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Developers typically employ Graphical User Interface (GUI) testing to ensure the expected 
behavior of applications, but they face the challenge of designing appropriate test cases with 
functional features. Recently, researchers have proposed several test reuse methods based on 
semantic matching to alleviate the burden. However, the limited text semantic information and 
semantic matching rules between events severely limit the existing test reuse methods. In this 
paper, we propose TREADROID (Test Reuse EnhAncer for anDROID applications), a framework 
that combines GUI events deduplication with the adaptive semantic matching strategy to enhance 
the usability of the reused tests. Considering the connection between widget attribute texts, we 
categorize attributes and measure widget similarity based on the same corresponding attributes 
as well as across attributes in the same group. In addition, we propose a deduplication strategy 
for GUI events to reduce the redundancy caused by reusing a test with unique functionality. To 
further bridge the semantic gap, we design a two-stage adaptive matching strategy to search for 
the target test with functionality closer to that of the source test. Experimental evaluation against 
the baseline methods on 25 applications demonstrates that: (i) the adaptive semantic matching 
strategy overall improves the performance of widget mapping; (ii) GUI events deduplication 
dramatically increases the precision of events on average, even reaching 100% for multiple 
tests; (iii) TREADROID can significantly reduce the manual effort of creating tests for similar 
applications.

1. Introduction

Graphical User Interface (GUI) testing plays a significant role in the development and maintenance of mobile applications [1–4]. 
It enables developers to rapidly identify potential functional exceptions in applications that affect user experience. To reduce the 
burden of manually designing GUI test cases (GUI tests in short), numerous automated test generation techniques [5–17] have been 
investigated to help verify the behavior of applications.

A well-known problem with automatic test generation is that it ignores much of the semantic information of applications. Typ-

ically, exploration methods employing different strategies, such as random-based [9,10,17] and search-based [5,13,15] techniques, 
are utilized for test generation. While these methods aim to maximize coverage and finding more bugs, they often generate tests that 
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are less functional. In other words, generated tests should not only provide comprehensive coverage but also be as representative as 
possible to effectively verify the normal implementation of application functionalities. Therefore, generating meaningful tests with 
semantic information is of great necessity.

In recent years, existing methods have generated meaningful tests that verify the behavior of applications through test reuse 
[18–23]. These methods focus on reusing existing tests designed for one application to test other similar applications. Specifically, 
existing tests will automatically match sequences of events from similar applications that achieve the same functionality. As illustrated 
in Fig. 1, for instance, consider an existing test (a) created for application Simple Tip Calculator, which calculates tips. These methods 
attempt to generate event sequences (c) for testing application Free Tip Calculator. Researchers tend to design similarity calculation 
methods for exact matching, such as weighted average textual similarity of corresponding attributes [20,21] or further consider 
fuzzy strategy [22]. Matching two events semantically using limited widget information can be challenging. In specific scenarios, 
due to insufficient widget attribute information, the matched events may not perform the same functionality as the source events. 
For instance, for the “calculate total bill with tip” test scenario, the event “fill in the bill” from an existing test may match the “fill in 
the number of people” event of another similar application, without raising an exception. The semantic matching method limits the 
accuracy of event matching. Therefore, additional measures are necessary for increasing the chance of test reuse. However, existing 
works rarely support adopting additional strategies to achieve closer functional approximation of unsuccessful test reuse, which 
requires identifying incorrectly matched events. Another concern relates to differences in UI design, which may lead to variations 
in the operational steps required to implement specific functionality in two similar applications. Recent work [20] has considered 
supplementing events with additional steps in the target application compared to the source application. Nonetheless, reusing such 
existing tests that implement functionality with additional steps in the source application may result in redundant events and interfere 
with the implementation of the functionality in the target application.

To mitigate the problem above, in our prior work [24], we introduced an adaptive strategy aimed at optimizing the generated 
tests. However, this adaptive strategy had certain limitations in identifying incorrectly matched events, which could potentially lead 
to missed opportunities for improving the accuracy of event matching. Furthermore, the work mainly depended on the use of the 
same corresponding attributes to semantically match widgets across similar applications. This approach may ignore valuable textual 
information embedded in different attributes, resulting in incorrect event matching. In cases where the current research do not work 
well, it is necessary to employ more comprehensive measures.

Our analysis of state-of-the-art research in relevant fields has revealed that the utilization of semantic information and semantic 
matching strategy significantly affects the accuracy of generated events. In light of this observation, we propose an automated 
framework TREADROID (Test Reuse EnhAncer for anDROID applications) in this paper to enhance the usability of reused tests. This 
paper presents several noteworthy extensions to our preliminary work [24]: (1) We introduce new rules that make full use of the 
available semantic information defined in widgets. The attributes of widgets are grouped by leveraging the connections between the 
textual information they represent. We consider both the same attributes [20] and those across attributes within the same group 
together to characterize the textual similarity of widgets for semantic matching. (2) We introduce a restriction rule for deduplicating 
GUI events. The rule can help reduce the false removal of duplicate events to ensure the performance of subsequent adaptive semantic 
matching on the obtained tests. (3) We enhance the adaptive rules, which captures imprecise event matching resulting from semantic 
gaps, by implementing a two-stage process. The improved adaptive rules can effectively reduce the number of search iterations 
required during adaptive semantic matching. Furthermore, the adoption of a fitness function within the adaptive strategy enables 
a more thorough exploration to search tests with superior semantic matching compared to the obtained tests. Based on the above 
extensions, we present new experiments evaluation to identify enhancements that promote test reuse.

The main contributions of this paper are summarized as follows.

• We propose an automated test reuse framework TREADROID,1 which integrates GUI events deduplication and adaptive semantic 
matching strategy to improve the usability of generated tests.

• During the process of exploring space with the adaptive matching strategy, TREADROID rewards the generated tests that are 
more semantically similar to the existing tests guided by the fitness function.

• We conducted extensive comparative experiments with the state-of-the-art baseline approaches on 25 popular open-source 
Android applications to evaluate the performance of TREADROID. The results demonstrate that TREADROID is superior to the 
baseline approaches in both fidelity (precision and recall) and utility (manual effort reduction), which enhances the performance 
of test reuse.

The rest of this paper is organized as follows. Section 2 presents the background knowledge and the motivating example of 
our work. Section 3 outlines the overall framework and details each component. Section 4 conducts experiments to evaluate our 
framework and analyze the experimental results. The potential threats to validity are discussed in Section 5. Finally, Section 6 and 
Section 7 include related work and conclusions, respectively.
2

1 https://github .com /liushuqi -2022 /TREADROID -repo.

https://github.com/liushuqi-2022/TREADROID-repo
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2. Background and motivating example

Users interact with mobile application through the GUI. There are many widgets in a window, which are atomic GUI elements. 
Users can trigger an actionable widget to interact with the GUI by clicking a button or filling a text box with text, which forms a GUI 
event. Formally, an event can be expressed as 𝑒𝑖 = (𝑤𝑖, 𝑎𝑖), where 𝑤𝑖 denotes the widget, and 𝑎𝑖 represents the action performed on 
𝑤𝑖. Several ordered events form a test that verifies the application implements a specific functionality. These tests typically contain 
oracle events, which are designed to check whether the application successfully accomplishes the expected functionalities.

Recent studies suggest employing the test reuse technique, which reuses existing tests from similar applications that share common 
functionality, to reduce the cost of testing new applications. Fig. 1 shows that test (b) can be obtained by reusing an existing test 
(a) on the application Free Tip Calculator using the existing method [20]. Test (b) is a sequence of events searched in the target 
application (target app) Free Tip Calculator, based on the semantic similarity with each event from the source test (a).

Comparing the semantic similarity between the textual descriptions of two widgets to match GUI events and oracles across 
applications is a critical step in test reuse. The textual descriptions of widgets undeniably play a pivotal role in achieving semantic 
matching. The UI hierarchy provides these textual semantic descriptions of the widget through its defined attributes, such as ‘resource 
id’, ‘text’, and ‘content-desc’. Earlier studies [20], [21] have addressed the challenge of mapping widgets with distinct UI designs 
but similar semantic characteristics. As an example, they have successfully established mappings between widgets such as 𝑤𝑠4 from 
Simple Tip Calculator and 𝑤𝑡

4 from Free Tip Calculator as depicted in Fig. 1, despite variations in their distribution within the user 
interface.

By leveraging natural language processing, previous work has demonstrated the potential of resolving these important mappings 
between GUI elements for test reuse. However, these techniques still face challenges in semantic matching. As a terrible example, 
test (b) shows the results of an existing method [20] reusing test (a) through semantic matching, which reveals the challenges of 
test reuse. First, the textual semantics described between widget attributes may be similar. When dealing with various types of 
widgets, the text information in different attribute values affects the effective utilization of limited information to compute semantic 
similarity. For example, the text information of an image widget can be contained in the attributes ‘resource-id’ or ‘content-desc’. 
Second, greedily selecting the widgets with the highest similarity for matching may lead to failure of test reuse. In test (b), event 𝑒𝑡1
matches event 𝑒𝑡3 with the highest similarity, but this is not the best result. Third, it is possible that the source app contains some 
unique functionalities, resulting in the matching of redundant events in the target tests. For instance, the event 𝑒𝑠0 in the source test 
(a) that represents the acceptance of the cache functionality matches the 𝑒𝑡0 of the target app. However, the matched event 𝑒𝑡0 in test 
(b) does not contribute to testing the functionality of splitting the tip.

We have designed TREADROID to address the aforementioned challenges. First, TREADROID groups attributes based on textual 
connections between widgets, allowing for a more accurate measure of similarity. It calculates similarity cross attributes within the 
same group as well as the corresponding attributes. Second, faced with the fact that the highest similarity may not be the best match,

TREADROID employs an adaptive strategy to identify events in the generated test that may not be correctly matched. It guides the 
search direction using a flexible fitness function, which rewards tests with higher overall similarity. This way, it aims to discover 
tests that closely approximate the functionality of the source test. Furthermore, TREADROID overcomes redundancy arising from 
the unique functionality in the source test by employing a GUI event filtering rule. This rule can effectively capture and eliminate 
unrelated events from the generated test. Specifically, the next section will present TREADROID and describe how it overcomes 
these challenges.

3. Approach

Fig. 2 gives an overview of our framework TREADROID, which primarily consists of four components: Data Processing, Test 
Generation, GUI Events Deduplication, and Adaptive Semantic Matching. First, we process the inputs, i.e., a source test, a source app, and 
a target app, to prepare data for test reuse (Section 3.1, Data Processing). Second, the widgets in the source test are iteratively greedy 
matched with the highest similarity in the target app to generate an initial test (Section 3.2, Test Generation). Third, the initial test is 
further examined to remove duplicate GUI events that satisfy specially designed rules (Section 3.3, GUI Events Deduplication). Finally, 
we focus on identifying potentially incorrectly matched events in the obtained tests, and then extend the search to semantically match 
the target test with functionality that is closer to the source test. (Section 3.4, Adaptive Semantic Matching).

With a general understanding, we describe each part in detail below.

3.1. Data processing

The Data Processing stage involves two key steps: test augmentation and model extraction. In this stage, TREADROID preprocesses 
both the source test and the target app to extract the relevant semantic information necessary for matching widgets. Since this 
component follows the step of the recent method CRAFTDROID, we only describe it briefly. For more specific details, please refer 
to the literature [20].

Test augmentation To facilitate test reuse across applications, we first perform test augmentation on the existing test to obtain an 
augmented test with semantic information. As mentioned in Section 2, we define a test 𝑡 as {(𝑤1, 𝑎1), (𝑤2, 𝑎2), ⋯ , (𝑤𝑛 , 𝑎𝑛)}, where 
3

(𝑤𝑖, 𝑎𝑖) represents an event. These ordered events form a test designed to verify the behavior of the application.
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Fig. 1. A simple example of test reuse. Test (b) is obtained by reusing the existing test (a) using CRAFTDROID, and test (c) is the expected test for Free Tip Calculator

by reusing an existing test (a).

Test augmentation is to extract the semantic information of widgets in the source test. Through the adb tool,2 we can extract 
the XML file corresponding to the UI hierarchy of the GUI screen where the widget is situated. Subsequently, the textual semantic 
information of the widgets can be parsed from this XML file.

An example of a GUI screen for application Simple Tip Calculator is shown in Fig. 3, where 𝑤𝑠
1 is an editable bill widget that 

displays text “100” by default. We can extract textual semantic information represented by both attributes and their corresponding 
values. Generally speaking, we can extract the semantic information of the test (a) illustrated in Fig. 1 by acquiring following steps 
iteratively. After launching the application Simple Tip Calculator, (i) we extract the semantic information of the widget 𝑤𝑠0 from the 
4

2 https://developer .android .com /studio /command -line /adb .html.

https://developer.android.com/studio/command-line/adb.html
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Fig. 2. The framework of TREADROID.

Fig. 3. The example of extracted textual information of widget 𝑤𝑠
1 from GUI screen.

XML file corresponding to the current screen; (ii) the event is executed according to the action “click”, and an updated GUI page for 
the application is obtained. Steps (i) and (ii) are repeated iteratively until the semantic information for all widgets is collected.

Model extraction Model extraction mainly analyzes the interaction between activities through the source code of the target app. 
These interactions are visually represented through a window transition graph (WTG). Formally, WTG consists of individual nodes 
and directed edges between nodes, where nodes and edges are composed of activities and events respectively. Leveraging the mapping 
established between widgets and activities in the WTG, the reachability of the current activity to the activity where candidate widgets 
are located can be validated.

WTG is built in two steps via the model extractor introduced by [25]. The model extractor first extracts activities and widgets 
from Manifest and XML-based meta-data files. It then analyzes the event handlers of the widgets to identify transitions between 
activities. For instance, in the case of testing the behavior of application Minimal for adding a task, the corresponding WTG triggered 
during its execution is depicted in Fig. 4. With triggering event 𝑒𝑚1 , i.e., clicking button 𝑤𝑚

1 , Minimal switches to the activity page for 
adding a task. This transition corresponds to the activity change from ‘Main’ to ‘AddToDo’. Similar activity transitions are triggered 
by the execution of subsequent events. Afterward, WTG is instrumental in obtaining and verifying candidate widgets for matching 
each event in the source test. As the application is executed, the WTG can be updated based on the feedback from the running 
information to make it more complete.

3.2. Test generation

The main purpose of test generation is to obtain an initial reused test. Each event in the augmented source test is iteratively 
5

matched with the target app to form an event sequence. Algorithm 1 illustrates the whole process. The specific rule for matching 
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Fig. 4. The example of WTG corresponds to the test that validates adding a task. (a) The test for validating the function of adding a task. (b) The WTG is triggered by 
the execution test (a).

Algorithm 1 Test generation.

Input: target app 𝑎𝑡 , WTG of target app 𝑎𝑡, widgets on the activities of target app 𝑤𝑡𝑏,

augmented source test 𝑡′
𝑠
= {(𝑤𝑠′

1 , 𝑎1), (𝑤𝑠′

2 , 𝑎2), ⋯ , (𝑤𝑠′

𝑛
, 𝑎𝑛)}

Output: Initial test 𝑡𝑖𝑛𝑖𝑡 = {(𝑤𝑡
𝑚1
, 𝑎𝑚1

), (𝑤𝑡
𝑚2
, 𝑎𝑚2

), ⋯ , (𝑤𝑡
𝑚𝑛
, 𝑎𝑚𝑛 )}

1: Initialize: 𝑡𝑖𝑛𝑖𝑡 = ∅, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑖𝑡 = −1
2: while △𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡𝑖𝑛𝑖𝑡) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 or 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡𝑖𝑛𝑖𝑡) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 do

3: for (𝑤𝑠′

𝑖
, 𝑎𝑖) ∈ 𝑡′𝑠 do

4: 𝑤𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = getCandidates(𝑤𝑠′

𝑖
, 𝑤𝑡𝑏 , WTG)

5: for 𝑤𝑡
𝑚
∈𝑤𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do

6: 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠=validateReach(𝑤𝑡
𝑚
, 𝑊 𝑇𝐺, 𝑤𝑡𝑏, 𝑡𝑖𝑛𝑖𝑡)

7: if 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠 ≠ null then

8: 𝑎𝑚 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑤𝑡
𝑚𝑖
, 𝑎𝑖, 𝑤𝑡

𝑚
)

9: 𝑡𝑖𝑛𝑖𝑡 = 𝑡𝑖𝑛𝑖𝑡 ∪ {𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠, (𝑤𝑡
𝑚
, 𝑎𝑚)}

10: break

11: end if

12: end for

13: end for

14: end while

15: return 𝑡𝑖𝑛𝑖𝑡

each event in the augmented source test is defined as follows. First, the semantic similarity between the widgets 𝑤𝑡𝑏 searched by the 
target app and the widget 𝑤𝑠′

𝑖
in the augmented source test is calculated. The widgets 𝑤𝑡𝑏 are sorted by similarity to establish a set of 

candidate widgets 𝑤𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (Line 4, details in Section 3.2.1). Then, starting from the widget with the highest similarity, we identify 
the reachable widget and return the leading events 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠 to the widget 𝑤𝑠′

𝑖
being validated (Line 6, details in Section 3.2.2). 

Finally, based on the action 𝑎𝑖 performed on the source widget 𝑤𝑠′
𝑖

, we assign the appropriate action 𝑎𝑚 to the reachable widget 
(𝑤𝑡

𝑚, 𝑎𝑚) as the target event, along with the leading events (Lines 7-9, details in Section 3.2.3). By following these steps until all 
source events have been traversed, an initial test 𝑡𝑖𝑛𝑖𝑡 is generated. These steps are explained in more detail in the following parts.

3.2.1. Similarity calculation

Considering the large number of GUI widgets, we design the similarity calculation to more quickly determine the best matching 
widget for each source widget. More specifically, the function getCandidates is responsible for constructing a set of candidate 
widgets (Line 4 in Algorithm 1). Measuring the semantic similarity between two widgets poses challenging as it plays a significant 
role in event matching. To better represent the similarity between two widgets, we take two main factors into consideration: (1) 
the textual information and (2) the position relative to current activity. Initially, the textual similarity between the source widget 
𝑤𝑠′
𝑖

and each widget in 𝑤𝑡𝑏 of the target app is calculated. Subsequently, utilizing the extracted WTG of the target app, the distance 
between the widget and the current activity window is further measured to obtain the final similarity score.

Textual similarity In Section 3.1, we collected the semantic information of widgets from the augmented source test and the target 
app. We calculate the textual similarity between two different widgets following the steps below.

The attributes of collected widgets may contain compound words as their values. To ensure the accuracy of the similarity calcu-

lation, text preprocessing is performed as a preliminary step. We employ techniques commonly used in natural language processing 
(NLP), such as tokenization and stopword removal, on the attribute values of each widget. Taking widget 𝑤𝑠1 in Fig. 3 as an example, 
the word list [‘𝑒𝑑𝑖𝑡’,‘𝑡𝑒𝑥𝑡’,‘𝑏𝑖𝑙𝑙’] can be obtained by preprocessing the value ‘𝑒𝑑𝑖𝑡𝑇 𝑒𝑥𝑡𝐵𝑖𝑙𝑙’ from the attribute 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒-𝑖𝑑. To prevent 
the loss of crucial information, we refrain from applying stopword removal to the value of the attribute text, which represents the 
text displayed by the widget.

Once we have determined multiple attribute word lists of widgets, the next step is to calculate the textual similarity between two 
widgets. First, the word2vec model [26] is used to obtain the vector representations ⃖⃖⃖⃖⃗𝑉𝑤 and ⃖⃖⃖⃖⃖⃗𝑉𝑤′ for the words 𝑤 and 𝑤′. Next, we 
6

measure the textual similarity between words 𝑤 and 𝑤′ by calculating the cosine distance between the two vectors, as follows:
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Fig. 5. Semantic information of widget 𝑤1 extracted from application K-9 and widget 𝑤2 extracted from application myMail.

𝑠𝑖𝑚(𝑤,𝑤′) =
⃖⃖⃖⃖⃗𝑉𝑤 ⋅ ⃖⃖⃖⃖⃖⃗𝑉𝑤′

|⃖⃖⃖⃖⃗𝑉𝑤|| ⃖⃖⃖⃖⃖⃗𝑉𝑤′ |
Then, the similarity between two attribute word lists 𝑎𝑠 and 𝑎𝑡 can be expressed integrally by:

𝑠𝑖𝑚(𝑎𝑠, 𝑎𝑡) =
∑
𝑤∈𝑎𝑠 max𝑤′∈𝑎𝑡 𝑠𝑖𝑚(𝑤,𝑤

′)
|𝑎𝑠|

where max 𝑠𝑖𝑚(𝑤, 𝑤′) indicates the highest similarity between words 𝑤 and 𝑤′.

Attributes and their corresponding values contribute to the textual semantic information of the widget. Assessing the similarity 
between two widgets based on limited textual information presents a challenge, as unique design styles may lead to differences in 
the semantic text attributes of the two widgets. For instance, consider two image buttons, 𝑤1 and 𝑤2, used for upward navigation in 
two similar applications, as depicted in Fig. 5. CRAFTDROID [20] only treats the same attributes to calculate the similarity, which 
potentially leads to the loss of essential semantic information. In their calculation, a similarity value of 0 indicates no semantic 
connection between the two widgets. To more effectively capture the overall characteristics of two widgets, we incorporate both 
cross-attributes and same corresponding attributes into the similarity calculation.

For any same attribute, 𝑎𝑠 and 𝑎𝑡 are considered the attribute word lists of widgets 𝑤𝑠
𝑖

and 𝑤𝑡
𝑚, respectively. Based on the above, 

the textual similarity between widgets 𝑤𝑠
𝑖

and 𝑤𝑡
𝑚 is defined as:

𝑠𝑖𝑚1(𝑤𝑠
𝑖 ,𝑤

𝑡
𝑚) =

∑
𝑎𝑠∈𝑤𝑠𝑖

𝑠𝑖𝑚(𝑎𝑠, 𝑎𝑡) ∗𝑤𝑔(𝑎)

|𝑤𝑠
𝑖
|

where 𝑤𝑔(𝑎) represents a weight, indicating the importance of attribute 𝑎 among all attributes.

Textual similarity across attributes also makes a non-negligible contribution to semantic matching. We group attributes that 
describe similar content. For image type widgets, since they lack the attribute ‘text’ content, we group 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒-𝑖𝑑, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡-𝑑𝑒𝑠𝑐, and 
𝑠𝑖𝑏𝑙𝑖𝑛𝑔-𝑡𝑒𝑥𝑡. For other types of widgets, we define 𝑡𝑒𝑥𝑡, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒-𝑖𝑑, and 𝑐𝑜𝑛𝑡𝑒𝑛𝑡-𝑑𝑒𝑠𝑐 as crossable attributes. Therefore, We calculate 
the textual similarity across attributes between widgets 𝑤𝑠

𝑖
and 𝑤𝑡

𝑚 as follows:

𝑠𝑖𝑚2(𝑤𝑠
𝑖 ,𝑤

𝑡
𝑚) = max

𝑎′𝑠𝑝∈𝑤𝑠𝑖 ,𝑎
′′
𝑡𝑝∈𝑤

𝑡
𝑚

𝑠𝑖𝑚(𝑎′𝑠𝑝, 𝑎
′′
𝑡𝑝)

where 𝑎′𝑠𝑝 and 𝑎′′𝑡𝑝 are the word lists of two different attributes 𝑎′𝑝 and 𝑎′′𝑝 .

Finally, the textual information similarity between widgets 𝑤𝑠
𝑖

and 𝑤𝑡
𝑚 is:

𝑠𝑖𝑚(𝑤𝑠
𝑖 ,𝑤

𝑡
𝑚) = 𝑠𝑖𝑚1(𝑤𝑠

𝑖 ,𝑤
𝑡
𝑚) + 𝑠𝑖𝑚2(𝑤𝑠

𝑖 ,𝑤
𝑡
𝑚)

We consider a simple example to calculate the textual similarity between two widgets 𝑤𝑠
1 and 𝑤𝑡′

1 in Fig. 1. Assuming that we 
have obtained the meaningful attribute word lists for widgets 𝑤𝑠

1 and 𝑤𝑡′

1 as shown in Fig. 6. First we calculate the similarity scores 
of word lists that include the same attributes, which are 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒-𝑖𝑑, 𝑡𝑒𝑥𝑡, and 𝑠𝑖𝑏𝑙𝑖𝑛𝑔-𝑡𝑒𝑥𝑡, as 1, 0, and 1, respectively. If the weights 
of these three attributes are set as 1, 0.5 and 1.5 respectively, we can obtain a similarity score of 𝑠𝑖𝑚1 = (1 ∗ 1 + 1 ∗ 1.5)∕3 = 0.83 for 
the same attributes of the two widgets. Similarly, we calculate the similarity score of word lists across attributes within the same 
group as shown in Fig. 6, and in this case, the largest score is 𝑠𝑖𝑚2 = 0. Then, we obtain the textual similarity between 𝑤𝑠

1 and 𝑤𝑡′

1 as 
𝑠𝑖𝑚 = 𝑠𝑖𝑚1 + 𝑠𝑖𝑚2 = 0.83.

Final similarity A widget may be similar to widgets in different GUI activities. To find the widgets that are closest to the current 
7

activity, we employ the WTG to obtain the shortest path 𝑑𝑠. In other words, we need to determine the distance between the current 
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Fig. 6. The textual similarity score of attributes word lists between widgets 𝑤𝑠
1 and 𝑤𝑡′

1 .

activity and the activity that contains the candidate widget 𝑤𝑡
𝑚. Generally, the final similarity between widgets 𝑤𝑠

𝑖
and 𝑤𝑡

𝑚 can be 
expressed as:

𝑠𝑖𝑚′(𝑤𝑠
𝑖 ,𝑤

𝑡
𝑚) =

𝑠𝑖𝑚(𝑤𝑠
𝑖
,𝑤𝑡

𝑚)
1 + log2(𝑑𝑠 + 1)

We prioritize the selection of candidate events as target events based on their closer semantic similarity to source events. An 
increase in the number of steps might deviate from the intended functionality. For example, through WTG, we can retrieve two 

candidate paths from the current activity 𝑆𝑐𝑢𝑟 to the activity 𝑆4 where 𝑤𝑡
𝑚 is located as 𝑝𝑎𝑡ℎ1 = 𝑆𝑐𝑢𝑟

𝑒1⟶ 𝑆1
𝑒2⟶ 𝑆2

𝑒3⟶ 𝑆3
𝑒𝑡𝑚⟶ 𝑆4

and 𝑝𝑎𝑡ℎ2 = 𝑆𝑐𝑢𝑟
𝑒1⟶ 𝑆1

𝑒4⟶ 𝑆3
𝑒𝑡𝑚⟶ 𝑆4, respectively. Among them, 𝑆 denotes a certain activity state, 𝑒 denotes an event. We would 

prioritize the shorter path 𝑝𝑎𝑡ℎ2, that is, the candidate GUI widget that is closer to the current activity, for extending the sequence of 
the events.

3.2.2. Widget reachability verification

Widget reachability verification aims to search for reachable candidate widgets through paths between activities. Algorithm 2

describes how the widget reachability verification works. For each candidate widget 𝑤𝑡
𝑚, the matched events are executed first to 

obtain the current activity (Lines 1-2). The pre-collected widgets 𝑤𝑡𝑏 assist in locating the activity 𝑑𝑒𝑠𝑡𝐴𝑐𝑡 that 𝑤𝑡
𝑚 belongs to (Line 

3). Next, all paths from the current activity 𝑠𝑟𝑐𝐴𝑐𝑡 to 𝑑𝑒𝑠𝑡𝐴𝑐𝑡 in WTG are explored (Line 4).

Most importantly, we validate the reachability of widget 𝑤𝑡
𝑚 by executing each path (Lines 5-19). Function getstepping checks 

whether the path is reachable and provides the exploration result (Line 10). The verification results are divided into two cases: one 
is when the path is reachable, in which case the leading events are considered as stepping (Line 12); the other is when the path is 
unreachable, and the leading events are null (Line 16).

Several widgets are designed within the same activity, which can result in the repetitive execution of common paths during 
reachability validation. The baseline method [20] validates candidate widgets by exhaustively exploring all paths, which can be 
time-consuming. To avoid unnecessary time consumption, we store previously validated paths and their corresponding leading 
events to improve efficiency (Line 13). As a result, before validating a path, we first check whether it has been validated before (Line 
6). If it has been validated, the associated leading events are directly utilized (Line 7).

3.2.3. Action assignment

We assign an appropriate action 𝑎𝑚𝑖 to the reachable widget based on the action 𝑎𝑖 of the source event. This allocation is generally 
performed regardless of whether it is a GUI or an oracle event. For example, we need to reuse event 𝑒𝑠5 = 𝑒𝑥𝑖𝑠𝑡(𝑤

𝑠
5,‘16.27’) of test (a) 

in Fig. 1, and finally the same action is assigned to widget 𝑤𝑡′

5 . In other words, we check whether the text ‘16.27’ exists in the current 
activity of target app. If not, an empty oracle is generated; otherwise, the same action is generated to form the target oracle event.

Due to the diverse UI designs of widgets, assigning the same action to a similar widget may not always be effective. For example, 
different list applications may require distinct actions for deleting a task, such as long-clicking or right-swiping. Simply allocating 
actions consistent with the source event is not appropriate. To alleviate this problem, we introduce a mutation operation for unique 
actions and utilize the fitness score to identify the most suitable action. This mutation operation is exemplified by transitions between 
actions like long-clicking and swiping. Specifically, we apply two operations to the widget with unique actions: (i) following the action 
of the source widget to generate 𝑡1, and (ii) performing a mutation operation to obtain 𝑡2. We then evaluate the two tests 𝑡1 and 𝑡2
by using the fitness function. Consequently, the test with the higher fitness score is considered more suitable for the assigned action. 
8

This mutation strategy for unique action allows us to dynamically adapt the action based on the performance of the overall test.
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Algorithm 2 Reachability verification.

Input: target app 𝑎𝑡 , WTG of target app 𝑎𝑡, widgets on the activities of target app 𝑤𝑡𝑏,

Initial test 𝑡𝑖𝑛𝑖𝑡 , candidate widget 𝑤𝑡
𝑚

Output: leading events 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠
1: execute(𝑡𝑖𝑛𝑖𝑡)

2: 𝑠𝑟𝑐𝐴𝑐𝑡 = getCurrentActivity()

3: 𝑑𝑒𝑠𝑡𝐴𝑐𝑡 = getActivity(𝑤𝑡
𝑚
, 𝑤𝑡𝑏)

4: 𝑝𝑎𝑡ℎ𝑠 = getPaths(𝑠𝑟𝑐𝐴𝑐𝑡, 𝑑𝑒𝑠𝑡𝐴𝑐𝑡, WTG)

5: for 𝑝𝑎𝑡ℎ ∈ 𝑝𝑎𝑡ℎ𝑠 do

6: if 𝑝𝑎𝑡ℎ ∈ 𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔𝑠.𝑘𝑒𝑦𝑠() then

7: 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠 = 𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔𝑠[𝑝𝑎𝑡ℎ]
8: break

9: else

10: 𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 = getstepping(𝑤𝑡
𝑚
, 𝑝𝑎𝑡ℎ, 𝑤𝑡𝑏)

11: if 𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 then

12: 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠 = 𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔
13: 𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔𝑠[𝑝𝑎𝑡ℎ] = 𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔
14: break

15: else

16: 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠 = 𝑛𝑢𝑙𝑙
17: end if

18: end if

19: end for

20: return 𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠

To determine which generated tests are most similar to the source tests, we conduct a quantitative evaluation using the fitness 
function. This function guides the exploration process to generate a target test that closely approximates the functionality of the 
source test. The fitness function is defined based on the similarity of the events, which provides an overall quantification of the 
similarity between the generated test and the source test. It can be represented as follows:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) =𝑤1

𝑛∑
𝑖=1

𝑠𝑖𝑚𝑒𝑖 |𝑒𝑖 ∈ 𝑔𝑢𝑖|+𝑤2

𝑛∑
𝑗=1

𝑠𝑖𝑚𝑒𝑗 |𝑒𝑗 ∈ 𝑜𝑟𝑎𝑐𝑙𝑒|
where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) denotes the fitness score of test 𝑡, 𝑤1 and 𝑤2 denote the weights assigned to GUI and oracle events in fitness score 
respectively, 𝑠𝑖𝑚𝑒𝑖 |𝑒𝑖 ∈ 𝑔𝑢𝑖| and 𝑠𝑖𝑚𝑒𝑗 |𝑒𝑗 ∈ 𝑜𝑟𝑎𝑐𝑙𝑒| denote the similarity of GUI event 𝑒𝑖 and oracle event 𝑒𝑗 respectively. The fitness 
score ranges from 0 to 1, with a higher fitness score indicating that test 𝑡 closely approximates the functionality of the source test.

The Test Generation process terminates when the fitness score of a reused test reaches its maximum potential, cannot be further 
improved, or exceeds a specified expected similarity threshold.

3.3. GUI events deduplication

In contrast to the target app, the source app may involve additional steps after initiation to accomplish a task that the target 
app does not require, as previously explained in Section 2. In such scenarios, reusing these events from the source test could 
introduce redundant events into the reused test, potentially interfering with the execution of the intended functionality. To address 
this problem, we carry out GUI events deduplication to simplify the initial test 𝑡𝑖𝑛𝑖𝑡 .

Algorithm 3 GUI events deduplication.

Input: Initial test 𝑡𝑖𝑛𝑖𝑡 = {(𝑤𝑡
𝑚1
, 𝑎𝑚1

), (𝑤𝑡
𝑚2
, 𝑎𝑚2

), ⋯ , (𝑤𝑡
𝑚𝑛
, 𝑎𝑚𝑛 )}

Output: Simplified test 𝑡𝑠𝑖𝑚𝑝

1: Initialize: 𝑡𝑠𝑖𝑚𝑝 =∅
2: 𝑟𝑒𝑝𝑒𝑎𝑡𝑟𝑒𝑠𝑖𝑑=getrepeat_resid(𝑡𝑖𝑛𝑖𝑡)

3: 𝑟𝑒𝑝𝑒𝑎𝑡𝑖𝑛𝑑𝑒𝑥=getrepeat_index(𝑡𝑖𝑛𝑖𝑡 , 𝑟𝑒𝑝𝑒𝑎𝑡𝑟𝑒𝑠𝑖𝑑 )

4: for 𝑖 ∈ 𝑟𝑒𝑝𝑒𝑎𝑡𝑖𝑛𝑑𝑒𝑥 do

5: 𝑡𝑠𝑖𝑚𝑝=deduplicate(𝑡𝑖𝑛𝑖𝑡 , 𝑖, 𝑟𝑒𝑝𝑒𝑎𝑡𝑖𝑛𝑑𝑒𝑥)
6: end for

7: 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛=execute(𝑡𝑠𝑖𝑚𝑝)

8: if 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 then

9: 𝑡𝑠𝑖𝑚𝑝 = 𝑡𝑖𝑛𝑖𝑡
10: end if

11: return 𝑡𝑠𝑖𝑚𝑝

Algorithm 3 provides pseudo-code for deduplicating GUI events in the initial test 𝑡𝑖𝑛𝑖𝑡. Considering that the attribute ‘resource-id’ 
of the widget is typically unique, it is efficient to identify the widget based on this attribute. First, we retrieve the ‘resource-id’ list 
𝑟𝑒𝑝𝑒𝑎𝑡𝑟𝑒𝑠𝑖𝑑 for the duplicated widgets in the initial test 𝑡𝑖𝑛𝑖𝑡 through function getrepeat_resid (Line 2). Then, according to the 
9

𝑟𝑒𝑝𝑒𝑎𝑡𝑟𝑒𝑠𝑖𝑑 of the duplicated widgets, we obtain the list of indices for the duplicated events in the initial test 𝑡𝑖𝑛𝑖𝑡 through function
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Fig. 7. The example of single event duplication appeared in the initial test 𝑡𝑖𝑛𝑖𝑡. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 8. The example of cyclic events duplication appeared in the target test 𝑡𝑖𝑛𝑖𝑡 .

getrepeat_index (Line 3). To decide which duplicated event should be eliminated in cases of multiple occurrences, we design 
function deduplicate, which handles two potential situations.

One case involves only a single event duplication. For example, Fig. 7 illustrates an instance of the single event duplication that 
appeared in the initial test 𝑡𝑖𝑛𝑖𝑡, where each circle represents an event. Duplicated events are indicated by red circles in the figure. 
Using functions 𝑔𝑒𝑡𝑟𝑒𝑝𝑒𝑎𝑡_𝑟𝑒𝑠𝑖𝑑 and 𝑔𝑒𝑡𝑟𝑒𝑝𝑒𝑎𝑡_𝑖𝑛𝑑𝑒𝑥, we determine that the repeated event indexes are 1 and 𝑘. Since the purpose of 
deduplication is to remove redundant events from the beginning of the initial test 𝑡𝑖𝑛𝑖𝑡 , we eventually get a simplified events sequence 
𝑡𝑠𝑖𝑚𝑝 by removing the first event.

A more complex situation involves deduplicating cyclic events. In such cases, when two or more redundant events are ini-

tially matched, the reverse event of these redundancies may be generated later to ensure proper functionality execution. This 
situation is exemplified in the initial test 𝑡𝑖𝑛𝑖𝑡 depicted in Fig. 8. Following the steps to retrieve the index of repeated events, 
we can obtain the index lists of repeated events [1, 𝑘] and [2, 𝑘-1]. Since these duplicated events do not contribute to 
functional execution, removing them becomes necessary to save additional effort. After deduplication, a simplified test 𝑡𝑠𝑖𝑚𝑝 =
{(𝑤𝑡

𝑚3
, 𝑎𝑚3

), ⋯ , (𝑤𝑡
𝑚𝑘−2

, 𝑎𝑚𝑘−2 ), (𝑤
𝑡
𝑚𝑘+1

, 𝑎𝑚𝑘+1 ), ⋯ , (𝑤𝑡
𝑚𝑛

, 𝑎𝑚𝑛 )} is obtained.

To ensure that the functionality executes smoothly after removing duplicated events, we verify this by executing the simplified 
test 𝑡𝑠𝑖𝑚𝑝. The deduplication operation will be abandoned if the application encounters an exception (Lines 8-10).

3.4. Adaptive semantic matching

The Adaptive Semantic Matching strategy aims to improve event matching, making it more aligned with the functionality of the 
source tests for unsuccessfully reused tests. As discussed in Section 1, the semantic problem of similarity calculation has a significant 
impact on the performance of test reuse. The test generation described in Section 3.2 relies on a greedy approach, selecting widgets 
with the highest similarity for matching, which can result in inappropriate matches. Therefore, we aim to make up for this deficiency 
by extending the search scope to optimize those tests that were not successfully reused. The specific workflow of adaptive semantic 
matching is described in Algorithm 4. Adaptive semantic matching consists of two stages: internal adaptation (Lines 2-12) and 
external adaptation (Lines 14-26). These stages differ in their strategy for searching the index of potentially incorrect matching 
events, while they both share the same steps for generating tests based on the retrieved indexes. In terms of index retrieval, internal 
adaptation focuses on retrieving event indexes from the generated tests that exhibit higher similarity to the source event than the 
current match. Conversely, external adaptation concentrates on retrieving indexes of the matched events with lower similarity. We 
will now provide detailed explanations of the two steps: adaptive index retrieval and adaptive test generation.

3.4.1. Adaptive index retrieval

Based on the observations of the event matching rules during the process of test reuse, we designed the adaptive matching in 
both internal and external adaptation. The main challenge lies in identifying events that might have been incorrectly matched. We 
address this limitation through the following two aspects:

Internal adaptation. Drawing inspiration from the implicit connection between events, we build the similarity matrix between 
simplified test 𝑡𝑠𝑖𝑚𝑝 and augmented source test 𝑡′𝑠 (Line 2). The events within a test are sequential, which means the events that 
have already been matched can influence the selection of subsequent events to match. Considering this, we employ the parameter 
𝑎𝑑𝑗𝑟𝑎𝑛𝑔𝑒 to control the calculation range. That is to say, for each event in 𝑡𝑠𝑖𝑚𝑝, we compare the similarity between it and the next 
𝑎𝑑𝑗𝑟𝑎𝑛𝑔𝑒 events of its corresponding matched source event. If other source events exhibit higher similarity to the current event, the 
index of the current event is added to 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥1 (Line 3). For example, the widgets for simplified test 𝑡𝑠𝑖𝑚𝑝 and augmented source 
10

test 𝑡′𝑠 are 𝑤𝑡
𝑚1
, 𝑤𝑡

𝑚2
, 𝑤𝑡

𝑚3
, 𝑤𝑡

𝑚4
and 𝑤𝑠′

1 , 𝑤
𝑠′

2 , 𝑤
𝑠′

3 , 𝑤
𝑠′

4 , respectively. The similarity matrix is calculated as follows:
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Algorithm 4 Adaptive semantic matching.

Input: Simplified test 𝑡𝑠𝑖𝑚𝑝 , Augmented source test 𝑡′
𝑠

Output: Target test 𝑡𝑡𝑎𝑟𝑔𝑒𝑡
1: Initialize: 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 =∅, 𝑎𝑑𝑗𝑟𝑎𝑛𝑔𝑒=int ( 𝑙𝑒𝑛(𝑡′𝑠 )+1

2
)

2: 𝑎𝑑𝑗_𝑚𝑎𝑡𝑟𝑖𝑥=getsimilarity(𝑡𝑠𝑖𝑚𝑝 , 𝑡′𝑠, 𝑎𝑑𝑗𝑟𝑎𝑛𝑔𝑒)
3: 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥1=getindex1(𝑎𝑑𝑗_𝑚𝑎𝑡𝑟𝑖𝑥)

4: if 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥1 ≠[] then

5: for 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥1 do

6: 𝑡𝑝𝑟𝑜𝑐𝑒=inter_testgen(𝑡𝑠𝑖𝑚𝑝, 𝑖𝑛𝑑𝑒𝑥)

7: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡𝑝𝑟𝑜𝑐𝑒) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡𝑠𝑖𝑚𝑝) then

8: 𝑡𝑠𝑖𝑚𝑝 = 𝑡𝑝𝑟𝑜𝑐𝑒
9: break

10: end if

11: end for

12: end if

13: if 𝑐𝑜𝑛𝑑𝑓𝑎𝑖𝑙(𝑡𝑠𝑖𝑚𝑝) then

14: 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2=getindex2(𝑡𝑠𝑖𝑚𝑝)

15: for 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2 do

16: 𝑡𝑝𝑟𝑜𝑐𝑒=exter_testgen(𝑡𝑠𝑖𝑚𝑝, 𝑖𝑛𝑑𝑒𝑥)

17: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡𝑝𝑟𝑜𝑐𝑒) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡𝑠𝑖𝑚𝑝) then

18: if 𝑐𝑜𝑛𝑑𝑓𝑎𝑖𝑙(𝑡𝑝𝑟𝑜𝑐𝑒) then

19: 𝑡𝑠𝑖𝑚𝑝 = 𝑡𝑝𝑟𝑜𝑐𝑒
20: 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2=getindex2(𝑡𝑠𝑖𝑚𝑝)

21: else

22: 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡𝑝𝑟𝑜𝑐𝑒
23: break

24: end if

25: end if

26: end for

27: else

28: 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡𝑠𝑖𝑚𝑝
29: end if

30: return 𝑡𝑡𝑎𝑟𝑔𝑒𝑡

𝑤𝑠′

1 𝑤𝑠′

2 𝑤𝑠′

3 𝑤𝑠′

4
𝑤𝑡
𝑚1

𝑤𝑡
𝑚2

𝑤𝑡
𝑚3

𝑤𝑡
𝑚4

⎡⎢⎢⎢⎢⎣

0.25 0.19 0.15 0
0 0.22 0.14 0.25

0 0 0.13 0.11
0 0 0 0

⎤⎥⎥⎥⎥⎦
In this example, the similarity between 𝑤𝑡

𝑚2
and 𝑤𝑠′

4 is higher than that of the currently matched source widget. This suggests that 𝑤𝑡
𝑚2

might be a more suitable match for 𝑤𝑠′

4 than 𝑤𝑠′

2 . Consequently, we include the index 2 of the simplified widget 𝑤𝑡
𝑚2

into 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥1, 
which indicates that other widgets similar to the source widget 𝑤𝑠′

2 will be reconsidered for matching in a subsequent iteration.

External adaptation. The adopted similarity calculation method may not perform optimally for some widgets, and the events 
in the simplified test 𝑡𝑠𝑖𝑚𝑝 may match the source events with relatively low similarity. It is essential to determine whether a better 
event match exists for the simplified test, particularly in cases where test reuse fails. Specifically, the failure condition of test reuse 
𝑐𝑜𝑛𝑑𝑓𝑎𝑖𝑙 is defined as the last oracle in the simplified test being empty or the displayed text being inconsistent with the source oracle 
(Line 13). For the simplified test 𝑡𝑠𝑖𝑚𝑝 that meets the condition 𝑐𝑜𝑛𝑑𝑓𝑎𝑖𝑙 , we first obtain a list of the similarity scores of the matched 
events and retrieve the required indexes to form the list 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2 (Line 14). To select the indexes of events that may result in better 
matches, we design the rules for the following two cases.

First, we assess whether there are multiple low scores in the similarity score. For example, in the following given similarity score, 
the similarity falls below 0.05 from widget 𝑤𝑡

𝑚3
. This situation raises suspicion about the possibility of incorrect matches between 

widgets 𝑤𝑡
𝑚3

and 𝑤𝑡
𝑚2

, with a significant impact on the matching of subsequent widgets. In such cases, we add the index of the first 
widget with low similarity, along with its predecessor, to the index list 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2. Thus, 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2 = [3, 2].

𝑤𝑡
𝑚1

𝑤𝑡
𝑚2

𝑤𝑡
𝑚3

𝑤𝑡
𝑚4

𝑤𝑡
𝑚5

𝑤𝑡
𝑚6

[0.16 0.11 0.04 0.03 0.03 0.00]

Secondly, if the condition described above is not met, we consider that the 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2 corresponds directly to the indexes of the 
widgets with the lowest similarity scores. It is assumed that the similarity score is determined as follows:

𝑤𝑡
𝑚1

𝑤𝑡
𝑚2

𝑤𝑡
𝑚3

𝑤𝑡
𝑚4

𝑤𝑡
𝑚5

𝑤𝑡
𝑚6

[0.23 0.27 0.11 0.22 0.08 0.00]

Assuming we adjust the adaptive event threshold to 2, following the above rules, we add the indexes of widgets 𝑤𝑡𝑚3
and 𝑤𝑡

𝑚5
to 
11

𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2. In this case, 𝑎𝑑𝑗_𝑖𝑛𝑑𝑒𝑥2 = [5, 3], based on the similarity scores sorted in ascending order.
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3.4.2. Adaptive test generation

Once the adaptive index for the widgets is obtained, we describe how internal and external adaptation search for tests with 
functionality closer to the source test. Note that when the adaptive range is determined, we only need to start exploring from the 
obtained index. Firstly, we follow a process similar to Section 3.2 for iterating over each index and rematching. To improve efficiency, 
we also filter out the unmatched widgets that were previously validated in Section 3.2 from the candidate widgets associated with 
the current index. Based the above operations, we validate the reachability of candidate widgets and assign corresponding actions 
to the reachable widget following the steps (Lines 5-12) of Algorithm 1. We iterate over matching events until all the events in the 
source test have been traversed. After the above steps, we get the processed test 𝑡𝑝𝑟𝑜𝑐𝑒 obtained from the new exploration (Lines 5-6, 
15-16).

Next, it is critical to determine which generated tests can be considered. As previously discussed, we utilize the fitness function 
to guide the search towards a direction more similar to the source test. We first perform internal adaptation (Lines 2-12). For this 
stage, we updated the simplified test 𝑡𝑠𝑖𝑚𝑝 to the one with a high fitness score (Lines 7-10). Our primary focus then shifts to external 
adaptation (Lines 14-26). If the simplified test 𝑡𝑠𝑖𝑚𝑝 does not satisfy the condition 𝑐𝑜𝑛𝑑𝑓𝑎𝑖𝑙 , the obtained test is the final target test 
𝑡𝑡𝑎𝑟𝑔𝑒𝑡, which indicates a successful test reuse (Line 28). However, if it does meet this condition, we perform external adaptation to 
search for more semantically similar event matches. Leveraging the fitness function to guide exploration, a test with the highest 
similarity is identified as the target test (Lines 17-25). To ensure the correctness of the in-depth exploration direction, we update the 
index list for the newly explored test (Lines 18-20).

4. Evaluation

To demonstrate the performance of our proposed framework TREADROID, we evaluated TREADROID by considering the fol-

lowing four research questions:

• RQ1: How effective is TREADROID in terms of the precision and recall for widget mapping?

• RQ2: Is TREADROID more effective than baseline methods for widget mapping?

• RQ3: How do the semantic matching method and the adaptive strategy contribute to effective widget mapping?

• RQ4: Is TREADROID more efficient than baseline methods?

• RQ5: How much effort can be saved by TREADROID to generate tests?

In this paper, we propose a novel framework TREADROID to improve the usability of the reused tests. RQ1 assesses the perfor-

mance of TREADROID for reusing tests across applications in various categories. In RQ2, we perform comparisons in terms of widget 
mapping effectiveness to demonstrate that our TREADROID outperforms the state-of-the-art baseline methods. In RQ3, we investi-

gate the contributions of the improved semantic matching method (Section 3.2) and adaptive strategy (Section 3.4) in enhancing test 
reuse. Moreover, RQ4 indicates the efficiency of our TREADROID in comparison to baseline methods. Furthermore, RQ5 focuses on 
quantifying the manual effort saved when using TREADROID to reuse tests for each test scenario.

4.1. Experimental setup

Implementation Details. TREADROID requires a source app, an existing test associated with the source app, and a similar 
application of the same category as the source app, that is, the target app, as input. Its purpose is to reuse the existing test designed 
for the source app to test another similar target app. Our experiment was conducted on an Ubuntu desktop, with 3.4 GHz Intel Core 
i7 CPU and 32 GB RAM. We used a Nexus 5X emulator running Android 6.0 (API 23) to install the applications. The GUI states of 
the applications were recorded using Appium.3

As discussed in the context of test generation in section 3.2, TREADROID has adjustable parameters in three aspects: the weights 
𝑤1 and 𝑤2 associated with GUI and oracle events in fitness score, the thresholds 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 for determining search 
termination, and the weight of each attribute among all available attributes. According to [20], the GUI events responsible for 
triggering actions and the oracles evaluating the achieved GUI states have equal importance in the generated test. Consequently, 𝑤1
and 𝑤2 are both configured to 0.5 to maintain balance. Aligned with [20], TREADROID leverages two different criteria to stop its 
exploration during the search process. The first condition for search termination is when the fitness scores of two tests generated 
by TREADROID are identical, defined by setting 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 as 0.001. The second condition, denoted by 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, was arrived at 
through multiple experimental runs on randomly selected pairs of similar applications. Ultimately, it was determined to be 0.12, the 
optimal balance between ensuring the presence of correctly matched and mismatched event pairs in the test.

Finally, concerning the relative importance weights of each attribute among all available attributes, we empirically determined 
the best performing values. Specifically, for the attributes ‘resource-id’, ‘text’, ‘content-desc’, ‘parent_text’, and ‘sibling_text’, the 
weights were set to 0.5, 1, 1, 1, and 0.5, respectively. In particular, the weights of these attributes were adjusted to 1, 0.5, 1, 1, and 
1.5 in the case of tip applications, where the text of editable widgets plays little role in the similarity calculation. Our results reported 
in the next section were obtained based on these parameter settings.
12

3 https://github .com /appium /appium.

https://github.com/appium/appium
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Table 1

The specific details about subject applications.

Category Application Version Source

Browser

a11-Lightning V4.5.1 F-Droid

a12-Browser for Android V6.0 Google Play

a13-Privacy Browser V2.10 F-Droid

a14-FOSS Browser V5.8 F-Droid

a15-Firefox Focus V6.0 Google Play

To Do List

a21-Minimal V1.2

F-Droid

a22-Clear List V1.5.6

a23-To-Do List V2.1

a24-Simply Do V0.9.1

a25-Shopping List V0.10.1

Shopping

a31-Geek V2.3.7

F-Droid

a32-Wish V4.22.6

a33-Rainbow Shops V1.2.9

a34-Etsy V5.6.0

a35-Yelp V10.21.1

Mail Client

a41-K-9 V5.403

Google Play

a42-Email mail box fast mail V1.12.20

a43-Mail.Ru V7.5.0

a44-myMail V7.5.0

a45-Email App for Any Mail V6.6.0

Tip Calculator

a51-Tip Calculator V1.1

Google Play

a52-Tip Calculator V1.11

a53-Simple Tip Calculator V1.2

a54-Tip Calculator Plus V2.0

a55-Free Tip Calculator V1.0.0.9

Subject Applications. We conduct test reuse on five categories of applications to perform the experimental evaluation. These 
selected subject categories of the applications are also commonly used by users in their daily life and professional activities. The 
categories consist of browsers, to-do list, shopping, mail client, and tip calculator. Each of these categories contains five applications, 
all of which share similar functionalities. The applications were sourced from Google Play [27] and F-droid [28], which are popular 
platforms frequently used by researchers [5,18,19,29–33] for studying GUI testing or the functionality of applications. Specific details 
about these subject applications are listed in Table 1.

Existing tests. Our proposed framework TREADROID is inspired by the idea of state-of-the-art method CRAFTDROID [20]

to enhance test reuse. To ensure a fair comparison, we choose method CRAFTDROID as the baseline and reuse its test suites for 
comparative evaluation. These test suites consist of tests designed to verify two main functionalities for each application. That is, we 
have collected two tests that verify similar functionalities for the five applications within each category. The specifics of the collected 
tests for each application, including the average number of GUI and oracle events and the total test steps, are presented in Table 2.

On such a basis, it is convenient to achieve test reuse from one application to another by employing the TREADROID. In 
the experimental evaluation, we perform a total of 4(𝑡𝑒𝑠𝑡𝑠) ∗ 5(𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑝𝑝𝑠) ∗ 2(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠) = 40 test reuses for each category of 
applications. Thus, the number of 200 is attempted for test reuse across similar applications.

Baselines. To demonstrate the competitiveness of TREADROID, we select three state-of-the-art baselines for comparison. CRAFT-
DROID [20] and ATM [21] are widely recognized for test reuse, while TRASM [24] represents the conference version before the 
expansion of TREADROID. In common, they have the capability to migrate GUI tests, including oracles, for mobile applications with 
similar functionality. All of these baselines utilize the Word2Vec [26] word embedding model for semantic matching and analyze the 
Window Transition Graph to identify unmatched widgets across different application pages. In particular, ATM triggers only the first 
actionable element within the shortest path that exists; otherwise, it semi-randomly selects one of the actionable elements for match-

ing that has not been triggered previously. CRAFTDROID includes the validation of reachable paths and supports supplementary 
intermediate events for event matching. TRASM follows the test generation step similar to that of CRAFTDROID, but additionally 
integrates an adaptive strategy to enhance the performance of semantic matching.

Performance Metrics. To ensure a fair evaluation of our framework, we adopt four widely used metrics in test reuse.

• Precision is the number of correct target events generated. Formally,

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑡𝑝

𝑡𝑝+ 𝑓𝑝

where 𝑡𝑝 (true positive) indicates that the event of the target test generated is correct, 𝑓𝑝 (false positive) means an incorrect 
event is generated.

• Recall represents the number of source events that are correctly reused. Formally,

𝑡𝑝
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝+ 𝑓𝑛
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Table 2

The collected tests for each application.

where 𝑓𝑛 (false negative) indicates no suitable matching event is found.

• Reduction measures how much effort developers can save by adopting TREADROID to generate tests instead of writing them 
from scratch. Formally,

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑡𝑛) = 1 −
𝐸𝐷(𝑡𝑛, 𝑡𝑔)

|𝑡𝑔|
where 𝐸𝐷(𝑡𝑛, 𝑡𝑔) represents the Levenshtein distance [34] of the generated test 𝑡𝑛 and its ground truth 𝑡𝑔 , measuring how close 
the generated test is to the ground truth test. In our case, the Levenshtein distance calculates the minimum number of edits 
required to transform the transitions of the generated test to those of the ground truth. Each edit operation corresponds to an 
action such as inserting, deleting, or replacing transitions.

• Avg. Reuse Time indicates the time it takes for TREADROID to reuse a complete source test on average. It is measured in 
seconds. The shorter the average reuse time, the higher the efficiency.

Furthermore, the correctness of the events in the target test is evaluated by comparing with the events in the collected existing 
tests of the corresponding application that serve the same functionality. To facilitate the evaluation process, we employ manually 
constructed tests from the baseline method CRAFTDROID [20], which are considered as the ground truth for the reused tests. 
Moreover, we conduct manual inspections to minimize errors during the proofreading process. Our experimental results are presented 
14

under the guarantee of the above procedure.
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Table 3

Effectiveness evaluation of TREADROID.

Functionality
GUI Event Oracle Event

Precision Recall Precision Recall

b11 100% 100% 100% 100%

b12 100% 100% 100% 100%

b21 87% 100% 85% 100%

b22 80% 98.6% 88.88% 91.4%

b31 40.3% 93.05% 24.67% 65.52%

b32 54.12% 82.14% 54.09% 70.21%

b41 100% 100% 100% 100%

b42 94.8% 97.74% 93.1% 100%

b51 100% 100% 100% 100%

b52 90.5% 98% 100% 80%

Total 84.6% 96.9% 84.5% 90.7%

4.2. Experimental results

RQ1: How effective is TREADROID in terms of the precision and recall for widget mapping?

For RQ1, we aim to evaluate the effectiveness of our proposed novel framework TREADROID for reusing tests across Android 
applications. As described in Section 3, for the 25 commonly used applications belonging to five categories, we reuse tests from one 
application on four other similar applications within the same category. To ensure the correctness of the experimental results, we 
recorded the experimental results in Table 3 following manual inspection.

The effectiveness of test reuse for the fundamental functionalities outlined in Table 2 is quantified through the precision and 
recall metrics of matched GUI and oracle events. Overall, among the results of 200 tests reused, the precision and recall of GUI 
events are 84.6% and 96.9% respectively, and those of oracle events are 84.5% and 90.7% respectively. These findings prove that 
the effectiveness of our TREADROID for test reuse on these five categories of applications can be recognized.

The results presented in Table 3 reveal a noteworthy observation that there are significant variations in the performance achieved 
by test reuse for different categories of applications. Notably, TREADROID exhibits its best performance in both Browser and 
Mail categories. This is due to the fact that the achievement process of these functionalities, including b11, b12, b41, and b42, 
incorporates distinct semantic features that facilitate widget matching. In these categories, the reuse of all existing tests related to 
the functionalities b11, b12, b41, and b51 demonstrates near-perfect success, with both GUI events and oracles achieving close to 
100% precision and recall. In contrast, the precision and recall of event matching are as low as 50% on the functionality b31, which 
belongs to the shopping category. Nevertheless, considering that TREADROID still achieves over 84% and 90% in precision and 
recall for both GUI and oracle events mapping, respectively, the feasibility of test reuse within the functionalities is encouraging.

In addition, we investigate the factors contributing to the noticeable differences in experimental results and attribute them to the 
following three key aspects:

• UI design differences between source and target app. For example, for the functionality ‘b31-Registration’, application Etsy

necessitates a password confirmation step after entering the password, a feature not present in the source test. Since the “Confirm 
Password” test step cannot be matched, reusing the existing test for subsequent registration steps becomes challenging for the

TREADROID.

• Non-optimal event matching. The word-level similarity calculation method and limited semantic information lead to the 
incorrect matching of widgets. For example, the text attributes for the two widgets that enter the different functionalities 
are “sign in” and “sign up”, respectively. However, our method weights the highest similarity between words on average, 
which results in incorrect matching. A promising solution lies in considering more comprehensive and coarse-grained similarity 
computation.

• Length of existing source test. The existing test with complex steps increases the difficulty of test reuse. Compared the func-

tionality ‘b51-Calculate total bill with tip’ with the functionality ‘b52-Split bill’, although the latter has only one additional test 
step ‘Input number of people’, the recall of the oracle drops to 80%.

RQ2: Is TREADROID more effective than baseline methods for widget mapping?

After confirming the effectiveness of TREADROID in reusing tests across Android applications, we conduct comparative ex-

periments to assess its performance relative to baseline methods. We employed the original dataset from CRAFTDROID for our 
experimental evaluation. To avoid any errors during repeated experiments, we directly compare our experimental results with those 
presented in the original literature [20].

Table 4 provides a comparison of widget mapping results between TREADROID and the baseline methods in terms of each 
functionality. The results indicate that TREADROID have overall outperformed the baselines, which indicates that our TREADROID
has higher flexibility for test reuse than the baseline methods. In summary, the higher flexibility of the TREADROID can be supported 
from the following aspects. Compared with the baseline, TREADROID achieves the highest improvements of 31.25%, 18.75% in 
15

precision for GUI and oracle events, respectively, along with recall improvements of 17.74% and 26.03%. On average, the precision 
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Table 4

Comparison of test reuse between CRAFTDROID, ATM, TRASM and TREADROID.

Functionality Approach
GUI Event Oracle Event

Precision Recall Precision Recall

b11

CRAFTDROID 79% 100% 100% 100%

ATM 68.75% 100% 90% 100%

TRASM 100% 100% 100% 100%

TREADROID 100% 100% 100% 100%

b12

CRAFTDROID 85% 100% 100% 100%

ATM 76.47% 100% 93.33% 100%

TRASM 100% 100% 100% 100%

TREADROID 100% 100% 100% 100%

b21

CRAFTDROID 78% 100% 85% 100%

ATM 76.78% 100% 75% 100%

TRASM 87% 100% 85% 100%

TREADROID 87% 100% 85% 100%

b22

CRAFTDROID 69% 100% 85% 80%

ATM 70.24% 98.33% 77.77% 70%

TRASM 77.01% 97.52% 89.65% 76.47%

TREADROID 80% 98.6% 88.88% 91.4%

b31

CRAFTDROID 44% 90% 34% 67%

ATM 39.08% 97.14% 21.25% 62.96%

TRASM 40.11% 94.3% 25.33% 61.29%

TREADROID 40.3% 93.05% 24.67% 65.52%

b32

CRAFTDROID 53% 82% 56% 61%

ATM 48.27% 80.76% 37.25% 44.18%

TRASM 52.43% 76.78% 52.54% 65.95%

TREADROID 54.12% 82.14% 54.09% 70.21%

b41

CRAFTDROID 100% 100% 100% 100%

ATM 100% 100% 100% 100%

TRASM 100% 100% 100% 100%

TREADROID 100% 100% 100% 100%

b42

CRAFTDROID 85% 80% 89% 89%

ATM 81.34% 94.78% 81.48% 89.79%

TRASM 90.29% 95.27% 85.71% 97.95%

TREADROID 94.8% 97.74% 93.1% 100%

b51

CRAFTDROID 82% 100% 100% 80%

ATM 90% 100% 83.33% 88.23%

TRASM 93% 100% 100% 90%

TREADROID 100% 100% 100% 100%

b52

CRAFTDROID 80% 100% 100% 65%

ATM 85% 100% 81.25% 76.47%

TRASM 86.2% 96.15% 100% 75%

TREADROID 90.5% 98% 100% 80%

and recall of matched GUI events show an improvement of 7.44% and 0.85%, while those of matched oracle events increased by 
3.64% and 6.03%. Therefore, TREADROID demonstrates superior overall performance in terms of precision and recall for widget 
matching compared to the baseline methods.

However, as observed in Table 4, our TREADROID does not achieve the highest widget matching performance in all functionali-

ties compared to the baselines. For functionalities b22 and b52, the recall of GUI events slightly decreases on average by nearly 0.01% 
and 0.7% respectively compared with the baselines. This can be attributed to the adaptive semantic matching strategy employed in 
our method tends to result in the rematching of a few events incorrectly, increasing the number of false negative events. In addition, 
our method exhibits lower oracle precision compared to its conference version TRASM for functionality b22. This indicates that

TREADROID introduce some interference as it broadens the exploration scope with the adaptive matching strategy. Ultimately, the 
14.93% increase in recall reflects TREADROID’s ability to generate tests effectively validating the functionality ‘b22-Remove task’.

Moreover, for the functionality ‘b31-Registration’, our results are generally lower than those of the baselines. And CRAFTDROID
achieves nearly the best performance for widget matching. After a thorough analysis, this phenomenon can be attributed to the 
presence of several incomplete tests generated in the CRAFTDROID, with a total number of events lower than the actual number 
[35]. This results in high precision and recall. Moreover, this is a key factor that reduces the precision of the oracle in our method. 
It is worth noting that ATM demonstrates a notable GUI recall, achieved by incorporating path and semi-random exploration to 
enhance the possibility of correct widget matching. Nevertheless, the considerable improvement in the recall of oracle events for our

TREADROID indicates its superior performance in test reuse when compared to the baselines.
16

RQ3: How do the semantic matching method and the adaptive strategy contribute to effective widget mapping?
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Table 5

The results of the TREADROID under different settings.

ISM GED AS
GUI Event Oracle Event

Precision Recall Precision Recall

- - - 75.5% 95.2% 84.9% 84.2%

✓ - - 79.31% 97.12% 83.71% 85.86%

✓ ✓ - 81.88% 97.12% 83.71% 85.86%

✓ - ✓ 81.94% 96.95% 84.57% 90.71%

✓ ✓ ✓ 84.67% 96.95% 84.57% 90.71%

RQ2 illustrates that our TREADROID increases the flexibility of the generated tests. As mentioned in Section 1, TREADROID
first improves the semantic matching method based on the baseline CRAFTDROID to generate an initial test. It then combines an 
adaptive strategy to optimize the obtained test after deduplication. We aim to enhance widget matching performance for test reuse 
through an improved semantic matching method and adaptive strategy. To clarify the contributions of these two components to test 
reuse, we present the results of the proposed TREADROID under the following settings:

Only with ISM. Based on the baseline CRAFTDROID, we solely employ the test generation phase to generate the test. We integrate 
cross-attributes and same-attributes calculations to assess the similarity for matching and adopt a mutation strategy for unique action 
widgets to allocate appropriate action. This strategy allows us to investigate the impact of improved test generation, namely the 
improved semantic matching (ISM), on the matching performance of widgets.

Without AS. This strategy means we generate tests by carrying out test generation and GUI events deduplication (GED), without 
further considering test optimization.

Without GED. This strategy means we generate tests by performing the test generation and the adaptive strategy (AS), without 
simplifying the reused test. This variant helps us understand the influence of the combined improvements in semantic matching and 
adaptive strategy on the performance of TREADROID.

With ISM, GED and AS. This combination represents our comprehensive framework TREADROID. We apply the adaptive strategy 
(AS) to further optimize the test obtained from the previous strategy. Through this, we mainly discuss the roles of GUI events 
deduplication and adaptive strategy in test reuse, respectively.

Table 5 compares overall the effectiveness of the TREADROID with four key settings and the baseline method CRAFTDROID. At 
the overall level, in terms of precision and recall of GUI and oracle events, TREADROID has improved by 9.17%, 1.75%, -0.33%, and 
6.51%, respectively. These improvements were discussed in RQ2. The improvement of the second row of results over the first row, 
and the improvement of fourth row over the second row represent the contributions of the improved semantic matching method, and 
the adaptive strategy, respectively. Specifically, the consideration of the improved semantic matching method results in increases 
of 3.81%, 1.92%, -1.19%, and 1.66%, while the adaptive strategy contributes an increase of 2.63%, -0.17%, 0.86%, and 4.85%, 
respectively. This indicates that both of these two semantic-based enhancing strategies indeed improve the performance of event 
matching. Moreover, the findings between the fourth and fifth rows suggest that GUI events deduplication primarily improves the 
precision of GUI events. This is because the redundancy of GUI events in the test increases the probability of false positive, leading to 
a decrease in the precision of GUI events. According to the results of the last column, GUI events deduplication does not contribute 
to a closer approximation of the functional implementation.

Specifically, Fig. 9 depicts the precision and recall of GUI and oracle events for each functionality. To show the effects of adap-

tive strategy and semantic matching method more significantly, we compare the results of CRAFTDROID, TREADROID only with 
ISM, TREADROID without GED, TRASM, and TREADROID. Oracle events used to check the correctness of intended functionality 
are the primary focus. For most functionalities, there is a varying degrees improvement in both the precision and recall of oracle 
events. However, it should be noted that for functionalities b11, b12, and b21, although the precision or recall of the oracle shows 
a noticeable downward trend only when the semantic matching improves, the precision of the GUI events is increased or reduced 
slightly. This observation suggests that combining cross-attributes to comprehensively represent widget textual similarity may in-

troduce some interference in certain cases. When focusing solely on the improved semantic mapping, the recall of oracle achieved 
by TREADROID is comparable to TRASM for 7 out of 10 functionalities. This phenomenon confirms that the semantic matching 
adopted by TREADROID improves the performance of widget mapping between similar applications. In addition, the data change 
from the second column to the third column in Fig. 9 characterizes the performance the impact of adaptive semantic matching during 
optimization. With the addition of the adaptive strategy, the matching of events is significantly improved, while the recall of oracle 
increases. This results in a closer functional approximation to the source test. Moreover, in general, the recall of oracle achieved by

TRASM is lower than that of TREADROID without GED, which incorporates semantic matching and adaptive strategy. This explains 
that compared to TRASM, the semantic matching rule and improved adaptive strategy adopted by TREADROID have substantially 
enhanced the usability of the generated tests.

RQ4: Is TREADROID more efficient than baseline methods?

Efficiency is also a crucial measure of test reuse. In RQ4, our purpose is to investigate the time cost of our TREADROID com-

pared with the baseline methods. Fig. 10 presents the average time required for test reuse by CRAFTDROID, ATM, TRASM, and

TREADROID for each functionality.

Remarkably, TREADROID takes significantly less time for test reuse on average than the baseline methods. TREADROID achieved 
17

a minimum time cost of 43%, 37.1%, 53.9%, 36.4%, 48.9%, 46.9%, 38.9%, 62.7%, 25.9%, and 33.1% of the baseline methods for 
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Fig. 9. Comparison of results for each functionality.

each functionality. These results highlight the efficiency gains developers can gain when using TREADROID, enabling them to 
potentially uncover more vulnerabilities in less time.

Several factors contribute to these efficiency improvements in TREADROID. We conclude that the following two aspects can 
explain these results. Firstly, we store the explored paths and stepping widgets when checking the reachability of widgets in Sec-

tion 3.2.2, which significantly reduces the time required for repeated path exploration. Although it is mentioned in [20] that parallel 
execution on multiple devices or simulators can greatly reduce the time, TREADROID can achieve higher efficiency under the same 
settings. Additionally, the strategy employed by the TREADROID enhances the accuracy of widget matching, which avoids exploring 
18

more space. Moreover, compared with TRASM, TREADROID takes less time on average to reuse a test. This phenomenon explains 
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Fig. 10. The average reuse time of CRAFTDROID, ATM, TRASM, and TREADROID.

Fig. 11. Comparison of average effort and reduction for each functionality.

that the improved adaptive semantic matching in TREADROID can effectively save the time consumption of exploring the additional 
space.

RQ5: How much effort can be saved by TREADROID to generate tests?

The reused test is considered successful in reducing manual effort for developers if it is able to trigger the intended execution of 
a specific functionality. To answer this research question, we conducted the assessment by converting all reused tests generated by

TREADROID into ground truth, and then compared them against the tests generated by the baseline methods.

Fig. 11 indicates the average edit distance (denoted as effort) required to convert the reused test for each functionality into its 
ground truth test. It also presents the reduction in manual effort achieved by employing the tests generated through these methods. 
The results show that CRAFTDROID, ATM, TRASM, and TREADROID can save an average of 58.7%, 66.4%, 73.7%, and 73.8% 
in manual effort overall compared to writing tests from scratch. This suggests that our approach is comparable to TRASM while 
offering a 25% and 11% reduction in effort compared to CRAFTDROID and ATM. Taking “b42-Send email with valid data” as an 
example, TREADROID requires an average of 0.55 manual edits to convert the 20 generated tests into their ground truth tests. This 
significantly reduces the manual effort required to create tests from scratch by 92%.

Furthermore, we conducted a comparative analysis between our TREADROID and the baseline methods, focusing on the effort 
19

reduction in generating tests for each functionality. It is evident that our method consistently outperforms CRAFTDROID in terms of 
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reducing effort for all functionalities. Furthermore, our TREADROID also shows significant effort reduction compared to ATM, except 
for functionality b31. In comparison to TRASM, our TREADROID requires slightly more effort for the three functionalities b22, b31, 
and b32. Upon manual inspection, we attribute this to our introduced adaptive strategy, which led to a few events deviating from 
the source path as it explored a broader scope. Nonetheless, these generated tests do not adversely affect the successful achievement 
of the desired functionalities. On the whole, our approach remains a viable option as it offers the advantages of enhanced flexibility 
without increasing additional manual effort.

5. Threats to validity

Internal threats The main internal threats concern the quality of the source tests and potential errors in the implementation of 
our framework TREADROID. To ensure a fair comparison, we utilized data consistent with the baseline [20] in our evaluation. 
In addition, we conducted manual inspections to verify the correctness and quality of the source tests. To minimize the impact of 
randomness and specificities in the results, for each functionality in each category, we reused the existing test from one application 
to the remaining four applications respectively. The recorded results are the average of 20 reuse outcomes. To maintain quality, the 
experimental results, i.e., the generated target tests, are manually verified and further checked against the existing source tests to 
avoid any potential errors.

External threats The main external threat focuses on the generalization of TREADROID for mobile applications and their test cases. 
Our framework targets Android applications, which are widely used by the majority of users. The selected popular applications 
are various categories and sourced from Google Play and F-Droid. Predecessors [5,18,19,29–33] have also commonly utilized these 
applications for Android testing research. Moreover, the existing tests represent the fundamental functionalities of the application cat-

egories they belong to. Since our TREADROID is designed to reduce the high cost of manually designing test cases, it may not be less 
effective for specific functional test reuse compared to common and basic functionalities. Nevertheless, our evaluation demonstrates 
the effectiveness of proposed framework in supporting test reuse across Android mobile applications in multiple categories.

6. Related work

Test Generation. Test generation is a key topic in the current field of software testing. It holds significant importance in improv-

ing development efficiency and reducing testing costs. GUI testing is widely used to verify the behavior and functionality of GUI 
applications. We focus discussion on GUI test generation.

Current automated GUI test generators tend to maximize coverage and identify defects by employing either random or structured 
information to generate tests. One of the widely used fuzzing tools, monkey [10], selects the widgets within the GUI that exhibit 
erratic behavior to obtain events sequence. Aravind et al. [17] employed a novel random strategy that penalizes frequently chosen 
widgets when selecting a widget for test generation. These random approaches often result in the generation of unrealistic tests. 
Alternatively, researchers [36–38] relied on structural information derived from static analysis of source code to extract widgets. 
While these two methods can effectively identify exceptions, they often lack automatic oracles.

Recently, researchers [39–41] have explored the utilization of usage information from applications to improve the quality of 
generated tests. Mao et al. [39] aimed to generate replicable test scripts through crowd-based testing, which involved extracting 
events from various applications. By recording and mining test execution traces, Linares et al. [40] generated execution scenarios 
combined with the usage state of the application. Our work aims to improve the quality of tests generated by reusing existing tests 
from one application and adapting them for use on another similar application.

Test Reuse. In recent years, test reuse, an alternative approach to test generation, has attracted the attention of researchers. Hu et 
al. [18] proposed a machine learning method that can synthesize full tests from the modular ones in a library to test the behavior 
of the new application within the same category. However, their approach still requires manual intervention for widget recognition. 
Rau et al. [19] utilized the semantic similarity between UI elements to transfer tests across web applications. Afterwards, Lin [20]

and Behrang [21] proposed methods that matched the widgets in existing tests with those in similar applications through the 
highest semantic similarity, forming event sequences in a greedy manner. These approaches exploit semantic similarity to generate 
meaningful tests and have the capability to automatically transfer oracles. More prominently, the CraftDroid [20] supports both 
dynamic and static analysis, which provides a solid foundation for in-depth research on enhancing test reuse.

The most common feature of these methods is that they achieve widget matching across applications to obtain event sequences 
based on semantic similarity. What brings great convenience but also presents challenges is that the accuracy of test reuse depends 
on how semantic similarity is calculated. In our prior work [24], we initially employed an adaptive measure to identify incorrectly 
semantically matched event indexes in the generated tests. However, this strategy has limited scope of application and still does 
not solve the problem of incorrect event matching. Our work extends to CRAFTDROID [20] and TRASM [24], which seeks feasible 
solutions to address the existing semantic challenges. The FRUITER framework introduced by Zhao et al. [42] incorporates fidelity 
and utility metrics to assess the effectiveness of UI test reuse methods on the Android platform. Derived from the idea of FRUITER, 
our approach recognizes the need to consider the utility of transferring a test, which may require more effort than writing it from 
scratch.

Existing work mainly focuses on accurately computing semantic similarity to match widgets. For instance, Mao et al. [22] intro-

duced a more accurate event fuzzy matching strategy based on semantics, which overcomes the problem that the attributes of two 
20

events may not have a one-to-one correspondence. While their work improves the quality of the reused tests, there is still room for 
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further improvement. Mariani et al. [23] conducted the first empirical study on the semantic matching of GUI events and prospected 
in several research directions. They report attributes that better describe the semantics of widget can help reduce meaningless and 
conflicting information. Recently, Li et al. [43] investigated the challenges of cross semantic understanding in GUI event-based 
record and replay. They indicated that using attributes to represent the semantic information of widgets and applications can offer 
compatibility cross different devices and versions. Following this idea but different from existing work, TREADROID works on the 
association between widget attributes to further improve the similarity calculation method.

A recent work ADAPTDROID [44] utilizes an evolutionary algorithm to improve an initial set of greedily matched tests. Drawing 
inspiration from ADAPTDROID’s test reduction, filtering out irrelevant events in GUI events deduplication increases the precision of 
reused tests. Undeniably, the iteration of population evolution in ADAPTDROID can be time-consuming, and the inherent stochastic 
evolution process may result in different results across multiple runs. In contrast, TREADROID employs a semantically driven two-

stage adaptive strategy to optimize tests, ensuring exploration aligns with the intended functionality of the application. Distinct from

TRASM, TREADROID not only improves the adaptive strategy but also integrates new semantic matching rules to better match 
widgets in similar applications. The adaptive semantic matching strategy further reduces the gap where current methods struggle 
to accurately represent the similarity of widgets. Indeed, ADAPTDROID completed 100 generations in 24 hours on average. The 
findings from RQ4 suggest that the worst-case time for TREADROID to reuse a test is approximately 3 hours. While maintaining the 
effectiveness, TREADROID demonstrates remarkable efficiency as a lightweight approach.

7. Conclusion

In this paper, we propose TREADROID, a novel framework to enhance the usability of the reused tests. TREADROID leverages 
the connection between different attributes to group attributes, which enables a more accurate calculation of semantic similarity 
across attributes. It performs GUI events deduplication to simplify the initial test generated through an improved semantic matching 
approach. Through the adaptive strategy, TREADROID further searches for the target test with functionality closely aligned to the 
source test. Experimental results demonstrate that TREADROID can achieve superior flexibility in generating tests compared to 
the state-of-the-art methods. In addition, we also identified the contributions of the improved semantic matching and the adaptive 
strategy in enhancing test reuse. Moreover, TREADROID also exhibits the ability to reduce the manual effort of creating tests for 
similar applications.

In future work, we plan to comprehensively consider the granularity of similarity calculation at the sentence-level to improve the 
accuracy of event matching. Generating tests without relying on existing test scripts [45,46] is also the next step to make test reuse 
more applicable.

CRediT authorship contribution statement

Shuqi Liu: Data curation, Software, Writing – original draft. Yu Zhou: Conceptualization, Methodology, Supervision, Writing – 
review & editing. Longbing Ji: Software, Validation. Tingting Han: Writing – review & editing. Taolue Chen: Writing – review & 
editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61972197, No. 62372232), the Collaborative 
Innovation Center of Novel Software Technology and Industrialization. T. Chen is partially supported by an oversea grant from the 
State Key Laboratory of Novel Software Technology, Nanjing University (KFKT2022A03), Birkbeck BEI School Project (EFFECT), and 
National Natural Science Foundation of China (No. 62272397).

References

[1] M.E. Joorabchi, A. Mesbah, P. Kruchten, Real challenges in mobile app development, in: 2013 ACM/IEEE International Symposium on Empirical Software 
Engineering and Measurement, IEEE, 2013, pp. 15–24.

[2] P.S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, D. Lo, Understanding the test automation culture of app developers, in: 2015 IEEE 8th International 
Conference on Software Testing, Verification and Validation (ICST), IEEE, 2015, pp. 1–10.

[3] M. Linares-Vásquez, C. Bernal-Cárdenas, K. Moran, D. Poshyvanyk, How do developers test Android applications?, in: 2017 IEEE International Conference on 
Software Maintenance and Evolution (ICSME), IEEE, 2017, pp. 613–622.

[4] Y. Zhou, Y. Su, T. Chen, Z. Huang, H.C. Gall, S. Panichella, User review-based change file localization for mobile applications, IEEE Trans. Softw. Eng. (2020).

[5] K. Mao, M. Harman, Y. Jia, Sapienz: multi-objective automated testing for Android applications, in: Proceedings of the 25th International Symposium on Software 
Testing and Analysis, 2016, pp. 94–105.

[6] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: an input generation system for Android apps, in: Proceedings of the 2013 9th Joint Meeting on Foundations of 
Software Engineering, 2013, pp. 224–234.

[7] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, Z. Su, Practical gui testing of Android applications via model abstraction and refinement, in: 2019 
21

IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, 2019, pp. 269–280.

http://refhub.elsevier.com/S0167-6423(23)00134-X/bib0A461302FBE20B5EC55C7E520993C8EFs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib0A461302FBE20B5EC55C7E520993C8EFs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib7D8D630E3B6FE0F9A13E5488FC6E2CD6s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib7D8D630E3B6FE0F9A13E5488FC6E2CD6s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibCD268E74300A3ABB9CA6255046E4A161s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibCD268E74300A3ABB9CA6255046E4A161s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibD37D916E4F12237BAADEAD82B8AD5509s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibCFA58B8BFBAE44F137FB385B70C42FA0s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibCFA58B8BFBAE44F137FB385B70C42FA0s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib9B5C3BC13C726F5E0165594B352D69B0s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib9B5C3BC13C726F5E0165594B352D69B0s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib4DBC4DC38BAE511F452B0562570A4925s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib4DBC4DC38BAE511F452B0562570A4925s1


Science of Computer Programming 232 (2024) 103052S. Liu, Y. Zhou, L. Ji et al.

[8] N. Mirzaei, H. Bagheri, R. Mahmood, S. Malek, Sig-droid: automated system input generation for Android applications, in: 2015 IEEE 26th International 
Symposium on Software Reliability Engineering (ISSRE), IEEE, 2015, pp. 461–471.

[9] M. Ermuth, M. Pradel, Monkey see, monkey do: effective generation of gui tests with inferred macro events, in: Proceedings of the 25th International Symposium 
on Software Testing and Analysis, 2016, pp. 82–93.

[10] Ui/application exerciser monkey, http://developer .android .com /tools /help /monkey .html.

[11] Z. Dong, M. Böhme, L. Cojocaru, A. Roychoudhury, Time-travel testing of Android apps, in: 2020 IEEE/ACM 42nd International Conference on Software 
Engineering (ICSE), IEEE, 2020, pp. 481–492.

[12] A. Memon, I. Banerjee, A. Nagarajan, Gui ripping: reverse engineering of graphical user interfaces for testing, in: 10th Working Conference on Reverse Engineer-

ing, 2003. WCRE 2003. Proceedings, IEEE, 2003, pp. 260–269.

[13] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, Z. Su, Guided, stochastic model-based gui testing of Android apps, in: Proceedings of the 2017 
11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 245–256.

[14] D. Amalfitano, A.R. Fasolino, P. Tramontana, S. De Carmine, A.M. Memon, Using gui ripping for automated testing of Android applications, in: 2012 Proceedings 
of the 27th IEEE/ACM International Conference on Automated Software Engineering, IEEE, 2012, pp. 258–261.

[15] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, J. Lu, Combodroid: generating high-quality test inputs for Android apps via use case combinations, in: Proceedings of 
the ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp. 469–480.

[16] F. Behrang, A. Orso, Automated test migration for mobile apps, in: Proceedings of the 40th International Conference on Software Engineering: Companion 
Proceedings, 2018, pp. 384–385.

[17] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: an input generation system for Android apps, in: Proceedings of the 2013 9th Joint Meeting on Foundations of 
Software Engineering, 2013, pp. 224–234.

[18] G. Hu, L. Zhu, J. Yang, Appflow: using machine learning to synthesize robust, reusable ui tests, in: Proceedings of the 2018 26th ACM Joint Meeting on European 
Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2018, pp. 269–282.

[19] A. Rau, J. Hotzkow, A. Zeller, Transferring tests across web applications, in: International Conference on Web Engineering, Springer, 2018, pp. 50–64.

[20] J.-W. Lin, R. Jabbarvand, S. Malek, Test transfer across mobile apps through semantic mapping, in: 2019 34th IEEE/ACM International Conference on Automated 
Software Engineering (ASE), IEEE, 2019, pp. 42–53.

[21] F. Behrang, A. Orso, Test migration between mobile apps with similar functionality, in: 2019 34th IEEE/ACM International Conference on Automated Software 
Engineering (ASE), IEEE, 2019, pp. 54–65.

[22] Q. Mao, W. Wang, F. You, R. Zhao, Z. Li, User behavior pattern mining and reuse across similar Android apps, J. Syst. Softw. 183 (2022) 111085.

[23] L. Mariani, A. Mohebbi, M. Pezzè, V. Terragni, Semantic matching of gui events for test reuse: are we there yet?, in: Proceedings of the 30th ACM SIGSOFT 
International Symposium on Software Testing and Analysis, 2021, pp. 177–190.

[24] S. Liu, Y. Zhou, T. Han, T. Chen, Test reuse based on adaptive semantic matching across Android mobile applications, in: 2022 IEEE 22nd International 
Conference on Software Quality, Reliability and Security (QRS), IEEE, 2022, pp. 703–709.

[25] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, S. Malek, Reducing combinatorics in gui testing of Android applications, in: Proceedings of the 38th International 
Conference on Software Engineering, ICSE ’16, Association for Computing Machinery, New York, NY, USA, 2016, pp. 559–570.

[26] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, Adv. Neural Inf. Process. 
Syst. 26 (2013).

[27] Googleplay, https://play .google .com /store/.

[28] F-droid, https://f -droid .org/.

[29] R. Mahmood, N. Mirzaei, S. Malek, Evodroid: segmented evolutionary testing of Android apps, in: Proceedings of the 22nd ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, 2014, pp. 599–609.

[30] L. Mariani, M. Pezzè, D. Zuddas, Augusto: exploiting popular functionalities for the generation of semantic gui tests with oracles, in: Proceedings of the 40th 
International Conference on Software Engineering, 2018, pp. 280–290.

[31] A. Rosenfeld, O. Kardashov, O. Zang, Automation of Android applications functional testing using machine learning activities classification, in: Proceedings of 
the 5th International Conference on Mobile Software Engineering and Systems, 2018, pp. 122–132.

[32] S.R. Choudhary, A. Gorla, A. Orso, Automated test input generation for Android: are we there yet?(e), in: 2015 30th IEEE/ACM International Conference on 
Automated Software Engineering (ASE), IEEE, 2015, pp. 429–440.

[33] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, S. Malek, Reducing combinatorics in gui testing of Android applications, in: 2016 IEEE/ACM 38th International 
Conference on Software Engineering (ICSE), IEEE, 2016, pp. 559–570.

[34] V.I. Levenshtein, et al., Binary codes capable of correcting deletions, insertions, and reversals, Sov. Phys. Dokl. 10 (1966) 707–710.

[35] Craftdroid, https://github .com /seal -hub /CraftDroid /tree /master/.

[36] A. Memon, I. Banerjee, A. Nagarajan, Gui ripping: reverse engineering of graphical user interfaces for testing, in: 10th Working Conference on Reverse Engineer-

ing, 2003. WCRE 2003. Proceedings, IEEE, 2003, pp. 260–269.

[37] N. Mirzaei, H. Bagheri, R. Mahmood, S. Malek, Sig-droid: automated system input generation for Android applications, in: 2015 IEEE 26th International 
Symposium on Software Reliability Engineering (ISSRE), IEEE, 2015, pp. 461–471.

[38] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, Z. Su, Guided, stochastic model-based gui testing of Android apps, in: Proceedings of the 2017 
11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 245–256.

[39] K. Mao, M. Harman, Y. Jia, Crowd intelligence enhances automated mobile testing, in: 2017 32nd IEEE/ACM International Conference on Automated Software 
Engineering (ASE), IEEE, 2017, pp. 16–26.

[40] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, D. Poshyvanyk, Mining Android app usages for generating actionable gui-based execution scenarios, 
in: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, IEEE, 2015, pp. 111–122.

[41] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G. Huang, F. Feng, Mining usage data from large-scale Android users: challenges and opportunities, in: 2016 
IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft), IEEE, 2016, pp. 301–302.

[42] Y. Zhao, J. Chen, A. Sejfia, M. Schmitt Laser, J. Zhang, F. Sarro, M. Harman, N. Medvidovic, Fruiter: a framework for evaluating ui test reuse, in: Proceedings of 
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 1190–1201.

[43] C. Li, Y. Jiang, C. Xu, Gui event-based record and replay technologies for Android apps: a survey, J. Softw. 33 (5) (2022) 1612–1634, https://doi .org /10 .13328 /
j .cnki .jos .006551.

[44] L. Mariani, M. Pezzè, V. Terragni, D. Zuddas, An evolutionary approach to adapt tests across mobile apps, in: 2021 IEEE/ACM International Conference on 
Automation of Software Test (AST), IEEE, 2021, pp. 70–79.

[45] J. Liang, S. Wang, X. Deng, Y. Liu, Rida: cross-app record and replay for Android, https://cse .sustech .edu .cn /faculty /~liuyp /files /ICST2023 -Rida .pdf.

[46] Y. Zhao, S. Talebipour, K. Baral, H. Park, L. Yee, S.A. Khan, Y. Brun, N. Medvidovic, K. Moran, Avgust: automating usage-based test generation from videos of 
app executions, in: Proceedings of the 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering 
22

(ESEC/FSE), Singapore, 2022, pp. 421–433.

http://refhub.elsevier.com/S0167-6423(23)00134-X/bib033362F7DBAFBE44DB60DFF5273D1B66s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib033362F7DBAFBE44DB60DFF5273D1B66s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib63CEDAFCA29557837C7FF0B010C49AE4s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib63CEDAFCA29557837C7FF0B010C49AE4s1
http://developer.android.com/tools/help/monkey.html
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibB375E1D58BC414261FAFB99B739B5E91s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibB375E1D58BC414261FAFB99B739B5E91s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib01686A53A9D5BAE29596CF02828AE920s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib01686A53A9D5BAE29596CF02828AE920s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibA0A6219F38E80F2096B71C3BAE91CF21s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibA0A6219F38E80F2096B71C3BAE91CF21s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibB3345A387D713BDD34E290BAFD5D174Bs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibB3345A387D713BDD34E290BAFD5D174Bs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibE6379274E636C8C5B5323EA32303A70Ds1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibE6379274E636C8C5B5323EA32303A70Ds1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib336775E1ECE1EB9B965AEB8A85FBA164s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib336775E1ECE1EB9B965AEB8A85FBA164s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibE4F0D21F83BC4C41E6D1C60EA8C79CAAs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibE4F0D21F83BC4C41E6D1C60EA8C79CAAs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib06DB2D7DA8AF1F27AD85DE87C20C64F2s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib06DB2D7DA8AF1F27AD85DE87C20C64F2s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibCD5C67C8909E5F184EDA2D7D7D8ED4EAs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibA1A953F971DE1C3D26FE898C4BFE9048s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibA1A953F971DE1C3D26FE898C4BFE9048s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib52BE7F01DB4C9EAF25577EB3F22490BCs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib52BE7F01DB4C9EAF25577EB3F22490BCs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib69411452DABD4E3935883DCAE82401DAs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibC7189956F048160D38F56157D1446737s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibC7189956F048160D38F56157D1446737s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib6585762097CC5C93AB7C3F60AB23CCD4s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib6585762097CC5C93AB7C3F60AB23CCD4s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib13824C170077659172E6A01AB1A8E5C1s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib13824C170077659172E6A01AB1A8E5C1s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibBC93A9382917C35814B522A05F4F963Ds1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibBC93A9382917C35814B522A05F4F963Ds1
https://play.google.com/store/
https://f-droid.org/
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib03A2A22C7BE70F41EF247BF484734DABs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib03A2A22C7BE70F41EF247BF484734DABs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibB8361E3B7162BF287A80284B40A54013s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibB8361E3B7162BF287A80284B40A54013s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib6911E90F75DC944AD93C96F9CC7D8DB1s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib6911E90F75DC944AD93C96F9CC7D8DB1s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib19ADD9EC8663FBB3DC2FEE9973E824BDs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib19ADD9EC8663FBB3DC2FEE9973E824BDs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibDE871DB3FA22B002CFF8D109E340B09Fs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibDE871DB3FA22B002CFF8D109E340B09Fs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib4B94AA9495974422D398AF2D0F4E8935s1
https://github.com/seal-hub/CraftDroid/tree/master/
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib60A11217C9E2894072685DBCCB6D51A3s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib60A11217C9E2894072685DBCCB6D51A3s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibD09DA6DB876AEB11DFBCC5FDA2DE6219s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibD09DA6DB876AEB11DFBCC5FDA2DE6219s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibFC480164AAF54C39D91DAB013A261DF4s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bibFC480164AAF54C39D91DAB013A261DF4s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib576469461C83B36D0D16E145A28A7859s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib576469461C83B36D0D16E145A28A7859s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib4683288877D0565CF7B71F04A40BCC56s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib4683288877D0565CF7B71F04A40BCC56s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib91F79A12E3052BB21671C240CFA9575Fs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib91F79A12E3052BB21671C240CFA9575Fs1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib94916528CBC4E6194BC1D89B57EF93C8s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib94916528CBC4E6194BC1D89B57EF93C8s1
https://doi.org/10.13328/j.cnki.jos.006551
https://doi.org/10.13328/j.cnki.jos.006551
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib1EEFE444F32A31068E736E5E5B327443s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib1EEFE444F32A31068E736E5E5B327443s1
https://cse.sustech.edu.cn/faculty/~liuyp/files/ICST2023-Rida.pdf
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib9934901D974CA009EBCA2F2522F7C1B3s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib9934901D974CA009EBCA2F2522F7C1B3s1
http://refhub.elsevier.com/S0167-6423(23)00134-X/bib9934901D974CA009EBCA2F2522F7C1B3s1

	Enhancing test reuse with GUI events deduplication and adaptive semantic matching
	1 Introduction
	2 Background and motivating example
	3 Approach
	3.1 Data processing
	3.2 Test generation
	3.2.1 Similarity calculation
	Textual similarity
	Final similarity

	3.2.2 Widget reachability verification
	3.2.3 Action assignment

	3.3 GUI events deduplication
	3.4 Adaptive semantic matching
	3.4.1 Adaptive index retrieval
	3.4.2 Adaptive test generation


	4 Evaluation
	4.1 Experimental setup
	4.2 Experimental results

	5 Threats to validity
	6 Related work
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


