�min(S),max(S) is a con-
junction of difference-bound constraints involving min(S) and max(S) only, we
have

∧

i∈[n]

�ϕR,2�min(S),max(S)[Si/S] is equivalent to �ϕR,2�min(S),max(S)[S1/S] ∧
�ϕR,2�min(S),max(S)[Sn/S]. To see this, assume, for instance,

�ϕR,2�min(S),max(S) ≡ c ≤ max(S) − min(S) ≤ c′

for some constants c, c′ ≥ 0 with c ≤ c′. Then max(S1) − min(S1) ≤ c′

implies max(Si) − min(Si) ≤ c′ for each i ∈ [n], and c ≤ max(Sn) − min(Sn)
implies c ≤ max(Si) − min(Si) for each i ∈ [n]. Therefore, �ϕR,2�min(S),max(S)

[S1/S] ∧ �ϕR,2�min(S),max(S)[Sn/S] ≡ c ≤ max(S1) − min(S1) ≤ c′ ∧
c ≤ max(Sn) − min(Sn) ≤ c′ implies that

∧

i∈[n]

�ϕR,2�min(S),max(S)[Si/S],

thus they are equivalent. (The other direction is trivial.) Likewise,
one has �ϕR,2�min(S′),max(S′)[S2/S′] ∧ �ϕR,2�min(S′),max(S′)[Sn+1/S′] implies
∧

i∈[n]

�ϕR,2�min(S′),max(S′)[Si+1/S′], thus they are equivalent. Therefore, ϕ
(n)
R can

be transformed into

∃S2, Sn.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

	ϕR,2
min(S),max(S) ∧ (ϕR,2
min(S),max(S)[Sn/S]) ∧
(ϕR,2
min(S′),max(S′)[S2/S′]) ∧ 	ϕR,2
min(S′),max(S′) ∧ S = S2 ∪ {min(S)} ∧
Sn = S′ ∪ {min(Sn)} ∧max(S) = max(S2) ∧max(Sn) = max(S′) ∧
(ϕR,2
min(S),min(S′)[S2/S′]) ∧ (ϕR,2
min(S),min(S′)[Sn/S])∧
∃S3, · · · , Sn−1.

∧
2≤i≤n−1

(
Si = Si+1 ∪ {min(Si)} ∧max(Si) = max(Si+1) ∧
(ϕR,2
min(S),min(S′)[Si/S, Si+1/S′])

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Claim. Suppose n ≥ 3 and �ϕR,2�min(S),min(S′) is strict. Then

∃S3, · · · , Sn−1.
∧

2≤i≤n−1

(
Si = Si+1 ∪ {min(Si)} ∧ max(Si) = max(Si+1) ∧
(�ϕR,2�min(S),min(S′)[Si/S, Si+1/S′])

)

is equivalent to
Sn �= H ∧ S2 \ Sn �= H ∧ Sn ⊆ S2 ∧ |S2 \ Sn| = n − 2 ∧max(S2 \ Sn) < min(Sn) ∧
∀y, z. succ((S2 \ Sn) ∪ {min(Sn)}, y, z) → (ϕR,2
min(S),min(S′)[y/min(S), z/min(S′)]),

where succ(S, x, y) specifies intuitively that y is the successor of x in S, that is,

succ(S, x, y) = x ∈ S ∧ y ∈ S ∧ x < y ∧ ∀z ∈ S. (z ≤ x ∨ y ≤ z).

Note that | · | denotes the set cardinality which can be easily encoded into
RQSPA. ([14] gives the proof of the claim.) It follows that TC[ϕR](S, S′) =

218 C. Gao et al.

(S = S′) ∨ ϕR(S, S′) ∨ ϕ
(2)
R (S, S′) ∨

∃S1, S2.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S = S1 ∪ {min(S)} ∧ S2 = S′ ∪ {min(S2)} ∧
max(S) = max(S1) ∧max(S2) = max(S′) ∧
S2 �= H ∧ S1 \ S2 �= H ∧ S2 ⊆ S1 ∧max(S1 \ S2) < min(S2) ∧
	ϕR,2
min(S),max(S) ∧ (ϕR,2
min(S),max(S)[S2/S]) ∧
(ϕR,2
min(S′),max(S′)[S1/S′]) ∧ 	ϕR,2
min(S′),max(S′) ∧
(ϕR,2
min(S),min(S′)[S1/S′]) ∧ (ϕR,2
min(S),min(S′)[S2/S]) ∧
∀y, z.

(
succ((S1 \ S2) ∪ {min(S2)}, y, z) →

(ϕR,2
min(S),min(S′)[y/min(S), z/min(S′)])

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

6 Satisfiability of RQSPA
In this section, we focus on the second ingredient of the procedure for deciding
satisfiability of SLIDS

LC[P], i.e., the satisfiability of RQSPA. We first note that
RQSPA is defined over Z. To show the decidability, it turns to be much easier
to work on N. We shall write RQSPAZ and RQSPAN to differentiate them
when necessary. Moreover, for technical reasons, we also introduce RQSPA−,
the fragment of RQSPA excluding formulae of the form Tm �� 0.

The decision procedure for the satisfiability of RQSPA proceeds with the
following three steps:

Step I. Translate RQSPAZ to RQSPAN,
Step II. Normalize an RQSPAN formula Φ(x ,S) into

∨

i

(Φ(i)
core ∧Φ

(i)
count), where

Φ
(i)
core is an RQSPA−

N
formula, and Φ

(i)
count is a conjunction of formulae of the

form Tm �� 0 which contain only variables from x ∪ S ,
Step III. For each disjunct Φ

(i)
core ∧ Φ

(i)
count, construct a Presburger automaton

(PA) A(i)
Φ which captures the models of Φ

(i)
core ∧ Φ

(i)
count. Satisfiability is thus

reducible to the nonemptiness of PA, which is decidable [29].

These steps are technically involved. In particular, the third step requires exploit-
ing Presburger automata [29]. The details can be found in [14].

7 Conclusion

In this paper, we have defined SLIDS
LC, SL with linearly compositional inductive

predicates and set data constraints. The main feature is to identify DBS as a
special class of set data constraints in the inductive definitions. We encoded the
transitive closure of DBS into RQSPA, which was shown to be decidable. These
together yield a complete decision procedure for the satisfiability of SLIDS

LC.
The precise complexity of the decision procedure—Nonelementary is the

best upper-bound we have now—is left open for further studies. Furthermore,
the entailment problem of SLIDS

LC is an immediate future work.

Separation Logic with Linearly Compositional Inductive Predicates 219

References

1. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 167–182. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33386-6 14

2. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: TACAS, pp. 337–351 (2009)
3. Bozga, M., Iosif, R., Konecný, F.: Fast acceleration of ultimately periodic relations.

In: CAV, pp. 227–242 (2010)
4. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundam.

Inf. 91(2), 275–303 (2009)
5. Büchi, R.J.: Weak Second-Order arithmetic and finite automata. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 6(1–6), 66–92 (1960)
6. Cantone, D., Cutello, V., Schwartz, J.T.: Decision problems for tarski and pres-

burger arithmetics extended with sets. In: Börger, E., Kleine Büning, H., Richter,
M.M., Schönfeld, W. (eds.) CSL 1990. LNCS, vol. 533, pp. 95–109. Springer, Hei-
delberg (1991). https://doi.org/10.1007/3-540-54487-9 54

7. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

8. Chu, D.-H., Jaffar, J., Trinh, M.-T.: Automatic induction proofs of data-structures
in imperative programs. In: PLDI, pp. 457–466 (2015)

9. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028751

10. Cristiá, M., Rossi, G.: A decision procedure for restricted intensional sets. In: de
Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 185–201. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 12

11. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–51 (1961)

12. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment check-
ing for a fragment of separation logic. In: APLAS, pp. 314–333 (2014)

13. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separation
logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA
2015. LNCS, vol. 9364, pp. 80–96. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 7

14. Gao, C., Chen, T., Wu, Z.: Separation logic with linearly compositional inductive
predicates and set data constraints (full version). http://arxiv.org/abs/1811.00699

15. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional
separation logic with data constraints. In: Olivetti, N., Tiwari, A. (eds.) IJCAR
2016. LNCS (LNAI), vol. 9706, pp. 532–549. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40229-1 36

16. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 -complete. J.

Symb. Logic 56(2), 637–642 (1991)
17. Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the Bernays–

Schönfinkel–Ramsey fragment with simple linear integer arithmetic. In: de Moura,
L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 77–94. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63046-5 6

18. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 681–696. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45061-0 54

https://doi.org/10.1007/978-3-642-33386-6_14
https://doi.org/10.1007/3-540-54487-9_54
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/978-3-319-63046-5_12
https://doi.org/10.1007/978-3-319-24953-7_7
https://doi.org/10.1007/978-3-319-24953-7_7
http://arxiv.org/abs/1811.00699
https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-319-63046-5_6
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54

220 C. Gao et al.

19. Konečný, F.: PTIME computation of transitive closures of octagonal relations. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 645–661.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 42

20. Kuncak, V., Piskac, R., Suter, P.: Ordered sets in the calculus of data structures.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 34–48. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4 5

21. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modulo heap-based programs. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 382–404. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 21

22. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: POPL 2011, pp. 611–622. ACM (2011)

23. Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-
structures. In: POPL, pp. 123–136 (2012)

24. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7 10

25. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

26. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 54

27. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 47

28. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

29. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27836-8 94

30. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: POPL 2010, pp. 199–210. ACM (2010)

31. Tatsuta, M., Le, Q.L., Chin, W.-N.: Decision procedure for separation logic with
inductive definitions and presburger arithmetic. In: Igarashi, A. (ed.) APLAS 2016.
LNCS, vol. 10017, pp. 423–443. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47958-3 22

32. Voigt, M.: The Bernays–Schönfinkel–Ramsey fragment with bounded difference
constraints over the reals is decidable. In: Dixon, C., Finger, M. (eds.) FroCoS
2017. LNCS (LNAI), vol. 10483, pp. 244–261. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66167-4 14

33. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp.
366–382. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04222-
5 23

34. Xu, Z., Chen, T., Wu, Z.: Satisfiability of compositional separation logic with
tree predicates and data constraints. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 509–527. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5 31

https://doi.org/10.1007/978-3-662-49674-9_42
https://doi.org/10.1007/978-3-642-15205-4_5
https://doi.org/10.1007/978-3-319-41528-4_21
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1007/978-3-319-47958-3_22
https://doi.org/10.1007/978-3-319-47958-3_22
https://doi.org/10.1007/978-3-319-66167-4_14
https://doi.org/10.1007/978-3-319-66167-4_14
https://doi.org/10.1007/978-3-642-04222-5_23
https://doi.org/10.1007/978-3-642-04222-5_23
https://doi.org/10.1007/978-3-319-63046-5_31
https://doi.org/10.1007/978-3-319-63046-5_31

	Separation Logic with Linearly Compositional Inductive Predicates and Set Data Constraints
	1 Introduction
	2 Logics for Sets
	3 Linearly Compositional SLID with Set Data Constraints
	4 Satisfiability of SLIDSLC [P]
	5 Transitive Closure of Difference-Bound Set Relations
	6 Satisfiability of RQSPA
	7 Conclusion
	References

