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Graphical user interface (GUI) testing is crucial to ensure the expected behaviors of mobile appli-

cations (apps). The burgeoning automated usage-based testing seeks to generate simulated human 
interactions tailored to functional features of apps. However, the difficulties in understanding UI 
semantics, along with the multiple implementation alternatives, significantly restrict the ability to 
exercise a specified usage. In this paper, we propose GUEST (Generating Usage-based Equivalent 
TeSTs), which automates the generation of multiple equivalent tests for GUI usage to help de-

velopers more thoroughly test mobile apps’ features. GUEST integrates textual information from 
state pages with the UI structure to express operational GUI widgets with semantic information. 
It leverages the semantic coverage of edge links within the state transition graph of state-machine 
encoding for the usage to match canonical screens for the current state page. To exploit behavioral 
semantics, GUEST treats the state transition graph as a social network and performs centrality 
analysis to identify key canonical screens in the state transition graph. By utilizing the intimacy 
between key screens and candidate widgets’ reachable screens, GUEST grants higher priority to 
frequently used and more accessible actions. We evaluate GUEST on desired usages across 22 
popular apps and the results reveal that GUEST can successfully exercise the desired usage in 
88% of the tests and outperform the state-of-the-art baseline method in both screen and widget 
classification performance.

1. Introduction

In recent years, mobile applications (apps) have been pervasively used in daily life. Mainstream app stores such as the Apple 
AppStore [1] and Google Play [2] offer millions of apps across multiple categories. With the increasing significance of mobile apps, 
developers are increasingly emphasizing the maintenance of high quality and the fulfillment of user expectations in their apps. To 
alleviate the time and labor-intensive manual testing, automated Graphical User Interface (GUI) testing is employed to examine the 
behavior of mobile apps [3–8].

Some existing GUI testing techniques, such as random or search-based methods, aim to achieve high code coverage or discovering 
more defects [3,9–13]. However, these methods may fail to address developers’ practical needs. Mobile apps typically revolve around 
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specific features (functionalities), and user interactions reveal their usage habits. Events generated by these methods often lack a tight 
correlation between interaction sequences, which may overlook the examination of critical issues in functional operations [14–17].

Developers prefer usage-based test cases [18] that closely relate to app use cases or features [19]. Such test cases consist of a 
sequence of events that simulate user operations, such as “adding an item to bookmarks”. This approach effectively supports practical 
testing goals, such as regression testing or performance testing, which usually target common app use cases [19].

Test reuse has proven to be an effective way for leveraging existing usage-based test cases to test another app with similar 
functionality. In light of this, previous work [20–27] has focused on generating event sequences for target apps by reusing test cases 
from source apps. Nevertheless, test reuse poses several limitations in practical adoption, including reliance on manually crafted 
source tests and limited applicability across app categories [28]. Manually-written tests tend to focus on typical implementations 
of functionality, often neglecting alternatives user interaction paths. For instance, a developer might test adding a news article 
to bookmarks directly from the recommendation page but overlook adding it through the category menu. Furthermore, several 
methods [21,26,27] require complex program analysis, making them inapplicable when the source code of the app is unavailable.

The recent tool Avgust [28] overcomes the limitations of test reuse by leveraging a synthetic, app-agnostic state-machine encoding 
to generate usage-based tests for a new target app. It synthesizes a generic state machine intermediate-representation (IR) model using 
only screenshots and video frames from screen recordings, simplifying the creation of test scenarios. However, it still presents technical 
challenges that hinder test generation. First, Avgust leverages image classifiers to align screen and GUI widgets with the IR model, 
with performance heavily dependent on classifier training data. Unseen text and structural layout may interfere with classification 
results. Second, Avgust groups screen image into a standard representation based on visual and textual features, defining a typical 
classification known as the canonical screen [28,29]. Indeed, neglecting widget mapping can cause the classifier to fail to recommend 
the correct canonical screen, affecting widget selection. Third, Avgust focuses on the current screen when recommending triggerable 
widgets, without considering the broader contextual information or possible screen transitions. This lack of contextual understanding 
reduces its ability to fully capture app behavior, especially when state transitions depend on interactions across different screens.

To facilitate more effectively and thoroughly testing the functionality of mobile apps, we propose GUEST (Generating Usage-

based Equivalent teSTs), a novel lightweight approach that semantically understands app behavior to generate usage-based tests.

GUEST mitigates the limitations of Avgust in three key aspects. First, rather than relying on neural models for image understanding,

GUEST directly captures semantic information from the dynamically running app’s GUI pages. The valuable information about the 
GUI widgets and page structure enables a more accurate and adequate characterization of the current screen and operable widgets. 
Second, GUEST determines the canonical screen by calculating the semantic overlap between the current screen and the edges 
link (in and out edges) of the canonical screen in the IR model, providing a more precise identification of screen states. Third,

GUEST regards the state transition graph of state-machine encoding for the usage as a complex social network and applies network 
analysis to depict the graph semantics of app behavior. By conducting centrality analysis on each state transition graph, GUEST
identifies key screen nodes within the network. It then identifies candidate event sets by measuring the intimacy (i.e., frequency 
of communication) between reachable screens and these key screens. This strategy allows GUEST to prioritize frequently used and 
more accessible widgets with higher intimacy-aware scores. Additionally, GUEST can generate multiple equivalent tests for the same 
feature, thus providing greater diversity and relevance in examining the behavior of the app.

We conduct comprehensive experiments to evaluate the effectiveness of our approach. We apply GUEST to generate tests for 
18 usage scenarios across 22 popular apps available on Google Play.1 To assess the performance of the test generation, developer 
interactions with GUEST’s proposals are simulated by executing each usage scenario on three relevant apps. The experimental results 
demonstrate that GUEST is capable of generating at least two high-quality tests for each test scenario. Compared to the representative 
baseline approach, GUEST achieves superior performance in its classifier with higher coverage of screens and transitions and provides 
more accurate recommendations.

Our main contributions are summarized as follows.

• We propose GUEST,2 a novel approach capable of generating usage-based equivalent tests to examine the behavior of mobile 
apps thoroughly without relying on pre-existing tests written by domain experts.

• GUEST utilizes network analysis to represent the graph semantics of dynamic behavior contained in the state-machine encoding 
of the usage, and applies intimacy analysis between key screens and widgets’ reachable screens facilitates recommending the 
frequently used and more accessible interactions.

• We conduct comprehensive experiments to demonstrate the performance of GUEST on common usage scenarios across 22 
popular apps. The evaluation results confirm the effectiveness of GUEST in generating usage-based equivalent tests.

The remainder of this paper is organized as follows. Section 2 and Section 3 give the necessary background and the motivation 
of our work. Section 4 introduces the overview of our approach and then details its components. Section 5 reports and discusses the 
evaluation results. Section 6 discusses potential limitations and threats to validity. Section 7 describes the related work, and Section 8
concludes the paper.

1 https://play.google.com/.
2 https://github.com/liushuqi-2022/GUEST-repo.
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Fig. 1. A simplified state machine-based IR model (b) for the sign-in usage merged from the 6pm and Etsy apps. (a) corresponds to a example of sign-in test from the 
Etsy app. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2. Background

2.1. Usage-based test

Typically, users interact with mobile apps through GUIs, which contain various widgets, the fundamental elements of the interface. 
These widgets can be triggered by user actions, such as clicking buttons or entering text in text boxes, which are referred to as GUI 
events. A GUI event is represented as 𝑒 = ⟨𝑡, 𝑟, 𝑜⟩, where 𝑒.𝑡 denotes the event type (e.g., click, edit), 𝑒.𝑟 is a function that retrieves the 
target widget of the operation, and 𝑒.𝑜 includes optional data related to the event operation, such as the string for edit. A usage-based 
test consists of a sequence of GUI events designed to execute a specific functionality in the app, such as “sign-in”.

Fig. 1(a) illustrates the “sign-in” test in the Etsy3 app, represented by the event sequence {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}. Each screenshot shows 
the event operation on the corresponding GUI page, where the red box marks the widget being operated. For instance, 𝑒1 represents 
a click on the widget 𝑤1 with the rendered text “Get Started” on the GUI page 𝑠1.

2.2. Model-based GUI testing

For GUI testing, various model-based methods have been proposed to ensure app quality. Stoat [12] employs a stochastic model 
learned from the app to optimize test suite generation. Ape [10] dynamically evolves its abstraction criterion using runtime infor-

mation through a decision tree and generate UI events via a combination of random and greedy depth-first exploration strategies. In 
contrast, ComboDroid [13] acquires test cases through human input or from a GUI model built via GUI exploration. The data flows 
among these obtained tests are analyzed and combined to obtain the final tests. These model-based methods depict diverse behavioral 
patterns of apps, thereby improving test coverage.

Multiple events work together to accomplish the specific usage of functionality in an app. The GUI model is primarily focused on 
connecting discrete events to represent the behavior of a mobile app, which captures essential characteristics and interactions. A GUI 
model is essentially a Finite State Machine (FSM), represented by a tuple (𝑆 , 𝑠0 , 𝐹 , 𝐸, 𝑇 ). It consists of a set of states 𝑆 corresponding 
to specific screens or pages in the user interface (UI) of app, an initial state 𝑠0 (𝑠0 ∈ 𝑆), a set of desired final states 𝐹 (𝐹 ⊂ 𝑆), a set 
of events 𝐸, and a set of transitions between states 𝑇 . Each transition 𝑡 ∈ 𝑇 is defined as (𝑠𝑠, 𝑒, 𝑠𝑡), where 𝑠𝑠 and 𝑠𝑡 are source and 

3 https://play.google.com/store/apps/details?id=com.etsy.android.
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target states, and 𝑒 represents the event that triggers the transition. The state transition graph of the GUI model is a labeled directed 
graph, where nodes correspond to the states of the app and edges represent event-driven transitions between these states.

To capture common usage patterns across apps, we leverage a state machine-based IR model, an FSM-based structure that summa-

rizes key interaction flows. Fig. 1(b) presents a simplified state machine-based IR model for the “sign-in” usage case, extracted from 
the 6pm4 and Etsy5 apps. This model summarizes various pathways to access the Sign In page, including through the menu, shopping 
cart, or get-started channels. Each state and transition is defined at an abstract level, allowing for generalization across different apps. 
This example comes from Avgust [28], which constructs a state machine-based IR model by merging different implementations across 
multiple apps for a specific usage.

2.3. Social network centrality and intimacy analysis

A social network is typically depicted as a graph, denoted by 𝐺′ = (𝑉 ′,𝐸′), where 𝑉 ′ and 𝐸′ represent the sets of nodes and 
edges, respectively. The nodes set 𝑉 ′ indicates the entities within the social network, such as individuals or organizations, each node 
representing a participant. Meanwhile, the edges set 𝐸′ indicates the connections or relationships between these nodes, depicting 
various social interactions among them. A mobile app usually consists of a set of screens (or pages). User actions on these screens 
trigger transitions between screens. If we consider screens as actors and their transition relationships as social interactions, the state 
transition graph of an app can be regarded as a social network.

The notion of centrality, originating from social network analysis, was developed to measure the importance of nodes within a 
network. Centrality measures are widely used in network analysis and have been applied in various domains, including biological 
networks [30], co-authorship networks [31], affiliation networks [32], etc. Researchers have introduced several centrality measures 
specific to social networks, for example:

1) Degree centrality [33] represents the number of direct connections a node has, which helps identify highly connected nodes in 
the network. Formally, the degree centrality 𝐶𝑑 (𝑣𝑖) of a node 𝑣𝑖 can be defined as:

𝐶𝑑 (𝑣𝑖) =
𝑑𝑒𝑔(𝑣𝑖)
𝑛− 1 

where 𝑑𝑒𝑔(𝑣𝑖) is the number of direct connections of 𝑣𝑖, and 𝑛 represents the number of all nodes.

2) Closeness centrality [33] quantifies the proximity of a node to others. It is represented by the average length of the shortest 
path between a node and the others in the network. Specifically, the closeness centrality 𝐶𝑐 (𝑣𝑖) of node 𝑣𝑖 can be calculated as:

𝐶𝑐(𝑣𝑖) =
𝑛− 1 ∑𝑛

𝑗=1,𝑗≠𝑖 𝑑(𝑣𝑖, 𝑣𝑗 )

where 𝑑(𝑣𝑖, 𝑣𝑗 ) represents the shortest path distance between node 𝑣𝑖 and node 𝑣𝑗 .
3) Katz centrality [34] considers both direct and indirect connections to assess a node’s influence. The Katz centrality 𝐶𝑘(𝑣𝑖) for 

node 𝑣𝑖 is:

𝐶𝑘(𝑣𝑖) = 𝛼

𝑁∑
𝑗=1 

𝐴𝑖,𝑗𝐶𝑘(𝑣𝑗 ) + 𝛽, (𝛼 < 1 
𝜆𝑚𝑎𝑥

)

where 𝐴 represents the adjacency matrix of the network with eigenvalue 𝜆, 𝛼 and 𝛽 are scaling factors. 𝛼 controls the importance of 
direct connections, while 𝛽 controls the influence of indirect connections. In general, the Katz centrality values capture the cumulative 
influence of a node and its neighbors on the entire network.

4) Harmonic centrality [35] is a variant of closeness centrality that addresses the challenges posed by disconnected graphs. 
It considers the sum of reciprocal distances rather than the average, allowing isolated nodes to be included in the calculation. 
Specifically, the harmonic centrality 𝐶ℎ(𝑣𝑖) of node 𝑣𝑖 is defined as:

𝐶ℎ(𝑣𝑖) =

∑𝑛
𝑗=1,𝑗≠𝑖

1 
𝑑(𝑣𝑖,𝑣𝑗 )

𝑛− 1 
5) Betweenness centrality [36] quantifies the importance of a node in the network. It is measured based on the frequency of the 

node’s shortest path connecting other nodes. Nodes with high betweenness centrality usually act as bridges or intermediaries in the 
network. The betweenness centrality 𝐶𝑏(𝑣𝑖) of the node 𝑣𝑖 can be expressed as:

𝐶𝑏(𝑣𝑖) =
𝑛−1 ∑
𝑖=1 

𝑛 ∑
𝑗=𝑖+1

𝑔𝑖𝑗 (𝑣𝑖)
𝑔𝑖𝑗

where 𝑔𝑖𝑗 indicates the total number of shortest paths between nodes 𝑖 and 𝑗, and 𝑔𝑖𝑗 (𝑣𝑖) represents the number of those shortest 
paths from 𝑖 to 𝑗 passing through node 𝑣𝑖. In a nutshell, centrality analysis preserves the details of the graph and can potentially 
reflect the structural characteristics and behaviors.

4 https://play.google.com/store/apps/details?id=com.zappos.android.sixpmFlavor.
5 https://play.google.com/store/apps/details?id=com.etsy.android.
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Table 1
The frequency of communica-

tion between Get Started state 
and key nodes.

Usage Sign In Setting

sign-in 8 1 
terms 3 11 

Intimacy indicates the communication frequency between two individuals in a social network. Recently, an Android malware 
detection method IntDroid [37] aims to reduce the overhead of static analysis and graph-matching by computing intimacy between 
important nodes and sensitive APIs in the function call graphs. This provides precise graph details for distinguishing malicious and 
benign apps.

In mobile apps, users typically access specific crucial screens, serving as expected entry points for executing desired usage. For 
instance, in Fig. 1, screens like Menu and Shopping Cart are vital for executing the “sign-in” usage. In our approach, we regard the 
state transition graph of a state machine-based IR model as a social network, and adopt centrality analysis to mine key screens within 
the usage scenario. Examining app behavior involves dynamic exploration, where the app’s current state influences subsequent state 
transitions. Intimacy analysis between key and reachable screens prioritizes candidate events, allowing us to understand the dynamic 
behavior semantic implied in state-machine models and suggest actionable operations for generating usage-based equivalent tests.

3. Motivation

In this section, we present a motivating example involving two state machine-based IR models for the “sign-in” and “terms” usages. 
The usage-based IR model records the behaviors of multiple apps to accomplish a certain usage. The purpose of the GUEST is to 
generate equivalent usage-based tests for a previously unseen app by using the usage-based IR model for the desired usage.

We analyzed the state transition graph of state-machine encoding for the two usages. The state transition graph can be treated 
as a social network, where the nodes represent states and the edges represent transitions between them. For each state transition 
graph, a key node is selected based on the degree of the node, which is a common node in the both graphs. The key nodes of the state 
transition graphs for the “sign-in” and “terms” usages are identified as the Sign In and Setting states. Users generally reach these two 
app states to achieve specific functionalities. 

Table 1 lists the communication frequencies between the state Get Started and the key nodes Sign In and Setting. In two different 
usage scenarios, the communication relationship between the state Get Started and the respective key nodes is different. It can be 
observed that, for the same state, the communication with the key nodes is frequent in different networks. These key nodes play an 
important role in the dynamic communication of the network.

As shown in the example, for the same app, the state of the app in different target usages has inconsistent communication with 
key nodes. This makes it difficult to generate usage-based tests for the app. In the following sections, we will describe in detail how 
the GUEST identifies key screens in the state navigation graph and generates test scenarios based on the communication relationship 
between app states and those key screens.

4. Approach

GUEST acts as a human-in-the-loop tool to assist developers in creating usage-based tests by suggesting input events. Since app 
functionality can be accessed in various ways, multiple test paths are possible for each usage scenario. By suggesting events for a 
particular screen, GUEST enables flexible test generation aligned with user behavior. Fig. 2 gives an overview of GUEST. It has three 
types of inputs, i.e., the desired usage scenario (defining the expected functionality of the app), a database of the state machine-based 
intermediate presentation (IR) models for multiple usage scenarios, and the target app for testing. To thoroughly test the desired 
usage scenarios, GUEST follows these steps to generate equivalent usage-based tests. (a) GUEST performs network analysis on the 
IR model corresponding to the desired usage retrieved from the IR models database to obtain key canonical screens (Section 4.1, 
Usage-Based Network Analysis). (b) GUEST extracts GUI information from the current state of the running target app (Section 4.2, 
GUI Information Extraction). (c) Finally, GUEST assists developers to generate usage-based equivalent tests by suggesting top-𝑘

actions on the current screens of the target app. It iteratively aligns actionable widgets with the canonical widgets of the IR model, 
and utilizes intimacy analysis to prioritize frequently used and more user-friendly widgets (Section 4.3, Test Scenario Generation).

4.1. Usage-based network analysis

GUEST leverages state machine-based IR models to assist developers in generating usage-based equivalent tests for target apps. 
Given a desired usage (e.g., “sign-in”), it retrieves the corresponding IR model from the database, and uses it to guide test generation. 
To facilitate the recommendation of operations consistent with user habits, GUEST extracts semantic information contained in the 
retrieved IR model by performing network analysis. Next, we describe the model retrieval and network analysis in detail.

Model Retrieval. To retrieve the relevant state machine-based IR model for a given usage, Model Retrieval utilizes the IR models 
database [38] built via Avgust [28], chosen for its strong generalization and reusability. This database covers state-machine-based IR 
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Fig. 2. The workflow of GUEST. 

models for 18 types of usages, such as registration and adding items to a shopping cart, synthesized from diverse behaviors across 18 
related apps, each learning from others’ behavior. It captures potential usage pathways, effectively guiding test generation for new 
apps.

For example, given the desired usage “sign-in”, the model retrieval provides the corresponding IR model, similar to what is shown 
in Fig. 1(b). This IR model captures the “sign-in” usage pattern through an FSM design with seven screen states, where transitions 
are triggered by user actions. Each state represents a canonical screen independent of specific apps, while each transition signifies a 
user interaction with a canonical widget. For example, the canonical screen “Get Started” is an abstract representation of commonly 
occurring screens. Similarly, canonical events, such as “sign in”, correspond to user interactions represented by events 𝑒2 and 𝑒5, 
which are typical during the sign-in process.

By leveraging the IR model, GUEST assists developers in exploring different manners to accomplish the usage “sign-in” in the target 
app. This includes available through the Menu, Shopping Cart, or Sign In/Sign Up options within the get started area. For example, in an 
unseen app like Aliexpress,6 a user might click buy button from the shopping cart, prompting a login page where he/she complete the 
login by entering their password and clicking the sign-in button. This helps understand user interactions during the “sign-in” process 
and supports building adaptive interfaces to improve user experiences. To generate more realistic tests that align with user behavior,

GUEST analyzes the implied semantics within the transition graph of the IR model.

Network Analysis. GUEST regards the state transition graph of the IR model as a social network, and uses network analysis to identify 
the most important nodes, which help guide users to interact with different intentions.

To accomplish the desired usage of target app, it is crucial to first identify the entry point for the specific usage. GUEST primarily 
focus on two key types of screen nodes, i.e., hub screens and end screens. Hub screens play a crucial role in covering the critical 
functional implementation paths within the app, ensuring that test cases can contain pivotal interactions. On the other hand, taking 
end screens as key nodes guides generated tests towards successfully accomplishing the expected usage.

Centrality measures the importance of nodes in a network, which facilitates the identification of highly connected nodes (called hub 
nodes). GUEST performs centrality analysis to identify hub screen states in the specific IR model for the desired usage. Section 2.3

discusses the diverse range of centrality measures available for the network. Regarding centrality methods, five commonly used 
centrality metrics are selected: betweenness centrality, degree centrality, closeness centrality, katz centrality, and harmonic centrality. 
In the field of social network analysis, measuring the importance of a node often involves combining various centrality measures. 
With these centrality metrics, we address the above-mentioned challenge by constructing comprehensive centrality to obtain hub 
screens in two steps, as shown in Fig. 3.

Step 1: Candidate screens pre-filtering. Since hub screens control network communication and connect different screens, key screens 
should exist within these center locations to facilitate coordinated interactions among various features. Therefore, we pre-filter out 
all possible hub screens as candidate screens. Betweenness centrality is used to evaluate all screen nodes, as it quantifies how well a 
node acts as a bridge in state transitions. Screens with a betweenness score of zero are excluded from the candidate set.

Step 2: Centrality ranking. The number of identified candidate screen nodes is large. In fact, within the network, only a few 
nodes function as hub nodes. To determine the final hub screen nodes, we further measure the centrality of the candidate screens. 
Various centrality measures provide distinct perspectives on node importance. To achieve a more comprehensive measure for these 
candidate screens, we combine degree centrality, closeness centrality, katz centrality, and harmonic centrality metrics. Formally, the 

6 https://play.google.com/store/apps/details?id=ru.aliexpress.buyer.
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Fig. 3. Two steps in comprehensive centrality analysis. 

comprehensive centrality 𝐶𝑐𝑜𝑚(𝑣𝑖) for the screen node 𝑣𝑖 is calculated by averaging the values obtained from these four centrality 
metrics, denoted as:

𝐶𝑐𝑜𝑚(𝑣𝑖) =
𝐶𝑑 (𝑣𝑖) +𝐶𝑐(𝑣𝑖) +𝐶𝑘(𝑣𝑖) +𝐶ℎ(𝑣𝑖)

4 
(1)

where 𝐶𝑑 (𝑣𝑖), 𝐶𝑐(𝑣𝑖), 𝐶𝑘(𝑣𝑖), and 𝐶ℎ(𝑣𝑖) denote the degree centrality, closeness centrality, katz centrality, and harmonic centrality of 
𝑣𝑖, respectively. Since high centrality represents greater importance within the network, we identify the candidate nodes with top-𝑘

comprehensive centrality scores as the hub screens. To investigate the impact of different numbers of hub screens on recommended 
events, we explore 𝑘 = 1, 2, and 3. Taking Fig. 3 as an example, there are 7 different screen nodes in the state transition graph of 
the GUI model. First, we calculate the betweenness centrality for all screen nodes, filtering out Screen5 due to its value of 0. This 
lead to the candidate hub screens set {Screen1, Screen2, Screen3, Screen4, Screen6, Screen7}. Next, we combine Eq. (1) to measure the 
comprehensive centrality of these candidates and sort them in descending order. Assuming 𝑘 = 3, the first three screen nodes with 
the highest centrality scores, Screen2, Screen4 and Screen6, will be designated as hub screens. These hub screens will work with the 
end nodes to prioritize possible candidate events for test generation.

4.2. GUI information extraction

GUEST suggests the next possible operations to accomplish the desired usage based on the current state of the target app. This 
necessitates GUEST to accurately and comprehensively extract GUI information that describes the current state. The diversity of 
app designs poses challenge in extracting representative details from various app states. Therefore, GUEST focuses on two aspects 
of GUI information extraction, i.e., widgets information and page status. On the one hand, we extract the inherent meaning of all 
operable widgets on the current screen, which helps identify actionable steps associated with these widgets. On the other hand, we 
characterize the GUI page to enhance the understanding of its functionalities. GUEST relies on Appium,7 which utilizes Android’s 
Accessibility API and UIAutomator [39] to build UI hierarchy file for deriving both types of information.

Widgets Information. Operable widgets, such as buttons and text fields, are crucial for user interaction. Widget information uniquely 
identifies elements on the page, enabling actionable steps for each widget’s functionality. GUEST captures the UI layout hierarchy 
in XML format through the driver.page_source, which includes details about all widgets in the app’s current state, such as

resource-id, text, and bounds attributes. The UI layout is represented as a tree, with each node corresponding to a widget. 
The extraction of widget information involves three operations: (i) obtaining descriptive attributes for each widget, such as class,

content-desc, clickable, text, and resource-id; (ii) extracting local structural information from the UI layout tree, including 
parent and child nodes, to determine the semantics of intermediate elements in the layout structure; and (iii) defining the cropping 
box using the boundary values representing the pixel coordinates of the widget on the screen, and extracting the specified region 
from the screenshot to create a vivid image of the widget.

For example, a screenshot of the login page of the Wish app and its UI layout three is depicted in Fig. 4. The extracted information 
for the “Sign In” button in the current app state in Fig. 4 is {“Text”: “Sign In”, “class”: android.widget.TextView, “Clickable”: true, 
“Bounds”: [42,1006][1038,1111], “resource-id”: “com.contextlogic.wish:id/sign_in_fragment_sign_in_button”, “
numberOfChildren”: 0, “numInParentLayout”: 1, “screenshotPath”: 1-SignIn 
/wish/42_1006_1038_1111.png}.

Page Status. Page status provides a macro-level semantic overview of the current state of the app, providing an overall understanding 
of its functionality. It contains two key aspects: the activity name of the page and representative attribute textual information of all 

7 https://github.com/appium/appium.
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Fig. 4. UI state captured from Wish login page. The UI layout hierarchy elements highlighted on the right correspond to screenshot shown on the left. 

operable widgets. The comprehensive API provided by Appium8 facilitates the control of mobile devices and apps. Among its feature, 
the Activities class includes a current_activity property that enables the querying of the activities currently running on the 
device. GUEST utilizes this property to dynamically capture the current activity, which accurately identifies the state of the app.

4.3. Test scenario generation

The purpose of test scenario generation is to help developers create usage-based tests for the target app. Algorithm 1 outlines 
the iterative process for generating test scenarios (Lines 2-18) through GUEST. The process involves iteratively triggering widget 
based on the current state of the target app to accomplish usage features (Lines 5-15). First, extracted operable widgets information 
𝑤𝑡𝑏 is adjusted based on the UI layout of the status page, and the page status 𝑠𝑝𝑎𝑔𝑒 is updated accordingly (Line 6, details in Sec-

tion 4.3.1). Second, GUEST measures the semantic similarity between candidate canonical screens in the IR model and the current 
state, recommending the top canonical screens for developers to select (Line 7, details in Section 4.3.2). Third, GUEST recommends 
the operations that are highly intimated with key nodes (i.e., hub nodes or end nodes) from the corresponding candidate widgets 
𝑤𝑖𝑑𝑔𝑒𝑡𝑠𝑐𝑎𝑛 of the selected 𝑠𝑐𝑟𝑒𝑒𝑛 (Lines 8-12, details in Section 4.3.3). Finally, GUEST executes the selected event, updates the 
app state, and adds the event to the explored test 𝑡𝑡𝑛 (Lines 13-14). This continues until the target usage scenario is achieved or the 
maximum number of events per generated test is reached (Line 5).

Fig. 5 demonstrates how GUEST assists developers by suggesting the top-𝑘 canonical screens that match the current state and 
recommending possible events. The green text indicates the developer’s interactions with GUEST, guiding the generation of test 
scenarios. Each sequence of triggered events at different states forms a usage-based test. Subsequent sections detail how this process 
is implemented.

4.3.1. Processing

In this stage, we first preprocess the extracted GUI information to facilitate state matching and event generation. As mentioned 
in Section 4.2, the GUI information includes both widgets information and page status. The goal is to fully express the semantic 
information of operable widgets.

Due to the diversity of certain UI designs, such as the use of custom controls or complex layouts, extracting widget information 
solely from XML can result in the loss of crucial semantic information. For example, in Fig. 6, the layout tree of the news module 
shows a clickable element with type ViewGroup, which is responsible for arranging its child elements. However, among these child 
elements, only the element with rendered text of “Autos” of type TextView is clickable, while others are not, despite containing 
key news information. In such cases, custom controls or complex layouts may obscure the semantic relationship between interactive 
elements and their content. Therefore, directly using the semantic information of clickable events may not be suitable for handling 
these complex layouts. To address this, we adapt the semantic information of operable widgets, which are intermediate nodes defining 
the structural layout among elements, in combination with the layout tree of the page.

Operable widgets, particularly those of types such as ViewGroup, Linear Layout, FrameLayout, LinearLayoutCompat,

RelativeLayout and Tab, are categorized as intermediate elements. These intermediate elements typically have at least two child 
nodes, including at least one of the type TextView. Moreover, in the layout structure, there is usually an element with the longest 

8 https://github.com/appium/appium.
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Algorithm 1 Test Generation.

Input: target app 𝑎𝑡 , the IR model 𝐼𝑅 for the desired usage, hub nodes of IR model 𝑛ℎ𝑢𝑏𝑠, end nodes of IR model 𝑛𝑒𝑛𝑑𝑠, desired number of generated tests 𝑛𝑀𝑎𝑥, widgets 
on the current state of target app 𝑤𝑡𝑏 , page status of the state page 𝑠𝑝𝑎𝑔𝑒
Output: usage-based tests 𝑡𝑢 = {𝑡1, 𝑡2, ....., 𝑡𝑡𝑛}
1: Initialize: 𝑡𝑢 = ∅, 𝑣ℎ𝑠 = ∅, 𝑡𝑛 = 1, 𝑡𝑡𝑛 = ∅
2: while 𝑡𝑛 < 𝑛𝑀𝑎𝑥 do

3: 𝐼𝑠𝐻𝑢𝑏 = 𝐹𝑎𝑙𝑠𝑒

4: 𝐼𝑠𝐸𝑛𝑑 = 𝐹𝑎𝑙𝑠𝑒

5: while 𝑙𝑒𝑛(𝑡𝑡𝑛) <𝑀𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛 or not 𝐼𝑠𝐸𝑛𝑑 do

6: 𝑤′
𝑡𝑏
, 𝑠′

𝑝𝑎𝑔𝑒
= getProcess(𝑤𝑡𝑏 , 𝑠𝑝𝑎𝑔𝑒)

7: 𝑠𝑐𝑟𝑒𝑒𝑛,𝑤𝑖𝑑𝑔𝑒𝑡𝑠𝑐𝑎𝑛 = getScreen(𝑤′
𝑡𝑏

, 𝐼𝑅, 𝑠′
𝑝𝑎𝑔𝑒

)

8: if not 𝐼𝑠𝐻𝑢𝑏 then

9: 𝑒𝑣𝑒𝑛𝑡 = getEvent(𝑛ℎ𝑢𝑏𝑠,𝑤𝑖𝑑𝑔𝑒𝑡𝑠𝑐𝑎𝑛, 𝐼𝑅, 𝑣ℎ𝑠, 𝑠𝑐𝑟𝑒𝑒𝑛 )

10: else

11: 𝑒𝑣𝑒𝑛𝑡 = getEvent(𝑛𝑒𝑛𝑑𝑠,𝑤𝑖𝑑𝑔𝑒𝑡𝑠𝑐𝑎𝑛, 𝐼𝑅, 𝑣ℎ𝑠, 𝑠𝑐𝑟𝑒𝑒𝑛 )

12: end if

13: 𝐼𝑠𝐻𝑢𝑏, 𝐼𝑠𝐸𝑛𝑑, 𝑣ℎ𝑠 = updateState(𝑛ℎ𝑢𝑏𝑠, 𝑣ℎ𝑠, 𝑠𝑐𝑟𝑒𝑒𝑛, 𝑒𝑣𝑒𝑛𝑡)

14: 𝑡𝑡𝑛 = 𝑡𝑡𝑛 ∪ {𝑒𝑣𝑒𝑛𝑡}
15: end while

16: 𝑡𝑢 = 𝑡𝑢 ∪ 𝑡𝑡𝑛
17: 𝑡𝑛+= 1
18: end while

19: return 𝑡𝑢

Fig. 5. An example is used to illustrate how the GUEST assists developers in triggering a widget on the current GUI page. 

text, representing the main content of the module. Notably, due to the specific functionalities of the widgets, the maximum text length 
associated with different intermediate elements is unique within the same GUI. Recall from Section 4.2 that GUEST supports the 
extraction of local structural information about widgets, including parent-child relationships. To enhance the semantic information of 
intermediate nodes, GUEST incorporates the most representative information from their child elements. It captures the representative 
text from these intermediate elements by applying the following rules:

(1) If a child widget’s text length exceeds that of the current representative text, the widget and its text are updated as the new 
representative information.

(2) If the child widget doesn’t satisfy the above condition but belongs to an intermediate element type, GUEST continues traversing 
through the layout structure until it extracts the most representative text from all child nodes.

Taking Fig. 6 as an example, there are two clickable widgets 1© and 2© presented on the GUI screen. Leveraging its UI structure 
layout, we can identify that the representative text information of clickable widget 1© is “New EV plans for major oil company”, which is 
the longest text within the entire module. This method overcomes the limitation that mainstream OCR engine may identify interfering 
information like ‘Autos’ and ‘Aug 1,12:06pm’ as textual semantic information.
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Fig. 6. A simple example of layout tree of operable widget 1© from GUI screen. 

This iterative process gathers key semantic information from intermediate elements, effectively reducing the interference of irrele-

vant textual information on the similarity calculation. By following this strategy, GUEST enriches the semantic information associated 
with operable widgets and enhances the representation of the page state.

4.3.2. State matching

By aligning the GUI information depicting the current state of the target app with the IR model for the desired usage, state matching 
suggests candidate canonical screens. Once the developer selects the most appropriate screen from these candidates, it determines the 
scope for the subsequent actions. As the widgets information contains semantic text while the canonical widgets and screens within 
the IR model are iconic, semantic similarity measure is adopted to facilitate the state matching.

To more accurately approximate the semantics contained in the corresponding canonical screens of the IR model, three primary 
factors of the current state are considered:

Out-Degree Edges Semantic Coverage. The operable widgets on the screen reflect the functionality of the target app’s current state. 
Fig. 5 depicts a simple example of triggers associated with the login page of apps recorded in the IR model. The Sign In canonical 
screen enables state transitions via actions such as tapping on password, keep sign in, sign in or by amazon. This indicates that widgets 
corresponding to these canonical widgets are available for user interaction on pages with login feature.

Preprocessing. The values of widget attributes like text, resource-id, and content-desc are processed for accurate similarity 
computation. We employ techniques such as tokenization and stopword removal from natural language processing (NLP) to preprocess 
attribute values. Importantly, we preserve stopwords in the text attribute (i.e., the displayed text) to retain essential information. In 
addition, there may be multiple widgets sharing the same value for the attribute resource-id. To minimize semantic interference, 
we do not consider this attribute for multiple widgets where the same resource-id value occurs.

Similarity Calculation. The key challenge lies in utilizing limited textual information to establish semantic approximation between 
the widgets on the screen and the canonical widgets of each canonical screen in the IR model. To better match widgets on the screen, 
we extend the description of canonical widgets introduced in Avgust [28]. This extension contains a more comprehensive textual 
description of the behavioral attributes associated with the canonical widgets. We employ a pre-trained BERT language model [40] 
to conduct semantic similarity measurement.

We compute the similarity score between each attribute value of a widget 𝑊𝑖 on the target app’s screen and the description of a 
canonical widget 𝑊 𝐼𝑅𝑖 from a canonical screen. To achieve this, we convert the words list of attribute values into a sentences list 
𝐴, and 𝑠′ corresponds to a sentence description of any canonical widget. For each sentence 𝑠 ∈𝐴, 𝑠𝑖𝑚1(𝐴,𝑠′) denotes the maximum 
value of 𝑠𝑖𝑚(𝑠, 𝑠′). Formally,

𝑠𝑖𝑚1(𝐴,𝑠′) = max
𝑠∈𝐴 𝑠𝑖𝑚(𝑠, 𝑠

′)

where 𝑠𝑖𝑚(𝑠, 𝑠′) is the semantic similarity between the two sentences 𝑠 and 𝑠′, obtained from the cosine distance of the vector 
representations ⃖⃖⃖⃗𝑉𝑠 and ⃖⃖⃖⃗𝑉 ′

𝑠 of 𝑠 and 𝑠′, viz.,

𝑠𝑖𝑚(𝑠, 𝑠′) =
⃖⃖⃖⃗𝑉𝑠 ⋅ ⃖⃖⃖⃗𝑉

′
𝑠|⃖⃖⃖⃗𝑉𝑠|| ⃖⃖⃖⃗𝑉 ′
𝑠 |

Then, we compute the similarity between all attribute values of a widget 𝑊𝑖 and the description of a canonical widget 𝑊 𝐼𝑅𝑖 by

𝑠𝑖𝑚(𝑠𝑂, 𝑠′) =
⃖⃖⃖⃖⃖⃗𝑉𝑠𝑂 ⋅ ⃖⃖⃖⃗𝑉 ′

𝑠| ⃖⃖⃖⃖⃖⃗𝑉𝑠𝑂 || ⃖⃖⃖⃗𝑉 ′
𝑠 |

The over similarity between a widget 𝑊𝑖 and a canonical widget 𝑊 _𝐼𝑅𝑖 is computed as the weighted average:

𝑠𝑖𝑚(𝑊𝑖,𝑊 𝐼𝑅𝑖) =
𝑠𝑖𝑚1(𝐴,𝑠′) + 𝑠𝑖𝑚(𝑠𝑂, 𝑠′)

2 
Similarity matrix analysis. After calculating similarity, a similarity matrix is generated to compare the widgets on the current screen 

with canonical widgets. The most similar pairs are identified by the following two parts:

(1) The heuristic rules, associating the textual data of a widget with similar terms, potential position, and types linked to each 
canonical widget.
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(2) The highest cosine similarity, representing the likelihood of a target widget matching the expected canonical widget. Candidate 
pairs are selected using a predefined similarity threshold of 0.65, which is adjusted to 0.45 to expand the selection range if no suitable 
matches are found.

The summed average scores of the candidate association pairs is regarded as the out-degree edges semantic coverage of the 
canonical screen corresponding to the current screen. Formally,

𝑐𝑜𝑣𝑜𝑢𝑡 =
∑𝑚

𝑐=1 𝑠𝑖𝑚(𝑊𝑐,𝑊 𝐼𝑅𝑐)
𝑚 

where 𝑠𝑖𝑚(𝑊𝑐,𝑊 𝐼𝑅𝑐) is a candidate association pair and 𝑚 denotes the total count of these candidate pairs.

In-Degree Edges Semantic Coverage. More importantly, the current state is inherently influenced by the functionality of the previous 
operation. An intuitive observation from Fig. 5 indicates that the current state page is closely resembles to the Sign In and Sign in with 
Amazon canonical screens. Assume that the current page is reached by triggering the widget corresponding to sign in from the state 
Shopping Cart. At this point we believe that the possibility of canonical screen Sign In being the closest match is highest, which is 
supported by the established connection between the Sign In and Shopping Cart canonical screens based on past user interactions for 
the usage. In light of this, we record the canonical widget 𝑊 𝐼𝑅𝑝𝑟𝑒 corresponding to the previously triggered widget during dynamic 
testing process. Subsequently, we determine the in-degree edges semantic coverage as follows:

𝑐𝑜𝑣𝑖𝑛 =

{
1, if 𝑊 𝐼𝑅𝑝𝑟𝑒 ∈ 𝑖𝑛𝑒𝑑𝑔𝑒𝑠,

0, if 𝑊 𝐼𝑅𝑝𝑟𝑒 ∉ 𝑖𝑛𝑒𝑑𝑔𝑒𝑠,

where 𝑖𝑛𝑒𝑑𝑔𝑒𝑠 indicates all triggers that may transition to canonical screen.

Global Similarity. The screen pages of the app reflect the overall functional modules and the services provided. For a more compre-

hensive measurement, we analyze the global similarity between the current screen and canonical screens, using the activity name 
𝑎𝑐 of the page and the textual information 𝑎𝑤 of all operable widgets with the description 𝑠𝑛𝑑 of the canonical screen 𝑛𝑑. The final 
global similarity 𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑎𝑙 is computed as,

𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑎𝑙 =max(𝑠𝑖𝑚(𝑠𝑎𝑐 , 𝑠𝑛𝑑 ), 𝑠𝑖𝑚(𝑠𝑎𝑤, 𝑠𝑛𝑑 ))

The final score for any screen is computed by weighting the above factors:

𝑠𝑖𝑚𝑠𝑐𝑟𝑒𝑒𝑛𝑖
= 𝛼 ∗ 𝑐𝑜𝑣𝑜𝑢𝑡 + 𝛽 ∗ 𝑐𝑜𝑣𝑖𝑛 + 𝛾 ∗ 𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑎𝑙

where 𝛼, 𝛽, 𝛾 represent weights assigned to each factor, indicating their respective importance among all factors, and 𝛼 + 𝛽 + 𝛾 = 1.

Finally, candidate canonical screens are ranked by their final score, and GUEST recommends the top choices to developers. As 
illustrated in Fig. 5, GUEST suggests the top-5 canonical screens for the current screen, which include sign_in, signin_or_signup, sign_up, 
account, and cart. The canonical screen sign_in is selected as the most appropriate option for state matching.

4.3.3. Event generation

Once the canonical screen that best matches the current screen is identified, GUEST determines candidate widgets aligned with 
the desired usage. Instead of directly presenting candidate widgets as events for developers, we introduce the concept of intimacy 
between screens to prioritize frequently used and easily accessible screen transitions.

Intimacy Analysis. The interactions among multiple screens reflect app behavior. When there are multiple reachable paths between 
two screens, their transitions are considered frequent. If the distance between the two screens is short, it indicates easier access. Two 
screens with both frequent transitions and shorter paths are seen as intimate pairs, representing a high degree of interaction and ease 
of access. Specifically, we define the intimacy of screens 𝑝 and 𝑞 as

𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦(𝑝, 𝑞) =
𝑛𝑝𝑞

𝑎𝑙(𝑝, 𝑞) + 1
(2)

where 𝑛𝑝𝑞 indicates the total number of reachable paths between screens 𝑝 and 𝑞, and 𝑎𝑙(𝑝, 𝑞) denotes the average length of these 
paths.

Considering that the behavior of the app is a continuously triggered process, we divide event generation into two stages (Lines 
8-12 of Algorithm 1). In the first phase, starting from the initial state of the app, GUEST relies on the guidance of the hub screen 
nodes identified from the IR model to reach the hub state. In the second phase, once the hub state is reached, GUEST towards the 
desired usage, guided by end screen nodes.

To determine which widget to trigger, we prioritize candidate widgets based on the intimacy between reachable screens and the 
key screens (i.e., hub screens or end screens). The intimacy-aware score of a widget 𝑤𝑖 is obtained as:

𝑠𝑐𝑜𝑟𝑒𝑖𝑛𝑡𝑖(𝑤𝑖) =
1 |𝑃 ||𝑄| ∑

𝑝∈𝑃

∑
𝑞∈𝑄

𝑛𝑝𝑞

𝑎𝑙(𝑝, 𝑞) + 1

where 𝑃 represents the set of reachable screens of 𝑤𝑖 , and 𝑄 is the set of key screens. For example, we take the candidate widget 
‘account’ which has a single reachable screen labeled as 𝑎𝑐𝑐𝑜𝑢𝑛𝑡. From 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 to the key screens, like 𝑠𝑖𝑔𝑛_𝑖𝑛 and 𝑠𝑖𝑔𝑛𝑖𝑛_𝑜𝑟_𝑠𝑖𝑔𝑛𝑢𝑝
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Fig. 7. The process of calculating the intimacy-aware score of candidate widget ‘account’. 

identified via network analysis, there are three distinct paths, as depicted in Fig. 7. Notably, there is only one path between 𝑎𝑐𝑐𝑜𝑢𝑛𝑡
and 𝑠𝑖𝑔𝑛_𝑖𝑛, represented as 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 → 𝑠𝑖𝑔𝑛_𝑖𝑛. Through Eq. (2), we determine the intimacy between 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 and 𝑠𝑖𝑔𝑛_𝑖𝑛 as 0.5. 
Similarly, the intimacy between 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 and 𝑠𝑖𝑔𝑛𝑖𝑛_𝑜𝑟_𝑠𝑖𝑔𝑛𝑢𝑝 is calculated as 0.22. Hence, the intimacy-aware score of the candidate 
widget ‘account’ is obtained as 0.36.

Candidate widgets are sorted based on their intimacy-aware scores, ensuring that frequently used and easily accessible wid-

gets are prioritized. For each widget, GUEST generates an executable event, considering whether user input is required based on 
the widget type. The options selected by developers from GUEST’s suggested candidate events are treated as target events. For 
instance, to execute a click event, GUEST first locates the UI element using methods like find_element_by_id() or find_ele-

ment_by_xpath(), and then simulates a tap by calling the click() method.

Once the termination condition is met, a usage-based test scenario is generated through the event generator’s sequence of triggered 
events based on the interactions. Since test generation is guided by hub screens, GUEST has the capability to generate multiple 
equivalence tests. During the test generation process, GUEST record the status of visited hub screens 𝑣ℎ𝑠, prioritizing unexplored 
paths. For instance, in Fig. 1, the first test triggers the hub state Menu by selecting the menu on Home screen. For the second test,

GUEST will prioritize a different widget cart on the Home screen to activate another hub state Cart.

5. Evaluation

In this section, we evaluate the proposed GUEST approach. We mainly explore the following research questions:

• RQ1: How effective is the GUEST at generating tests that achieve the desired usage?

• RQ2: How much effort can be saved by using GUEST to generate tests?

• RQ3: How accurate are GUEST’s screen and widget classifiers?

• RQ4: How does the number of hub nodes and different centrality metrics affect the performance of GUEST for widget recom-

mendations?

• RQ5: How does the size of the generated tests affect their desired usage implementation effectiveness?

5.1. Experimental setup

Implementation Details. GUEST is implemented in Python, and utilizes the Appium9 framework for test generation. GUEST
requires input including a desired usage, an IR model database of state machine-based models with various usages, and a target 
app. Its purpose is to employ a state machine-based IR model to guide the generation of equivalence tests for accomplishing the 
desired usage of the target app. GUEST employs the networkx10 library to obtain the state transition graph of the IR model for the 
desired usage and conducts network centrality analysis. Additionally, the sentence_transformers11 library is used to generate 
embeddings and sklearn12 library calculates the similarity between embeddings for sentence-level semantic similarity calculation 
based on BERT. The experiment was conducted on a Windows desktop equipped with a 2.1 GHz Intel Core i7 CPU and 32 GB RAM. 
For app installation and GUI status recording, we utilized a Nexus 5X emulator running Android 6.0 (API 24).

9 https://github.com/appium/appium.
10 https://github.com/networkx.
11 https://github.com/UKPLab/sentence-transformers.
12 https://github.com/topics/sklearn.
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Table 2
The specific details about subject apps.

App ID App Name Version App ID App Name Version 
A1 AliExpress V7.2.1 A12 USA Today V5.23.2 
A2 Ebay V6.112.0.2 A13 Zappos V10.4.0 
A3 Etsy V5.6.0 A14 BuzzFeed V2020.2 
A4 Dailyhunt V17.1.5 A15 Fox News V3.29.2 
A5 Geek V2.3.7 A16 BBC News V5.10.0 
A6 Groupon V19.16.204451 A17 Reuters V3.4.2 
A7 Home V2.4.0 A18 News Break V13.0.2 
A8 6PM V2.1.1 A19 Chess V3.86 
A9 Wish V4.22.6 A20 Andttt V0.6.6 
A10 The Guardian V6.15.1903 A21 Reversi V1.73 
A11 ABC News V5.4.6 A22 Sudoku V2.10.7 

As outlined in the context of test generation in Section 4.3, GUEST provides two types of parameters, i.e., the maximum number 
of events 𝑀𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛 for each generated test and the weight of each contributing factor to the final score of any screen. Similar to the 
settings of the baseline [28], each generated test is limited to 20 events, so we also set 𝑀𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛 to 20. The final score of the screen 
is determined by three factors: out-degree edges semantic coverage, in-degree edges semantic coverage, and global similarity. We 
assigned equal weights to these factors. In certain cases where in-degree edges semantic coverage is zero, global similarity becomes 
more important than out-degree edges semantic coverage, as it considers the semantics of all widgets and the overall activity. To 
determine the appropriate parameter values, we conducted experiments using different settings. We randomly selected five apps from 
each category, initially setting 𝛼 to 0.5 and then adjusting it incrementally to 0.45, 0.55, and so on, with an interval of 0.05. The results 
indicated that a weight of 𝛼 = 0.45 yielded the best performance for screen classification. Consequently, we adjusted the weights to 
𝛼 = 0.45, 𝛽 = 0, and 𝛾 = 0.55 respectively to reflect their importance. These adjusted weights provided the best performance in our 
experiments, and the reported results are based on these values.

Subject Apps. We conduct usage-based test generation on 22 apps for experimental evaluation. 18 subject apps were selected from 
the open-source evaluation dataset of Avgust [28]. This selection was based on two key considerations: (1) the shopping and news 
categories have been identified as sharing common functionalities across all categories on Google Play; and (2) among the closest 
existing approaches [18,28,29], these apps were evaluated by defining the most functional tests, considering the different implemen-

tations of the same functionality. In addition, considering that the game is a typical category that contains varied interactions, we 
collect four apps to validate the generalization of GUEST to other app types. Table 2 provides fundamental information about these 
apps, including their names and version details. Notably, apps A1 to A9, A10 to A18, and A19 to A22 belong to the shopping, news, 
and game categories, respectively. These apps are available on widely used platforms such as Google Play [2] and F-Droid [41], and 
have been intensively studied in the literature for similar purposes [3,18,28,29,42–44].

Usages and IR models database. As aforementioned, the idea of GUEST is similar to Avgust [28]. Avgust is the first technique 
capable of generating usage-based tests by leveraging synthetic IR Models learned from app videos. Therefore, we selected Avgust as 
the baseline and leveraged its usages and IR models database for comprehensive comparative evaluation. From prior work [18,28,29], 
the selected 18 usages were identified manually within shopping and news apps. Table 3 lists the specific test case names and 
functionalities for these identified usages. Specifically, we conducted test generation based on 15 usages within the shopping category 
(U1-U15), 14 usages within the news category (U1-U11, U16-U18), and 3 usages within the game category (U3, U5, U8). For each 
of these usages, the IR models database comprises state machine models commonly learned from behaviors across 18 apps (A1-

A18) detailed in Table 2, which can be utilized to guide test generation for another new app. Furthermore, human tests [38] are 
incorporated to establish a ground truth for assessing how closely the generated tests matched analogous tests sourced from Avgust. 
Their empirical study collected 374 video recordings covering 18 different usage scenarios with three relevant apps for each scenario. 
They conducted an extensive labeled dataset comprising 2,478 ground-truth labels for screens and 2,434 labels for widgets. Their 
findings revealed the usage-based tests generated by Avgust are close to the tests crafted by humans in their user study. For the newly 
collected game apps, we determined the human tests that implemented usage after careful discussion.

Performance Metrics. For a fair comparison, we utilize the same metrics (i.e., Precision, Recall, and Top-k Accuracy) used in the 
baseline work [28]. Additionally, to measure the utility of the tests generated by GUEST, we employ a widely used metric in literature 
(e.g., [18,25,45]).

• Precision refers to the proportion of states and transitions in the generated tests that occur in the most similar human-obtained 
tests. Formally,

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑡𝑔𝑒𝑛⋂ 𝑡ℎ𝑢𝑚||𝑡ℎ𝑢𝑚| 

where 𝑡𝑔𝑒𝑛 indicates the set of states and transitions in the test generated by our GUEST, 𝑡ℎ𝑢𝑚 is the set of states and transitions 
in the most similar human-obtained tests. Here, |𝑡𝑔𝑒𝑛⋂ 𝑡ℎ𝑢𝑚| represents the number of elements in the intersection between sets 
𝑡𝑔𝑒𝑛 and 𝑡ℎ𝑢𝑚.
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Table 3
The 18 desired usages used in GUEST’s evaluation.

Usage ID Test Case Name Tested Functionalities 
U1 Sign In Provide username and password to sign in 
U2 Sign Up Provide required information to sign up 
U3 Category Find first category and open browsing page for it 
U4 Search Use search bar to search a product/news 
U5 Terms Find and open legal information of the app 
U6 Account Find and open account management page 
U7 Detail Find and open details of the first search result item 
U8 Menu Find and open primary app menu 
U9 About Find and open about information of the app 
U10 Contact Find and open contact page of the app 
U11 Help Find and open help page of the app 
U12 Add Cart Add the first search result item to the cart 
U13 Remove Cart Open cart and remove the first item from the cart 
U14 Address Add a new address to the account 
U15 Filter Filter/sort search results 
U16 Add Bookmark Add the first search result item to bookmarks 
U17 Remove Bookmark Open bookmarks and remove the first item from it 
U18 Textsize Change text size 

• Recall quantifies the proportion of states and transitions from the most similar human-obtained tests that appear in the generated 
tests. Formally,

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑡𝑔𝑒𝑛⋂ 𝑡ℎ𝑢𝑚||𝑡𝑔𝑒𝑛| 

• Top-k Accuracy is the percentage of recommended states and transitions with at least one correlation among the top 𝑘 results. 
Formally,

𝑎𝑐𝑐𝑡𝑜𝑝_𝑘 =
𝑐𝑜𝑟(𝑘)|𝑡𝑔𝑒𝑛| 

where 𝑐𝑜𝑟(𝑘) represents the number of ground-truth labels for states and transitions that appear in the top-𝑘 recommended 
results.

• Effort Reduction measures how much effort developers can save by adopting GUEST to generate tests instead of writing them 
from scratch. Formally,

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑡𝑔𝑒𝑛) = 1 −
𝐸𝐷(𝑡𝑔𝑒𝑛, 𝑡ℎ𝑢𝑚)|𝑡ℎ𝑢𝑚| 

where 𝐸𝐷(𝑡𝑔𝑒𝑛, 𝑡ℎ𝑢𝑚) represents the Levenshtein distance [46] of 𝑡𝑔𝑒𝑛 and 𝑡ℎ𝑢𝑚, measuring how close the generated test is to its 
ground-truth test. In our case, the Levenshtein distance calculates the minimum number of edits required to change the transitions 
of the generated test to the closest human test. Among them, a single edit is defined as an operation of inserting, deleting, or 
replacing for transitions.

5.2. Experimental results

RQ1: How effective is the GUEST at generating tests that achieve the desired usage?

In this RQ, we aim to evaluate the effectiveness of GUEST for generating usage-based equivalent tests for Android apps. GUEST
employs IR models learned from the other apps to guide test generation, demonstrating its capability to generate tests for previously 
unseen apps. For this evaluation, we randomly selected three news and shopping apps to generate tests for 16 usage cases, while 
data extraction restrictions limited two additional cases to two apps each, resulting in 52 test scenarios (16 cases ∗ 3 apps + 2 cases 
∗ 2 apps). We utilized the first two generated tests from each of the 18 apps, leading to 102 unique tests after merging duplicates.

GUEST identified two cases (specifically, “U5-Terms” for the Etsy app and “U6-Account” for the 6pm app) where functionalities had 
a single implementation path. For game category, we randomly selected two usages from four different game apps, generating 15 
unique tests. To ensure fair evaluation, tests generated by GUEST were compared with similar human-generated tests, following the 
baseline approach [28]. Three mobile app developers, each with 1-3 years of Android development experience, are hired to mimic 
developers and interact with the GUEST. At the start of the test, participants was required to watch a brief tutorial video and get 
acquainted with the apps.

We use the precision and recall metrics for both states and transitions as well as the number of successful executions to evaluate 
the effectiveness of GUEST. Table 4 lists the results for 117 tests across 18 usages. Manual inspection confirms that these tests fulfill 
the desired functionality, exhibiting distinct and identifiable characteristics. For example, a test is successful for “search” usage if the 
app displays relevant search content. Overall, GUEST achieved an 88% successful execution, with 103 tests effectively demonstrating 
the intended functionality. As shown in Table 4, the precision of states and transitions are 91% and 85% respectively, indicating that
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Table 4
Effectiveness comparison of test generation between GUEST and Avgust.

Usage Approach
Precision Recall 

Successful Executed
States Transitions States Transitions 

U1-SignIn
Avgust 0.89 0.86 0.7 0.73 5∕6
GUEST 0.89 0.89 0.72 0.77 6/6

U2-SignUp
Avgust 0.76 0.82 0.89 0.78 6∕6
GUEST 0.88 0.83 0.92 0.79 6∕6

U3-Category
Avgust 0.87 0.93 0.84 0.81 12∕12
GUEST 0.97 0.94 0.90 0.82 12∕12

U4-Search
Avgust 1 0.97 0.71 0.6 4∕5
GUEST 1 1 0.89 0.86 4/6

U5-Terms
Avgust 0.66 0.77 0.77 0.85 7∕10
GUEST 0.81 0.92 0.79 0.92 9/9

U6-Account
Avgust 1 1 1 1 5∕5
GUEST 1 1 1 1 5∕5

U7-Detail
Avgust 0.69 0.71 0.52 0.67 6∕6
GUEST 0.75 0.75 0.57 0.67 6∕6

U8-Menu
Avgust 1 0.83 0.76 0.69 11∕11
GUEST 1 0.83 0.86 0.82 11∕11

U9-About
Avgust 1 0.69 1 0.78 4∕6
GUEST 1 0.83 0.96 0.89 4∕6

U10-Contact
Avgust 0.89 0.69 0.78 0.56 1∕4
GUEST 0.89 0.76 0.85 0.77 3/6

U11-Help
Avgust 1 0.89 0.86 0.66 6∕6
GUEST 1 0.92 0.94 0.83 6∕6

U12-AddCart
Avgust 0.86 0.51 0.79 0.62 3∕6
GUEST 0.89 0.66 0.91 0.82 6/6

U13-RemoveCart
Avgust 0.9 0.84 0.96 0.88 4∕4
GUEST 0.93 0.96 0.86 0.90 4∕4

U14-Address
Avgust 0.63 0.44 0.70 0.64 0∕4
GUEST 0.88 0.69 0.86 0.87 0∕4

U15-Filter
Avgust 0.83 0.63 0.79 0.74 2∕5
GUEST 1 0.9 0.83 0.83 3/6

U16-AddBookmark
Avgust 0.67 0.42 0.89 0.47 3∕3
GUEST 0.9 0.76 0.81 0.78 6/6

U17-RemoveBookmark
Avgust 0.64 0.44 0.75 0.48 4∕4
GUEST 0.87 0.77 0.96 0.78 6/6

U18-Textsize
Avgust 0.69 0.81 0.7 0.71 6∕6
GUEST 0.83 0.89 1 0.87 6∕6

Avg.
Avgust 0.83 0.74 0.80 0.70 89/109(0.81) 
GUEST 0.91 0.85 0.86 0.83 103/117(0.88)

GUEST rarely accesses incorrect states but often triggers GUI widgets not interacted with by users. On average, the generated tests 
contain 86% of the states and 83% of the transitions present in the closest manual tests. This shows that GUEST effectively explores 
most screens identified in manual tests, but exhibits some discrepancy in executing the expected widgets that drive appropriate 
transitions. GUEST demonstrates strong adaptability in highly dynamic GUI scenarios by utilizing semantic information from key 
widgets and context after each action to check whether the current state aligns with a predefined state in the IR model. We observed 
that typical components associated with usage are usually static and obvious, which motivates GUEST to generate tests on game apps 
that accomplish the desired usage. The presence of self-rendering UI elements in game GUIs has little impact on test generation when 
semantic matching is applied. Moreover, during searching and filtering, filtering irrelevant text based on the UI structure improves 
the accuracy of state matching. This enables GUEST to track frequent UI changes and adapt to various states, maintaining accuracy 
even in dynamic content updates.

We analyzed the tests that did not fully accomplish the desired usage to examine the specific edge cases where GUEST underper-

forms. We identified three primary factors contributing to these failures. (1) Incomplete execution of functional steps. Some IR models 
do not capture all necessary steps for certain functionalities. For instance, for the usage “U4-Search”, the test navigates successfully 
to the search page. However, due to limitations in the pathes recorded within the IR model, GUEST mistakenly interprets this as 
the completion of the desired usage and suggests prematurely ending the process. As a result, the search is left incomplete due to 
missing input for the search query. (2) Insufficient semantic matching for targeted widgets. In certain cases, GUEST encountered 
challenges in identifying appropriate widgets due to variations in UI design. For example, in the abc app, after reaching the settings 
page, GUEST was unable to locate the “about” widget because it lacked a clear and explicit label. (3) Difficulty in handling custom 
UI elements. Some UI pages contained custom controls essential for executing the desired functionality, such as drop-down menus for 
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address input, category selection options, or toggle switches for filtering items. GUEST struggled to handle these custom elements, 
which prevented it from completing the expected operations.

After verifying the effectiveness of GUEST in generating usage-based tests, we conduct comparative experiments to determine its 
superiority over the baseline method, Avgust, which is the closest state-of-the-art work. To ensure a fair evaluation, we directly apply

GUEST for the mobile apps in the original dataset [38] to generate usage-based tests. Moreover, to avoid inadvertent errors during 
replicating, we reuse results reported in the original literature [28]. Only on the newly collected four game apps, we run Avgust to 
generate the tests. Table 4 presents a comparison of the results between GUEST and Avgust for each desired usage. The results indicate 
that GUEST generates over 7.3% more tests and achieves an 7% increase in successful executions compared to Avgust. This reflects

GUEST’s capacity to explore and validate paths toward expected functional usages that Avgust failed to identify. Furthermore, GUEST
demonstrates a 8% and 6% improvement in precision and recall for states of tests, and a remarkable 11% and 13% improvement in 
precision and recall for transitions. When the IR model records complex interactions, GUEST performs effectively, particularly for 
the usages such as adding or removing items from the cart or bookmarks, which require navigating to an item page first. By applying 
centrality analysis on the state transition graph, GUEST guides the app to a hub state first and then completes the target tasks in 
stages, simplifying the steps required for complex state transitions. These findings demonstrates the effectiveness of our GUEST in 
generating tests that more fully exercise the desired usage compared to those generated by Avgust.

However, from Table 4, we also notice that for the usages “U9-About”, “U13-RemoveCart”, and “U16-AddBookmark”, the states 
recall of tests generated by our GUEST is 0.04, 0.1, and 0.08 lower than Avgust, respectively. We investigated the cause of this 
phenomenon, which can be explained from the following two aspects. On the one hand, GUEST explores new paths compared to
Avgust, while the IR model for the usage does not cover the canonical categories corresponding to the newly explored screens. This 
situation leads to a reduction in the number of the closest human test for the state categories explored by the generated tests, despite 
accomplishing the expected usage. On the other hand, the closest human test might be too long, such as continuing operations after 
removing a shopping cart. In contrast, GUEST tends to generate shorter tests by prioritizing frequently used and more accessible 
operations, which helps determine the most effective paths to achieve the desired usage. The above results indicate that, overall,

GUEST is significantly more effective than Avgust in generating tests that achieve the desired usage.

Summary for RQ1

GUEST can significantly outperform Avgust in terms of precision, recall, and successful execution, which is effective at 
generating tests that achieve the desired usage.

RQ2: How much effort can be saved by using GUEST to generate tests?
The generated test is considered useful in practice if it can execute specific transitions as expected in the ground-truth test. To 

answer this research question, we assessed the power of converting the usage tests generated by GUEST into the most similar human 
tests and compared them with those produced by Avgust.

Fig. 8 illustrates the edit distance, required to convert the generated tests into the most similar human tests. Correspondingly, the 
potential reduction in effort achievable by employing tests generated by our GUEST also be showed. In general, the results depicted 
in Fig. 8 demonstrate that GUEST reduces the edit distance by 0.9, corresponding to a significant 18% improvement over Avgust. On 
average, GUEST can save approximately 61% of manual effort compared to writing usage-based tests from scratch. This validates 
the superior performance of our GUEST in test generation compared to Avgust.

Taking the example of the “U10-Contact” usage, the tests generated by GUEST for the abc app do not fully satisfy the specific 
usage. They still require an average of 2.5 manual edits to transform them into the most similar human tests. We compare these 
results with those from Avgust to demonstrate the performance of our GUEST in reducing effort. Among the tests that cannot satisfy 
the desired usage, GUEST covers 14 tests across five usages, while Avgust covers 20 cases across eight usages. Excluding “U9-About” 
and “U14-Address”, GUEST can achieve varying degrees of improvement in reduced effort. Although GUEST achieves a reduction 
of 1, it does not accomplish the intended usage “U4-Search”. We attributed this to the closest human test and the tests GUEST
generated did match the corresponding search widget, but failed to thoroughly verify that the functionality worked. The above 
findings suggest the potential utility of GUEST, even in scenarios where it may not achieve successful test generation satisfying 
specific usage requirements.

Summary for RQ2

GUEST can significantly reduce the manual effort required for test generation compared to creating tests from scratch, 
demonstrating its utility even in scenarios where it may not fully achieve successful test generation for specific usage re-

quirements.

RQ3: How accurate are GUEST’s screen and widget classifiers?

As described in Section 4.3, GUEST classifies the app’s current state screen and suggests candidate widgets to assist developers 
in selecting options for test generation. To evaluate the classification performance in the context of test generation, we compared

GUEST with the state-of-the-art method Avgust, chosen due to its demonstrated classification performance in literature [28]. To 
ensure fairness in the evaluation and avoid errors introduced by subjective interpretations, we utilized the paths of tests generated 
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Fig. 8. The edit distance and reduction of Avgust and GUEST. 

by Avgust from publicly available data to guide our test generation. We then evaluated the recommended states and widgets for each 
test step based on both top-1 and top-5 accuracy.

Screen Classification Evaluation. Fig. 9 illustrates the accuracy of the screen classifiers of Avgust and GUEST during the test 
generation phase when generating the same usage-based tests for the target app. Indeed, due to the dynamic runtime nature, state 
pages expose more new textual information. Consequently, the classifier within Avgust exhibits greater accuracy when relying solely 
on visual compared to utilizing runtime-captured dynamic information. Notably, on average, GUEST demonstrates significantly 
improved top-1 accuracy for screen classification. More importantly, in terms of top-5 accuracy, GUEST outperforms two variants 
of Avgust, achieving superior classification performance. This indicates that by combining structural and semantic information from 
pages, it is possible to classify states effectively and make GUEST readily available for new and unseen states as well.

As the testing phase of GUEST incorporates runtime information, the action it triggers affect the range of states the app will 
be transitioned to. Besides comparing two variants of Avgust, we further introduced a modified GUEST variant that does not take 
into account the information from the previous trigger. The aim was to explore whether incorporating contextual information from 
the previous action could enhance the classifier’s accuracy. From Fig. 9, we can observe that the classification performance of the

GUEST that does not consider the previous triggered action is worse than the standard one. This explains the state transition behavior 
semantics implicit in the state-machine encoding, which facilitates the prediction of the app current state. Furthermore, we can 
find that only on the top-1 minimum, the accuracy of GUEST is lower than Avgust which relies solely on vision. Overall, GUEST
demonstrates competitive screen classification performance compared to the two variants of Avgust.

Widget Classification Evaluation. Once the developer selects the closest one from the recommended candidate screens, the GUEST
recommends possible widgets for suggested interactions. We record the candidate triggers suggested at each step in the test generation 
process. Following that, we performed a meticulous manual examination of all recommended widgets with their cropped images to 
ensure their alignment with the specified categories. This thorough evaluation allowed us to assess GUEST’s widget classification 
performance. Overall, among all the generated tests, GUEST can accurately recommend the corresponding widgets in 201 out of 226 
steps. Compared to Avgust, GUEST achieved an improvement of 26 steps for successful widget recommendations, resulting in an 
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Fig. 9. GUEST screen classification outperforms the Avgust classifier variants overall in both top-1 and top-5 accuracy. 

Table 5
The proportion of incorrect widgets recommended by GUEST that first 
appear at indexes 1 to 7 when choosing the top-𝑘 hub nodes.

1 2 3 4 5 6 7 
𝑘 = 1 0.17 0.23 0.26 0.20 0.11 0.01 0.02 
𝑘 = 2 0.13 0.21 0.25 0.25 0.14 0.02 0 
𝑘 = 3 0.14 0.21 0.24 0.21 0.17 0.03 0 

Table 6
The proportion of incorrect widgets recommended by GUEST that first appear at 
indexes 1 to 7 when choosing different centrality measures.

1 2 3 4 5 6 7 
𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 0.13 0.22 0.25 0.22 0.15 0.02 0.01

𝑑𝑒𝑔𝑟𝑒𝑒 0.13 0.21 0.25 0.24 0.15 0.02 0.01

𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 0.13 0.21 0.26 0.24 0.14 0.02 0 
𝑘𝑎𝑡𝑧 0.13 0.22 0.25 0.24 0.14 0.02 0 
ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 0.14 0.21 0.25 0.23 0.15 0.02 0 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 0.14 0.21 0.26 0.23 0.14 0.02 0 
𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒 0.13 0.21 0.25 0.25 0.14 0.02 0 

impressive 11.5% increase in widget classification accuracy. Therefore, we conclude that GUEST achieves better widget classification 
performance than Avgust.

Summary for RQ3

GUEST can significantly outperform Avgust in both screen and widget classification accuracy.

RQ4: How does the number of hub nodes and different centrality metrics affect the performance of GUEST for widget recommendations?

Throughout the test generation process, the interactive widgets suggested by GUEST might occasionally include incorrect options, 
potentially influencing the selection. To explore the factors affecting the performance of GUEST for widget recommendations, we 
conduct a detailed analysis of the incorrectly recommended widgets by our approach under different numbers of hub nodes and 
different centrality metric settings.

As described in Section 4.1, the candidate nodes with top-𝑘 comprehensive centrality are identified as the hub screens. Due to the 
considerable size of the state of an app, we limit our examination to three different values of 𝑘, excluding large numbers. Table 5
presents the proportion of indexes where the GUEST recommends incorrect widgets for varying 𝑘 values. In Table 5, we can observe 
that, as the value of 𝑘 increases, the proportion of incorrect widgets recommended by the GUEST appearing in the top-3 widgets 
decreases. That is to say, the index of incorrect widgets recommended in the test step is moved back. In general, the accuracy of the

GUEST’s prioritized widget recommendations improves as 𝑘 increases. When 𝑘 is 3, the accuracy of the first widget recommended 
by our GUEST is not further improved. According to several recommended widgets, user tends to prefer the foremost recommended 
widget for triggering. Consequently, improvements in the accuracy of widget recommendations begins to provide diminishing benefits 
in user choices. This explains GUEST can maintain good effectiveness when selecting hub nodes in the state transition graph with 𝑘
set to 2.
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Table 7
Growth of the generated test size, percentage of state coverage, and percentage 
of transitions coverage.

𝑁𝑚𝑎𝑥 = 1 𝑁𝑚𝑎𝑥 = 2 𝑁𝑚𝑎𝑥 = 3 𝑁𝑚𝑎𝑥 = 4

Test Suit Size 60 117 164 193 
Transitions Coverage 0.29 0.41 0.46 0.46 
States Coverage 0.40 0.57 0.62 0.63 

To study the impact of different centrality metrics on the performance of widget recommendations, experiments were conducted 
on seven centrality methods (betweenness centrality, degree centrality, closeness centrality, katz centrality, harmonic centrality, 
average centrality, and comprehensive centrality). Among them, average centrality is constructed by taking the average value of 
the five centrality metric values. In each method, the top-2 nodes are selected as hub nodes, corresponding to different intimacy 
relationships. The experimental results are shown in Table 6, which describes the index of incorrect widgets that appear in each 
test step. From Table 6, it can be observed that selecting hub nodes based on degree centrality and comprehensive centrality results 
in better widget recommendation performance. Overall, using hub nodes identified through comprehensive centrality to calculate 
intimacy yields the best result. This is primarily because comprehensive hub nodes are selected through betweenness centrality 
filtering and by combining four individual centrality metrics. These findings indicate that selecting comprehensive centrality metrics 
outperforms other six metrics in widget classification.

Summary for RQ4

The performance of GUEST for widget recommendations improves as the number of hub nodes increases, and using com-

prehensive centrality metrics for hub node selection yields the best results for accurate widget recommendations.

RQ5: How does the size of the generated tests affect their desired usage implementation effectiveness?

As mentioned in Section 4.3, the desired number of tests generated by GUEST can be adjusted by configuring the corresponding 
variable 𝑛𝑀𝑎𝑥. RQ1 measures the proportion of states and transitions in a generated test that occur in its most similar human test 
with precision. More importantly, how closely the generated number 𝑛𝑀𝑎𝑥 of tests approximates the total human-created tests also 
reflects the capability of GUEST in generating usage-based equivalent tests. Specifically, we utilize states and transitions coverage to 
measure the proportion at which the states and transitions in the generated tests occur within all human tests. While increasing the 
number of test suites can enhance states and transitions coverage, it can lead to additional expenses in terms of both test execution 
and maintenance. For this research question, we analyze the effect on the effectiveness of GUEST generating different numbers of 
usage-based tests, by setting 𝑛𝑀𝑎𝑥 = 1, 𝑛𝑀𝑎𝑥 = 2, 𝑛𝑀𝑎𝑥 = 3 and 𝑛𝑀𝑎𝑥 = 4.

In our experiments, we investigated the influence of test suite size on state and transition coverage, and the findings are depicted 
in Table 7. Notably, as 𝑛𝑀𝑎𝑥 grows from 1 to 2, we can observe that the total number of test suites increases by 57 for the desired 
usages on the target apps. Correspondingly, state and transition coverage increases by 0.17 and 0.12, respectively. However, with 
an additional usage-based test generated for each target app, the total test sizes increases by a reduced amount of 47. This suggests 
that certain target apps have at most two execution paths for specific usages, indicating limited exploration of new tests. Under such 
scenarios, increasing the test size resulted in only a slight improvement in states and transitions coverage, with incremental gains 
of just 0.05 for each. After checking the generated tests, we observed that for 11 of the 18 usages, there is only a slight fluctuation 
in state and transition coverage, with some cases even remaining unchanged. Overall, the growth in coverage from 𝑛𝑀𝑎𝑥 increasing 
from 2 to 3 begins to exhibit a declining trend compared to the increase from 1 to 2. This phenomenon also explains that when 
the number of generated tests is set as 2, GUEST has already explored most of the execution paths for the desired usage. Finally, 
increasing 𝑛𝑀𝑎𝑥 from 3 to 4 did not result in an improved transition coverage. Therefore, we can conclude that increasing the size 
of generated tests to values of 𝑛𝑀𝑎𝑥 greater than four may not yield significant additional benefits. Considering their desired balance 
between the size of generated test and test coverage, developers can opt to set 𝑛𝑀𝑎𝑥 within the range of 1 to 4.

Summary for RQ5

Increasing the test size improves coverage, but beyond a certain point, there are diminishing returns, suggesting that a 
moderate test size is optimal.

6. Discussion

6.1. Limitations

Requiring Human Intervention. While GUEST achieves an 88% success rate in generated tests, it is not fully automated. As discussed 
in Section 4.3, human input is necessary for selecting screens and widgets, which can introduce subjectivity and potentially lead to 
repetitive tests if options are limited. To enhance automation, we will explore integrating large language models (LLMs) into the 
process, leveraging recent advancements in natural language understanding and question-answering.
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Inaccurate Semantic Information. The extraction of semantic information from widgets by GUEST may be less effective in GUIs with 
unique features. For instance, highly visual apps that utilize significant animations or dynamically loaded content can produce in-

consistent semantic information over time. Additionally, custom controls such as sliders, toggle switches and drop-down menus may 
lack essential attributes like resource-id or content-desc in their XML definitions, which complicates the identification of 
their functionality. The UI elements in the scroll bar change over time, which may cause the semantic information of the GUI to be 
inconsistent with that when it is triggered. We will enhance GUEST to improve the accuracy of semantic information extraction.

6.2. Threats to validity

Internal Threats. The first internal threat relates to the quality of the state-machine encoding for the desired usage. To mitigate this 
threat, we ensure that the state-machine encoding for the desired usages and target apps used for evaluation are consistent with 
the baseline [28]. The state-machine encoding of each app is derived by learning the interactions from all other apps, covering 
a variety of functional usage scenarios to ensure comprehensiveness and representativeness. The second internal threat concerns 
human-in-loop guided test generation. To make tests closer to real-world scenarios, screens and widgets that meet expectations are 
manually selected. To avoid result specificity, for each desired usage, we conducted test generation randomly on three different apps 
and used the average results for comparison. All generated tests are manually verified and compared with the most closest human 
tests to ensure reliability. The third internal threat involves the extraction of semantic information of GUI widgets. To improve the 
accuracy in extracting semantic information from complex UI layouts, we integrate the structure of layout tree elements to extract 
representative semantic information from intermediate nodes.

External Threats. A major external threat to validity is the generalizability of our findings across different app types. The experimental 
evaluation primarily focuses on shopping and news Android apps [29], which are widely used and share common functionalities 
on Google Play. We include four popular game apps representing categories with varied GUIs to further assess the applicability of

GUEST. Another external threat arises from the reliance on Appium for automation. Appium is a widely adopted framework in both 
industry and academia, consistent with other Android testing works [21,27,28]. GUEST focuses on core functionalities that are widely 
supported by Appium. Additionally, certain older devices, such as those running Android 4.1, or apps relying on restricted APIs with 
limited configurations, may not be fully supported, potentially impacting the applicability of GUEST. The IR model database for 
desired usage also poses a threat. We refer to existing studies [18,28,29] to comprehensively cover 18 usage scenarios in news and 
shopping apps. The IR model is essentially an FSM that records the relevant canonical widgets and state transitions, which facilitates 
mapping to the app. Given that our GUEST is focused on automating test generation to alleviate the labor-intensive task of manual 
test case design, it may not cover all the paths produced by human testing. Our evaluation demonstrates that the proposed approach 
has the ability to generate equivalent tests for multiple usages.

7. Related work

Mobile app testing has been extensively investigated recently. In this section, we primarily discuss the related work on two key 
areas, i.e., test generation and test reuse.

Test Generation. Existing automated GUI test generators emphasize maximizing code coverage and detecting potential defects. They 
typically achieve test generation by employing either random or based on structured information. For instance, Monkey [47], the 
widely used fuzzing testing tool, creates event sequences by selecting GUI widgets displaying erratic behavior. In contrast, Aravind 
et al. [4] adopted a novel random strategy that penalizes frequently chosen widgets during the selection process. From a different 
perspective, some researchers [6,12,48] leverage structural information from source code through static analysis to extract and 
identify widgets. Despite their ability to detect exceptions, neither of the above methods is particularly effective for examining 
specific functionalities of the app.

A recent automated testing technique Genie [49], proposed by Su et al., focuses on identifying non-crashing functional bugs in 
Android apps. Despite this significant breakthrough, Genie relies on a random-based fuzz testing approach, which limits its capacity 
to generate usage-based tests. Our work aims to generate tests to examine specific functionality of a mobile app, such as the process 
of logging in to an account.

Test Reuse. Rau et al. [42] enabled test transfer across web apps by exploiting textual semantic similarity between UI elements. 
Similarly, Lin et al. [21] and Behrang et al. [22] proposed a greedy matching approach based on the highest semantic similarity to 
pair widgets from existing tests with those in similar apps. In our previous work [26,27], we enhanced the usability of the reused tests 
by employing an adaptive strategy to alleviate semantic challenges in event matching. These approaches utilize semantic similarity 
to generate meaningful tests, providing valuable insights for future research related to this area. They can only explore a test to 
examine similar functionality in the target app based on existing tests, which makes it insufficient to examine the app’s functionality 
thoroughly. Route [50] generates complementary high-quality tests by employing test augmentation techniques to explore different 
ways of examining the same functionality. However, the above methods depend on existing tests from the source app, typically 
designed to target common user interactions, limiting their scope to explore diverse functional paths.

The recent work Avgust [28] classifies screen and widget images from videos to synthesize a generalized state machine-based 
intermediate representation (IR) model for the usage. Then they employ the IR model to guide the generation of tests for the target 
app. Although Avgust’s generalized state machine-based IR model addresses the significant challenges of relying solely on existing 
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tests, neural models used for image understanding may struggle with novel and unseen screens encountered in real scenarios. In 
contrast to Avgust, GUEST focuses on leveraging semantic information from app screens to improve the classification accuracy of 
screens. Specifically, GUEST aims to semantically approximate screen classification through integrating the UI hierarchy structure 
and widgets information of the state pages. Moreover, Avgust’s widgets recommendation relies solely on screen visual information, 
which overlooks the semantic information present in the IR model. GUEST works on preferentially recommending actions that 
emulate user behavior by leveraging guidance from key screen nodes obtained through network analysis for the state transition 
graph of state machine-based IR model.

8. Conclusion and future work

In this paper, we propose GUEST, a novel approach to generate usage-based equivalent tests for mobile apps. GUEST regards the 
state transition graph of state-machine encoding for the usage as a social network and employs network analysis to obtain key nodes, 
which fully exploits the graph semantics of dynamic behaviors. It combines the textual semantics of state pages with UI structure 
to semantically match operable GUI widgets. Moreover, GUEST prioritizes frequently used and more accessible actions through 
intimacy analysis between key screens and reachable screens of candidate widgets within the state machine model. Experimental 
results indicate that GUEST can test the desired usage of the app more effectively and achieve superior classification performance 
compared to the state-of-the-art baseline.

For future work, we plan to incorporate the visual information from the screen to represent the semantics of the UI screen more 
accurately. We also aim to enhance the generalizability of our approach by expanding the range of app categories. Additionally, 
generating oracles automatically to examine the behavior of apps is also the next step in our agenda.
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