
3

What Is Decidable about String Constraints with the
ReplaceAll Function

TAOLUE CHEN, Birkbeck, University of London, United Kingdom

YAN CHEN, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

China and University of Chinese Academy of Sciences, China

MATTHEW HAGUE, Royal Holloway, University of London, United Kingdom

ANTHONY W. LIN, University of Oxford, United Kingdom

ZHILINWU, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

China

The theory of strings with concatenation has been widely argued as the basis of constraint solving for verifying

string-manipulating programs. However, this theory is far from adequate for expressingmany string constraints

that are also needed in practice; for example, the use of regular constraints (pattern matching against a regular

expression), and the string-replace function (replacing either the first occurrence or all occurrences of a

“pattern” string constant/variable/regular expression by a “replacement” string constant/variable), among

many others. Both regular constraints and the string-replace function are crucial for such applications as

analysis of JavaScript (or more generally HTML5 applications) against cross-site scripting (XSS) vulnerabilities,

whichmotivates us to consider a richer class of string constraints. The importance of the string-replace function

(especially the replace-all facility) is increasingly recognised, which can be witnessed by the incorporation of

the function in the input languages of several string constraint solvers.

Recently, it was shown that any theory of strings containing the string-replace function (even the most

restricted version where pattern/replacement strings are both constant strings) becomes undecidable if we do

not impose some kind of straight-line (aka acyclicity) restriction on the formulas. Despite this, the straight-

line restriction is still practically sensible since this condition is typically met by string constraints that are

generated by symbolic execution. In this paper, we provide the first systematic study of straight-line string

constraints with the string-replace function and the regular constraints as the basic operations. We show

that a large class of such constraints (i.e. when only a constant string or a regular expression is permitted in

the pattern) is decidable. We note that the string-replace function, even under this restriction, is sufficiently

powerful for expressing the concatenation operator and much more (e.g. extensions of regular expressions

with string variables). This gives us the most expressive decidable logic containing concatenation, replace, and

regular constraints under the same umbrella. Our decision procedure for the straight-line fragment follows

an automata-theoretic approach, and is modular in the sense that the string-replace terms are removed one

by one to generate more and more regular constraints, which can then be discharged by the state-of-the-art

string constraint solvers. We also show that this fragment is, in a way, a maximal decidable subclass of the

Authors’ addresses: Taolue Chen, Department of Computer Science and Information Systems, Birkbeck, University of

London, Malet Street, London, WC1E 7HX, United Kingdom, taolue@dcs.bbk.ac.uk; Yan Chen, State Key Laboratory of

Computer Science, Institute of Software, Chinese Academy of Sciences, China , University of Chinese Academy of Sciences,

China; Matthew Hague, Department of Computer Science, Royal Holloway, University of London, Egham Hill, Egham,

Surrey, TW20 0EX, United Kingdom, matthew.hague@rhul.ac.uk; Anthony W. Lin, Department of Computer Science,

University of Oxford, Wolfson Buildin, Parks Road, Oxford, OX1 3QD, United Kingdom, anthony.lin@cs.ox.ac.uk; Zhilin

Wu, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

2475-1421/2018/1-ART3

https://doi.org/10.1145/3158091

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

https://doi.org/10.1145/3158091

3:2 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

straight-line fragment with string-replace and regular constraints. To this end, we show undecidability results

for the following two extensions: (1) variables are permitted in the pattern parameter of the replace function,

(2) length constraints are permitted.

CCS Concepts: • Theory of computation → Automated reasoning; Verification by model checking;
Program verification; Program analysis; Logic and verification; Complexity classes;

Additional Key Words and Phrases: String Constraints, ReplaceAll, Decision Procedures, Constraint Solving,

Straight-Line Programs

ACM Reference Format:
Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu. 2018. What Is Decidable about

String Constraints with the ReplaceAll Function . Proc. ACM Program. Lang. 2, POPL, Article 3 (January 2018),

29 pages. https://doi.org/10.1145/3158091

1 INTRODUCTION
The problem of automatically solving string constraints (aka satisfiability of logical theories over

strings) has recently witnessed renewed interests [Abdulla et al. 2017, 2014; Bjørner et al. 2009;

D’Antoni and Veanes 2013; Hooimeijer et al. 2011; Kiezun et al. 2012; Liang et al. 2014; Lin and

Barceló 2016; Saxena et al. 2010; Trinh et al. 2014, 2016; Veanes et al. 2012; Wang et al. 2016; Yu et al.

2014; Zheng et al. 2013] because of important applications in the analysis of string-manipulating

programs. For example, program analysis techniques like symbolic execution [Cadar et al. 2006;

Godefroid et al. 2005; King 1976; Sen et al. 2013] would systematically explore executions in a

program and collect symbolic path constraints, which could then be solved using a constraint

solver and used to determine which location in the program to continue exploring. To successfully

apply a constraint solver in this instance, it is crucial that the constraint language precisely models

the data types in the program, along with the data-type operations used. In the context of string-

manipulating programs, this could include concatenation, regular constraints (i.e. pattern matching

against a regular expression), string-length functions, and the string-replace functions, among

many others.

Perhaps the most well-known theory of strings for such applications as the analysis of string-

manipulating programs is the theory of strings with concatenation (aka word equations), whose
decidability was shown by Makanin [Makanin 1977] in 1977 after it was open for many years. More

importantly, this theory remains decidable even when regular constraints are incorporated into

the language [Schulz 1990]. However, whether adding the string-length function preserves the

decidability remains a long-standing open problem [Büchi and Senger 1990; Ganesh et al. 2012].

Another important string operation—especially in popular scripting languages like Python,

JavaScript, and PHP—is the string-replace function, which may be used to replace either the first
occurrence or all occurrences of a string (a string constant/variable, or a regular expression)

by another string (a string constant/variable). The replace function (especially the replace-all

functionality) is omnipresent in HTML5 applications [Lin and Barceló 2016; Trinh et al. 2016; Yu

et al. 2014]. For example, a standard industry defense against cross-site scripting (XSS) vulnerabilities

includes sanitising untrusted strings before adding them into the DOM (Document Object Model)

or the HTML document. This is typically done by various metacharacter-escaping mechanisms

(see, for instance, [Hooimeijer et al. 2011; Kern 2014; Williams et al. 2017]). An example of such a

mechanism is backslash-escape, which replaces every occurrence of quotes and double-quotes (i.e.

' and ") in the string by \' and \". In addition to sanitisers, common JavaScript functionalities

like document.write() and innerHTML apply an implicit browser transduction — which decodes

HTML codes (e.g. ' is replaced by ') in the input string — before inserting the input string

into the DOM. Both of these examples can be expressed by (perhaps multiple) applications of the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

https://doi.org/10.1145/3158091

What Is Decidable about String Constraints with the ReplaceAll Function 3:3

string-replace function. Moreover, although these examples replace constants by constants, the

popularity of template systems such as Mustache [Wanstrath 2009] and Closure Templates [Google

2015] demonstrate the need for replacements involving variables. Using Mustache, a web-developer,

for example, may define an HTML fragment with placeholders that is instantiated with user data

during the construction of the delivered page.

Example 1.1. We give a simple example demonstrating a (naive) XSS vulnerability to illustrate

the use of string-replace functions. Consider the HTML fragment below.

<h1> User {{userName}} </h1>

This HTML fragment is a template as might be used with systems such as Mustache to dis-

play a user on a webpage. For each user that is to be displayed – with their username and bio-

graphy stored in variables user and bio respectively – the string {{userName}} will be replaced by

user and the string {{bio}} will be replaced by bio. For example, a user Amelia with biography

Amelia was born in 1979... would result in the HTML below.

<h1> User

Amelia </h1>

This HTMLwould display User Amelia, and, when the mouse is placed over Amelia, her biography
would appear, thanks to the onMouseOver attribute in the span element.

Unfortunately, this template could be insecure if the user biography is not adequately sanitised:

A user could enter a malicious biography, such as '); alert('Boo!'); alert(' which would

cause the following instantiation of the span element
1
.

Now, when the mouse is placed over the user name, the malicious JavaScript alert('Boo!') is
executed.

The presence of such malicious injections of code can be detected using string constraint solving

and XSS attack patterns given as regular expressions [Balzarotti et al. 2008; Saxena et al. 2010; Yu

et al. 2014]. For our example, given an attack pattern P and template temp, we would generate the

constraint

x1 = replaceAll(temp, {{userName}}, user) ∧ x2 = replaceAll(x1, {{bio}}, bio) ∧ x2 ∈ P

which would detect if the HTML generated by instantiating the template is susceptible to the attack

identified by P . �

In general, the string-replace function has three parameters, and in the current mainstream

language such as Python and JavaScript, all of the three parameters can be inserted as string variables.
As result, when we perform program analysis for, for instance, detecting security vulnerabilities as

described above, one often obtains string constraints of the form z = replaceAll(x ,p,y), where x ,y
are string constants/variables, and p is either a string constant/variable or a regular expression. Such

a constraint means that z is obtained by replacing all occurrences of p in x with y. For convenience,
we call x ,p,y as the subject, the pattern, and the replacement parameters respectively.

The replaceAll function is a powerful string operation that goes beyond the expressiveness

of concatenation. (On the contrary, as we will see later, concatenation can be expressed by the

replaceAll function easily.) It was shown in a recent POPL paper [Lin and Barceló 2016] that

any theory of strings containing the string-replace function (even the most restricted version

1
Readers familiar with Mustache and Closure Templates may expect single quotes to be automatically escaped. Howe-

ver, we have tested our example with the latest versions of mustache.js [Lehnardt and contributors 2015] and Closure

Templates [Google 2015] (as of July 2017) and observed that the exploit is not disarmed by their automatic escaping features.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:4 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

where pattern/replacement strings are both constant strings) becomes undecidable if we do not

impose some kind of straight-line restriction2 on the formulas. Nonetheless, as already noted in

[Lin and Barceló 2016], the straight-line restriction is reasonable since it is typically satisfied by

constraints that are generated by symbolic execution, e.g., all constraints in the standard Kaluza

benchmarks [Saxena et al. 2010] with 50,000+ test cases generated by symbolic execution on

JavaScript applications were noted in [Ganesh et al. 2012] to satisfy this condition. Intuitively,

as elegantly described in [Bjørner et al. 2009], constraints from symbolic execution on string-

manipulating programs can be viewed as the problem of path feasibility over loopless string-

manipulating programs S with variable assignments and assertions, i.e., generated by the grammar

S ::= y := f (x1, . . . ,xn) | assert(д(x1, . . . ,xn)) | S1; S2
where f : (Σ∗)n → Σ∗

and д : (Σ∗)n → {0, 1} are some string functions. Straight-line programs

with assertions can be obtained by turning such programs into a Static Single Assignment (SSA)

form (i.e. introduce a new variable on the left hand side of each assignment). A partial decidability

result can be deduced from [Lin and Barceló 2016] for the straight-line fragment of the theory of

strings, where (1) f in the above grammar is either a concatenation of string constants and variables,

or the replaceAll function where the pattern and the replacement are both string constants, and (2)

д is a boolean combination of regular constraints. In fact, the decision procedure therein admits

finite-state transducers, which subsume only the aforementioned simple form of the replaceAll
function. The decidability boundary of the straight-line fragment involving the replaceAll function
in its general form (e.g., when the replacement parameter is a variable) remains open.

Contribution. We investigate the decidability boundary of the theory SL[replaceAll] of strings in-
volving the replaceAll function and regular constraints, with the straight-line restriction introduced

in [Lin and Barceló 2016]. We provide a decidability result for a large fragment of SL[replaceAll],
which is sufficiently powerful to express the concatenation operator. We show that this decidability

result is in a sense maximal by showing that several important natural extensions of the logic result

in undecidability. We detail these results below:

• If the pattern parameters of the replaceAll function are allowed to be variables, then the

satisfiability of SL[replaceAll] is undecidable (cf. Proposition 4.1).

• If the pattern parameters of the replaceAll function are regular expressions, then the satisfia-

bility of SL[replaceAll] is decidable and in EXPSPACE (cf. Theorem 4.2). In addition, we show

that the satisfiability problem is PSPACE-complete for several cases that are meaningful in

practice (cf. Corollary 4.7). This strictly generalises the decidability result in [Lin and Barceló

2016] of the straight-line fragment with concatenation, regular constraints, and the replaceAll
function where patterns/replacement parameters are constant strings.

• If SL[replaceAll], where the pattern parameter of the replaceAll function is a constant letter, is

extended with the string-length constraint, then satisfiability becomes undecidable again. In

fact, this undecidability can be obtained with either integer constraints, character constraints,

or constraints involving the IndexOf function (cf. Theorem 9.4 and Proposition 9.6).

Our decision procedure for SL[replaceAll]where the pattern parameters of the replaceAll function
are regular expressions follows an automata-theoretic approach. The key idea can be illustrated as

follows. Let us consider the simple formula C ≡ x = replaceAll(y,a, z) ∧ x ∈ e1 ∧ y ∈ e2 ∧ z ∈ e3.
Suppose that A1,A2,A3 are the nondeterministic finite state automata corresponding to e1, e2, e3
respectively. We effectively eliminate the use of replaceAll by nondeterministically generating

from A1 a new regular constraint A ′
2
for y as well as a new regular constraint A ′

3
for z. These

2
Similar notions that appear in the literature of string constraints (without replace) include acyclicity [Abdulla et al. 2014]

and solved form [Ganesh et al. 2012]

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:5

constraints incorporate the effect of the replaceAll function (i.e. all regular constraints are on the

“source” variables). Then, the satisfiability of C is turned into testing the nonemptiness of the

intersection of A2 and A ′
2
, as well as the nonemptiness of the intersection of A3 and A ′

3
. When

there are multiple occurrences of the replaceAll function, this process can be iterated. Our decision

procedure enjoys the following advantages:

• It is automata-theoretic and built on clean automaton constructions, moreover, when the

formula is satisfiable, a solution can be synthesised. For example, in the aforementioned XSS

vulnerability detection example, one can synthesise the values of the variables user and bio
for a potential attack.

• The decision procedure is modular in that the replaceAll terms are removed one by one

to generate more and more regular constraints (emptiness of the intersection of regular

constraints could be efficiently handled by state-of-the-art solvers like [Wang et al. 2016]).

• The decision procedure requires exponential space (thus double exponential time), but under

assumptions that are reasonable in practice, the decision procedure uses only polynomial

space, which is not worse than other string logics (which can encode the PSPACE-complete

problem of checking emptiness of the intersection of regular constraints).

Organisation. This paper is organised as follows: Preliminaries are given in Section 2. The core

string language is defined in Section 3. The main results of this paper are summarised in Section 4.

The decision procedure is presented in Section 6-8, case by case. The extensions of the core string

language are investigated in Section 9. The related work can be found in Section 10. The full version

contains missing proofs and additional examples.

2 PRELIMINARIES
General Notation. Let Z and N denote the set of integers and natural numbers respectively. For

k ∈ N, let [k] = {1, · · · ,k}. For a vector ®x = (x1, · · · ,xn), let | ®x | denote the length of ®x (i.e., n) and
®x[i] denote xi for each i ∈ [n].

Regular Languages. Fix a finite alphabet Σ. Elements in Σ∗
are called strings. Let ε denote the

empty string and Σ+ = Σ∗ \ {ε}. We will use a,b, · · · to denote letters from Σ and u,v,w, · · · to
denote strings from Σ∗

. For a string u ∈ Σ∗
, let |u | denote the length of u (in particular, |ε | = 0). A

position of a nonempty string u of length n is a number i ∈ [n] (Note that the first position is 1,

instead of 0). In addition, for i ∈ [|u |], let u[i] denote the i-th letter of u. For two strings u1,u2, we
use u1 · u2 to denote the concatenation of u1 and u2, that is, the string v such that |v | = |u1 | + |u2 |
and for each i ∈ [|u1 |], v[i] = u1[i] and for each i ∈ |u2 |, v[|u1 | + i] = u2[i]. Let u,v be two strings.

If v = u · v ′
for some string v ′

, then u is said to be a prefix of v . In addition, if u , v , then u is said

to be a strict prefix of v . If u is a prefix of v , that is, v = u · v ′
for some string v ′

, then we use u−1v
to denote v ′

. In particular, ε−1v = v .
A language over Σ is a subset of Σ∗

. We will use L1,L2, . . . to denote languages. For two languages
L1,L2, we use L1 ∪ L2 to denote the union of L1 and L2, and L1 · L2 to denote the concatenation of

L1 and L2, that is, the language {u1 · u2 | u1 ∈ L1,u2 ∈ L2}. For a language L and n ∈ N, we define
Ln , the iteration of L for n times, inductively as follows: L0 = {ε} and Ln = L · Ln−1 for n > 0. We

also use L∗ to denote the iteration of L for arbitrarily many times, that is, L∗ =
⋃
n∈N

Ln . Moreover,

let L+ =
⋃

n∈N\{0}
Ln .

Definition 2.1 (Regular expressions RegExp).

e
def

= ∅ | ε | a | e + e | e ◦ e | e∗, where a ∈ Σ.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:6 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

Since + is associative and commutative, we also write (e1 + e2) + e3 as e1 + e2 + e3 for brevity. We

use the abbreviation e+ ≡ e ◦ e∗. Moreover, for Γ = {a1, · · · ,an} ⊆ Σ, we use the abbreviations
Γ ≡ a1 + · · · + an and Γ∗ ≡ (a1 + · · · + an)

∗
.

We define L(e) to be the language defined by e , that is, the set of strings that match e , inductively
as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, L(e1+e2) = L(e1)∪L(e2), L(e1 ◦e2) = L(e1) ·L(e2),
L(e∗

1
) = (L(e1))

∗
. In addition, we use |e | to denote the number of symbols occurring in e .

A nondeterministic finite automaton (NFA)A on Σ is a tuple (Q,δ ,q0, F), whereQ is a finite set of

states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ ⊆ Q × Σ ×Q is the transition
relation. For a stringw = a1 . . . an , a run of A onw is a state sequence q0 . . .qn such that for each

i ∈ [n], (qi−1,ai ,qi) ∈ δ . A run q0 . . .qn is accepting if qn ∈ F . A stringw is accepted by A if there

is an accepting run of A on w . We use L(A) to denote the language defined by A, that is, the

set of strings accepted by A. We will use A,B, · · · to denote NFAs. For a stringw = a1 . . . an , we

also use the notation q1
w
−−→
A

qn+1 to denote the fact that there are q2, . . . ,qn ∈ Q such that for each

i ∈ [n], (qi ,ai ,qi+1) ∈ δ . For an NFA A = (Q,δ ,q0, F) and q,q
′ ∈ Q , we use A(q,q′) to denote the

NFA obtained fromA by changing the initial state to q and the set of final states to {q′}. The size of
an NFA A = (Q,δ ,q0, F), denoted by |A|, is defined as |Q |, the number of states. For convenience,

we will also call an NFA without initial and final states, that is, a pair (Q,δ), as a transition graph.
It is well-known (e.g. see [Hopcroft and Ullman 1979]) that regular expressions and NFAs are

expressively equivalent, and generate precisely all regular languages. In particular, from a regular

expression, an equivalent NFA can be constructed in linear time. Moreover, regular languages are

closed under Boolean operations, i.e., union, intersection, and complementation. In particular, given

two NFA A1 = (Q1,δ1,q0,1, F1) and A2 = (Q2,δ2,q0,2, F2) on Σ, the intersection L(A1) ∩ L(A2) is

recognised by the product automatonA1×A2 ofA1 andA2 defined as (Q1×Q2,δ , (q0,1,q0,2), F1×F2),
where δ comprises the transitions ((q1,q2),a, (q

′
1
,q′

2
)) such that (q1,a,q

′
1
) ∈ δ1 and (q2,a,q

′
2
) ∈ δ2.

Graph-Theoretical Notation. A DAG (directed acyclic graph) G is a finite directed graph (V ,E)
with no directed cycles, where V (resp. E ⊆ V ×V) is a set of vertices (resp. edges). Equivalently, a

DAG is a directed graph that has a topological ordering, which is a sequence of the vertices such

that every edge is directed from an earlier vertex to a later vertex in the sequence. An edge (v, v ′)
in G is called an incoming edge of v ′ and an outgoing edge of v. If (v, v ′) ∈ E, then v ′ is called a

successor of v and v is called a predecessor of v ′. A path π in G is a sequence v0e1v1 · · · vn−1envn
such that for each i ∈ [n], we have ei = (vi−1, vi) ∈ E. The length of the path π is the number n of

edges in π . If there is a path from v to v ′ (resp. from v ′ to v) in G, then v ′ is said to be reachable
(resp. co-reachable) from v in G. If v is reachable from v ′ in G, then v ′ is also called an ancestor
of v in G. In addition, an edge (v ′, v ′′) is said to be reachable (resp. co-reachable) from v if v ′ is
reachable from v (resp. v ′′ is co-reachable from v). The in-degree (resp. out-degree) of a vertex v is

the number of incoming (resp. outgoing) edges of v. A subgraphG ′
ofG = (V ,E) is a directed graph

(V ′,E ′) withV ′ ⊆ V and E ′ ⊆ E. LetG ′
be a subgraph ofG . ThenG \G ′

is the graph obtained from

G by removing all the edges in G ′
.

Computational Complexity. In this paper, we study not only decidability but also the complexity

of string logics. In particular, we shall deal with the following computational complexity classes

(see [Hopcroft and Ullman 1979] for more details): PSPACE (problems solvable in polynomial space

and thus in exponential time), and EXPSPACE (problems solvable in exponential space and thus

in double exponential time). Verification problems that have complexity PSPACE or beyond (see

[Baier and Katoen 2008] for a few examples) have substantially benefited from techniques such as

symbolic model checking [McMillan 1993].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:7

3 THE CORE CONSTRAINT LANGUAGE
In this section, we define a general string constraint language that supports concatenation, the

replaceAll function, and regular constraints. Throughout this section, we fix an alphabet Σ.

3.1 Semantics of the replaceAll Function
To define the semantics of the replaceAll function, we note that the function encompasses three

parameters: the first parameter is the subject string, the second parameter is a pattern that is a

string or a regular expression, and the third parameter is the replacement string. When the pattern

parameter is a string, the semantics is somehow self-explanatory. However, when it is a regular

expression, there is no consensus on the semantics even for the mainstream programming languages

such as Python and Javascript. This is particularly the case when interpreting the union (aka

alternation) operator in regular expressions or performing a replaceAll with a pattern that matches

ε . In this paper, we mainly focus on the semantics of leftmost and longest matching. Our handling
of ε matches is consistent with our testing of the implementation in Python and the sed command

with the --posix flag. We also assume union is commutative (e.g. replaceAll(aa,a + aa,b) =
replaceAll(aa,aa + a,b) = b) as specified by POSIX, but often ignored in practice (where bb is a

common result in the former case).

Definition 3.1. Let u,v be two strings such that v = v1uv2 for some v1,v2 and e be a regular

expression. We say that u is the leftmost and longest matching of e in v if one of the following two

conditions hold,

• case ε < L(e):
(1) leftmost: u ∈ L(e), and (v ′

1
)−1v < L(e ◦ Σ∗) for every strict prefix v ′

1
of v1,

(2) longest: for every nonempty prefix v ′
2
of v2, u · v ′

2
< L(e).

• case ε ∈ L(e):
(1) leftmost: u ∈ L(e), and v1 = ε ,
(2) longest: for every nonempty prefix v ′

2
of v2, u · v ′

2
< L(e).

Example 3.2. Let us first consider Σ = {0, 1}, v = 1010101, v1 = 1, u = 010, v2 = 101, and

e = 0
∗
01(0∗ + 1∗). Then v = v1uv2, and the leftmost and longest matching of e in v is u. This is

because u ∈ L(e), ε−1v = v < L(e ◦ Σ∗) (notice that v1 has only one strict prefix, i.e. ε), and none

of u1 = 0101, u10 = 01010, and u101 = 010101 belong to L(e) (notice that v2 has three nonempty

prefixes, i.e. 1, 10, 101). For another example, let us consider Σ = {a,b, c}, v = baac , v1 = ε , u = ε ,
v2 = v , and e = a∗. Then v = v1uv2 and the leftmost and longest matching of e in v is u. This is
because u ∈ L(e), v1 = ε , and b,ba,baa,baac < L(e). On the other hand, similarly, one can verify

that the leftmost and longest matching of e = a∗ in v = aac is u = aa.

Definition 3.3. The semantics of replaceAll(u, e,v), where u,v are strings and e is a regular

expression, is defined inductively as follows:

• ifu < L(Σ∗◦e◦Σ∗), that is,u does not contain any substring fromL(e), then replaceAll(u, e,v) =
u,

• otherwise,

– if ε ∈ L(e) and u is the leftmost and longest matching of e in u, then replaceAll(u, e,v) = v ,
– if ε ∈ L(e), u = u1 · a ·u2, u1 is the leftmost and longest matching of e in u, and a ∈ Σ, then
replaceAll(u, e,v) = v · a · replaceAll(u2, e,v),

– if ε < L(e), u = u1 · u2 · u3, and u2 is the leftmost and longest matching of e in u, then
replaceAll(u, e,v) = u1 · v · replaceAll(u3, e,v).

Example 3.4. At first, replaceAll(abab,ab,d) = d ·replaceAll(ab,ab,d) = dd ·replaceAll(ϵ,ab,d) =
dd · ε = dd and replaceAll(baac,a+,b) = bbc . In addition, replaceAll(aaaa, “”,d) = dadadadad and

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:8 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

replaceAll(baac,a∗,b) = bbbcb. The argument for replaceAll(baac,a∗,b) = bbbcb proceeds as

follows: The leftmost and longest matching of a∗ in baac is u1 = ε , where baac = u1 · b · u2 and
u2 = aac . Then replaceAll(baac,a∗,b) = b · b · replaceAll(aac,a∗,b). Since aa is the leftmost and

longest matching of a∗ in aac , we have replaceAll(aac,a∗,b) = b · c · replaceAll(ε,a∗,b) = bcb.
Therefore, we get replaceAll(baac,a∗,b) = bbbcb. (The readers are invited to test this in Python

and sed.)

3.2 Straight-Line String Constraints With the replaceAll Function
We consider the String data type Str, and assume a countable set of variables x ,y, z, · · · of Str.

Definition 3.5 (Relational and regular constraints). Relational constraints and regular constraints

are defined by the following rules,

s
def

= x | u (string terms)

p
def

= x | e (pattern terms)

φ
def

= x = s ◦ s | x = replaceAll(s,p, s) | φ ∧ φ (relational constraints)

ψ
def

= x ∈ e | ψ ∧ψ (regular constraints)

where x is a string variable, u ∈ Σ∗
and e is a regular expression over Σ.

For a formula φ (resp. ψ), let Vars(φ) (resp. Vars(ψ)) denote the set of variables occurring in φ
(resp.ψ). Given a relational constraint φ, a variable x is called a source variable of φ if φ does not
contain a conjunct of the form x = s1 ◦ s2 or x = replaceAll(−,−,−).

We then notice that, with the replaceAll function in its general form, the concatenation operation

is in fact redundant.

Proposition 3.6. The concatenation operation (◦) can be simulated by the replaceAll function.

Proof. It is sufficient to observe that a relational constraint x = s1 ◦ s2 can be rewritten as

x ′ = replaceAll(ab,a, s1) ∧ x = replaceAll(x ′,b, s2),

where a,b are two fresh letters. �

In light of Proposition 3.6, in the sequel, we will dispense the concatenation operator mostly and

focus on the string constraints that involve the replaceAll function only.
Another example to show the power of the replaceAll function is that it can simulate the

extension of regular expressions with string variables, which is supported by the mainstream

scripting languages like Python, Javascript, and PHP. For instance, x ∈ y∗ can be expressed by

x = replaceAll(x ′,a,y) ∧ x ′ ∈ a∗, where x ′
is a fresh variable and a is a fresh letter.

The generality of the constraint language makes it undecidable, even in very simple cases. To

retain decidability, we follow [Lin and Barceló 2016] and focus on the “straight-line fragment" of the

language. This straight-line fragment captures the structure of straight-line string-manipulating

programs with the replaceAll string operation.

Definition 3.7 (Straight-line relational constraints). A relational constraint φ with the replaceAll
function is straight-line, if φ

def

=
∧

1≤i≤m
xi = Pi such that

• x1, . . . ,xm are mutually distinct,

• for each i ∈ [m], all the variables in Pi are either source variables, or variables from

{x1, . . . ,xi−1},

Remark 3.8. Checking whether a relational constraint φ is straight-line can be done in linear time.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:9

Definition 3.9 (Straight-line string constraints). A straight-line string constraint C with the

replaceAll function (denoted by SL[replaceAll]) is defined as φ ∧ψ , where

• φ is a straight-line relational constraint with the replaceAll function, and
• ψ is a regular constraint.

Example 3.10. The following string constraint belongs to SL[replaceAll]:

C ≡ x2 = replaceAll(x1, 0,y1) ∧ x3 = replaceAll(x2, 1,y2) ∧ x1 ∈ {0, 1}∗ ∧ y1 ∈ 1
∗ ∧ y2 ∈ 0

∗.

4 THE SATISFIABILITY PROBLEM
In this paper, we focus on the satisfiability problem of SL[replaceAll], which is formalised as follows.

Given an SL[replaceAll] constraint C , decide whether C is satisfiable.

To approach this problem, we identify several fragments of SL[replaceAll], depending on whet-

her the pattern and the replacement parameters are constants or variables. We shall investigate

extensively the satisfiability problem of the fragments of SL[replaceAll].
We begin with the case where the pattern parameters of the replaceAll terms are variables. It

turns out that in this case the satisfiability problem of SL[replaceAll] is undecidable. The proof is by
a reduction from Post’s Correspondence Problem. Due to space constraints we relegate the proof

to the full version.

Proposition 4.1. The satisfiability problem of SL[replaceAll] is undecidable, if the pattern para-
meters of the replaceAll terms are allowed to be variables.

In light of Proposition 4.1, we shall focus on the case that the pattern parameters of the replaceAll
terms are constants, being a single letter, a constant string, or a regular expression. The main result

of the paper is summarised as the following Theorem 4.2.

Theorem 4.2. The satisfiability problem of SL[replaceAll] is decidable in EXPSPACE, if the pattern
parameters of the replaceAll terms are regular expressions.

The following three sections are devoted to the proof of Theorem 4.2.

• We start with the single-letter case that the pattern parameters of the replaceAll terms are

single letters (Section 6),

• then consider the constant-string case that the pattern parameters of the replaceAll terms are

constant strings (Section 7),

• and finally the regular-expression case that the pattern parameters of the replaceAll terms are

regular expressions (Section 8).

We first introduce a graphical representation of SL[replaceAll] formulae as follows.

Definition 4.3 (Dependency graph). Suppose C = φ ∧ψ is an SL[replaceAll] formula where the

pattern parameters of the replaceAll terms are regular expressions. Define the dependency graph ofC
asGC = (Vars(φ),EC), such that for each i ∈ [m], if xi = replaceAll(z, ei , z ′), then (xi , (l, ei), z) ∈ EC
and (xi , (r, ei), z ′) ∈ EC . A final (resp. initial) vertex inGC is a vertex inGC without successors (resp.

predecessors). The edges labelled by (l, ei) and (r, ei) are called the l-edges and r-edges respectively.
The depth of GC is the maximum length of the paths in GC . In particular, if φ is empty, then the

depth of GC is zero.

Note that GC is a DAG where the out-degree of each vertex is two or zero.

Definition 4.4 (Diamond index and l-length). Let C be an SL[replaceAll] formula and GC =

(Vars(φ),EC) be its dependency graph. A diamond ∆ in GC is a pair of vertex-disjoint simple

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:10 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

paths from z to z ′ for some z, z ′ ∈ Vars(φ). The vertices z and z ′ are called the source and destination
vertex of the diamond respectively. A diamond ∆2 with the source vertex z2 and destination vertex

z ′
2
is said to be reachable from another diamond ∆1 with the source vertex z1 and destination vertex

z ′
1
if z2 is reachable from z ′

1
(possibly z2 = z ′

1
). The diamond index of GC , denoted by Idxdmd(GC),

is defined as the maximum length of the diamond sequences ∆1 · · ·∆n in GC such that for each

i ∈ [n − 1], ∆i+1 is reachable from ∆i . The l-length of a path in GC is the number of l-edges in the

path. The l-length of GC , denoted by Lenlft(GC), is the maximum l-length of paths in GC .

For each dependency graph GC , since each diamond uses at least one l-edge, we know that

Idxdmd(GC) ≤ Lenlft(GC).

Proposition 4.5. Let C be an SL[replaceAll] formula and GC = (Vars(φ),EC) be its dependency
graph. For each pair of distinct vertices z, z ′ in GC , there are at most (|Vars(φ)| |EC |)O (Idxdmd(GC))

different paths from z to z ′.

It follows from Proposition 4.5 that for a class of SL[replaceAll] formulaeC such that Idxdmd(GC)

is bounded by a constant c , there are polynomially many different paths between each pair of

distinct vertices in GC .

Example 4.6. Let GC be the dependency graph illustrated in Figure 1. It is easy to see that

Idxdmd(GC) is 3. In addition, there are 2
3 = 8 paths from x1 to y1. If we generalise GC in Figure 1 to

a dependency graph comprising n diamonds from x1 to x2, · · · , from xn−1 to xn , and from xn to y1
respectively, then the diamond index of the resulting dependency graph is n and there are 2

n
paths

from x1 to y1 in the graph.

x1

(r, a1)

(l, a1)

x2 x3 y1

(l, a2)

(r, a2)

(l, a3)

(r, a3)

Fig. 1. The diamond index and the number of paths in GC

In Section 6–8, we will apply a refined analysis of the complexity of the decision procedures for

proving Theorem 4.2 and get the following results.

Corollary 4.7. The satisfiability problem is PSPACE-complete for the following fragments of
SL[replaceAll]:

• the single-letter case, plus the condition that the diamond indices of the dependency graphs are
bounded by a constant c ,

• the constant-string case, plus the condition that the l-lengths of the dependency graphs are
bounded by a constant c ,

• the regular-expression case, plus the condition that the l-lengths of the dependency graphs are at
most 1.

Corollary 4.7 partially justifies our choice to present the decision procedures for the single-letter,

constant-string, and regular-expression case separately. Intuitively, when the pattern parameters

of the replaceAll terms become less restrictive, the decision procedures become more involved, and

more constraints should be imposed on the dependency graphs in order to achieve the PSPACE

upper-bound. The PSPACE lower-bound follows from the observation that nonemptiness of the

intersection of the regular expressions e1, · · · , en over the alphabet {0, 1}, which is a PSPACE-

complete problem, can be reduced to the satisfiability of the formula x ∈ e1 ∧ · · · ∧ x ∈ en , which
falls into all fragments of SL[replaceAll] specified in Corollary 4.7. At last, we remark that the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:11

restrictions in Corollary 4.7 are partially inspired by the benchmarks in practice. Diamond indices

(intuitively, the “nesting depth” of replaceAll(x ,a,x)) are likely to be small in practice because the

constraints like replaceAll(x ,a,x) are rather artificial and rarely occur in practice. Moreover, the

l-length reflects the nesting depth of replaceall w.r.t. the first parameter, which is also likely to be

small. Finally, for string constraints with concatenation and replaceAll where pattern/replacement

parameters are constants, the diamond index is no greater than the “dimension” defined in [Lin and

Barceló 2016], where it was shown that existing benchmarks mostly have “dimensions" at most

three for such string constraints.

5 OUTLINE OF DECISION PROCEDURES
We describe our decision procedure across three sections (Section 6–Section 8). This means the

ideas can be introduced in a step-by-step fashion, which we hope helps the reader. In addition, by

presenting separate algorithms, we can give the fine-grained complexity analysis required to show

Corollary 4.7. We first outline the main ideas needed by our approach.

We will use automata-theoretic techniques. That is, we make use of the fact that regular expres-

sions can be represented as NFAs. We can then consider a very simple string expression, which

is a single regular constraint x ∈ e . It is well-known that an NFA A can be constructed that is

equivalent to e . We can also test in LOGSPACE whether there is some wordw accepted by A. If

this is the case, then this word can be assigned to x , giving a satisfying assignment to the constraint.

If this is not the case, then there is no satisfying assignment.

A more complex case is a conjunction of several constraints of the form x ∈ e . If the constraints
apply to different variables, they can be treated independently to find satisfying assignments. If the

constraints apply to the same variable, then they can be merged into a single NFA. Intuitively, take

x ∈ e1 ∧ x ∈ e2 and A1 and A2 equivalent to e1 and e2 respectively. We can use the fact that NFA

are closed under intersection a check if there is a word accepted by A1 × A2. If this is the case, we

can construct a satisfying assignment to x from an accepting run of A1 × A2.

In the general case, however, variables are not independent, but may be related by a use of

replaceAll. In this case, we perform a kind of replaceAll elimination. That is, we successively remove

instances of replaceAll from the constraint, building up an expanded set of regular constraints

(represented as automata). Once there are no more instances of replaceAll we can solve the regular

constraints as above. Briefly, we identify some x = replaceAll(y, e, z) where x does not appear

as an argument to any other use of replaceAll. We then transform any regular constraints on x
into additional constraints on y and z. This allows us to remove the variable x since the extended

constraints on y and z are sufficient for determining satisfiability. Moreover, from a satisfying

assignment to y and z we can construct a satisfying assignment to x as well. This is the technical

part of our decision procedure and is explained in detail in the following sections, for increasingly

complex uses of replaceAll.

6 DECISION PROCEDURE FOR SL[replaceAll]: THE SINGLE-LETTER CASE
In this section, we consider the single-letter case, that is, for the SL[replaceAll] formula C = φ ∧ψ ,
every term of the form replaceAll(z, e, z ′) in φ satisfies that e = a for a ∈ Σ. We begin by explaining

the idea of the decision procedure in the case where there is a single use of a replaceAll(−,−,−)
term. Then we describe the decision procedure in full details.

6.1 A Single Use of replaceAll(−,−,−)
Let us start with the simple case that

C ≡ x = replaceAll(y,a, z) ∧ x ∈ e1 ∧ y ∈ e2 ∧ z ∈ e3,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:12 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

where, for i = 1, 2, 3, we suppose Ai = (Qi ,δi ,q0,i , Fi) is the NFA corresponding to the regular

expression ei .
From the semantics, C is satisfiable if and only if x ,y, z can be assigned with strings u,v,w so

that: (1) u is obtained from v by replacing all the occurrences of a in v withw , and (2) u,v,w are

accepted by A1,A2,A3 respectively. Let u,v,w be the strings satisfying these two constraints. As

u is accepted byA1, there must be an accepting run ofA1 onu. Letv = v1av2a · · ·avk such that for

each i ∈ [k],vi ∈ (Σ\ {a})∗. Thenu = v1wv2w · · ·wvk and there are states q1,q
′
1
, · · · ,qk−1,q

′
k−1,qk

such that

q0,1
v1

−−→
A1

q1
w
−−→
A1

q′
1

v2

−−→
A1

q2
w
−−→
A1

q′
2
· · ·qk−1

w
−−→
A1

q′k−1
vk
−−→
A1

qk

and qk ∈ F1. Let Tz denote

{
(qi ,q

′
i) | i ∈ [k − 1]

}
. Then w ∈ L(A3) ∩

⋂
(q,q′)∈Tz

L(A1(q,q
′)). In

addition, let BA1,a,Tz be the NFA obtained from A1 by removing all the a-transitions first and then

adding the a-transitions (q,a,q′) for (q,q′) ∈ Tz . Then

q0,1
v1

−−−−−−−→
BA

1
,a,Tz

q1
a

−−−−−−−→
BA

1
,a,Tz

q′
1

v2

−−−−−−−→
BA

1
,a,Tz

q2
a

−−−−−−−→
BA

1
,a,Tz

q′
2
· · ·qk−1

a
−−−−−−−→
BA

1
,a,Tz

q′k−1
vk

−−−−−−−→
BA

1
,a,Tz

qk .

Therefore, v ∈ L(A2) ∩ L(BA1,a,Tz). We deduce that there is Tz ⊆ Q1 ×Q1 such that L(A3) ∩⋂
(q,q′)∈Tz

L(A1(q,q
′)) , ∅ and L(A2) ∩ L(BA1,a,Tz) , ∅. In addition, it is not hard to see that

this condition is also sufficient for the satisfiability of C . The arguments proceed as follows: Let

v ∈ L(A2) ∩ L(BA1,a,Tz) and w ∈ L(A3) ∩
⋂

(q,q′)∈Tz
L(A1(q,q

′)). From v ∈ L(BA1,a,Tz), we

know that there is an accepting run of BA1,a,Tz on v . Recall that BA1,a,Tz is obtained from A1 by

first removing all the a-transitions, then adding all the transitions (q,a,q′) for (q,q′) ∈ Tz . Suppose
v = v1av2 · · ·avk such that vi ∈ (Σ \ {a})∗ for each i ∈ [k] and

q0,1
v1

−−−−−−−→
BA

1
,a,Tz

q1
a

−−−−−−−→
BA

1
,a,Tz

q′
1

v2

−−−−−−−→
BA

1
,a,Tz

q2
a

−−−−−−−→
BA

1
,a,Tz

q′
2
· · ·qk−1

a
−−−−−−−→
BA

1
,a,Tz

q′k−1
vk

−−−−−−−→
BA

1
,a,Tz

qk

is an accepting run of BA1,a,Tz onv . Then q0,1
v1

−−→
A1

q1, and for each i ∈ [k − 1] we have (qi ,q
′
i) ∈ Tz

and q′i
vi+1
−−−→
A1

qi+1; moreover, qk ∈ F1. Let u = replaceAll(v,a,w) = v1wv2 · · ·wvk . Since w ∈⋂
(q,q′)∈Tz

L(A1(q,q
′)), we infer that

q0,1
v1

−−→
A1

q1
w
−−→
A1

q′
1

v2

−−→
A1

q2
w
−−→
A1

q′
2
· · ·qk−1

w
−−→
A1

q′k−1
vk
−−→
A1

qk

is an accepting run of A1 on u. Therefore, u is accepted by A1 and C is satisfiable.

Proposition 6.1. We have C ≡ x = replaceAll(y,a, z) ∧ x ∈ e1 ∧ y ∈ e2 ∧ z ∈ e3 is satisfiable iff
there exists Tz ⊆ Q1 ×Q1 with L(A3) ∩

⋂
(q,q′)∈Tz

L(A1(q,q
′)) , ∅ and L(A2) ∩ L(BA1,a,Tz) , ∅.

From Proposition 6.1, we can decide the satisfiability of C in polynomial space as follows:

Step I. Nondeterministically choose a set Tz ⊆ Q1 ×Q1.

Step II. Nondeterministically choose an accepting run of the product automaton of A3 and

A1(q,q
′) for (q,q′) ∈ Tz .

Step III. Nondeterministically choose an accepting run of the product automaton of A2 and

BA1,a,Tz .

During Step II and III, it is sufficient to record Tz and a state of the product automaton, which

occupies only a polynomial space.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:13

The above decision procedure can be easily generalised to the case that there are multiple

atomic regular constraints for x . For instance, let x ∈ e1,1 ∧ x ∈ e1,2 and for j = 1, 2, A1, j =

(Q1, j ,δ1, j ,q0,1, j , F1, j) be the NFA corresponding to e1, j . Then in Step I, two sets T1,z ⊆ Q1,1 ×Q1,1

and T2,z ⊆ Q1,2 × Q1,2 are nondeterministically chosen, moreover, Step II and III are adjusted

accordingly.

Example 6.2. Let C ≡ x = replaceAll(y, 0, z) ∧ x ∈ e1 ∧ y ∈ e2 ∧ z ∈ e3, where e1 = (0 +

1)∗(00(0 + 1)∗ + 11(0 + 1)∗), e2 = (01)∗, and e3 = (10)∗. The NFA A1,A2,A3 corresponding to

e1, e2, e3 respectively are illustrated in Figure 2. Let Tz = {(q0,q0), (q1,q2)}. Then

L(A3) ∩
⋂

(q,q′)∈Tz
L(A1(q,q

′)) = L(A3) ∩ L(A1(q0,q0)) ∩ L(A1(q1,q2))

= L((10)∗) ∩ L((0 + 1)∗) ∩ L(1(0 + 1)∗)

, ∅.

In addition, BA1,0,Tz (also illustrated in Figure 2) is obtained from A1 by removing all the 0-

transitions, then adding the transitions (q0, 0,q0) and (q1, 0,q2). Then

L(A2) ∩ L(BA1,0,Tz) = L((01)∗) ∩ L((0 + 1)∗101∗) , ∅.

We can choose z to be a string from L(A3) ∩
⋂

(q,q′)∈Tz
L(A1(q,q

′)) = L((10)∗) ∩ L((0 + 1)∗) ∩

L(1(0+1)∗), say 10, andy to be a string fromL(A2)∩L(BA1,0,Tz) = L((01)∗)∩L((0+1)∗101∗), say

0101, then we set x to replaceAll(0101, 0, 10) = 101101, which is in L(A1). Thus,C is satisfiable. �

q0

q2

q3

q1

q4
0

0

1

1

0

1

0

1

1

0

A1

q′0

0

1

q′1A2

q′′0

1

0

q′′1A3

q0

q2

q3

q1

q4

1

1

0

1

1

1

BA1,0,Tz

0

Fig. 2. An example for the single-letter case: One replaceAll

6.2 The General Case
Let us now consider the general case where C contains multiple occurrences of replaceAll(−,−,−)
terms. Then the satisfiability of C is decided by the following two-step procedure.

Step I.We utilise the dependency graphC and compute nondeterministically a collection of atomic

regular constraints E(x) for each variable x , in a top-down manner.

Notice that E(x) is represented succinctly as a set of pairs (T ,P), where T = (Q,δ) is a transition
graph and P ⊆ Q ×Q . The intention of (T ,P) is to represent succinctly the collection of the atomic

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:14 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

regular constraints containing (Q,δ ,q, {q′}) for each (q,q′) ∈ P, where q is the initial state and

{q′} is the set of final states.
Initially, let G0 := GC . In addition, for each variable x , we define E0(x) as follows: Let x ∈

e1 ∧ · · · ∧ x ∈ en be the conjunction of all the atomic regular constraints related to x in C . For each
i ∈ [n], let Ai = (Qi ,δi ,q0,i , Fi) be the NFA corresponding to ei . We nondeterministically choose

qi ∈ Fi and set E0(x) :=
{
((Qi ,δi), {(q0,i ,qi)}) | i ∈ [n]

}
.

We begin with i := 0 and repeat the following procedure until we reach some i where Gi is an

empty graph, i.e. a graph without edges. Note that G0 was defined above.

(1) Select a vertex x of Gi such that x has no predecessors and has two successors via edges

(x , (l,a),y) and (x , (r,a), z) in Gi . Suppose Ei (x) = {(T1,P1), · · · , (Tk ,Pk)}, where for each

j ∈ [k], Tj = (Q j ,δ j). Then Ei+1(z) and Ei+1(y) and Gi+1 are computed as follows:

(a) For each j ∈ [k], nondeterministically choose a set Tj,z ⊆ Q j ×Q j .

(b) If y , z, then let

Ei+1(z) := Ei (z) ∪
{
(Tj ,Tj,z) | j ∈ [k]

}
and Ei+1(y) := Ei (y) ∪

{
(TTj ,a,Tj,z ,Pj) | j ∈ [k]

}
where TTj ,a,Tj,z is obtained from Tj by first removing all the a-transitions, then adding all the

transitions (q,a,q′) for (q,q′) ∈ Tj,z . Otherwise, let Ei+1(z) := Ei (z)∪
{
(Tj ,Tj,z) | j ∈ [k]

}
∪{

(TTj ,a,Tj,z ,Pj) | j ∈ [k]
}
. In addition, for each vertex x ′

distinct from y, z, let Ei+1(x
′) :=

Ei (x
′).

(c) Let Gi+1 := Gi \ {(x , (l,a),y), (x , (r,a), z)}.
(2) Let i := i + 1.

For each variable x , let E(x) denote the set Ei (x) after exiting the above loop.

Step II. Output “satisfiable” if for each source variable x there is an accepting run of the product of

all the NFA in E(x); otherwise, output “unsatisfiable”.

It remains to argue the correctness and complexity of the above procedure and show how to

obtain satisfying assignments to satisfiable constraints. Correctness follows a similar argument to

Proposition 6.1 and is presented in the full version. Intuitively, Proposition 6.1 shows our procedure

correctly eliminates occurrences of replaceAll until only regular constraints remain.

If, in the case that the equation is satisfiable, one wishes to obtain a satisfying assignment to

all variables, we can proceed as follows. First, for each source variable x , nondeterministically

choose an accepting run of the product of all the NFA in E(x). As argued in the full version, the

word labelling this run satisfies all regular constraints on x since it is taken from a language

that is guaranteed to be a subset of the set of words satisfying the original constraints. For non-

source variables, we derive an assignment as in Proposition 6.1, proceeding by induction from the

source variables. That is, select some variable x such that x is derived from variables y and z and
assignments to both y and z have already been obtained. The value for x is immediately obtained by

performing the replaceAll operation using the assignments to y and z. That this value satisfies all
regular constraints on x follows the same argument as Proposition 6.1. The procedure terminates

when all variables have been assigned.

We now give an example before proceeding to the complexity analysis.

Example 6.3. SupposeC ≡ x = replaceAll(y, 0, z)∧y = replaceAll(y ′, 1, z ′)∧x ∈ e1∧y ∈ e2∧z ∈

e3 ∧y
′ ∈ e4 ∧z ′ ∈ e5, where e1, e2, e3 are as in Example 6.2, e4 = 0

∗
1
∗
0
∗
1
∗
, and e5 = 0

∗
1
∗
. LetA4,A5

be the NFA corresponding to e4 and e5 respectively (see Figure 3). The dependency graph GC of C
is illustrated in Figure 3. Let T1, · · · ,T5 be the transition graph of A1, · · · ,A5 respectively. Then

the collection of regular constraints E(·) are computed as follows.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:15

• Let G0 = GC . Pick the sets E0(x) = {(T1, {(q0,q2)})}, E0(y) = {(T2, {(q
′
0
,q′

0
)})}, E0(z) =

{(T3, {(q
′′
0
,q′′

0
)})}, E0(y

′) = {(T4, {(p0,p1)})}, and E0(z
′) = {(T5, {(p

′
0
,p ′

1
)})} nondeterministi-

cally.

• Select the vertex x inG0, construct E1(y) and E1(z) as in Example 6.2, that is, nondeterminis-

tically choose Tz = {(q0,q0), (q1,q2)}, let

E1(z) = {(T3, {(q
′′
0
,q′′

0
)}), (T1, {(q0,q0), (q1,q2)})} and E1(y) = {(T2, {(q

′
0
,q′

0
)}), (TT1,0,Tz , {(q0,q2)})},

where TT1,0,Tz is the transition graph of BA1,0,Tz illustrated in Figure 2. In addition, E1(x) =
E0(x), E1(y

′) = E0(y
′) and E1(z

′) = E0(z
′). Finally, we get G1 from G0 by removing the two

edges from x .
• Select the vertex y inG1, construct E2(y

′) and E2(z
′) as follows: Nondeterministically choose

T1,z′ = {(q′
0
,q′

0
)} for T2 and T2,z′ = {(q0,q1), (q1,q2)} for TT1,0,Tz , let

E2(z
′) =

{
(T5, {(p

′
0
,p ′

1
)}), (T2, {(q

′
0
,q′

0
)}), (TT1,0,Tz , {(q0,q1), (q1,q2)})

}
, and

E2(y
′) =

{
(T4, {(p0,p1)}), (TT2,1,T1,z′ , {(q

′
0
,q′

0
)}), (TTT

1
,0,Tz ,1,T2,z′ , {(q0,q2)})

}
,

where TT2,1,T1,z′ and TTT
1
,0,Tz ,1,T2,z′ are shown in Figure 4. In addition, E2(x) = E1(x), E2(y) =

E1(y), and E2(z) = E1(z). Finally, we get G2 from G1 by removing the two edges from y.

Since G2 contains no edges, we have E(x) = E2(x), similarly for E(y), E(z), E(y ′), and E(z ′).
For the three source variables y ′, z ′, z, it is not hard to check that 01 belongs to the intersection

of the regular constraints in E(z ′), 11 belongs to the intersection of the regular constraints in

E(y ′), and 10 belongs to the intersection of the regular constraints in E(z). Then y takes the value

replaceAll(11, 1, 01) = 0101 ∈ L(e2), and x takes the value replaceAll(0101, 0, 10) = 101101 ∈ L(e1).
Therefore, C is satisfiable. �

x

y z

y′ z′

(l, 0) (r, 0)

(l, 1) (r, 1)

p0 p11

10

p20

0

p31

1

p′0 p′1
1

10

A4

A5

GC

Fig. 3. An example for the single-letter case: Multiple replaceAll

q′0

0

1

q′1TT2,1,T1,z′ q0

q2

q3

q1

q4

1

0

0

TTT1,0,Tz ,1,T2,z′

1

Fig. 4. TT2,1,T1,z′ and TTT
1
,0,Tz ,1,T2,z′

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:16 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

6.2.1 Complexity. To show our decision procedure works in exponential space, it is sufficient to

show that the cardinalities of the sets E(x) are exponential w.r.t. the size of C .

Proposition 6.4. The cardinalities of E(x) for the variables x in GC are at most exponential in
Idxdmd(GC), the diamond index of GC .

Therefore, according to Proposition 6.4, if the diamond index of GC is bounded by a constant c ,
then the cardinalities of E(x) become polynomial in the size ofC and we obtain a polynomial space

decision procedure. In this case, we conclude that the satisfiability problem is PSPACE-complete.

Proof of Proposition 6.4. Let K be the maximum of |E0(x)| for x ∈ Vars(φ). For each variable

x in GC , all the regular constraints in E(x) are either from E0(x), or are generated from some

regular constraints from E0(x
′) for the ancestors x ′

of x . Let x ′
be an ancestor of x . Then for each

(T ,P) ∈ E0(x
′), according to Step I in the decision procedure, by an induction on the maximum

length of the paths in from x ′
to x , we can show that the number of elements in E(x) that are

generated from (T ,P) is at most the number of different paths from x ′
to x . From Proposition 4.5, we

know that there are atmost (|Vars(φ)|·|EC |)O (Idxdmd(GC))
different paths fromx ′

tox . Since there are at
most |Vars(φ)| ancestors of x , we deduce that |E(x)| ≤ K · |Vars(φ)| · (|Vars(φ)| |EC |)O (Idxdmd(GC))

. �

7 DECISION PROCEDURE FOR SL[replaceAll]: THE CONSTANT-STRING CASE
In this section, we consider the constant-string special case, that is, for an SL[replaceAll] formula

C = φ ∧ψ , every term of the form replaceAll(z, e, z ′) in φ satisfies that e = u for u ∈ Σ+. Note that
the case when u = ϵ will be dealt with in Section 8.

Again, let us start with the simple situation thatC ≡ x = replaceAll(y,u, z)∧x ∈ e1∧y ∈ e2∧z ∈ e3,
where |u | ≥ 2. For i = 1, 2, 3, let Ai = (Qi ,δi ,q0,i , Fi) be the NFA corresponding to ei . In addition,

let k = |u | and u = a1 · · ·ak with ai ∈ Σ for each i ∈ [k].
From the semantics, C is satisfiable iff x ,y, z can be assigned with strings v,w,w ′

such that: (1)

v = replaceAll(w,u,w ′), and (2) v,w,w ′
are accepted by A1,A2,A3 respectively. Let v,w,w

′
be

the strings satisfying these two constraints. Since v = replaceAll(w,u,w ′), we know that there are

stringsw1,w2, · · · ,wn such thatw = w1uw2 · · ·uwn and v = w1w
′w2 · · ·w

′wn . As v is accepted by

A1, there is an accepting run of A1 on v , say

q0,1
w1

−−→
A1

q1
w ′

−−→
A1

q′
1

w2

−−→
A1

q2
w ′

−−→
A1

q′
2
· · ·qn−1

w ′

−−→
A1

q′n−1
wn
−−→
A1

qn .

Let Tz = {(qi ,q
′
i) | i ∈ [n]}. Then w ′ ∈ L(A3) ∩

⋂
(q,q′)∈Tz

L(A1(q,q
′)). Therefore, L(A3) ∩⋂

(q,q′)∈Tz
L(A1(q,q

′)) , ∅. Similar to the single-letter case, we construct an NFA BA1,u,Tz to cha-

racterise the satisfiability of C . More precisely, C is satisfiable iff there is Tz ⊆ Q1 ×Q1 such that

L(A3) ∩
⋂

(q,q′)∈Tz
L(A1(q,q

′)) , ∅ and L(A2) ∩ L(BA1,u,Tz) , ∅. Intuitively, when reading the

stringw , BA1,u,Tz simulates the generation of v fromw andw ′
(that is, the replacement of every

occurrence of u inw withw ′
) and verifies that v is accepted by A1, by using Tz . To build BA1,u,Tz ,

we utilise the concepts of window profiles and parsing automata defined below. Intuitively, a

window profile keeps track of which positions in the preceding characters could form the beginning

of a match of u.

Definition 7.1 (window profiles w.r.t. u). Let v be a nonempty string with k = |v |, and i ∈ [k].

Then the window profile of the position i in v w.r.t. u is

−→
W ∈ {⊥,⊤}k−1 defined as follows:

• If i ≥ k − 1, then for each j ∈ [k − 1],
−→
W [j] = ⊤ iff v[i − j + 1] · · ·v[i] = u[1] · · ·u[j].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:17

• If i < k − 1, then for each j ∈ [i],
−→
W [j] = ⊤ iff v[i − j + 1] · · ·v[i] = u[1] · · ·u[j], and for each

j : i < j ≤ k − 1,

−→
W [j] = ⊥.

LetWPu denote the set of window profiles of the positions in nonempty strings w.r.t. u.

Proposition 7.2. |WPu | ≤ |u |.

Proof. Let k = |u |. For each profile

−→
W , let v be a nonempty string and i be a position of v such

that for each j ∈ [k − 1],
−→
W [j] = ⊤ iff v[i − j + 1] . . .v[i] = u[1] . . .u[j]. Define idx−→

W
as follows:

If there is j ∈ [k − 1] such that

−→
W [j] = ⊤, then idx−→

W
is the maximum of such indices j ∈ [k − 1],

otherwise, idx−→
W
= 0. The following fact holds for

−→
W and idx−→

W
:

• for each j ′ : idx−→
W
< j ′ ≤ k − 1,

−→
W [j ′] = ⊥,

• in addition, sincev[i − idx−→
W
+1] · · ·v[i] = u[1] · · ·u[idx−→

W
], the values of

−→
W [1], · · · ,

−→
W [idx−→

W
]

are completely determined by u[1] · · ·u[idx−→
W
].

Let η : WPu → {0} ∪ [k − 1] be a function such that for each

−→
W ∈ WPu , η(

−→
W) = idx−→

W
. Then η

is an injective function, since for every

−→
W ,

−→
W ′ ∈ WPu , idx−→W = idx−−→

W ′ iff

−→
W =

−→
W ′

. Therefore, we

conclude that |WPu | ≤ k . �

Example 7.3. Let Σ = {0, 1}, u = 010. Then WPu = {⊥⊥,⊤⊥,⊥⊤}.

• Consider the string v = 1 and the position i = 1 in v . Since v[1] = 1 , u[1] = 0, the window

profile of i in v w.r.t. u is ⊥⊥.

• Consider the string v = 00 and the position i = 2 in v . Since v[2] = u[1] and v[1]v[2] ,
u[1]u[2], the window profile of i in v w.r.t. u is ⊤⊥.

• Consider the string v = 01 and the position i = 2 in v . Since v[2] , u[1] and v[1]v[2] =
u[1]u[2], the window profile of i in v w.r.t. u is ⊥⊤.

Note that ⊤⊤ <WPu , since for every string v and the position i in v , if v[i − 1]v[i] = u[1]u[2] = 01,

then v[i] = 1 , 0 = u[1].

We will construct a parsing automaton Au from u, which parses a string v containing at least

one occurrence of u (i.e. v ∈ Σ∗uΣ∗
) into v1uv2u . . .vluvl+1 such that vju[1] . . .u[k − 1] < Σ∗uΣ∗

for each 1 ≤ j ≤ l . This ensures that the only occurrence of u in each vju is a suffix. Finally, we

also require vl+1 < Σ
∗uΣ∗

. The window profiles w.r.t. u will be used to ensure that v is correctly

parsed, namely, the first, second, · · · , occurrences of u are correctly identified.

Definition 7.4 (Parsing automata). Given a string u we define the parsing automaton Au to be

the NFA (Qu ,δu ,q0,u , Fu) where q0,u = q0 and the remaining components are given below.

• Qu = {q0} ∪
{(
search,

−→
W

) �� −→W ∈ WPu
}
∪

{(
vfy, j,

−→
W

) �� j ∈ [k − 1],
−→
W ∈ WPu

}
, where q0 is

a distinguished state whose purpose will become clear later on, and the tags “search" and
“vfy" are used to denote whetherAu is in the “search” mode to search for the next occurrence

of u, or in the “verify” mode to verify that the current position is a part of an occurrence of u.
• δu is defined as follows.

– The transition

(
q0,a,

(
search,

−→
W

))
∈ δu , where

−→
W [1] = ⊤ iff a = u[1], and for each

i : 2 ≤ i ≤ k − 1,

−→
W [i] = ⊥.

– The transition

(
q0,u[1],

(
vfy, 1,

−→
W

))
∈ δu , where

−→
W [1] = ⊤ and for each i : 2 ≤ i ≤ k − 1,

−→
W [i] = ⊥.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:18 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

– For each state

(
search,

−→
W

)
and a ∈ Σ such that

−→
W [k − 1] = ⊥ or a , u[k],

∗ the transition

((
search,

−→
W

)
,a,

(
search,

−→
W ′

))
∈ δu , where

−→
W ′[1] = ⊤ iff a = u[1], and

for each i : 2 ≤ i ≤ k − 1,

−→
W ′[i] = ⊤ iff (

−→
W [i − 1] = ⊤ and a = u[i]),

∗ if a = u[1], then the transition

((
search,

−→
W

)
,a,

(
vfy, 1,

−→
W ′

))
∈ δu , where

−→
W ′[1] = ⊤,

and for each i : 2 ≤ i ≤ k − 1,

−→
W ′[i] = ⊤ iff (

−→
W [i − 1] = ⊤ and a = u[i]).

– For each state

(
vfy, i − 1,

−→
W

)
and a ∈ Σ such that

∗ 2 ≤ i ≤ k − 1,

∗
−→
W [i − 1] = ⊤, a = u[i], and

∗ either

−→
W [k − 1] = ⊥ or a , u[k],

we have

((
vfy, i − 1,

−→
W

)
,a,

(
vfy, i,

−→
W ′

))
∈ δu , where for each j : 2 ≤ j ≤ k − 1,

−→
W ′[j] = ⊤

iff

−→
W [j − 1] = ⊤ and a = u[j].

– For each state

(
vfy,k − 1,

−→
W

)
and a ∈ Σ such that

−→
W [k − 1] = ⊤ and a = u[k], we have((

vfy,k − 1,
−→
W

)
,a,q0

)
∈ δu .

Note that the constraint

−→
W [k − 1] = ⊥ or a , u[k] is used to guarantee that each occurrence

of the state q0, except the first one, witnesses the first occurrence of u from the beginning

or after its previous occurrence. In other words, the constraint

−→
W [k − 1] = ⊥ or a , u[k] is

used to guarantee that after an occurrence of q0, if q0 has not been reached again, then u is

forbidden to occur.

• Fu = {q0} ∪
{(
search,

−→
W

) �� −→W ∈ WPu
}
.

Note that the states

(
vfy, j,

−→
W

)
are not final states, since, when in these states, the verification

of the current occurrence of u has not been complete yet.

LetQsearch =
{(
search,

−→
W

) �� −→W ∈ WPu
}
, andQvfy,i =

{(
vfy, i,

−→
W

) �� −→W ∈ WPu
}
for each i ∈ [k −

1]. In addition, letQvfy =
⋃

i ∈[k−1]
Qvfy,i . Supposev = v1uv2u · · ·vluvl+1 such thatvju[1] . . .u[k−1] <

Σ∗uΣ∗
for each 1 ≤ j ≤ l , in addition, vl+1 < Σ

∗uΣ∗
. Then there exists a unique accepting run r of

Au on v such that the state sequence in r is of the form q0 r1 q0 r2 q0 · · · rl q0 rl+1, where for each
j ∈ [l], r j ∈ L((Qsearch)

+ ◦Qvfy,1 ◦ · · · ◦Qvfy,k−1), and rl+1 ∈ L((Qsearch)
∗).

Example 7.5. Consider u = 010 in Example 7.3. The parsing automaton Au is illustrated in

Figure 5. Note that there are no 0-transitions out of (search,⊥⊤), since this would imply an

occurrence of u = 010, which should be verified by the states fromQvfy, more precisely, by the state

sequence q0(vfy, 1,⊤⊥)(vfy, 2,⊥⊤)q0.

We are ready to present the construction of BA1,u,Tz . The NFA BA1,u,Tz is constructed by the

following three-step procedure.

(1) Construct the product automaton A1 × Au . Note that the initial state of A1 × Au is (q0,q0)
and the set of final states of A1 × Au is F1 × Fu .

(2) Remove from A1 × Au all the (incoming or outgoing) transitions associated with the states

from Q1 ×Qvfy.

(3) For each pair (q,q′) ∈ Tz and each sequence of transitions in Au of the form(
p,u[1],

(
vfy, 1,

−→
W ′

1

))
,
((
vfy, 1,

−→
W ′

1

)
,u[2],

(
vfy, 2,

−→
W ′

2

))
, · · · ,

((
vfy,k − 1,

−−−→
W ′

k−1

)
,u[k],q0

)
,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:19

q0

(search,>⊥)
0

1

(search,⊥⊥)

(verify, 1,>⊥) (verify, 2,⊥>)
0

0

1

0

1

0

0

(search,⊥>)
1

1

0

Fig. 5. The parsing automaton Au for u = 010

where p = q0 or p =
(
search,

−→
W

)
, add the following transitions(

(q,p),u[1],
(
q,

(
vfy, 1,

−→
W ′

1

)))
,
((
q,

(
vfy, 1,

−→
W ′

1

))
,u[2],

(
q,

(
vfy, 2,

−→
W ′

2

)))
, · · · ,((

q,
(
vfy,k − 2,

−−−→
W ′

k−2

))
,u[k − 1],

(
q,

(
vfy,k − 1,

−−−→
W ′

k−1

)))
,
((
q,

(
vfy,k − 1,

−−−→
W ′

k−1

))
,u[k], (q′,q0)

)
.

Note that the number of aforementioned sequences of transitions inAu is at most |Qsearch |+1,

since

−→
W ′

1
, . . . ,

−−−→
W ′

k−1 are completely determined by

−→
W and u. Intuitively, when Au identifies

an occurrence of u, if the current state of A1 is q, then after reading the occurrence of u,
BA1,u,Tz jumps from q to some state q′ such that (q,q′) ∈ Tz .

Example 7.6. Consider C ≡ x = replaceAll(y,u, z) ∧ x ∈ e1 ∧ y ∈ e2 ∧ z ∈ e3, where u = 010,

and e1, e2, e3 are as in Example 6.2 (cf. Figure 2). Let Tz = {(q0,q0), (q1,q2)}. The NFA BA1,u,Tz is

obtained from the product automaton A1 × Au (which we give in the full version for reference)

by first removing all the transitions associated with the states from Q1 × Qvfy, then adding the

transitions according to Tz as aforementioned (see Figure 6, where thick edges indicate added

transitions). It is routine to check that 01010101 is accepted by BA1,u,Tz and A2. Moreover, 10 ∈

L(A3) ∩ L(A1(q0,q0)) ∩ L(A1(q1,q2)). Let y be 01010101 and z be 10. Then x takes the value

replaceAll(01010101, 010, 10) = 101101, which is accepted by A1. Therefore, C is satisfiable.

For the more general case that the SL[replaceAll] formulaC contains more than one occurrence of

replaceAll(−,−,−) terms, similar to the single-letter case in Section 6, we can nondeterministically

remove the edges in the dependency graph GC in a top-down manner and reduce the satisfiability

of C to the satisfiability of a collection of regular constraints for source variables.

Complexity. When constructing Gi+1 from Gi , suppose the two edges from x to y and z respecti-
vely are currently removed, let the labels of the two edges be (l,u) and (r,u) respectively. Then
each element (T ,P) of Ei (x) may be transformed into an element (T ′,P ′) of Ei+1(y) such that

|T ′ | = O(|u | |T |), meanwhile, it may also be transformed into an element (T ′′,P ′′) of Ei+1(z)
such that T ′′

has the same state space as T . In each step of the decision procedure, the state

space of the regular constraints may be multiplied by a factor |u |. The state space of these regular
constraints is at most exponential in the end, so that we can still solve the nonemptiness problem

of the intersection of all these regular constraints in exponential space. In addition, if the l-length
of GC is bounded by a constant c , then for each source variable, we get polynomially many regular

constraints, where each of them has a state space of polynomial size. Therefore, we can get a

polynomial space algorithm. See the full version for a detailed analysis.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:20 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

(q0, q0)

(q0, (search,>⊥))(q0, (search,⊥⊥))

(q0, (verify, 1,>⊥))

(q1, (search,⊥⊥)) (q3, (search,>⊥))

0

1
1

(q0, (verify, 2,⊥>))
(q4, (search,>⊥))

(q0, (search,⊥>))

(q1, (search,⊥>))

0

0

0

0 0

1

0

011

1

1

1
0 0

1

1

0

1
0

(q1, (verify, 1,>⊥))

0

(q1, (verify, 2,⊥>))
1

(q2, q0)

(q2, (search,>⊥))

1

0

(q2, (search,⊥⊥))

1

0

(q2, (search,⊥>))

1

0

0

1

(q4, (search,⊥⊥))

1

0

0

(q4, (search,⊥>))

1

1

Fig. 6. The NFA BA1,u,Tz for u = 010 and Tz = {(q0,q0), (q1,q2)}

8 DECISION PROCEDURE FOR SL[replaceAll]: THE REGULAR-EXPRESSION CASE
We consider the case that the second parameter of the replaceAll function is a regular expression.

The decision procedure presented below is a generalisation of those in Section 6 and Section 7.

As in the previous sections, we will again start with the simple situation that C ≡ x =
replaceAll(y, e0, z) ∧ x ∈ e1 ∧ y ∈ e2 ∧ z ∈ e3. For 0 ≤ i ≤ 3, let Ai = (Qi ,δi ,q0,i , Fi) be the

NFA corresponding to ei .
Let us first consider the special case L(e0) = {ε}. Then according to the semantics, for each string

u = a1 · · ·an , replaceAll(u, e0,v) = va1v · · ·vanv . We can solve the satisfiability of C as follows:

(1) Guess a set Tz ⊆ Q1 ×Q1.

(2) Construct BA1,ε,Tz from A1 and Tz as follows: For each (q,q′) ∈ Tz , add to A1 a transition

(q, ε,q′). Then transform the resulting NFA into one without ε-transitions (which can be

done in polynomial time).

(3) Decide the nonemptiness of L(A2) ∩ L(BA1,ε,Tz) and L(A3) ∩
⋂

(q,q′)∈Tz
L(A1(q,q

′)).

Next, let us assume that L(e0) , {ε}. For simplicity of presentation, we assume ε < L(e0). The
case that ε ∈ L(e0) can be dealt with in a slightly more technical albeit similar way.

Since ε < L(e0), we have q0,0 < F0. In addition, without loss of generality, we assume that there

are no incoming transitions for q0,0 in A0.

To check the satisfiability of C , similar to the constant-string case, we construct a parsing

automaton Ae0 that parses a string v ∈ Σ∗e0Σ
∗
into v1u1v2u2 . . .vlulvl+1 such that

• for each j ∈ [l], uj is the leftmost and longest matching of e0 in (v1u1 . . .vj−1uj−1)
−1v ,

• vl+1 < Σ
∗e0Σ

∗
.

We will first give an intuitive description of the behaviour of the automaton Ae0 . We start with

an automaton that can have an infinite number of states and describe the automaton as starting new

“threads”, i.e., run multiple copies of A0 on the input word (similar to alternating automata). We

also show how this automaton can be implemented using only a finite number of states. Intuitively,

in order to search for the leftmost and longest matching of e0, Ae0 behaves as follows.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:21

• Ae0 has two modes, “left” and “long”, which intuitively means searching for the first and last

position of the leftmost and longest matching of e0 respectively.
• When in the “left” mode, Ae0 starts a new thread of A0 in each position and records the set
of states of the threads into a vector. In addition, it nondeterministically makes a “leftmost”

guessing, that is, guesses that the current position is the first position of the leftmost and

longest matching. If it makes such a guessing, it enters the “long” mode, runs the thread

started in the current position and searches for the last position of the leftmost and longest

matching. Moreover, it stores in a set S the union of the sets of states of all the threads that

were started before the current position and continues running these threads to make sure

that, in these threads, the final states will not be reached (thus, the current position is indeed

the first position of the leftmost and longest matching).

• When in the “long” mode, Ae0 runs a thread of A0 to search for the last position of the

leftmost and longest matching. If the set of states of the thread contains a final state, then

Ae0 nondeterministically guesses that the current position is the last position of the leftmost

and longest matching. If it makes such a guessing, then it resets the set of states of the thread

and starts a new round of searching for the leftmost and longest matching. In addition, it

stores the original set of states of the thread into a set S and continues running the thread to

make sure that in this thread, the final states will not be reached (thus, the current position

is indeed the last position of the leftmost and longest matching).

• Since the length of the vectors of the sets of states of the threads may become unbounded,

in order to obtain a finite state automaton, the following trick is applied. Suppose that the

vector is S1S2 · · · Sn . For each pair of indices i, j : i < j and each q ∈ Si ∩ S j , remove q from S j .
The application of this trick is justified by the following arguments: Since q occurs in both

Si and S j and the thread i was started before the thread j, even if from q a final state can be

reached in the future, the position where the thread j was started cannot be the first position
of the leftmost and longest matching, since the state q is also a state of the thread i and the

position where the thread i was started is before the position where the thread i was started.

Before presenting the construction of Ae0 in detail, let us introduce some additional notation.

For S ⊆ Q0 and a ∈ Σ, let δ0(S,a) denote {q′ ∈ Q0 | ∃q ∈ S . (q,a,q′) ∈ δ0}. For a ∈ Σ and a

vector ρ = S1 · · · Sn such that Si ⊆ Q0 for each i ∈ [n], let δ0(ρ,a) = δ0(S1,a) · · · δ0(Sn ,a).
For a vector S1 · · · Sn such that Si ⊆ Q0 for each i ∈ [n], we define red(S1 · · · Sn) inductively:

• If n = 1, then red(S1) = S1 if S1 , ∅, and red(S1) = ε otherwise.
• If n > 1, then

red(S1 · · · Sn) =

red(S1 · · · Sn−1) if Sn ⊆

⋃
i ∈[n−1]

Si ,

red(S1 · · · Sn−1)(Sn \
⋃

i ∈[n−1]
Si) o/w

For instance, red(∅{q}) = {q} and

red({q1,q2}{q1,q3}{q2,q4}) = red({q1,q2}{q1,q3}){q4} = red({q1,q2}){q3}{q4} = {q1,q2}{q3}{q4}.

We give the formal description of Ae0 = (Qe0 ,δe0 ,q0,e0 , Fe0) below. The automaton will contain

states of the form (ρ,m, S) where ρ is the vector S1 · · · Sn recording the set of states of the threads

of A0. The second componentm is either left or long indicating the mode. Finally S is the set of

states representing all threads for which final states must not be reached.

• Qe0 comprises

– the tuples ({q0,0}, left, S) such that S ⊆ Q0,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:22 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

– the tuples (ρ{q0,0}, left, S) such that ρ = S1 · · · Sn with n ≥ 1 satisfying that for each i ∈ [n],
Si ⊆ Q0 \ {q0,0}, and for each pair of indices i, j : i < j, Si ∩ S j = ∅, moreover, S ⊆ Q0 \ F0,

– the tuples (S1, long, S) such that S1 ⊆ Q0, S ⊆ Q0 \ F0 and S1 * S ;
• q0,e0 = ({q0,0}, left, ∅),
• Fe0 comprises the states of the form (−, left,−) ∈ Qe0 ,

• δe0 is defined as follows:

– (continue left) suppose (ρ{q0,0}, left, S) ∈ Qe0 such that ρ = S1 · · · Sn with n ≥ 0 (n = 0

means that ρ is empty), a ∈ Σ,
(⋃
j ∈[n]

δ0(S j ,a) ∪δ0({q0,0},a)
)
∩ F0 = ∅, and δ0(S,a) ∩ F0 = ∅,

then (
(ρ{q0,0}, left, S),a,

(
red(δ0(ρ{q0,0},a)){q0,0}, left,δ0(S,a)

))
∈ δe0 ,

Intuitively, in a state (ρ, left, S), if
(⋃
j ∈[n]

δ0(S j ,a)∪δ0({q0,0},a)
)
∩F0 = ∅ and δ0(S,a)∩F0 = ∅,

then Ae0 can choose to stay in the “left” mode. Moreover, no states occur more than

once in red(δ0(ρ{q0,0},a)){q0,0}, since q0,0 does not occur in red(δ0(ρ{q0,0},a)), (from the

assumption that there are no incoming transitions for q0,0 in A0),

– (start long) suppose (ρ{q0,0}, left, S) ∈ Qe0 such that ρ = S1 · · · Sn with n ≥ 0, a ∈ Σ,
δ0(S,a) ∩ F0 = ∅,

(⋃
j ∈[n]

δ0(S j ,a)
)
∩ F0 = ∅, and δ0({q0,0},a) * δ0(S,a) ∪

⋃
j ∈[n]

δ0(S j ,a), then

©«(ρ{q0,0}, left, S),a, ©«δ0({q0,0},a), long,δ0(S,a) ∪
⋃
j ∈[n]

δ0(S j ,a)
ª®¬ª®¬ ∈ δe0 .

Intuitively, from a state (ρ{q0,0}, left, S) with ρ = S1 · · · Sn , when reading a letter a, if(⋃
j ∈[n]

δ0(S j ,a)
)
∩ F0 = ∅, δ0(S,a) ∩ F0 = ∅, and δ0({q0,0},a) * δ0(S,a) ∪

⋃
j ∈[n]

δ0(S j ,a),

then Ae0 guesses that the current position is the first position of the leftmost and longest

matching, it goes to the “long” mode, in addition, it keeps in the first component of the

control state only the set of states of the thread started in the current position, and puts

the union of the sets of the states of all the threads that have been started before, namely,⋃
j ∈[n]

δ0(S j ,a), into the third component to guarantee that none of these threads will reach

a final state in the future (thus the guessing that the current position is the first position of

the leftmost and longest matching is correct),

– (continue long) suppose (S1, long, S) ∈ Qe0 , δ0(S,a) ∩ F0 = ∅, and δ0(S1,a) * δ0(S,a), then

((S1, long, S),a, (δ0(S1,a), long,δ0(S,a))) ∈ δe0 ,

intuitively, Ae0 guesses that the current position is not the last position of the leftmost and

longest matching and continues the “long” mode,

– (end long) suppose (S1, long, S) ∈ Qe0 , δ0(S1,a) ∩ F0 , ∅, and δ0(S,a) ∩ F0 = ∅, then

((S1, long, S),a, ({q0,0}, left,δ0(S,a) ∪ δ0(S1,a))) ∈ δe0 ,

intuitively, when δ0(S1,a) ∩ F0 , ∅ and δ0(S,a) ∩ F0 = ∅, Ae0 guesses that the current

position is the last position of the leftmost and longest matching, resets the first component

to {q0,0}, goes to the “left” mode, and puts δ0(S1,a) to the third component to guarantee

that the current thread will not reach a final state in the future (thus the guessing that the

current position is the last position of the leftmost and longest matching is correct).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:23

– (a matches e0) suppose (ρ{q0,0}, left, S) ∈ Qe0 such that ρ = S1 · · · Sn with n ≥ 0, a ∈ Σ,(⋃
j ∈[n]

δ0(S j ,a)
)
∩ F0 = ∅, δ0({q0,0},a) ∩ F0 , ∅, and δ0(S,a) ∩ F0 = ∅, then

©«(ρ{q0,0}, left, S),a, ©«{q0,0}, left,δ0(S,a) ∪
⋃
j ∈[n]

δ0(S j ,a) ∪ δ0({q0,0},a)
ª®¬ª®¬ ∈ δe0 ,

intuitively, from a state (ρ{q0,0}, left, S) with ρ = S1 · · · Sn , when reading a letter a, if(⋃
j ∈[n]

δ0(S j ,a)
)
∩ F0 = ∅, δ0({q0,0},a) ∩ F0 , ∅, and δ0(S,a) ∩ F0 = ∅, thenAe0 guesses that

a is simply the leftmost and longest matching of e0 (e.g. when e0 = a), then it directly goes to
the “left” mode (without going to the “long” mode), resets the first component of the control

state to {q0,0}, and puts the union of the sets of the states of all the threads that have been

started, including the one started in the current position, namely,

⋃
j ∈[n]

δ0(S j ,a)∪δ0({q0,0},a),

into the third component to guarantee that none of these threads will reach a final state in

the future (where

⋃
j ∈[n]

δ0(S j ,a) is used to validate the leftmost guessing and δ0({q0,0},a) is

used to validate the longest guessing).

Let Qleft = {(−, left,−) ∈ Qe0 }, Qlong = {(−, long,−) ∈ Qe0 }, and v = v1u1v2u2 · · ·vlulvl+1 such
that uj is the leftmost and longest matching of e0 in (v1u1 · · ·vj−1uj−1)

−1v for each j ∈ [l], in
addition, vl+1 < Σ

∗eΣ∗
. Then there exists a unique accepting run r of Ae0 on v such that the state

sequence in r is of the form

({q0,0}, left, ∅) r1 ({q0,0}, left,−) r2 ({q0,0}, left,−) · · · rl ({q0,0}, left,−) rl+1,

where for each j ∈ [l], r j ∈ L((Qleft)
∗ ◦ (Qlong)

∗), and rl+1 ∈ L((Qleft)
∗). Intuitively, each occurrence

of the state subsequence from L((Qlong)
∗ ◦ ({q0,0}, left,−)), except the first one, witnesses the

leftmost and longest matching of e0 in v from the beginning or after the previous such a matching.

Since in the first component ρq0,0 of each state of Ae0 , no states from A0 occur more than once,

it is not hard to see that |Ae0 | is 2
O (p(|A0 |))

for some polynomial p.
Given Tz ⊆ Q1 ×Q1, we construct BA1,e0,Tz by the following three-step procedure.

(1) Construct the product of A1 and Ae0 .

(2) Remove all transitions associatedwith states fromQ1×Qlong, in addition, remove all transitions

of the form ((q, (ρ{q0,0}, left, S)),a, (q′, ({q0,0}, left, S ′))) such that δ0(q0,0,a) ∩ F0 , ∅.

(3) For each pair (q,q′) ∈ Tz , do the following,

• for each transition©«(ρ{q0,0}, left, S),a, ©«δ0({q0,0},a), long,δ0(S,a) ∪
⋃
j ∈[n]

δ0(S j ,a)
ª®¬ª®¬ ∈ δe0 ,

add a transition

((
q, (ρ{q0,0}, left, S)

)
,a,

(
q,

(
δ0({q0,0},a), long,δ0(S,a) ∪

⋃
j ∈[n]

δ0(S j ,a)

)))
,

• for each transition

((S1, long, S),a, (δ0(S1,a), long,δ0(S,a))) ∈ δe0 ,

add a transition ((q, (S1, long, S)),a, (q, (δ0(S1,a), long,δ0(S,a)))) ,
• for each transition

((S1, long, S),a, ({q0,0}, left,δ0(S,a) ∪ δ0(S1,a))) ∈ δe0 ,

add a transition ((q, (S1, long, S)),a, (q′, ({q0,0}, left,δ0(S,a) ∪ δ0(S1,a)))),

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:24 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

• for each

(
(ρ{q0,0}, left, S),a,

(
{q0,0}, left,δ0(S,a) ∪

⋃
j ∈[n]

δ0(S j ,a) ∪ δ0({q0,0},a)

))
∈ δe0 , add

a transition©«(q, (ρ{q0,0}, left, S)),a, ©«q′, ©«{q0,0}, left,δ0(S,a) ∪
⋃
j ∈[n]

δ0(S j ,a) ∪ δ0({q0,0},a)
ª®¬ª®¬ª®¬ .

Since |Ae0 | is 2
O (p(|A0 |))

, it follows that |BA1,e0,Tz | is |A1 | · 2
O (p(|A0 |))

. In addition, since |A0 | =

O(|e0 |), we deduce that |BA1,e0,Tz | is |A1 | · 2
O (p(|e0 |))

.

For the more general case that the SL[replaceAll] formula C contains more than one occurrence

of replaceAll(−,−,−) terms, we still nondeterministically remove the edges in the dependency

graphGC in a top-down manner and reduce the satisfiability ofC to the satisfiability of a collection

of regular constraints for source variables.

Complexity. In each step of the reduction, suppose the two edges out of x are currently removed,

let the two edges be from x to y and z and labeled by (l, e) and (r, e) respectively, then each

element of (T ,P) of Ei (x) may be transformed into an element (T ′,P ′) of Ei+1(y) such that

|T ′ | = |T | · 2O (p(|e |))
, meanwhile, it may also be transformed into an element (T ′′,P ′′) of Ei+1(y)

such that T ′′
has the same state space as T . Thus, after the reduction, for each source variable

x , E(x) may contain exponentially many elements, and each of them may have a state space

of exponential size. To solve the nonemptiness problem of the intersection of all these regular

constraints, the exponential space is sufficient. In addition, if the l-length of GC is at most one, we

can show that for each source variable x , E(x) corresponds to the intersection of polynomially

many regular constraints, where each of them has a state space at most exponential size. To solve

the nonemptiness of the intersection of these regular constraints, a polynomial space is sufficient.

See the full version for a detailed analysis.

9 UNDECIDABLE EXTENSIONS
In this section, we consider the language SL[replaceAll] extended with either integer constraints,

character constraints, or IndexOf constraints, and show that each of such extensions leads to

undecidability. We will use variables of, in additional to the type Str, the Integer data type Int. The
type Str consists of the string variables as in the previous sections. A variable of type Int, usually
referred to as an integer variable, ranges over the set N of natural numbers. Recall that, in previous

sections, we have used x ,y, z, . . . to denote the variables of Str type. Hereafter we typically use

l,m, n, . . . to denote the variables of Int. The choice of omitting negative integers is for simplicity.

Our results can be easily extended to the case where Int includes negative integers.
We begin by defining the kinds of constraints we will use to extend SL[replaceAll]. First, we

describe integer constraints, which express constraints on the length or number of occurrences of

symbols in words.

Definition 9.1 (Integer constraints). An atomic integer constraint over Σ is an expression of the

form a1t1 + · · · + antn ≤ d where a1, · · · ,an ,d ∈ Z are constant integers (represented in binary),

and each term ti is either

(1) an integer variable n;

(2) |x | where x is a string variable; or

(3) |x |a where x is string variable and a ∈ Σ is a constant letter.

Here, |x | and |x |a denote the length of x and the number of occurrences of a in x , respectively.
An integer constraint over Σ is a Boolean combination of atomic integer constraints over Σ.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:25

Character constraints, on the other hand, allow to compare symbols from different strings. The

formal definitions are given as follows.

Definition 9.2 (Character constraints). An atomic character constraint over Σ is an equation of the

form x[t1] = y[t2] where

• x and y are either a string variable or a constant string in Σ∗
, and

• t1 and t2 are either integer variables or constant positive integers.

Here, the interpretation of x[t1] is the t1-th letter of x . In case that x does not have the t1-th letter

or y does not have the t2-th letter, the constraint x[t1] = y[t2] is false by convention.

A character constraint over Σ is a Boolean combination of atomic character constraints over Σ.

We also consider the constraints involving the IndexOf function.

Definition 9.3 (IndexOf Constraints). An atomic IndexOf constraint over Σ is a formula of the

form t o IndexOf(s1, s2), where
• t is an integer variable, or a positive integer (recall that here we assume that the first position

of a string is 1), or the value 0 (denoting that there is no occurrence of s1 in s2),
• o ∈ {≥, ≤}, and
• s1, s2 are either string variables or constant strings.

We consider the first-occurrence semantics of IndexOf. More specifically, t ≥ IndexOf(s1, s2) holds
if t is no less than the first position in s2 where s1 occurs, similarly for t ≤ IndexOf(s1, s2).

An IndexOf constraint over Σ is a Boolean combination of atomic IndexOf constraints over Σ.

We will show that the extension of SL[replaceAll] with integer constraints entails undecidability,

by a reduction from (a variant of) the Hilbert’s 10th problem, which is well-known to be undecidable

[Matiyasevich 1993]. For space reasons, all proofs appear in the full version. Intuitively, we want

to find a solution to f (x1, · · · ,xn) = д(x1, · · · ,xn) in the natural numbers, where f and д are

polynomials with positive coefficients. We can use the length of string variables over a unary

alphabet {a} to represent integer variables, addition can be performed with concatenation, and

multiplication of x andy with replaceAll(x ,a,y). The integer constraint |x | = |y | asserts the equality
of f and д. Note that the use of concatenation can be further dispensed since, by Proposition 3.6,

concatenation is expressible by replaceAll at the price of a slightly extended alphabet.

Theorem 9.4. For the extension of SL[replaceAll]with integer constraints, the satisfiability problem
is undecidable, even if only a single integer constraint of the form |x | = |y | or |x |a = |y |a is used.

Notice that the extension of SL[replaceAll] with only one integer constraint of the form |x | = |y |
entails undecidability. We remark that the undecidability result here does not follow from the

undecidability result for the extension of word equations with the letter-counting modalities in

[Büchi and Senger 1990], since the formula by [Büchi and Senger 1990] is not straight-line.

By utilising a further result on Diophantine equations, we show that for the extension of

SL[replaceAll] with integer constraints, even if the SL[replaceAll] formulae are simple (in the sense

that their dependency graphs are of depth at most one), the satisfiability problem is still undecidable

(note that no restrictions are put on the integer constraints in this case).

Theorem 9.5. For the extension of SL[replaceAll] with integer constraints, even if SL[replaceAll]
formulae are restricted to those whose dependency graphs are of depth at most one, the satisfiability
problem is still undecidable.

By essentially encoding |x | = |y | with character or IndexOf constraints, we show:

Proposition 9.6. For the extension of SL[replaceAll] with either the character constraints or the
IndexOf constraints, the satisfiability problem is undecidable.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:26 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

10 RELATEDWORK
We now discuss some related work. We split our discussion into two categories: (1) theoretical

results in terms of decidability and complexity; (2) practical (but generally incomplete) approaches

used in string solvers. We emphasise work on replaceAll functions as they are our focus.

Theoretical Results. We have discussed in Section 1 works on string constraints with the theory of

strings with concatenation. This research programme builds on the question of solving satisfiability

of word equations, i.e., a string equation α = β containing concatenation of string constants and

variables. Makanin showed decidability [Makanin 1977], whose upper bound was improved to

PSPACE in [Plandowski 2004] using a word compression technique. A simpler algorithm was in

recent years proposed in [Jez 2017] using the recompression technique. The best lower bound for this

problem is still NP, and closing this complexity gap is a long-standing open problem. Decidability

(in fact, the PSPACE upper bound) can be retained in the presence of regular constraints (e.g. see

[Schulz 1990]). This can be extended to existential theory of concatenation with regular constraints

using the technique of [Büchi and Senger 1990]. The replace-all operator cannot be expressed by

the concatenation operator alone. For this reason, our decidability of the fragment of SL[replaceAll]
cannot be derived from the results from the theory of concatenation alone.

Regarding the extension with length constraints, it is still a long-standing open problem whether

word equations with length constraints is decidable, though it is known that letter-counting (e.g.

counting the number of occurrences of 0s and 1s separately) yields undecidability [Büchi and Senger

1990]. It was shown in [Lin and Barceló 2016] that the length constraints (in fact, letter-counting)

can be added to the subclass of SL[replaceAll] where the pattern/replacement are constants, while

preserving decidability. In contrast, if we allow variables on the replacement parameters of formulas

in SL[replaceAll], we can easily encode the Hilbert’s 10th problem with length (integer) constraints.

The replaceAll function can be seen as a special, yet expressive, string transformation function,

aka string transducer. From this viewpoint, the closest work is [Lin and Barceló 2016], which we

discuss extensively in the introduction. Here, we discuss two further recent transducer models:

streaming string transducers [Alur and Cerný 2010] and symbolic transducers [Veanes et al. 2012].

A streaming string transducer is a finite state machine where a finite set of string variables are

used to store the intermediate results for output. The replaceAll(x , e,y) term can be modelled by

an extension of streaming string transducers with parameters, that is, a streaming string transducer

which reads an input string (interpreted as the value of x), uses y as a free string variable which is

presumed to be read-only, and updates a string variable z, which stores the computation result, by

a string term which may involve y. Nevertheless, to the best of our knowledge, this extension of

streaming string transducers has not been investigated so far.

Symbolic transducers are an extension of Mealy machine to infinite alphabets by using a va-

riable cur to represent the symbol in the current position, and replacing the input and output

letters in transitions with unary predicates φ(cur) and terms involving cur respectively. Symbolic

transducers can model replaceAll functions when the third parameter is a constant. Inspired by

symbolic transducers, it is perhaps an interesting future work to consider an extension of the

replaceAll function by allowing predicates as patterns. For instance, one may consider the term

replaceAll(x , cur ≡ 0 mod 2,y) which replaces every even number in x with y.
Finally, the replaceAll function is related to Array Folds Logic introduced by Daca et al [Daca

et al. 2016]. The authors considered an extension of the quantifier-free theory of integer arrays

with counting. The main feature of the logic is the fold terms, borrowed from the folding concept in

functional programming languages. Intuitively, a fold term applies a function to every element of

the array to compute an output. If strings are treated as arrays over a finite domain (the alphabet),

the replaceAll function can be seen as a fold term. Nevertheless, the replaceAll function goes beyond

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

What Is Decidable about String Constraints with the ReplaceAll Function 3:27

the fold terms considered in [Daca et al. 2016], since it outputs a string (an array), instead of an

integer. Therefore, the results in [Daca et al. 2016] cannot be applied to our setting.

Practical Solvers. A large amount of recent work develops practical string solvers including

Kaluza [Saxena et al. 2010], Hampi [Kiezun et al. 2012], Z3-str [Zheng et al. 2013], CVC4 [Liang

et al. 2014], Stranger [Yu et al. 2014], Norn [Abdulla et al. 2014], S3 and S3P [Trinh et al. 2014, 2016],

and FAT [Abdulla et al. 2017]. Among them, only Stranger, S3, and S3P support replaceAll.
In the Stranger tool, an automata-based approach was provided for symbolic analysis of PHP

programs, where two different semantics replaceAll were considered, namely, the leftmost and

longest matching as well as the leftmost and shortest matching. Nevertheless, they focused on

the abstract-interpretation based analysis of PHP programs and provided an over-approximation
of all the possible values of the string variables at each program point. Therefore, their string

constraint solving algorithm is not an exact decision procedure. In contrast, we provided a decision

procedure for the straight-line fragment with the rather general replaceAll function, where the
pattern parameter can be arbitrary regular expressions and the replacement parameter can be

variables. In the latter case, we consider the leftmost and longest semantics mainly for simplicity,

and the decision procedure can be adapted to the leftmost and shortest semantics easily.

The S3 and S3P tools also support the replaceAll function, where some progressive searching

strategies were provided to deal with the non-termination problem caused by the recursively defined

string operations (of which replaceAll is a special case). Nevertheless, the solvers are incomplete as

reasoning about unbounded strings defined recursively is in general an undecidable problem.

11 CONCLUSION
We have initiated a systematic investigation of the decidability of the satisfiability problem for

the straight-line fragments of string constraints involving the replaceAll function and regular

constraints. The straight-line restriction is known to be appropriate for applications in symbolic

execution of string-manipulating programs [Lin and Barceló 2016]. Our main result is a decision

procedure for a large fragment of the logic, wherein the pattern parameters are regular expressions

(which covers a large proportion of the usage of the replaceAll function in practice). Concatenation

is obtained for free since concatenation can be easily expressed in this fragment. We have shown

that the decidability of this fragment cannot be substantially extended. This is achieved by showing

that if either (1) the pattern parameters are allowed to be variables, or (2) the length constraints

are incorporated in the fragment, then we get the undecidability. Our work clarified important

fundamental issues surrounding the replaceAll functions in string constraint solving and provided

a novel decision procedure which paved a way to a string solver that is able to fully support the

replaceAll function. This would be the most immediate future work.

ACKNOWLEDGMENTS
T. Chen is supported by the Australian Research Council under Grant No. DP160101652 and the En-

gineering and Physical Sciences Research Council under Grant No. EP/P00430X/1. M. Hague is sup-

ported by the Engineering and Physical Sciences Research Council under Grant No. EP/K009907/1.

A. Lin is supported by the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (grant agreement no 759969). Z. Wu is supported by the

National Natural Science Foundation of China under Grant No. 61472474 and Grant No. 61572478,

the INRIA-CAS joint research project “Verification, Interaction, and Proofs”,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

3:28 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukás Holík, Ahmed Rezine, and Philipp Rümmer.

2017. Flatten and conquer: a framework for efficient analysis of string constraints. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017.
602–617. https://doi.org/10.1145/3062341.3062384

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman.

2014. String Constraints for Verification. In CAV. 150–166.
Rajeev Alur and Pavol Cerný. 2010. Expressiveness of streaming string transducers. In IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India.
1–12.

Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Representation and Mind Series). The MIT Press.

Davide Balzarotti, Marco Cova, Viktoria Felmetsger, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni Vigna.

2008. Saner: Composing Static andDynamic Analysis to Validate Sanitization inWebApplications. In 2008 IEEE Symposium
on Security and Privacy (S&P 2008), 18-21 May 2008, Oakland, California, USA. 387–401. https://doi.org/10.1109/SP.2008.22

Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path feasibility analysis for string-manipulating programs.

In TACAS. 307–321.
J Richard Büchi and Steven Senger. 1990. Definability in the existential theory of concatenation and undecidable extensions

of this theory. In The Collected Works of J. Richard Büchi. Springer, 671–683.
Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2006. EXE: Automatically Generating

Inputs of Death. In Proceedings of the 13th ACM Conference on Computer and Communications Security (CCS ’06). ACM,

New York, NY, USA, 322–335. https://doi.org/10.1145/1180405.1180445

Przemyslaw Daca, Thomas A. Henzinger, and Andrey Kupriyanov. 2016. Array Folds Logic. In Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. 230–248.

Loris D’Antoni and Margus Veanes. 2013. Static Analysis of String Encoders and Decoders. In VMCAI. 209–228.
Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin C. Rinard. 2012. Word Equations with Length Constraints:

What’s Decidable?. InHardware and Software: Verification and Testing - 8th International Haifa Verification Conference, HVC
2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers. 209–226. https://doi.org/10.1007/978-3-642-39611-3_21

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. SIGPLAN Not. 40, 6
(June 2005), 213–223. https://doi.org/10.1145/1064978.1065036

Google. 2015. Closure Templates. https://developers.google.com/closure/templates/. Referred July 2017.

Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus Veanes. 2011. Fast and Precise Sanitizer

Analysis with BEK. In USENIX Security Symposium.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Addison-Wesley.

Artur Jez. 2017. Word equations in linear space. CoRR abs/1702.00736 (2017). http://arxiv.org/abs/1702.00736

Christoph Kern. 2014. Securing the tangled web. Commun. ACM 57, 9 (2014), 38–47. https://doi.org/10.1145/2643134

Adam Kiezun et al. 2012. HAMPI: A solver for word equations over strings, regular expressions, and context-free grammars.

ACM Trans. Softw. Eng. Methodol. 21, 4 (2012), 25.
James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385–394. https://doi.org/10.

1145/360248.360252

Jan Lehnardt and contributors. 2015. mustache.js. https://github.com/janl/mustache.js/. Referred July 2017.

Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. 2014. A DPLL(T) Theory Solver for a

Theory of Strings and Regular Expressions. In CAV. 646–662.
AnthonyW. Lin and Pablo Barceló. 2016. String SolvingwithWord Equations and Transducers: Towards a Logic for Analysing

Mutation XSS. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). Springer, 123–136.

Gennady S Makanin. 1977. The problem of solvability of equations in a free semigroup. Sbornik: Mathematics 32, 2 (1977),
129–198.

Yuri V. Matiyasevich. 1993. Hilbert’s Tenth Problem. MIT Press, Cambridge, MA, USA.

K. L. McMillan. 1993. Symbolic model checking. Kluwer.
Wojciech Plandowski. 2004. Satisfiability of word equations with constants is in PSPACE. J. ACM 51, 3 (2004), 483–496.

https://doi.org/10.1145/990308.990312

Prateek Saxena, Devdatta Akhawe, Steve Hanna, FengMao, StephenMcCamant, and Dawn Song. 2010. A Symbolic Execution

Framework for JavaScript. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA. 513–528. https://doi.org/10.1109/SP.2010.38

Klaus U. Schulz. 1990. Makanin’s Algorithm for Word Equations - Two Improvements and a Generalization. In Word
Equations and Related Topics, First International Workshop, IWWERT ’90, Tübingen, Germany, October 1-3, 1990, Proceedings.
85–150. https://doi.org/10.1007/3-540-55124-7_4

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

https://doi.org/10.1145/3062341.3062384
https://doi.org/10.1109/SP.2008.22
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1145/1064978.1065036
https://developers.google.com/closure/templates/
http://arxiv.org/abs/1702.00736
https://doi.org/10.1145/2643134
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://github.com/janl/mustache.js/
https://doi.org/10.1145/990308.990312
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1007/3-540-55124-7_4

What Is Decidable about String Constraints with the ReplaceAll Function 3:29

Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. 2013. Jalangi: a selective record-replay and dynamic

analysis framework for JavaScript. In Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013. 488–498. https://doi.org/10.1145/2491411.2491447

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic String Solver for Vulnerability Detection in Web

Applications. In CCS. 1232–1243.
Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2016. Progressive Reasoning over Recursively-Defined Strings. In

Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I. Springer, 218–240.

Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj Bjørner. 2012. Symbolic finite state

transducers: algorithms and applications. In POPL. 137–150.
Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu, and Jie-Hong R. Jiang. 2016. String Analysis via Automata

Manipulation with Logic Circuit Representation. In Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science), Vol. 9779. Springer,
241–260. https://doi.org/10.1007/978-3-319-41528-4

Chris Wanstrath. 2009. Mustache: Logic-less Templates. https://mustache.github.io/. Referred July 2017.

Jeff Williams, Jim Manico, and Neil Mattatall. 2017. XSS Prevention Cheat Sheet. https://www.owasp.org/index.php/XSS_

(Cross_Site_Scripting)_Prevention_Cheat_Sheet. Referred July 2017.

Fang Yu,MuathAlkhalaf, Tevfik Bultan, andOscar H. Ibarra. 2014. Automata-based Symbolic StringAnalysis for Vulnerability

Detection. Form. Methods Syst. Des. 44, 1 (2014), 44–70.
Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: a Z3-based string solver for web application analysis. In

ESEC/SIGSOFT FSE. 114–124.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 3. Publication date: January 2018.

https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1007/978-3-319-41528-4
https://mustache.github.io/
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

	Abstract
	1 Introduction
	2 Preliminaries
	3 The core constraint language
	3.1 Semantics of the replaceAll Function
	3.2 Straight-Line String Constraints With the replaceAll Function

	4 The satisfiability problem
	5 Outline of Decision Procedures
	6 Decision procedure for SL[replaceAll]: The single-letter case
	6.1 A Single Use of replaceAll(-, -, -)
	6.2 The General Case

	7 Decision procedure for SL[replaceAll]: The constant-string case
	8 Decision procedure for SL[replaceAll]: The regular-expression case
	9 Undecidable extensions
	10 Related work
	11 Conclusion
	Acknowledgments
	References

