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Abstract. One-counter automata (OCA) are a well-studied automata
model that extends finite-state automata with one counter. The reacha-
bility problem of OCA was shown to be NP-complete when the integers
in the OCA are encoded in binary. In this paper, we study the problem
of computing the reachability relation of OCA. We show that, for each
OCA, an existential Presburger arithmetic (EPA) formula of polynomial
size can be computed in polynomial time to represent its reachability
relation. This yields a polynomial-time reduction from the reachability
problem of OCA to the satisfiability problem of EPA, enabling its so-
lution via off-the-shelf SMT solvers. We implement the algorithm and
provide the first tool OCAReach for the reachability problem of OCA.
The experimental results demonstrate the efficacy of our approach.

1 Introduction

Counter automata have been extensively studied in computer science and have
found numerous applications, notably in formal verification. Some examples in-
clude verification of programs with lists [7] and recursive or multi-threaded pro-
grams [22], XML query validation [8], parameterized hardware verification [29],
and decision procedures for separation logics with data [30], to name a few.
Historically, counter automata were introduced by Minsky as a formal model of
computation. It is well-known that two counters are already sufficient for counter
automata to simulate Turing machines, rendering almost all decision problems
about them undecidable. In particular, this includes the reachability problem,
arguably the most fundamental problem in verification.

To tame the undecidability, numerous restrictions on counter automata have
been proposed, which were the subject of thorough investigation in the past 40
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years. These restrictions include, for instance, the types of allowable tests on
the counters (e.g., in Petri nets zero tests are disallowed), the set of paths un-
der consideration (e.g., reversal boundedness [23]), the underlying structure of
the automaton (e.g., flatness [27]). Probably the simplest restriction is to allow
only one counter, giving rise to one-counter automata (OCA). We are primarily
interested in the reachability problem of OCA. From a certain perspective, this
is simple since OCA can be considered a special case of pushdown automata
where the stack alphabet is a singleton. Indeed, Lafourcade et al. [26] showed
that reachability in OCA in NL-compete, namely, it is no harder than the reach-
ability in directed graphs. However, this result must be stated with caveat that
it assumes that the updates in OCA are encoded in unary. On the contrary, we
note that these updates involve integers which are most naturally encoded in
binary. When this encoding is adopted, the NL-completeness does not hold any
more, and it has been shown [20] that the reachability problem becomes NP-
complete. Technically, for an OCA A the reachability problem is to decide, when
given two configurations (q, n) and (q′, n′), whether there exists a run of A from
the configuration (q, n) to (q′, n′). Note that in OCA all the counter values along
the path must be nonnegative, which is the main source of the complication.

The formulation of reachability as a decision problem may not be sufficient
for verification purposes from a practical perspective. Instead, one needs a char-
acterization of the reachability relation, viz. the relation RA,q,q′ comprising the
pairs (n, n′) of natural numbers such that there exists a run of A from (q, n)
to (q′, n′). Such a characterization turns out be possible in the existential frag-
ment of Presburger arithmetic (EPA). That is to say, one can construct an EPA
formula ψ(x, y) such that (n, n′) ∈ RA,q,q′ if and only if ψ(n, n′) holds. Such a
construction is important for at least two reasons: (1) one can feed the generated
formula to, e.g., an off-the-shelf SMT solver to facilitate the reachability check-
ing, especially when it is required as part of the decision procedure as in [30]; (2)
it entails the NP membership of the reachability problem, since it is well-known
that the satisfiability of EPA is NP-complete. Indeed, Haase [18] has shown the
existence of such a formula. He gave an algorithm to generate an EPA formula
ψ from the OCA and a pair of states. However, the algorithm therein runs in
nondeterministic polynomial time. Whilst this may be sufficient for the purpose
(2), it is not amenable to the purpose (1), because one needs to “guess” an EPA
formula, rendering the algorithm implementation-unfriendly and inefficient.

In this paper, we provide a deterministic polynomial-time algorithm to con-
struct an EPA formula to characterize the reachability relation in OCA, which
enables us to utilize the off-the-shelf SMT solvers (e.g., Z3) to decide the reacha-
bility problem of OCA. The main idea is to utilize the existential quantifiers and
arithmetic operations available in EPA to encode the nondeterministic guessing
of the reachability certificates in [18]. For example, to account for the existence
of a simple path, we introduce existentially quantified integer variables to index
the edges along the path and specify that the indices of the edges are mutually
distinct, and for any two edges sharing a common vertex, their indices must
be consecutive. Moreover, we show that even more involved graph-theoretical
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concepts (e.g., edge decompositions and positive cycle templates [18]), can still
be encoded by polynomial-sized EPA formulas. The new encoding yields a more
direct, conceptually simpler approach to obtain an EPA formula for the reach-
ability relation of OCA. As a proof-of-concept, we implement the algorithm in
a tool OCAReach, which, to the best of our knowledge, is the first tool that
is able to decide the reachability problem of OCA. We test OCAReach on
both handcrafted and random generated benchmarks. The experimental results
demonstrate the potential of OCAReach to be used in solving practical verifi-
cation problems related to OCA.

Related Work. There is a large body of theoretical work on OCA and its variants,
a survey of which is out of the scope of the current paper. Related to verification,
Demri and Gascon investigated the problem of model checking an extension of
LTL against OCA [11]. Moreover, model checking CTL and its fragments against
OCA was also studied [17, 15, 16]. The similarity and bisimilarity problem of
OCA and its variants have also been considered in [1, 24, 25, 5, 4], to name a few.

There have also been some verification tools for counter systems. For in-
stance, the FAST tool [2] targets flattable counter systems, whose behavior can
be captured by flat path schemes, i.e., concatenations of paths and simple cycles
such that no two cycles share a vertex. If a counter system is flattable, then its
reachability relation can be easily captured by an EPA formula. While zero-test
free OCA are known to be flattable, the resulting path schemes are of exponen-
tial length [3]. Hence, EPA formulas of polynomial size appear to be difficult
to be generated to capture the reachability relation via flattening. We instead
utilize the polynomial-size reachability certificate [18], which is more involved
than the flat path schemes, to construct a polynomial-size EPA formula.

An automata model closely related to counter automata is timed automata
(TA), which equip finite-state automata with real-valued clocks rather than
integer-valued counters. The relationship between reachability problems of TA
and bounded counter automata (where counters take values from an arbitrary
but fixed finite interval over the natural numbers) was established [21]. The
reachability problem of TA is known to be PSPACE-complete, even when there
are only two clocks [13]. The reachability relation of TA has also been stud-
ied. Comon and Jurski [9] first showed that the reachability relation of TA is
effectively definable by a linear arithmetic formula over the integers and reals.
This problem was revisited afterwards [12, 10], and very recently, Fränzel et al.
provided a considerably simplified proof for this fact [14].

Structure of the paper. Preliminaries are given in Section 2. The algorithm to
generate the EPA formula for a given OCA is presented in Section 3. The ex-
perimental results are given in Section 4. We conclude the paper in Section 5.

2 Preliminaries

Throughout the paper, Z and N denote the set of integers and natural numbers
respectively. For a positive natural number n, [n] := {1, · · · , n}. We also fix a
set of operations Op = {add(c), zero | c ∈ Z}.
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2.1 One-counter Automata

Definition 1 (OCA). A one-counter automaton is a tuple A = (Q,F,∆) where
Q is a finite set of control locations; F ⊆ Q is the set of final location, ∆ ⊆
Q× Op×Q is the (finite) transition relation.

The transitions (q, zero, q′) ∈ ∆ are referred to as zero transitions. We write
NA for the maximum absolute value of the integer constants occurring in the
transitions of A. The set of all configurations of A is denoted by C(A) = Q×N.

The transition system generated by A is (S,
A−→) where S = C(A) and (q, n)

A−→
(q′, n′) iff there is (q, op, q′) ∈ ∆ satisfying (1) in case op = add(c), n′ = n + c;

and (2) in case op = zero, n′ = n = 0. We use
A
=⇒ to denote the reflexive and

transitive closure of
A−→.

The reachability problem asks, given an OCA A and two configurations

C,C ′ ∈ C(A), does C
A
=⇒C ′ hold? In applications of OCA, it is usually more

convenient to compute the reachability relation RA,q,q′ for two given control

locations q, q′, defined as RA,q,q′ = {(n, n′) ∈ N2 | (q, n)
A
=⇒(q′, n′)}. The main

purpose of the paper is to give a new representation of this relation in terms of
Presburger arithmetic.

2.2 Presburger arithmetic

Presburger arithmetic (PA) is the first-order theory of integer numbers in the
structure (Z, <,+, 0, 1). This is a decidable first-order theory, in contrast to the
Peano arithmetic where multiplication is included. Let X be a set of first-order
variables. PA Formulae are defined by

ϕ ::= ~aT~x ./ b | ϕ ∧ ϕ | ¬ϕ | ∃x.ϕ

where ~a is a vector over Z, b ∈ Z, and ./∈ {≥, >,<,≤}.
In this paper, we are primarily interested in the existential fragment of PA

(EPA, aka. quantifier-free PA), which comprises the PA formulae where each ex-
istential quantifier is under the scope of an even number of negations. All EPA
formulae can be easily rewritten into the prenex normal form ϕ = ∃~x. ψ(~x, ~y),
where no quantifiers are allowed in ψ. It is well-known that checking the satisfi-
ability of EPA formulae is NP-complete [6, 19].

For a PA formula ϕ with free variables x1, · · · , xk, we use ϕ(x1, · · · , xk) to
highlight the free variables of ϕ. Moreover, we use ϕ[n1/x1, · · · , nk/xk] to denote
ϕ under the assignment η with η(xj) = nj for each j ∈ [k].

2.3 Weighted graphs

Definition 2 (Weighted graph). A weighted graph is a tuple G = (V,E)
where V is a finite set of vertices, E ⊆ V ×Z×V is a finite set of directed edges
with weights.
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Let G = (V,E) be a weighted graph. For an edge e = (v, z, v′) ∈ E, s(e) and
t(e) denote the source (i.e., v) and the target (i.e., v′) of e respectively, and w(e)
denotes the weight z. For v ∈ V , we use Ein(v) (resp. Eout(v)) to denote the
set of incoming (resp. outgoing) edges of v, namely, the set of edges e such that
t(e) = v (resp. s(e) = v). A path in G is a sequence of edges e1 · · · en for n ≥ 1
such that t(ei) = s(ei+1) for each i ∈ [n − 1], where s(e1) and t(en) are called
the source and target vertex of π respectively and n is called the length of π. A
path π = e1 · · · en is a simple path if each vertex occurs at most once along π.
Moreover, we use ε to denote the empty path, i.e., a vacuous path containing
no edges. If both the source and the target vertex of a path π are v, we say π is
a v-cycle. π is a simple cycle if v is the only vertex which occurs twice along a
v-cycle π. A weighted graph G is a loop if it is strongly connected and there is
exactly one simple v-cycle for any vertex v. For a path π in G, we define

– weight(G, π): the sum over all weights of the edges along π,

– drop(G, π): the minimum accumulated weight of all prefixes of a path π.

If G is clear from the context, we simply write weight(π) and drop(π).

Example 1. Let π = v1
2−→ v2

−3−−→ v3
2−→ v4. Then weight(π) = 2− 3 + 2 = 1 and

drop(π) = min(2, 2− 3, 2− 3 + 2) = −1.

A cycle π is said to be a positive (resp. negative, resp. zero) cycle if weight(π) >
0 (resp. weight(π) < 0, resp. weight(π) = 0).

For v, v′ ∈ V , the reachability relation RG,v,v′ comprises all the pairs (n, n′) ∈
N2 such that there exists a path π = v = v1

z1−→ v2 · · · vk zk−→ vk+1 = v′ such that
(1) weight(π) = n′ − n and (2) for all i ∈ [k], n +

∑
j∈[i]

zj ≥ 0. As a convention,

we assume that (n, n) ∈ RG,v,v for all v ∈ V and n ∈ N. For convenience, we use

(v, n)
G
=⇒ (v′, n′) to denote (n, n′) ∈ RG,v,v′ .

For a weighted graph G = (V,E), we use Gop = (V,Eop) to denote the
weighted graph with Eop = {eop | e ∈ E}, where eop = (v′,−z, v) for e =
(v, z, v′). For a path π = e1 · · · en in G, πop denotes the path eopn · · · eop1 in Gop.

3 The EPA formula generation algorithm

Fix an OCA A = (Q, q0, F,∆) in this section. Let GA = (Q,E) be the corre-
sponding weighted graph. Recall that E = {(q, z, q′) | (q, add(z), q′) ∈ ∆}. We
shall show that, for any q, q′ ∈ Q, an EPA formula ϕA,q,q′ can be computed in
polynomial time to define the reachability relation. The crux of the algorithm
is to show that the reachability relation from q to q′ in the weighted graph GA
(without zero transitions) can be characterized by an EPA formula ψGA,q,q′ of
polynomial size. In the sequel, we first assume the existence of the EPA formula
ψGA,q,q′ and show how to formalize the reachability relation in EPA. We then
show how the formula ϕGA,q,q′ can be constructed.
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3.1 Formalizing the reachability relation of A in EPA

Let ztA denote the set of zero transitions ofA. We define the zero-transition graph
Gzt[A] = (ztA, Ezt) where Ezt comprises the pairs ((q1, zero, q2), (q′1, zero, q

′
2))

satisfying ψGA,q2,q′1(0, 0), i.e., (q′1, 0) is reachable from (q2, 0) in GA. Intuitively,
Gzt[A] satisfies that for (q1, zero, q2) ∈ ztA and (q′1, zero, q

′
2) ∈ ztA, (q′1, zero, q

′
2)

is reachable from (q1, zero, q2) in Gzt[A] iff the configuration (q′1, 0) is reachable
from (q2, 0) in GA. Note that our algorithm does not explicitly construct the
graph Gzt[A]; this is for the sake of presentation.

Lemma 1. Let (q, n) and (q′, n′) be two configurations of A. Then (q, n)
A
=⇒

(q′, n′) iff one of the following conditions holds: either (q, n)
GA==⇒ (q′, n′); or there

is a zero-transition (p, zero, p′) ∈ ztA such that (q, n)
GA==⇒ (p, 0) and (p′, 0)

GA==⇒
(q′, n′); or there are zero-transitions (p1, zero, p2), (p′1, zero, p

′
2) ∈ ztA such that

(q, n)
GA==⇒ (p1, 0), (p′1, zero, p

′
2) is reachable from (p1, zero, p2) in Gzt[A], and

(p′2, 0)
GA==⇒ (t′, n′).

The characterization of
A
=⇒ in Lemma 1 can be specified by an EPA formula

ϕA,q,q′(x, y) defined as follows: Let ztA = {τ1, · · · , τk}, where for each i ∈ [k],
τi = (p2i−1, zero, p2i). Then

ϕA,q,q′(x, y) ≡ ψGA,q,q′(x, y) ∨ ∨
(p,zero,p′)∈ztA

(ψGA,q,p(x, 0) ∧ ψGA,p′,q(0, y))∨∨
i,j∈[k],i6=j

ψGA,q,p2i−1
(x, 0) ∧ ξGzt[A](τi, τj) ∧ ψGA,p2j ,q′(0, y),

where ξGzt[A](τi, τj) specifies that τj is reachable from τi in Gzt[A],

ξGzt[A](τi, τj) ≡ ∃z1. · · · ∃zk. zi = 1 ∧ zj > 1 ∧ ∧
`∈[k]

z` ≥ 0 ∧∧
`′,`′′∈[k],`′ 6=`′′

((z`′ > 0 ∧ z`′′ > 0)→ z`′ 6= z`′′) ∧

∧
`∈[k]

(
z` > 1→ ∨

`′∈[k],`′ 6=`

(
z`′ > 0 ∧ z`′ + 1 = z` ∧ ψGA,p2`′ ,p2`−1

(0, 0)
))

.

Intuitively, the variables z1, · · · , zk in ξGzt[A](τi, τj) represent the positions of
some simple path from τi to τj in Gzt[A], where τi is in the first position (i.e.
zi = 1), τj is in the last position (i.e., zj is maximal), and the vertices not in
the path are assigned null (i.e. z` = 0). Moreover, for each vertex in the path,
except the one in the first position, there is a vertex in the position preceding it
as well as an edge between them.

3.2 Characterizing the reachability relation of GA in EPA

We first recall the core concepts of the decision procedure in [20, 18]. We then
show how to construct the EPA formula ψGA,q,q′ for q, q′ ∈ Q. The main idea of
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the decision procedure is to characterize ψGA,q,q′ by path flows satisfying some
extra constraints.

Example 2 (Running example). We will use the OCA A in Figure 1 as a running
example, where q0 and q11 are the initial and final control locations respectively.

q1 q2 q5 q7 q10 q11

q3 q4 q8

q9

+1

−1
−1

+1

−1

+1

+1

+1 −1

+1

+1

+1

−1 +1

−1 −1

q6
−1

q0
+1

Fig. 1. GA in the running example

Proposition 1. Let (q, n) and (q′, n′) be two configurations of A. Then (q′, n′)
is reachable from (q, n) in GA iff (q′, n′) is reachable from (q, n) through a path
that contains no zero cycles.

By Proposition 1, we will suppress zero cycles when constructing ϕGA,q,q′ .

Definition 3 (Flow and path flow). Let q, q′ ∈ Q. A flow from q to q′ in GA
is a function f : E → N such that

– if q = q′, then for all p ∈ Q,
∑

e∈Ein(p)

f(e) =
∑

e∈Eout(p)

f(e),

– otherwise, for all p ∈ Q \ {q, q′},∑
e∈Ein(p)

f(e) =
∑

e∈Eout(p)

f(e), and

1 +
∑

e∈Ein(q)

f(e) =
∑

e∈Eout(q)

f(e),
∑

e∈Eout(q′)

f(e) = 1 +
∑

e∈Ein(q′)

f(e).

For a flow f , we use weight(f) to denote
∑
e∈E

f(e)weight(e). A path flow from

q to q′ is a flow f corresponding to some path π from q to q′, namely, f = fπ,
where for each e ∈ E, fπ(e) is the number of occurrences of e in π. In particular,
for an edge e, fe is a path flow such that fe(e) = 1 and fe(e

′) = 0 for each e′ 6= e.
Moreover, by convention, we assume that f⊥ such that f⊥(e) = 0 for every e ∈ E
is a path flow from q to q for each q ∈ Q.
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Example 3. Let f1 be a flow from q0 to q5 in GA presented in Figure 1, where
f1((q0,+1, q1)) = f1((q1,+1, q2)) = 1, f1((q2,−1, q3)) = 2, f1((q3,−1, q2)) = 1,
f1((q3,+1, q4)) = f1((q4,−1, q2)) = f1((q2,+1, q5)) = 1, and f1(e′) = 0 for all

the other edges e′. Then f1 = fπ where π = q0
+1−−→ q1

+1−−→ q2
−1−−→ q3

−1−−→ q2
−1−−→

q3
+1−−→ q4

−1−−→ q2
+1−−→ q5. Therefore, f1 is a path flow from from q0 to q5.

Definition 4 (Support). Given a path flow f : E → N, the support of f is
the weighted graph Gf = (Vf , Ef ) with Ef = {e ∈ E | f(e) > 0}. A subgraph
F ⊆ GA is called a q-q′ support if there is a path flow f from q to q′ such that
F = Gf . In particular, the empty graph is a q-q support for each q ∈ Q.

Example 4. Let F be the subgraph of GA in Figure 1 comprising the edges
(q0,+1, q1), (q1,+1, q2), (q2,−1, q3), (q3,−1, q2), (q3,+1, q4), (q4,−1, q2), and
(q2,+1, q5). Then F is a q0-q5 support since F = Gf1 where f1 is the path
flow from q0 to q5 in Example 3.

It is well-known that path flows can be captured by an EPA formula, which
specifies the conditions on the incoming and outgoing flows of all vertices and
the constraints that the support of the path flow is connected.

Proposition 2 ([28]). An EPA formula ϕ
(PF)
GA,q,q′

((xe)e∈E) can be constructed,
in linear time, to capture the path flows from q to q′. Namely, for each flow f

from q to q′, f is a path flow iff ϕ
(PF)
GA,q,q′

[(f(e)/xe)e∈E ] holds.

Note that not all path flows correspond to runs of GA since the constraints
of path flows do not address the non-negativeness requirements of the counter
values. In the sequel, we recall the results [18] where extra constraints (called
reachability criteria) were imposed.

For a path flow f , suppose f = fπ for some path π. We can split f into
multiple path flows by dividing π into segments according to the last occurrence
of each edge in π (note that an edge may occur multiple times in π). This is
formalized as the concept of edge decomposition as follows.

Definition 5 (Edge decomposition). Given a q-q′ support F , an edge de-
composition of F is a sequence of tuples {(Fi, vi, v′i, ei)}i∈[m], where Fi ⊆ F ,
v1 = q, v′m+1 = q′ such that

1. for each i ∈ [m], Fi is a vi-v
′
i support, ei = (v′i, zi, vi+1) for some zi ∈ Z,

2. all ei’s are mutually distinct,
3. for each 1 ≤ i < j ≤ m, ei 6∈ Fj,
4. F =

⋃
i∈[m]

Fi.

Note that if vi = v′i, then Fi may be the empty graph ∅.
Furthermore, given a path flow f , an edge decomposition of f is a sequence of
tuples {(fi, vi, v′i, ei)}i∈[m], where fi is a path flow from vi to v′i, f =

∑
i∈[m]

(fi +

fei), and {(Gfi , vi, v′i, ei)}i∈[m] is an edge decomposition of Gf .
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Example 5. Let f1 be the path flow from q0 to q5 and π = q0
+1−−→ q1

+1−−→ q2
−1−−→

q3
−1−−→ q2

−1−−→ q3
+1−−→ q4

−1−−→ q2
+1−−→ q5 in Example 3 such that f1 = fπ. The

edges in Gf1 can be ordered according to their last occurrences in π as fol-
lows: (q0,+1, q1), (q1,+1, q2), (q3,−1, q2), (q2,−1, q3), (q3,+1, q4), (q4,−1, q2),
(q2,+1, q5). Note that (q3,−1, q2) is ordered before (q2,−1, q3) since (q2,−1, q3)
occurs twice in π and the second occurrence of (q2,−1, q3) is after the unique
occurrence of (q3,−1, q2). Then from this ordering, we can obtain an edge de-
composition {(f ′i , vi, v′i, ei)}i∈[7] of f , where

– (f ′1, v1, v
′
1, e1) = (f⊥, q0, q0, (q0,+1, q1)),

– (f ′2, v2, v
′
2, e2) = (f⊥, q1, q1, (q1,+1, q2)),

– (f ′3, v3, v
′
3, e3) = (f(q2,−1,q3), q2, q3, (q3,−1, q2)),

– (f ′4, v4, v
′
4, e4) = (f⊥, q2, q2, (q2,−1, q3)),

– (f ′5, v5, v
′
5, e5) = (f⊥, q3, q3, (q3,+1, q4)),

– (f ′6, v6, v
′
6, e6) = (f⊥, q4, q4, (q4,−1, q2)), and

– (f ′7, v7, v
′
7, e7) = (f⊥, q2, q2, (q2,+1, q5)).

The reachability criteria to guarantee the non-negativeness of counter values
in path flows are classified into three types, with the first two types formalized
in the following two definitions.

Definition 6 (Type-1 reachability criteria). Let n, n′ ∈ N. Then a path flow
f from q to q′ is said to satisfy the type-1 reachability criteria for (n, n′) if the
following constraints hold,

– Gf does not contain positive cycles,
– weight(f) = n′ − n,
– f has an edge decomposition {(fi, vi, v′i, ei)}i∈[m] such that n+

∑
i∈[j]

(weight(fi)+

weight(ei)) ≥ 0 for all j ∈ [m].

Note that the condition for {(fi, vi, v′i, ei)}i∈[m] in Definition 6 can be equiva-
lently phrased as n′ − ∑

j<i≤m
(weight(fi) + weight(ei)) ≥ 0 for all j ∈ [m], which

intuitively explains the dual of the type-1 reachability criteria, i.e. type-2 reach-
ability criteria in Definition 7 .

Example 6. Let (n, n′) = (1, 1). Then the path flow f1 from q0 to q5 in the
Example 3 satisfies the type-1 reachability criteria for (n, n′): Gf1 does not con-
tain positive cycles, weight(f1) = 0 = 1 − 1, f1 has an edge decomposition
{(f ′i , vi, v′i, ei)}i∈[7] as shown in Example 5, moreover,

– 1 + weight(f ′1) + weight(e1) = 1 + 0 + weight((q0,+1, q1)) = 2 ≥ 0,
– 1 +

∑
j∈[2]

(weight(f ′j) + weight(ej)) = 2 + 0 + weight((q1,+1, q2)) = 3 ≥ 0,

– 1+
∑
j∈[3]

(weight(f ′j)+weight(ej)) = 3+weight(f(q2,−1,q3))+weight((q3,−1, q2)) =

3− 1− 1 = 1 ≥ 0,
– 1 +

∑
j∈[4]

weight(f ′j) + weight(ej) = 1 + 0 + weight((q2,−1, q3)) = 0 ≥ 0,
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– 1 +
∑
j∈[5]

weight(f ′j) + weight(ej) = 0 + 0 + weight((q3,+1, q4)) = 1 ≥ 0,

– 1 +
∑
j∈[6]

weight(f ′j) + weight(ej) = 1 + 0 + weight((q4,−1, q2)) = 0 ≥ 0,

– 1 +
∑
j∈[7]

weight(f ′j) + weight(ej) = 0 + 0 + weight((q2,+1, q5)) = 1 ≥ 0.

The type-2 reachability criteria are dual to the type-1 reachability criteria.

Definition 7 (Type-2 reachability criteria). Let n, n′ ∈ N. Then a path flow
f from q to q′ is said to satisfy the type-2 reachability criteria for (n, n′) if fop

satisfies the type-1 reachability criteria for (n′, n) in Gop, where fop((v′,−z, v)) =
f((v, z, v′)) for each (v, z, v′) ∈ E.

Example 7. Let (n, n′) = (1, 3) and f3 be the path flow from q7 to q11 such that
f3((q7,−1, q10)) = 1, f3((q10,+1, q10)) = 2, and f3((q10,+1, q11)) = 1. Then f3
satisfies the type-2 reachability criteria for (1, 3) since fop3 satisfies the type-1
reachability criteria for (3, 1) in Gop.

– Gfop
3

is the graph comprising the edges (q11,−1, q10), (q10,−1, q10), and
(q10,+1, q7). It contains no positive cycles.

– weight(fop3 ) = (−1)× 1 + (−1)× 2 + (+1)× 1 = −2 = 1− 3.
– fop3 has an edge decomposition {(f ′i , vi, v′i, ei)}i∈[3] where (f ′1, v1, v

′
1, e1) =

(f⊥, q11, q11, (q11,−1, q10)), (f ′2, v2, v
′
2, e2) = (f(q10,−1,q10), q10, q10, (q10,−1, q10)),

(f ′3, v3, v
′
3, e3) = (f⊥, q10, q10, (q10,+1, q7)), moreover,

• 3 + weight(f ′1) + weight(e1) = 2 ≥ 0,
• 3 +

∑
j∈[2]

(weight(f ′j) + weight(ej)) = 2− 1− 1 = 0 ≥ 0,

• 3 +
∑
j∈[3]

(weight(f ′j) + weight(ej)) = 0 + 0 + 1 = 1 ≥ 0.

It remains to present the type-3 reachability criteria.

Definition 8 (Cycle template). Let G = (V ′, E′) be a subgraph of GA, v ∈ V ′
and n ∈ N. A positive v-cycle template w.r.t. n in G is a cycle π = π1 · π2 · π3
such that there is a vertex v′ ∈ V ′ satisfying that

– π2 is a positive simple v′-cycle,
– if v = v′, then π1 = π3 = ε, otherwise, π1 (resp. π3) is a simple path from v

to v′ (resp. from v′ to v),
– drop(π1 · π2) ≥ −n.

A negative v-cycle template w.r.t. n is a cycle π = π1 · π2 · π3 such that πop =
πop3 · πop2 · πop1 is a positive v-cycle template w.r.t. n in Gop.

Example 8. The cycle π1 · π2 · π3, where π1 = π3 = ε and π2 = (q5,+1, q5),
is a positive q5-cycle template in GA w.r.t. 1 since drop(π1 · π2) = 1 ≥ −1.
Moreover, π4 · π5 · π6, where π4 = (q7,−1, q8), π5 = (q8,−1, q9)(q9,−1, q8), and
π6 = (q8,+1, q7), is a negative q7-cycle template w.r.t. 1 in GA since πop6 ·πop5 ·πop4
satisfies that drop(πop6 ·πop5 ) = −1 ≥ −1, thus is a positive q7-cycle template w.r.t.
1 in GopA .
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Definition 9 (Type-3 reachability criteria). Let n, n′ ∈ N. Then a path flow
f from q to q′ is said to satisfy the type-3 reachability criteria for (n, n′) if the
following constraints hold.

– there is a positive q-cycle template w.r.t. n in GA,
– weight(f) = n′ − n,
– there is a negative q′-cycle template w.r.t. n′ in GA.

Example 9. Let f2 be the path flow from q5 to q7 such that f2((q5,−1, q6)) =
f2((q6,+1, q7)) = 1 and f2(e′) = 0 for all the other edges e′. Then f2 satisfies the
type-3 reachability criteria for (1, 1): weight(f2) = 0 = 1−1, moreover, π1 ·π2 ·π3
in Example 8 is a positive q5-cycle template w.r.t. 1 in GA and π4 · π5 · π6 is a
negative q7-cycle template w.r.t. 1 in GA.

The following lemma captures reachability in GA.

Lemma 2 ([18]). Let q, q′ ∈ Q and n, n′ ∈ N. Then (q′, n′) is reachable from
(q, n) in GA iff there is a path flow f from q to q′ which can be split into three
path flows f1, f2, f3 such that

– f = f1 + f2 + f3,
– there are q1, q2 ∈ Q and n′′, n′′′ ∈ N satisfying that
• f1 is a path flow from q to q1 (note that f1 may be the zero flow f⊥,

in this case, q1 = q), moreover, if f1 6= f⊥, then f1 satisfies the type-1
reachability criteria for (n, n′′),

• f2 is a path flow from q1 to q2 (note that f2 may be the zero flow f⊥,
in this case, q2 = q1), moreover, if f2 6= f⊥, then f2 satisfies the type-3
reachability criteria for (n′′, n′′′),

• f3 is a path flow from q2 to q′ (note that f3 may be the zero flow f⊥,
in this case, q′ = q2), moreover, if f3 6= f⊥, then f3 satisfies the type-2
reachability criteria for (n′′′, n′).

Example 10. Let f = f1 ·f2 ·f3 be path flow from q0 to q11, where f1 is the path
flow from q0 to q5 in Example 6, f2 is a path flow from q5 to q7 in Example 9, and
f3 is a path flow from q7 to q11 in Example 7. Then from Example 6, Example 9,
and Example 7, we know that f1 satisfies the type-1 reachability criteria for
(1, 1), f2 satisfies the type-3 reachability criteria for (1, 1), and f3 satisfies the
type-2 reachability criteria for (1, 3). Therefore, according to Lemma 2, (q11, 3)
is reachable from (q0, 1) in GA.

In the sequel, we show how the constraints in Lemma 2 can be defined by EPA
formulae. We use the variables (xe)e∈E to represent the path flow f in Lemma 2.
Moreover, we use the variables (ye,1)e∈E , (ye,2)e∈E , (ye,3)e∈E to represent the
path flows f1, f2, and f3.

Type-1 reachability criteria. Our goal is to formalize by an EPA formula ψ
(T1RC)
q,q1

that the path flow f1 from q to q1 represented by (ye,1)e∈E satisfies the type-
1 reachability criteria. Let the variables x, x1 represent the counter values of
q, q1 respectively. From the definition of the type-1 reachability criteria, it is
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sufficient to show that the absence of positive cycles and the existence of an edge
decomposition in Gf1 can be encoded in EPA. In the sequel, we illustrate how
to encode by an EPA formula the existence of an edge decomposition. The EPA
formula ψ(APC)((ye,1)e∈E) to encode the absence of positive cycles is omitted,
due to the page limit.

For each edge e, we introduce integer variables idxe and sume, and the integer
variables (ye,e′)e′∈E . Intuitively, each edge e is associated with an index idxe
indicating the position of the last occurrence of e along the edge decomposition,
(ye,e′)e′∈E specifies the flow of e′ associated with the edge e, i.e., the number of
occurrences of e′ along the path up to the last occurrence of e. We use sume to
represent the sum of the weights of all the edges preceding the last occurrence
of e in the edge decomposition. Besides, x, x1 represent the counter value at q
and q1 respectively. Then the existence of an edge decomposition from q to q1 is
encoded by the EPA formula

ψEDC
q,q1 ((ye,1)e∈E , (idxe, sume)e∈E , (ye,e′)e,e′∈E) ::=

ψ
(IDX)
q,q1 ((ye,1)e∈E , (idxe)e∈E) ∧ ψ(EDG)

q,q1 ((ye,1)e∈E , (idxe)e∈E , (ye,e′)e,e′∈E) ∧
ψ

(NN)
q,q1 ((ye,1)e∈E , (idxe, sume)e∈E , (ye,e′)e,e′∈E),

where ψ
(IDX)
q,q1 ((ye,1)e∈E , (idxe)e∈E) intuitively specifies that the variables idxe

with ye,1 > 0 are mutually distinct and represent an order of the edges cor-
responding to their last occurrences in a path flow from q to q1. Formally, it
specifies that {idxe | ye,1 > 0} = [i], where i is the number of edges e with
ye,1 > 0. Moreover, idxe = i for some e with t(e) = q1,

ψ
(IDX)
q,q1 ::=

∧
e∈E

(ye,1 > 0→ idxe > 0 ∧ ye,1 = 0→ idxe = 0) ∧∨
e∈E

(ye,1 > 0 ∧ idxe = 1) ∧
∧

e,e′∈E,e6=e′
((ye,1 > 0 ∧ ye′,1 > 0)→ idxe 6= idxe′) ∧

∧
e∈E

(
(ye,1 > 0 ∧ idxe > 1)→

∨
e′∈E

(ye′,1 > 0 ∧ idxe′ + 1 = idxe)

)
∧

∨
e∈E,t(e)=q1

(
ye,1 > 0 ∧

∧
e′∈E

idxe′ ≤ idxe

)
,

and ψ
(EDG)
q,q1 ((ye,1)e∈E , (idxe)e∈E , (ye,e′)e,e′∈E) specifies the constraints on the

occurrences of edges in an edge decomposition,

ψ
(EDG)
q,q1 :=

∧
e∈E

(
(ye,1 > 0 ∧ idxe = 1)→ ψ

(PF)

q,s(e)((ye,e′)e′∈E)
)
∧∧

e,e′∈E

(
(ye′,1 > 0 ∧ ye,1 > 0 ∧ idxe′ + 1 = idxe)→ ψ

(PF)

t(e′),s(e)((ye,e′′)e′′∈E)
)
∧∧

e,e′∈E
((ye,1 > 0 ∧ ye′,1 > 0 ∧ idxe < idxe′)→ ye′,e = 0) ∧∧

e∈E

(
ye,1 > 0→

(∑
e′∈E ye′,e

)
+ 1 = ye,1

)
,

(Note that ye′,e = 0 specifies that e does not occur in the path flow for e′.)
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Moreover, ψ
(NN)
q,q1 specifies that the sum of x and the weights of the path flows

and edges in the edge decomposition are non-negative,

ψ
(NN)
q,q1 ::=

∧
e∈E

(
(ye,1 > 0 ∧ idxe = 1)→ sume = weight(e) +

∑
e′∈E

weight(e′) · ye,e′
)
∧

∧
e,e′∈E

(
(ye,1 > 0 ∧ ye′,1 > 0 ∧ idxe + 1 = idxe′)→
sume + weight(e′) +

∑
e′′∈E

weight(e′′) · ye′,e′′ = sume′

)
∧∧

e∈E
(ye,1 > 0→ x+ sume ≥ 0).

Then we encode the type-1 reachability criteria by the following EPA formula,

ψ
(T1RC)
GA,q,q1

(x, x1, (ye,1)e∈E) ::= ψ(APC)((ye,1)e∈E)) ∧

∃(idxe, sume)e∈E , (ye,e′)e,e′∈E .

(
ψ

(EDC)
q,q1 ((ye,1)e∈E , (idxe, sume)e∈E , (ye,e′)e,e′∈E) ∧
ψ

(WGT)
q,q1 ((ye,1)e∈E , (idxe, sume)e∈E)

)
,

where ψ
(WGT)
q,q1 specifies that the sum of x and the weights of all the path flows

and edges in the edge decomposition is equal to x1,

ψ(WGT)
q,q1 ::=

∨
e∈E,t(e)=q1

(
ye,1 > 0 ∧

∧
e′∈E

idxe′ ≤ idxe ∧ x+ sume = x1

)
.

One can observe that the size of ψ
(T1RC)
GA,q,q1

is polynomial in the size of A.

Type-2 reachability criteria. Suppose that (ye,3)e∈E represents a path flow f3
from q2 to q′. Then Lemma 2 says that f3 satisfies the type-2 reachability criteria,
that is, the flow fop3 in GopA satisfies the type-1 reachability criteria, which is

encoded by the EPA formula ψ
(T2RC)
GA,q2,q′

defined below. Let x2, x
′ represents the

counter values of q2 and q′ respectively. Then

ψ
(T2RC)

GA,q2,q′
(x2, x

′, (ye,3)e∈E) ::= ∃(yope′,3)e′∈Eop . ϕ
(T1RC)

G
op
A ,q′,q2

(x′, x2, (y
op
e′,3)e′∈Eop) ∧∧

e=(p,c,p′)∈E,e′=(p′,−c,p)∈Eop

yope′,3 = ye,3.

Type-3 reachability criteria. Our goal is to construct an EPA formula ψ
(T3RC)
GA,q1,q2

to characterize the type-3 reachability criteria for a path flow represented by
(ye,2)e∈E from q1 to q2. Let x1, x2 represent the counter values of q1, q2 re-
spectively. Recall that the type-3 reachability criteria specify that there exist a
positive q1-cycle template and a negative q2-cycle template, as well as a path
flow from q1 to q2. Since negative cycle templates are the dual of positive cycle
templates and we know how to encode a path flow in EPA, it is sufficient to show
that the existence of a positive q1-cycle template can be specified by an EPA

formula ψ
(PCT)
GA,q1

. To this end, we introduce integer variables idxe,1, idxe,2, idxe,3
for e ∈ E to represent the three simple paths (or cycles) π1, π2, π3 in a positive
q1-cycle template. Moreover, we introduce integer variables sump,1, dropp,1 and
sump,2, dropp,2 for p ∈ Q to describe the computation of the sum of edge weights
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and the drop in the prefixes of π1 and π2 respectively. Then

ψ
(PCT)
GA,q1

(x1, (idxe,i)e∈E,i=1,2,3, (sump,j , dropp,j)p∈Q,j=1,2) ::=

∨
p′∈Q


ψ

(SP1)

q1,p′
((idxe,1)e∈E , (sump,1, dropp,1)p∈Q) ∧

ψ
(SC)

p′,p′((idxe,2)e∈E , (sump,2, dropp,2)p∈Q) ∧

ψ
(SP2)

p′,q1
((idxe,3)e∈E) ∧

ψ(NN)(x1, sump′,1, dropp′,1, dropp′,2)

 ,

where ψ
(SP1)
q1,p′

, ψ
(SC)
p′,p′ , and ψ

(SP2)
p′,q1

specify the existence of three simple paths (or
cycles) π1, π2, π3 in a positive q1-cycle template, as well as the computation of
the the sum of edge weights and the drop in the prefixes of π1 and π2. Concretely,

ψ
(SP1)

q1,p′
((idxe,1)e∈E , (sump,1, dropp,1)p∈Q) ::=(

q1 = p′ ∧
∧

e∈E
idxe,1 = 0 ∧ sump′,1 = 0 ∧ dropp′,1 = 0

)
∨

q1 6= p′ ∧ ψ(SPIDX)

q1,p′
((idxe,1)e∈E) ∧∧

e=(q1,c,p)∈E
(idxe,1 = 1→ (sump,1 = c ∧ dropp,1 = min(c, 0))) ∧

∧
e=(p1,c,p2)∈E

idxe,1 > 1→
(

sump1,1 + c = sump2,1 ∧
dropp2,1 = min(dropp1,1, sump2,1)

)
 ,

where ψ
(SPIDX)
q1,p′

specifies how the integer variables idxe,1 for e ∈ E can be con-
strained to represent a simple path from q1 to p′,

ψ
(SPIDX)

q1,p′
((idxe,1)e∈E) ::=

∧
e∈E

idxe,1 ≥ 0 ∧
∧

e=(p,z,p)∈E
idxe,1 = 0 ∧∨

e∈E,s(e)=q1

idxe,1 = 1 ∧
∨

e∈E,t(e)=p′

∧
e′∈E

idxe′,1 ≤ idxe,1 ∧∧
e,e′∈E,e 6=e′

((idxe,1 > 0 ∧ idxe′,1 > 0)→ idxe,1 6= idxe′,1) ∧∧
e∈E

(idxe,1 > 1→
∨

e′∈E,t(e′)=s(e)

idxe′,1 + 1 = idxe,1) ∧∧
e,e′∈E,t(e)=s(e′)

((idxe,1 > 0 ∧ idxe′,1 > 0)→ idxe,1 + 1 = idxe′,1).

The formula ψ
(SC)
p′,p′ ((idxe,2)e∈E , (sump,2, dropp,2)p∈Q) and ψ

(SP2)
p′,q1

((idxe,3)e∈E) can
be defined similarly.

Moreover, we define the formula
ψ(NN)(x1, sump′,1, dropp′,1, dropp′,2) ::=

x1 + dropp′,1 ≥ 0 ∧ x1 + sump′,1 + dropp′,2 ≥ 0.

Symmetrically, the existence of a negative q2-cycle template can be specified

by an EPA formula ψ
(PCT)

Gop
A ,q2

(x2, (idxe′,i)e′∈Eop,i=4,5,6, (sump,j , dropp,j)p∈Q,j=3,4),

where the variables idxe′,4, idxe′,5, idxe′,6 and sump,3, dropp,3, sump,4, dropp,4
are similar to the variables idxe,1, idxe,2, idxe,3 and sump,1, dropp,1, sump,2, dropp,2
respectively. It follows that

ψ
(T3RC)
GA,q1,q2

(x1, x2, (ye,2)e∈E) ::= ϕ
(PF)
q1,q2((ye,2)e∈E) ∧ x1 +

∑
e∈E

weight(e) · ye,2 = x2 ∧

∃(idxe,i)e∈E,i∈[6](sump,j , dropp,j)p∈Q,j∈[4].(
(ψ

(PCT)
GA,q1

(x1, (idxe,i)e∈E,i=1,2,3, (sump,j , dropp,j)p∈Q,j=1,2) ∧
ψ

(PCT)

G
op
A ,q2

(x2, (idxe,i)e∈E,i=4,5,6, (sump,j , dropp,j)p∈Q,j=3,4))

)
.
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Finally, let x and y denote the initial and final counter values of state q
and q′ respectively. By combining formulae for the type-1, type-2 and type-3

reachability criteria, the EPA formula ϕ
(RC)
GA,q,q′

is defined as

ψ
(RC)

GA,q,q′(x, y) ::= ∃x1x2∃(ye,i)e∈E,i∈[3]. x1 ≥ 0 ∧ x2 ≥ 0 ∧
∧

e∈E,i∈[3] ye,i ≥ 0 ∧

(q = q′ ∧ x = x1 ∧ x1 = x2 ∧ x2 = y) ∨(
x = x1 ∧ x1 = x2 ∧

∨
ψ

(T2RC)

GA,q,q′(x2, y, (ye,3)e∈E)
)
∨(

x = x1 ∧ ψ(T3RC)

GA,q,q′(x1, x2, (ye,2)e∈E) ∧ x2 = y
)
∨∨

q2∈Q

(
x = x1 ∧ ψ(T3RC)

GA,q,q2
(x1, x2, (ye,2)e∈E) ∧ ψ(T2RC)

GA,q2,q′
(x2, y, (ye,3)e∈E)

)
∨(

ψ
(T1RC)

GA,q,q′(x, x1, (ye,1)e∈E) ∧ x1 = x2 ∧ x2 = y
)
∨∨

q1∈Q

(
ψ

(T1RC)
GA,q,q1

(x, x1, (ye,1)e∈E) ∧ x1 = x2 ∧ ψ(T2RC)

GA,q1,q′
(x2, y, (ye,3)e∈E)

)
∨∨

q1∈Q

(
ψ

(T1RC)
GA,q,q1

(x, x1, (ye,1)e∈E) ∧ ψ(T3RC)

GA,q1,q′
(x1, x2, (ye,2)e∈E) ∧ x2 = y

)
∨

∨
q1,q2∈Q

(
ψ

(T1RC)
GA,q,q1

(x, x1, (ye,1)e∈E) ∧ ψ(T3RC)
GA,q1,q2

(x1, x2, (ye,2)e∈E) ∧

ψ
(T2RC)

GA,q2,q′
(x2, y, (ye,3)e∈E)

)



.

4 Experiments

We implement in Java the algorithm in the preceding Section and develop a tool
OCAReach.4 OCAReach computes, for a given OCA A and a pair of states
q, q′, an EPA formula ϕA,q,q′(x, y) representing RA,q,q′ . Moreover, it integrates
the SMT solver Z3 to eliminate the existential quantifiers in ϕA,q,q′(x, y) as well
as to solve the reachability problem from (q, n) to (q′, n′) for two additional
n, n′ ∈ N, by evaluating ϕA,q,q′(x, y) on n, n′. The performance of OCAReach
are evaluated on two benchmark suites: MOCA, which is manually constructed,
and ROCA, which is randomly generated.

MOCA We created 17 OCA benchmarks manually, of sizes ranging from (2
states, 1 transitions) to (10 states, 11 edges). The OCA instances in MOCA
have relatively simple transition graphs so that for each instance (A, q, q′)
in MOCA, we are able to manually construct an EPA formula ψ′A,q,q′ as the
ground truth for the reachability relation, then use the SMT solver Z3 to
test the equivalence of ψ′A,q,q′ and ψA,q,q′ (the output of OCAReach), so
that the correctness of OCAReach is validated.

ROCA This benchmark suite consists of randomly generated OCA instances
by first determining the number of states n, then randomly generating the
transitions, based on a sparsity parameter η ∈ [0, 1], with the intention that
for each pair of states, there exist edges between them, with the probability
η. Moreover, assuming that there exist edges between a given pair of states,
then the probabilities of zero-transition, +1-transition, and −1-transition,
are 1/8, 7/16, and 7/16 respectively. We first fix η = 0.2, and generate 50
instances for each n ∈ {5, 7, 10}. Then we fix n = 4 and generate 50 instances
for each η = 0.2, 0.4, 0.5.

4 Available at https://github.com/SpencerL-Y/OCAReach.
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All the experiments were performed on a laptop with Intel Core i5-8450 processor
and 8GB main memory.

Experimental results on MOCA. The results are given in Table 1, where time
refers to the time to generate the EPA formula, and size refers to the size of the
generated formula. We can see that the running time and the generated formula
size are roughly proportional to the number of states and transitions. Moreover,
for each MOCA instance, we use Z3 to validate the equivalence of the generated
formula and the manually constructed ground truth formula.

state num. 2 2 2 2 3 3 4 4 4
transtion num. 1 2 2 5 2 3 3 3 6
zero-test num. 0 1 1 0 0 1 1 1 1

time (s) 0.066 0.062 0.078 0.076 0.066 0.072 0.061 0.079 0.093
size (kB) 0.302 0.404 0.697 0.302 0.133 0.929 0.348 0.325 2.592

state num. 5 6 6 6 7 8 10 10
transtion num. 6 6 7 8 9 7 11 11
zero-test num. 1 2 2 2 2 2 2 3

time (s) 0.087 0.078 0.106 0.091 0.106 0.090 0.116 0.117
size (kB) 2.057 2.469 7.457 3.078 6.427 4.807 8.443 7.515

Table 1. Experimental results on MOCA

Experimental results on ROCA. The results are given in Table 2. We can see that
when η = 0.2, if the the number of states n is increased from 5 to 10, then the
average number of transitions, the average running time, and the average size of
the generated formula grow quickly. Moreover, from the experimental results, we
can also see that when the number of states n = 4, if the sparsity parameter η
is increased from 0.2 to 0.5, then the average number of transitions, the average
running time, and the average size of the generated formula also grow quickly.
We remark that, in practice, the transition graphs of OCA are generally sparse
so our approach is potentially scalable.

(state num. n, sparsity param. η) (5, 0.2) (7, 0.2) (10, 0.2) (4, 0.2) (4, 0.3) (4, 0.5)

Avg. transition num. 4 10 19 3 5.34 8.4

Avg. time (s) 0.012 16.161 362 0.021 0.492 23.334

Avg. size (kB) 6.29 4,470 37,241 4.823 3.161 235.140

Table 2. Experimental results on ROCA

5 Conclusion

In this paper, we have shown that the reachability relation of OCA can be repre-
sented by an existential Presburger arithmetic formula which can be computed
in polynomial time. This result generalizes the well-known result that an exis-
tential Presburger arithmetic formula can be computed in polynomial time to
define the Parikh image of the regular language of finite automata. We devel-
oped a tool OCAReach and conducted experiments to evaluate the efficiency
of our approach. To the best of our knowledge, OCAReach provides the first
tool support for solving the reachability problem of OCA.
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