
286

Compositional Verification of Efficient Masking
Countermeasures against Side-Channel Attacks

PENGFEI GAO, ShanghaiTech University, China

YEDI ZHANG, ShanghaiTech University, China

FU SONG∗, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sci-

ences University of Chinese Academy of Sciences, China

TAOUE CHEN, Birkbeck, University of London, UK

FRANCOIS-XAVIER STANDAERT, Université Catholique de Louvain, Belgium

Masking is one of the most effective countermeasures for securely implementing cryptographic algorithms

against power side-channel attacks, the design of which however turns out to be intricate and error-prone.

While techniques have been proposed to rigorously verify implementations of cryptographic algorithms,

currently they are limited in scalability. To address this issue, compositional approaches have been investigated,

but insofar they fail to prove the security of recent efficient implementations. To fill this gap, we propose a novel

compositional verification approach. In particular, we introduce two new language-level security notions based

on which we propose composition strategies and verification algorithms. Our approach is able to prove efficient

implementations, which cannot be done by prior compositional approaches. We implement our approach

as a tool CONVINCE and conduct extensive experiments to confirm its efficacy. We also use CONVINCE
to further explore the design space of the AES Sbox with least refreshing by replacing its implementation

for finite-field multiplication with more efficient counterparts. We automatically prove leakage-freeness of

these new versions. As a result, we can effectively reduce 1,600 randomness and 3,200 XOR-operations of the

state-of-the-art AES implementation.

CCS Concepts: • Security and privacy → Side-channel analysis and countermeasures; • Software and
its engineering→ Software verification; Automated static analysis.

Additional Key Words and Phrases: Formal verification, power side-channel attacks, cryptographic implemen-

tations, countermeasures, compositional reasoning

ACM Reference Format:
Pengfei Gao, Yedi Zhang, Fu Song, Taoue Chen, and Francois-Xavier Standaert. 2023. Compositional Verification

of Efficient Masking Countermeasures against Side-Channel Attacks. Proc. ACM Program. Lang. 7, OOPSLA2,
Article 286 (October 2023), 31 pages. https://doi.org/10.1145/3622862

1 INTRODUCTION
Power side-channel attacks, capable of inferring secrets by exploiting power consumption during

the execution of cryptographic implementations, have raised severe security concerns [Kocher et al.

∗
Corresponding authors

Authors’ addresses: Pengfei Gao, ShanghaiTech University, Shanghai, China, gaopf@shanghaitech.edu.cn; Yedi Zhang,

ShanghaiTech University, Shanghai, China, zhangyd1@shanghaitech.edu.cn; Fu Song, State Key Laboratory of Computer

Science, Institute of Software, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing, China,

songfu1983@gmail.com; Taoue Chen, Birkbeck, University of London, London, UK, t.chen@bbk.ac.uk; Francois-Xavier

Standaert, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, fstandae@uclouvain.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART286

https://doi.org/10.1145/3622862

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0003-3800-2565
HTTPS://ORCID.ORG/0000-0003-1005-2114
HTTPS://ORCID.ORG/0000-0002-0581-2679
HTTPS://ORCID.ORG/0000-0002-5993-1665
HTTPS://ORCID.ORG/0000-0001-7444-0285
https://doi.org/10.1145/3622862
https://orcid.org/0000-0003-3800-2565
https://orcid.org/0000-0003-1005-2114
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0002-5993-1665
https://orcid.org/0000-0001-7444-0285
https://orcid.org/0000-0001-7444-0285
https://doi.org/10.1145/3622862

286:2 Gao et al.

1999]. Implementations of almost all major cryptographic algorithms, such as DES [Kocher et al.

1999], AES [Prouff et al. 2009; Wang et al. 2018], RSA [Goubin and Patarin 1999], Elliptic curve

cryptography [Coron 1999; Itoh et al. 2002; Luo et al. 2018] and post-quantum cryptography [Kan-

nwischer et al. 2018; Ravi et al. 2019; Schamberger et al. 2020], have been the victims.

A widely used effective countermeasure against power side-channel attacks is masking [Ishai

et al. 2003]. In a nutshell, given a masking order 𝑡 , an order-𝑡 secret masking scheme splits the

secret into 𝑡 + 1 shares such that any proper subset of these shares is statistically independent of the

secret. For a given cryptographic algorithm 𝑓 with 𝑘 as its secret key, a masked version 𝑓 ′ should
be implemented such that it takes 𝑡 + 1 shares of 𝑘 as inputs and produces 𝑡 + 1 shares of 𝑓 (𝑘) from
which the desired output 𝑓 (𝑘) could be recovered. The security of the masked version 𝑓 ′ is usually
established using the concept of 𝑑-probing security [Ishai et al. 2003] for a given security order 𝑑 ,

requiring that the joint distribution of each set with at most 𝑑 observable values is statistically

independent of the secret 𝑘 . The usefulness of increasing the security order 𝑑 has been justified

by [Duc et al. 2015], namely, under reasonable assumptions, the number of physical measurements

needed for a successful attack increases exponentially in 𝑑 , so a higher 𝑑 would imply considerably

more difficulties in mounting an attack.

Unsurprisingly, it is error-prone to implement secure and efficient masked versions for non-

linear functions such as finite-field multiplication and Sbox [Ishai et al. 2003], and the program

size and number of random bits blow up polynomially in the masking order 𝑡 . However, it is

not uncommon that published implementations that have been proved secure via paper-and-

pencil [Carlet et al. 2012; Kim et al. 2011; Rivain and Prouff 2010] were later shown to be vulnerable

to power side-channels [Coron et al. 2013]. We also note that efficiency is constantly a major concern

for implementations of cryptographic algorithms in, e.g., resource-limited devices [Biryukov et al.

2017]. Overall, the crux of masking countermeasures for cryptographic algorithms is to devise

efficient and secure implementations over the shares.

To address the efficiency, several masked implementations for finite-field multiplication were

proposed [Barthe et al. 2020, 2017; Belaïd et al. 2016, 2017; Bordes and Karpman 2021; Groß

and Mangard 2018; Karpman and Roche 2018; Wang et al. 2020], which is a key building block

to implement most cryptographic algorithms. The need of randomness and/or the number of

operations in these implementations have been reduced over the original one proposed by [Ishai

et al. 2003]. On the security side, various techniques have been proposed to formally verify probing

security. Existing efforts rely upon heuristic rules (e.g., [Barthe et al. 2015; Bayrak et al. 2013]),

SAT/SMT solving (e.g., [Bloem et al. 2018; Eldib et al. 2014]) or their combination (e.g., [Gao et al.

2022, 2019a,b; Zhang et al. 2018]). All those approaches are intra-procedural, meaning that they only

deal with procedures without calling any procedures (called simple gadgets in this work and in

related works). Henceforth they are referred to as non-compositional approaches. Non-compositional

approaches become intractable for (large) composite gadgets (i.e., procedures with calls to some

procedures) when procedure inline is applied.

In contrast, compositional reasoning, which verifies simple gadgets in isolation and then checks

tailored compositional rules, turns out to be a promising direction for verifying composite gadgets

without applying inline. This direction dates back to the seminal work of [Barthe et al. 2016] in

which two new stronger security notions, called 𝑑-Non-Interference (d−NI) and 𝑑-Strong Non-

Interference (d−SNI), are proposed to soundly characterize the 𝑑-probing security model as a

property in programming languages, based on which masked implementations can be verified com-

positionally. Along with this direction more verification approaches have been proposed [Barthe

et al. 2020, 2021; Belaïd et al. 2020, 2018, 2022; Bordes and Karpman 2021; Coron 2018; Knichel et al.

2020], most of which are designated to precisely and efficiently verify simple gadgets. Recently, an

alternative stronger security notion and compositional approach have been proposed [Cassiers

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:3

et al. 2021; Knichel et al. 2020]. These language-level security notions and tools have been widely

adopted for designing and rigorously verifying implementations of cryptographic algorithms, re-

sulting in many verified cryptographic programs. However, though promising, these compositional

approaches are achieved by sacrificing the efficiency of masked implementations.

Up to now, it is fair to say no efficient method exists to check the probing security of composition

of gadgets, in particular, efficient gadgets. For instance, all existing compositional approaches would

fail to prove 𝑑-probing security of the efficient implementation of the AES Sbox [Goudarzi and

Rivain 2017] when more efficient finite-field multiplications, e.g., those proposed by [Barthe et al.

2017; Belaïd et al. 2016; Groß and Mangard 2018], are used. This is mainly because efficient gadgets

use fewer random variables. As a result, they do not satisfy the stronger security notions of [Barthe

et al. 2016; Cassiers et al. 2021] which are required to make the previous compositional reasoning

approaches work. We remark that efficient gadgets play an increasingly vital role especially in

resource constrained devices while compositional verification of efficient gadgets is very challenging

and requires novel techniques, e.g., a new technique is proposed to verify efficient gadgets [Belaïd

et al. 2020, 2018] on which [Barthe et al. 2016] fails, but [Belaïd et al. 2020, 2018] do not support

more efficient gadgets.

Our contributions. We propose a novel compositional verification approach for efficient masking

countermeasures. On the theoretical side, we propose two new security notions to characterize

the 𝑑-probing security model in programming languages and study their compositionality based

on which we present composition strategies for verifying composite gadgets without the inlining

of gadgets. Our security notions are proper generalizations of the ones proposed in [Barthe et al.

2016], thus, can be used to prove the security of composite gadgets that cannot be achieved using

existing compositional approaches. On the practical side, we derive verification algorithms from

the new security notions. We propose algorithms for verifying our security notions for both simple

and composite gadgets, and algorithms for verifying 𝑑-probing security and the security notions

of [Barthe et al. 2016].

We have implemented our approach in a tool CONVINCE (CompositiONal VerifIcatioN of

masking CountermEasures) and conduct extensive evaluations. The benchmarks are derived from

existing benchmarks by replacing the implementation for finite-field multiplication with more

efficient ones. None of these benchmarks can be proved using the existing compositional approaches,

and many of them are actually proved probing secure and/or 𝑑-NI for the first time. To demonstrate

the usage of our tool, we apply it to explore the design space of the AES Sbox with the least

refreshing [Belaïd et al. 2018]. We show that replacing some of them with functional-equivalent but

more efficient implementations for finite-field multiplication (e.g., those proposed by [Barthe et al.

2017; Belaïd et al. 2016; Groß and Mangard 2018]) does not compromise security. As a result, we

find more efficient implementations of the AES Sbox whose probing security can be automatically

proved by our tool, but could not be proved using existing compositional approaches. For instance,

our AES Sbox implementations reduced randomness from 92 to 68 for 2nd-order probing security

and from 192 to 172 for 3rd-order probing security. We also devise provable secure full AES which

effectively reduced 1,600 randomness and 3,200 XOR-operations of the state-of-the-art 3rd-order

AES implementation [Belaïd et al. 2018].

The contributions can be summarized as follows.

• We propose two novel language-level security notions and study their compositionality

properties, which serve as the basis of compositional reasoning of masked implementations

of cryptographic algorithms.

• We provide efficient algorithms for verifying our security notions and existing security

notions, all of which are implemented into a tool CONVINCE.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:4 Gao et al.

Operation: Op ∋ ◦ ::= ∧ | ∨ | ⊕ | − | + | × | ⊙
Expression: 𝑒 ::= 𝑐 | 𝑥 | ¬𝑒 | 𝑒 ◦ 𝑒
Statement: stmt ::= 𝑥 = 𝑒 | 𝑟 = $ | stmt; stmt
Simple gadget: 𝐺 ::= 𝑓 (a1, · · · , a𝑚){stmt; return b1, · · · , b𝑘 ; }
Gadget call: gstmt ::= y1, · · · , y𝑘 =ℓ 𝑓 (x1, · · · , x𝑚) | gstmt; gstmt
Composite gadget: 𝐹 ::= 𝑓 (a1, · · · , a𝑚){gstmt; return b1, · · · , b𝑘 ; }

Fig. 1. Syntax of the language.

• We conduct extensive experiments on efficient implementations of cryptographic algorithms

and find several more efficient implementations of AES Sbox that are proved leakage-free via

CONVINCE.

Outline. Section 2 introduces the basic notions and an illustrating example. Section 3 proposes the

new language-level security notions and studies their properties. Section 4 presents algorithms for

verifying both simple and composite gadgets. Section 5 reports experimental results. We discuss

the related work in Section 6 and conclude this work in Section 7.

2 PRELIMINARIES
We fix the finite-field F = {0, · · · , 2𝑛 − 1}, the masking order 𝑡 ≥ 1 and the security order 𝑑 ≤ 𝑡 . We

use lowercase letters (e.g., 𝑥,𝑦, 𝑎, 𝑎1, · · ·) to range over scalars on F, and bold lowercase letters (e.g.,

x, y, a, a1, · · ·) to range over vectors of size (𝑡 + 1), also known as sharings. We normally assume

that x is the sharing of the scalar 𝑥 . The 𝑖-th entry of x, denoted by x[𝑖], is referred to as a share
of x. By slight abuse of notation, a vector x is deemed to be identical to the set of all its entries

{x[1], · · · , x[𝑡 + 1]}, and
⊕

x denotes x[1] ⊕ · · · ⊕ x[𝑡 + 1].

2.1 Language
The syntax of the language is given in Figure 1 which can be used to describe both hardware circuits

and software programs. The language is designed for implementing cryptographic algorithms

(in particular, symmetric ciphers). It does not support tests (e.g., if-then-else), the same as prior

work [Barthe et al. 2020, 2016, 2021; Belaïd et al. 2020, 2018; Bloem et al. 2018; Bordes and Karpman

2021; Cassiers et al. 2021; Cassiers and Standaert 2020; Coron 2018; Eldib et al. 2014; Knichel

et al. 2020; Zhang et al. 2018], but it supports bounded loops which can be fully unrolled before

verification (though we only present the core language without loops).

An expression 𝑒 is built up from variables and constants using bitwise logical operations: and
(∧), or (∨), exclusive-or (⊕), negation (¬); modulo 2

𝑛
arithmetic operations: subtraction (−), addition

(+), multiplication (×) for which F is considered to be Z2
𝑛 ; and finite-field multiplication (⊙).

An assignment of the form 𝑥 = 𝑒 is defined as usual and of the form 𝑟 = $ assigns a uniformly

sampled value to the variable 𝑟 . As a result, 𝑟 should be read as a random variable.

Definition 1 (Simple gadgets). A simple gadget

𝑓 (a1, · · · , a𝑚){stmt; return b1, · · · , b𝑘 ; }
is given by the gadget name 𝑓 , and formal arguments (a1, · · · , a𝑚). Its body consists of a sequence of
assignments followed by a return statement, where a1, · · · , a𝑚 and b1, · · · , b𝑘 are called input sharings

and output sharings respectively, and members of a𝑖 (resp. b𝑖) are called input shares (resp. output
shares).

For simple gadgets, we assume that each variable is assigned at most once (i.e., in the static

single assignment form). Thus, a simple gadget can be seen as a (randomized) hardware circuit or

software procedure where assigned variables have unique names.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:5

A probe on a simple gadget refers to a variable 𝑥 in the gadget whose value can be observed

by the adversary via power side-channels, where E(𝑥) denotes its (symbolic) computation over

input shares and random variables, and Var(E(𝑥)) denotes those shares and random variables. We

may further distinguish between external probes on the output sharings and the remaining internal
probes including those on the input shares and other internal variables. Furthermore, variables

appearing on the right-hand side of assignments are called local variables. An evaluation of the simple

gadget 𝑓 (a1, · · · , a𝑚) on the inputs x1, · · · , x𝑚 under a probe set 𝑂 , denoted by 𝑓 (x1, · · · , x𝑚)𝑂 ,
refers to the joint distribution of the variables in 𝑂 when the simple gadget 𝑓 (x1, · · · , x𝑚) is
evaluated. Formally, given the joint distribution 𝜇 of the inputs x1, · · · , x𝑚 , 𝑓 (x1, · · · , x𝑚)𝑂 is

the joint distribution of the probes in 𝑂 , where random variables are sampled from the uniform

distribution and the inputs x1, · · · , x𝑚 sampled from the joint distribution 𝜇.

Definition 2 (Composite gadgets). A composite gadget

𝑓 (a1, · · · , a𝑚){gstmt; return b1, · · · , b𝑘 ; }
is defined similar to the simple gadget, except that its body consists of a sequence of gadget calls
followed by a return statement, where a gadget call y1, · · · , y𝑘 =ℓ 𝑔(x1, · · · , x𝑚) associated with a
unique label ℓ passes the inputs x1, · · · , x𝑚 to the formal arguments a1, · · · , a𝑚 of 𝑔 and assigns the
output sharings of 𝑔 to y1, · · · , y𝑘 .

In Definition 2, the same gadgets can be called multiple times, which can ease the implementation

of cryptographic algorithms, we require a unique label ℓ for each gadget call. A composite gadget

can be transformed into an equivalent simple gadget by gadget inline. Inlining a gadget call

y1, · · · , y𝑘 =ℓ 𝑔(x1, · · · , x𝑚) amounts to replacing it by the body of the gadget 𝑔 where the formal

arguments are replaced by the corresponding inputs, the local variables are appended with @ℓ (e.g.,

𝑥 becomes 𝑥@ℓ) to avoid name conflict, and the return statement is replaced by the assignments

that mimic the return of the gadget call. We will denote by 𝑓in (x1, · · · , x𝑚) the simple gadget

counterpart of 𝑓 (x1, · · · , x𝑚), obtained by iteratively inlining all the gadget calls.

A probe on a composite gadget 𝑓 (x1, · · · , x𝑚) refers to a probe on its simple gadget counter-

part 𝑓in (x1, · · · , x𝑚). Similarly, an evaluation of a composite gadget 𝑓 (x1, · · · , x𝑚) on the inputs

x1, · · · , x𝑚 under a probe set 𝑂 , denoted by 𝑓 (x1, · · · , x𝑚)𝑂 , refers to the joint distribution of the

probes 𝑂 when 𝑓in (x1, · · · , x𝑚) is evaluated.
We remark that the sharing x of a variable 𝑥 comprises 𝑡 random numbers x[1], · · · , x[𝑡] and

the remaining one x[𝑡 + 1] is a computation of 𝑥 and the other shares x[1], · · · , x[𝑡]. There are two
main secret sharing schemes, i.e., Boolean secret masking scheme where x[𝑡 + 1] = x[1] ⊕ x[2] ⊕
· · · ⊕x[𝑡] ⊕𝑥 and arithmetic secret masking scheme where x[𝑡 +1] = x[1] +x[2] + · · ·+x[𝑡] +𝑥 . The
former is often used to implement cryptographic algorithms that use only logical operations (e.g., ∧
and ∨) and Sbox operations (e.g., AES and DES [Coron et al. 2014]), while the latter could be used to

implement cryptographic algorithms that use arithmetic operations such as + and − (e.g., IDEA [Lai

and Massey 1990]). For algorithms that use both arithmetic and logical operations, conversion

algorithms between two secret masking schemes (e.g., [Coron et al. 2015, 2014; Goubin 2001]) are

used. Our language supports both logical and arithmetic operations, hence can describe hardware

circuits and software programs using both Boolean and arithmetic secret masking schemes.

2.2 Probing Security
We use the probing security [Ishai et al. 2003] to establish the security of masked implementations.

Definition 3 (Probing security). A gadget 𝑓 (a1, · · · , a𝑚) is 𝑑-probing secure on the inputs
x1, · · · , x𝑚 iff for any set 𝑂 of at most 𝑑 probes, the evaluation 𝑓 (x1, · · · , x𝑚)𝑂 is (statistically)
independent of the secret.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:6 Gao et al.

XORMULTI(a, b){
e =1 Refresh(b) ;
c =2 XOR(a, e) ; d =3 CM(a, c) ;
return d; }

XOR(a, b){
for(𝑖 = 1; 𝑖 ≤ 3; 𝑖 + +)

c[𝑖] = a[𝑖] ⊕ b[𝑖];
return c; }

Refresh(a){
𝑟1 = $; 𝑟2 = $; 𝑚1 = a[1] ⊕ 𝑟1; 𝑚2 = a[2] ⊕ 𝑟1; 𝑚3 = a[3] ⊕ 𝑟2;

𝑟3 = $; c[1] =𝑚1 ⊕ 𝑟2; c[2] =𝑚2 ⊕ 𝑟3; c[3] =𝑚3 ⊕ 𝑟3;

return c; }

CM(a, b){ //CompressedMulti

𝑡1 = a[1] ⊙ b[1]; 𝑡2 = a[1] ⊙ b[3]; 𝑡3 = a[3] ⊙ b[1]; 𝑡4 = a[2] ⊙ b[2];
𝑡5 = a[1] ⊙ b[2]; 𝑡6 = a[2] ⊙ b[1]; 𝑡7 = a[3] ⊙ b[3]; 𝑡8 = a[2] ⊙ b[3]; 𝑡9 = a[3] ⊙ b[2];
𝑟1 = $; 𝑡10 = 𝑡1 ⊕ 𝑟1; 𝑡11 = 𝑡10 ⊕ 𝑡2; 𝑡12 = 𝑡11 ⊕ 𝑡3; 𝑡13 = 𝑡4 ⊕ 𝑟2; 𝑡14 = 𝑡13 ⊕ 𝑡5;

𝑟2 = $; 𝑡15 = 𝑡14 ⊕ 𝑡6; 𝑡16 = 𝑡7 ⊕ 𝑟1; 𝑡17 = 𝑡16 ⊕ 𝑟2; 𝑡18 = 𝑡17 ⊕ 𝑡8; 𝑡19 = 𝑡18 ⊕ 𝑡9;

return (𝑡12, 𝑡15, 𝑡19); } // 𝑡12 ⊕ 𝑡15 ⊕ 𝑡19 = (
⊕

a) ⊙ (
⊕

b)

Fig. 2. Details of XORMULTI, where //... denote comments.

Intuitively, 𝑑-probing security ensures that the adversary cannot infer any information of the

secret when observing the values of any 𝑑 probes. Note that the inputs x1, · · · , x𝑚 depend on the

secret, otherwise we can directly deduce that 𝑓 (x1, · · · , x𝑚)𝑂 is independent of the secret. When

𝑑 ≥ 2, it is often called higher-order otherwise first-order.

SupposeF = {0, 1}. Consider E(𝑥1) = 𝑘⊕𝑟 , where 𝑟 is a random variable and 𝑘 is the secret. Then,

for any value of 𝑘 , the probability of 𝑥1 = 1 is 50%, thus, the distribution of 𝑥1 is independent of 𝑘

and observing 𝑥1 cannot infer any information of 𝑘 . However, when E(𝑥2) = 𝑘 ∧ 𝑟 , the probability

of 𝑥2 = 1 is 50% if 𝑘 = 1 while the probability of 𝑥2 = 1 is 0% if 𝑘 = 0, thus, the distribution of 𝑥2
depends upon 𝑘 and observing the value of 𝑥2 can infer the value of 𝑘 .

2.3 Illustrating Example
Consider the 2nd-order masked composite gadget XORMULTI (cf. Figure 2) for computing the sharing

d from two sharings a and b such that

⊕
d =

⊕
a ⊙ (

⊕
a ⊕

⊕
b), where a and b are the sharing

of two secrets 𝑎 and 𝑏 using Boolean secret sharing scheme. XORMULTI computes the sharing d
by invoking the simple gadgets Refresh, XOR and CM. The gadget Refresh is used to re-mask the

sharing b using new random values [Ishai et al. 2003] otherwise XORMULTI has leakage, leading

to

⊕
e =

⊕
b. The gadget XOR is a standard sharewise addition [Ishai et al. 2003], which takes

the sharings a and b as inputs and computes the sharing c such that

⊕
c =

⊕
a ⊕

⊕
b. The

gadget CM is a compressed, 2nd-order masked gadget for finite-field multiplication [Belaïd et al.

2016] which takes two sharings a and b as inputs and computes the sharing (𝑡12, 𝑡15, 𝑡19) such that

𝑡12 ⊕ 𝑡15 ⊕ 𝑡19 = (
⊕

a) ⊙ (
⊕

b).
While the simple gadgets CM, XOR and Refresh can be proved of 2-probing secure by existing

tools (e.g., maskVerif [Barthe et al. 2019]), no existing compositional approaches [Barthe et al. 2016;

Belaïd et al. 2016, 2020, 2018; Blot et al. 2017; Cassiers et al. 2021; Gao et al. 2022] can prove that

the composite gadget XORMULTI is 2-probing secure.

We point out why the 𝑑-NI/𝑑-SNI based compositional approach [Barthe et al. 2016; Belaïd et al.

2016] fails. In general, when reasoning about a composite gadget, their compositional approach first

iteratively collects constraints in the first-order theory of finite sets with cardinality constraints

from the bottom gadget call up to the top one using 𝑑-NI/𝑑-SNI properties of the invoked gadgets.

The cardinalities of shares will be cumulated when they are reused by each non-𝑑-SNI gadget in
order to guarantee soundness. Finally, the collected cardinality constraints are used to check if all

the probes can be simulated with input shares whose cardinality is bounded by the cardinality of

probes. However, such information may not be sufficient for proving some gadgets.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:7

Consider the gadget XORMULTI. To prove 2-NI of XORMULTI, the total number of probes used to

attack is limited to 2, that is |𝑂1 | + |𝑂2 | + |𝑂3 | ≤ 2, where𝑂1,𝑂2 and𝑂3 are probe sets within three

gadgets, respectively. As in [Barthe et al. 2016; Belaïd et al. 2016],

(1) CM is 2-NI, thus |𝑆1
3
| ≤ |𝑂3 | and |𝑆2

3
| ≤ |𝑂3 |, where 𝑆13 and 𝑆23 respectively denote the set of

input shares of c and a used to simulate the probe set 𝑂3;

(2) XOR is 2-NI, thus |𝑆1
2
| ≤ |𝑂2 | + |𝑂3 | and |𝑆2

2
| ≤ |𝑂2 | + |𝑂3 |, where 𝑆12 and 𝑆22 respectively denote

the set of input shares of e and a used to simulate the probe set 𝑂2 ∪𝑂3;

(3) Refresh is 2-SNI, thus |𝑆1
1
| ≤ |𝑂1 |, where 𝑆11 denotes the set of input shares of b used to

simulate the probe set 𝑂1.

Finally, the probe set𝑂1 ∪𝑂2 ∪𝑂3 should be simulated by 𝑆1
1
∪ 𝑆2

2
∪ 𝑆2

3
, namely, |𝑆1

1
∪ 𝑆2

2
∪ 𝑆2

3
| ≤

|𝑂1 | + |𝑂2 | + |𝑂3 | should hold. However, one can only deduce |𝑆1
1
∪ 𝑆2

2
∪ 𝑆2

3
| ≤ |𝑂1 | + |𝑂2 | + 2|𝑂3 |,

thus fails to prove that XORMULTI is 2-NI. We will show later that our approach is able to prove that

XORMULTI indeed is 2-NI.

3 NEW LANGUAGE-LEVEL SECURITY NOTIONS
Before formalizing our new security notions, we first introduce some notations, as well as the

concept of simulatability inspired by the one introduced by [Barthe et al. 2016; Belaïd et al. 2016]. It

will be used to define security notions as well as verification algorithms for proving security. More

specifically, by leveraging the concept of simulatability, we derive a variable set for each probe set in

a gadget so that the joint distribution of the probe set can be simulated by only knowing the values

of variables in the variable set. Furthermore, if such variable sets are independent of the secret

input, all the probe sets are also independent of the secret input. Note that the simulatability defined

by [Barthe et al. 2016; Belaïd et al. 2016] only uses input shares to simulate the joint distribution of a

probe set. In contrast, ours is more general, where not only input shares but also local variables can

be used to simulate the joint distribution of a probe set. This generalization allows our approach to

be applicable for verifying efficient masked implementations that cannot be handled before.

Hereafter, we use blackboard-bold UPPERCASE letters, e.g., I, O, Y, etc., to range over families

of variable sets. For two families Y1, Y2 of variable sets, we denote by Y2 ⊑ Y1 if for every 𝑌2 ∈ Y2,

there exists 𝑌1 ∈ Y1 such that 𝑌2 ⊆ 𝑌1.

Definition 4 (Simulatability). Fix a gadget 𝑓 (a1, · · · , a𝑚), a probe set 𝑂 on 𝑓 (a1, · · · , a𝑚) can
be simulated by a set 𝐼 of variables, called 𝐼 -simulatable, iff there exists a randomized function
𝜋 : F |𝑉 | → F |𝑂 | such that for any fixed tuple of values (𝑣1, · · · , 𝑣 |𝐼 |) ∈ F |𝐼 | and any inputs
x1, · · · , x𝑚 , the joint distributions 𝜋 (𝑣1, · · · , 𝑣 |𝐼 |) and 𝑓 (x1, · · · , x𝑚)𝑂 are the same when the values
of 𝐼 in 𝑓 (x1, · · · , x𝑚) are limited to (𝑣1, · · · , 𝑣 |𝐼 |).

Intuitively, a probe set 𝑂 on 𝑓 (a1, · · · , a𝑚) is 𝐼 -simulatable if there exists a randomized function

that simulates the joint distribution 𝑓 (x1, · · · , x𝑚)𝑂 while requiring only the values of the variables

in 𝐼 . Given a set I of variable sets, a probe set 𝑂 on 𝑓 (a1, · · · , a𝑚) is I-simulatable if it is

⋃
I-

simulatable.

Consider the probe sets 𝑂1 = {𝑡1, 𝑡2} and 𝑂2 = {𝑡1, 𝑡10} in the CM gadget in Figure 2. Since

𝑡1 = a[1] ⊙ b[1] and 𝑡2 = a[1] ⊙ b[3], we get that 𝑂1 is {a[1], b[1], b[3]}-simulatable. Since

𝑡10 = 𝑡1 ⊕ 𝑟1 and 𝑟1 is a random variable, we get that 𝑂2 is {a[1], b[1]}-simulatable.

3.1 (Y, 𝑑)-Non-Interference
We first recall the notion of non-interference [Barthe et al. 2016] which is a sound language-level

characterization of the 𝑑-probing security for compositional reasoning. Next, we present our new

security notion by generalizing non-interference with a family of variable sets.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:8 Gao et al.

SecMult(a, b){
for(𝑖 = 1; 𝑖 ≤ 𝑡 + 1; 𝑖 + +) c[𝑖] = a[𝑖] ⊙ b[𝑖];
for(𝑖 = 1; 𝑖 ≤ 𝑡 + 1; 𝑖 + +){

for(𝑗 = 𝑖 + 1; 𝑗 ≤ 𝑡 + 1; 𝑗 + +){
𝑟𝑖 𝑗 = $; c[𝑖] = c[𝑖] ⊕ 𝑟𝑖 𝑗; 𝑡𝑖 𝑗 = a[𝑖] ⊙ b[𝑗]; 𝑟 ′

𝑖 𝑗
= 𝑟𝑖 𝑗 ⊕ 𝑡𝑖 𝑗 ;

𝑡 ′
𝑖 𝑗

= a[𝑗] ⊙ b[𝑖]; 𝑟 ′′
𝑖 𝑗

= 𝑟 ′
𝑖 𝑗

⊕ 𝑡 ′
𝑖 𝑗
; c[𝑗] = c[𝑗] ⊕ 𝑟 ′′

𝑖 𝑗
; }

}

return c;} // (
⊕

c) = (
⊕

a) ⊙ (
⊕

b)

Fig. 3. 𝑡-order masked implementation SecMult for finite-field multiplication [Coron 2014].

Definition 5 (Non-Interference). A gadget 𝑓 (a1, · · · , a𝑚) is 𝑑-Non-Interfering, 𝑑-NI for short,
if for any set 𝑂 of at most 𝑑 probes, there exists a set of variables 𝐼 such that 𝐼 only contains at most
|𝑂 | shares of each input sharing a𝑖 and 𝑂 is 𝐼 -simulatable on 𝑓 (a1, · · · , a𝑚).

Intuitively, knowing the values of the variables in 𝐼 suffices to simulate the joint distribution of

the probe set 𝑂 to the adversary and 𝐼 contains at most |𝑂 | shares of a𝑖 for every 1 ≤ 𝑖 ≤ 𝑚.

It was shown [Barthe et al. 2016] that a 𝑑-NI gadget is 𝑑-probing secure if any two input sharings
are mutually independent. However, a 𝑑-probing secure gadget (provided that any two input

sharings are mutually independent) is not necessarily 𝑑-NI (cf. [Gao et al. 2023] for a concrete

example). To overcome this limitation, we propose the notion of variable non-interference by

generalizing 𝑑-NI with a family of variable sets Y.

Definition 6 (Variable Non-Interference). Given a family Y of variable sets, a gadget
𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-Non-Interfering, (Y, 𝑑)-NI for short, if for any set 𝑂 of at most 𝑑 probes,
there exists a subset of variable sets I ⊆ Y such that |I| ≤ |𝑂 | and𝑂 is I-simulatable on 𝑓 (a1, · · · , a𝑚).

Intuitively, knowing the values of the variables in

⋃
I suffices to simulate the joint distribution

of the probe set 𝑂 to the adversary and I contains at most |𝑂 | variable sets of Y, i.e., |I| ≤ |𝑂 |.
Note that in contrast to 𝑑-NI, Y in (Y, 𝑑)-NI can contain local variables. Indeed, there exist gadgets

where Y should contain local variables instead of input shares only. In general, a local variable

whose computation relies upon some random variables but is not perfectly masked by any random

variables will be added to the set 𝑌 . Hence, they are (Y, 𝑑)-NI for proper sets Y but not 𝑑-NI. A
concrete example is given in [Gao et al. 2023].

We can observe that if 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-NI, each share a𝑖 [𝑗] must occur in some set 𝐼 ∈ Y,
i.e., a𝑖 [𝑗] ∈

⋃
Y. Indeed, if some share a𝑖 [𝑗] does not occur in any set 𝐼 ∈ Y, i.e., a𝑖 [𝑗] ∉

⋃
Y, we

can conclude that 𝑓 (a1, · · · , a𝑚) is not (Y, 𝑑)-NI, as the probe a𝑖 [𝑗] cannot be simulated by any

subset I ⊆ Y. Due to this, hereafter, we assume that

⋃𝑚
𝑖=1 a𝑖 ⊆

⋃
Y, when we consider (Y, 𝑑)-NI.

We exemplify the security notions on various simple gadgets. Consider the simple gadgets CM,
XOR and Refresh in Figure 2, for which we define the following three families of variable sets:

YCM = {{a[𝑖], b[𝑗]} | 1 ≤ 𝑖, 𝑗 ≤ 3}, YXOR = {{a[𝑖], b[𝑖]} | 1 ≤ 𝑖 ≤ 3}, and YRF = {{a[𝑖]} | 1 ≤
𝑖 ≤ 3}. Then, CM is (YCM, 2)-NI, XOR is (YXOR, 2)-NI and Refresh is (YRF, 2)-NI. For instance, the
probe set {𝑡6, 𝑡7} on the gadget CM can be simulated by the set {{a[2], b[1]}, {a[3], b[3]}}. However,
the composite gadget CM is not (YXOR, 2)-NI, as the probe set {𝑡6, 𝑡7} on the gadget CM cannot be

simulated by any variable set of YXOR with size 2. By examining YCM, YXOR and YRF, we can see that

the simple gadgets CM, XOR and Refresh are all 2-NI.
Consider the ISW 𝑡-order masked implementation SecMult for finite-field multiplication in

Figure 3. For any security order 𝑑 ≤ 𝑡 , define YSecMult = {{a[𝑖], b[𝑗]} | 1 ≤ 𝑖, 𝑗 ≤ 𝑡 + 1}. We

can verify that the gadget SecMult is both (YSecMult, 𝑑)-NI and 𝑑-NI. For instance, the probe set

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:9

{𝑡12, 𝑡 ′12} can be simulated by the set {{a[1], b[2]}, {a[2], b[1]}} ⊂ YSecMult. However, it is not
(Y, 𝑑)-NI for any Y ⊂ YSecMult.

The main challenge is how to compute a family of variable setsY for a given gadget 𝑓 (a1, · · · , a𝑚).
Obviously, a gadget is (Y, 𝑑)-NI if Y contains all of the probes sets. However, such a set Y does not

make any sense. For instance, to verify 𝑑-probing security of the (Y, 𝑑)-NI gadget 𝑓 (a1, · · · , a𝑚)
where each set of Y contains one variable of 𝑓 (a1, · · · , a𝑚), we have to check if any set of 𝑑 probes

is independent of the secret. It would be the same as directly verifying 𝑑-probing security of the

gadget 𝑓 (a1, · · · , a𝑚). To address this challenge, we will propose an algorithm for computing a

family Y of variable sets for each simple gadget so that Y contains the variable sets as less as

possible (cf. Section 4.2).

3.2 (Y, 𝑑)-Strong Non-Interference
[Barthe et al. 2016] provided a stronger version of 𝑑-NI, called 𝑑-Strong Non-Interference, in order

to simplify the gadget composition by enforcing that external probes (i.e., output shares) give no
information of the input shares. We first recall 𝑑-Strong Non-Interference and then generalize it

to a stronger version of (Y, 𝑑)-NI, called (Y, 𝑑)-Strong Non-Interference, in order to simplify the

gadget composition by enforcing that external probes give no information about any set in Y.

Definition 7 (Strong non-interference). A gadget 𝑓 (a1, · · · , a𝑚) with output sharings b1, · · · ,
b𝑘 is 𝑑-Strong Non-Interfering (𝑑-SNI for short) if for any set𝑂 of internal probes and any sets𝑂𝑖 ⊆ b𝑖
of external probes for 1 ≤ 𝑖 ≤ 𝑘 such that |𝑂 | +max

𝑘
𝑖=1 |𝑂𝑖 | ≤ 𝑑 , there exists a set 𝐼 of input shares with

at most |𝑂 | shares for each input sharing a𝑖 such that 𝑂 ∪⋃𝑘
𝑖=1𝑂𝑖 on 𝑓 (a1, · · · , a𝑚) is 𝐼 -simulatable.

Intuitively, knowing the values of the variables in the set 𝐼 that contains at most |𝑂 | input shares
of a𝑖 for every 1 ≤ 𝑖 ≤ 𝑚 suffices to simulate the joint distribution of the probe set 𝑂 ∪⋃𝑘

𝑖=1𝑂𝑖 to

the adversary. Thus, 𝑑-SNI is a stronger security notion than 𝑑-NI. A 𝑑-NI gadget is 𝑑-SNI if the
input or output sharings are refreshed by 𝑑-SNI refresh gadgets and are not used anywhere else in

the gadget.

A composite gadget composed of any 𝑑-SNI gadgets is 𝑑-SNI as well, which is called “trivial

compositionality” by [Cassiers et al. 2021], while a composite gadget composed of any 𝑑-NI but
not 𝑑-SNI gadgets at best can be 𝑑-NI or 𝑑-probing secure, i.e., cannot be 𝑑-SNI and may not be

𝑑-NI or 𝑑-probing secure. However, to be 𝑑-SNI, 𝑑-SNI refresh gadgets may be introduced, which

makes gadgets less efficient. Thus, we propose the notion of strong variable non-interference by

generalizing 𝑑-SNI with a family of variable sets Y.

Definition 8 (Strong variable non-interference). For a family Y of variable sets of a gadget
𝑓 (a1, · · · , a𝑚) with the output sharings b1, · · · , b𝑘 , the gadget 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-Strong Non-

Interfering, (Y, 𝑑)-SNI for short, iff for any set 𝑂 of internal probes and any sets 𝑂𝑖 ⊆ b𝑖 of external
probes for 1 ≤ 𝑖 ≤ 𝑘 such that |𝑂 | +max

𝑘
𝑖=1 |𝑂𝑖 | ≤ 𝑑 , there exists a set I ⊆ Y such that |I| ≤ |𝑂 | and

𝑂 ∪⋃𝑘
𝑖=1𝑂𝑖 on 𝑓 (a1, · · · , a𝑚) is I-simulatable.

Intuitively, any set comprising at most 𝑑1 internal probes 𝑂 and at most 𝑑2 output shares 𝑂𝑖 per

output sharing b𝑖 with 𝑑1 + 𝑑2 ≤ 𝑑 can be simulated to the adversary when knowing the values of

variables in

⋃
I for some set I ⊆ Y such that |I| ≤ 𝑑1.

Consider the gadgets CM, XOR and Refresh in Figure 2. The gadget Refresh is (YRF, 2)-SNI
and 2-SNI. For instance, the set {𝑚1, c[1]} consisting of one internal probe𝑚1 and one external

probe c[1] in Refresh can be simulated without using any variables, as E(𝑚1) = a[1] ⊕ 𝑟1 and

E(c[1]) = (a[1]⊕𝑟1)⊕𝑟2 are respectively masked by two independent random variables 𝑟1 and 𝑟2. In

contrast, CM and XOR are not (YCM, 2)-SNI and (YXOR, 2)-SNI, respectively. For instance, {c[1], c[2]}

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:10 Gao et al.

consisting of two external probes in XOR can only be simulated by {{a[1], b[1]}, {a[2], b[2]}} using
input shares. Indeed, there does not exist any set Y such that XOR or CM is (Y, 2)-SNI.
Consider the gadget SecMult in Figure 3 which is (YSecMult, 𝑑)-NI. We can show that SecMult

is (YSecMult, 𝑑)-SNI and 𝑑-SNI. Assume 𝑑 = 3. Any probe set {c[𝑖], c[𝑗], c[𝑘]} in SecMult such

that 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 4 can be simulated without using any variables, as the computations

E(c[𝑖]), E(c[𝑗]) and E(c[𝑘]) are respectively masked by three distinct random variables. The

probe set {c[1], 𝑡12, 𝑡 ′12} can be simulated by the set {{a[1], b[2]}, {a[2], b[1]}} ⊆ YSecMult, as the

computation E(c[1]) is masked by random variables 𝑟1𝑗 for 1 ≤ 𝑗 ≤ 3.

It is straightforward to observe the following propositions.

Proposition 1. (Y, 𝑑)-SNI entails (Y, 𝑑)-NI, but the converse does not hold. □

Proposition 2. Consider two families of variable sets Y1 and Y2. If Y2 ⊑ Y1, then (Y2, 𝑑)-NI
entails (Y1, 𝑑)-NI, and (Y2, 𝑑)-SNI entails (Y1, 𝑑)-SNI. □

By Proposition 2, 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-NI (resp. (Y, 𝑑)-SNI) iff it is (Y′, 𝑑)-NI (resp.(Y′, 𝑑)-SNI)
for Y′ = {𝑌 ∈ Y | �𝑌 ′ ∈ Y. 𝑌 ⊂ 𝑌 ′}. Thus Proposition 2 allows to reduce the size |Y|. Consider
Y1 = {{𝑎1, 𝑏1}, {𝑎2, 𝑏2}} and Y2 = {{𝑎1}, {𝑎2}, {𝑏1}, {𝑏2}, {𝑎1, 𝑏1}, {𝑎2, 𝑏2}}, we prefer to use Y1, as

any probes that are simulated by {𝑎1} and/or {𝑏1} (resp. {𝑎2} and/or {𝑏2}) can also be simulated

by the set {𝑎1, 𝑏1} (resp. {𝑎2, 𝑏2}).
The following proposition allows us to consider less number of probe sets for proving (Y, 𝑑)-NI

and (Y, 𝑑)-SNI.

Proposition 3. For a family Y of variable sets of a gadget 𝑓 (a1, · · · , a𝑚) with output sharings
b1, · · · , b𝑘 ,
(1) 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-NI iff for any set 𝑂 of 𝑑 probes, there exists a subset I ⊆ Y such that

|I| ≤ 𝑑 and 𝑂 on 𝑓 (a1, · · · , a𝑚) is I-simulatable.
(2) 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-SNI iff for any set𝑂 of at most 𝑑 internal probes and any sets𝑂𝑖 ⊆ b𝑖 of

𝑑 − |𝑂 | external probes for 1 ≤ 𝑖 ≤ 𝑘 , there exists a set I ⊆ Y such that |I| ≤ |𝑂 | and𝑂 ∪⋃𝑘
𝑖=1𝑂𝑖

on 𝑓 (a1, · · · , a𝑚) is I-simulatable.

Proof sketch. The direction (⇒) is straightforward. We can prove the direction (⇐) by induc-

tion on the size 𝑠 , where 𝑠 = |𝑂 | for Item (1) and 𝑠 = |𝑂 | +max
𝑘
𝑖=1 |𝑂𝑖 | for Item (2). The base case

𝑠 = 𝑑 is trivial. For the inductive step 0 < 𝑠 < 𝑑 , we can prove the results by contradiction.

Suppose 𝑂 on 𝑓 (a1, · · · , a𝑚) is not I-simulatable for any subset I ⊆ Y with |I| ≤ 𝑠 . Then, we

can add a new input share into 𝑂 , resulting in a new set 𝑂 ′
such that |𝑂 ′ | = |𝑂 | + 1 = 𝑠 + 1. It can

be proved that 𝑂 ′
on 𝑓 (a1, · · · , a𝑚) is not I′-simulatable for any subset I′ ⊆ Y with |I′ | ≤ 𝑠 + 1,

otherwise 𝑂 on 𝑓 (a1, · · · , a𝑚) is I-simulatable for some subset I ⊆ Y with |I| ≤ 𝑠 . It contradicts the

induction hypothesis on𝑂 ′
. Thus, Item (1) holds. Item (2) can be proved in a similar way. Full proof

is rather involved and thus is given [Gao et al. 2023]. □

We remark that (Y, 𝑑)-NI and (Y, 𝑑)-SNI are not directly defined like in Proposition 3, in order

to follow the same style (i.e., the size of probe sets) with the definitions of 𝑑-probing security, 𝑑-NI
and 𝑑-SNI. For instance, Proposition 3(1) states that it suffices to consider the sets 𝑂 comprising

exactly 𝑑 probes, instead of all the sets of at most 𝑑 probes in Definition 6.

3.3 Relating to 𝑑-Probing Security and 𝑑-NI/𝑑-SNI
We relate (Y, 𝑑)-NI/(Y, 𝑑)-SNI to 𝑑-probing security and 𝑑-NI/𝑑-SNI. These relations reveal that
our new security notions could be used as an intermediate step for proving 𝑑-probing security,

𝑑-NI and 𝑑-SNI.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:11

According to the definitions of (Y, 𝑑)-NI/(Y, 𝑑)-SNI, it is straightforward to see the following

proposition which relates (Y, 𝑑)-NI/(Y, 𝑑)-SNI to𝑑-probing security and provides a sound approach
to prove 𝑑-probing security.

Proposition 4. For any family Y of variable sets of a gadget 𝑓 (a1, · · · , a𝑚), if 𝑓 (a1, · · · , a𝑚) is
(Y, 𝑑)-NI and the evaluation 𝑓 (x1, · · · , x𝑚)⋃ I is independent of the secret for every set I ⊆ Y such
that |I| = 𝑑 , then 𝑓 (x1, · · · , x𝑚) is 𝑑-probing secure. □

(Y, 𝑑)-NI and (Y, 𝑑)-SNI are very flexible security notions as the parameter Y can vary. The

relation between (Y, 𝑑)-NI/(Y, 𝑑)-SNI and𝑑-NI/𝑑-SNI is characterized by the following proposition,
which provides a new way to prove 𝑑-NI/𝑑-SNI via our new security notions.

Proposition 5. Fix a gadget 𝑓 (a1, · · · , a𝑚) with output sharings b1, · · · , b𝑘 . Let Y be a family of
variable sets. If 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-NI (resp. (Y, 𝑑)-SNI) and for any set I of 𝑑 variable sets of Y,
there exists a set 𝐼 with at most |I| input shares of each input sharing a𝑖 such that

⋃
I on 𝑓 (a1, · · · , a𝑚)

is 𝐼 -simulatable, then 𝑓 (a1, · · · , a𝑚) is 𝑑-NI (resp. 𝑑-SNI).

Proof. Suppose 𝑓 (a1, ..., a𝑚) is (Y, 𝑑)-NI (resp. (Y, 𝑑)-SNI) and for any set I ⊆ Y such that

|I| = 𝑑 , there exists a set 𝐼 containing at most |I| shares for each input sharing a𝑖 such that

⋃
I on

𝑓 (a1, ..., a𝑚) is 𝐼 -simulatable. Then, for any set I ⊆ Y such that |I| ≤ 𝑑 , there exists a set 𝐼 containing

at most |I| shares for each input sharing a𝑖 such that

⋃
I on 𝑓 (a1, ..., a𝑚) is 𝐼 -simulatable (this can

be proved following the proof of Proposition 3).

Let us consider a set consisting of at most 𝑑 internal probes 𝑂 ′
and external probes 𝑂𝑖 of the

output sharing b𝑖 for 1 ≤ 𝑖 ≤ 𝑘 such that |𝑂 ′ | + ∑𝑘
𝑖=1 |𝑂 |𝑖 ≤ 𝑑 (resp. |𝑂 ′ | + max

𝑘
𝑖=1 |𝑂 |𝑖 ≤ 𝑑).

𝑓 (a1, ..., a𝑚) is (Y, 𝑑)-NI (resp. (Y, 𝑑)-SNI), thus, there exists a set I ⊆ Y such that 𝑂 ′ ∪⋃𝑘
𝑖=1𝑂𝑖 on

𝑓 (a1, ..., a𝑚) is I-simulatable and |I| ≤ |𝑂 ′ | +∑𝑘
𝑖=1 |𝑂 |𝑖 (resp. |I| ≤ |𝑂 ′ |).

Since I ⊆ Y and |I| ≤ 𝑑 , there exists a set 𝐼 containing at most |I| shares for each input sharing

a𝑖 such that

⋃
I on 𝑓 (a1, ..., a𝑚) is 𝐼 -simulatable. Recall that 𝑂 ′ ∪ ⋃𝑘

𝑖=1𝑂𝑖 on 𝑓 (a1, ..., a𝑚) is I-
simulatable. Thus, 𝑂 ′ ∪⋃𝑘

𝑖=1𝑂𝑖 on 𝑓 (a1, ..., a𝑚) is 𝐼 -simulatable. The result follows from the fact

that |𝐼 | ≤ |I| and |I| ≤ |𝑂 ′ | +∑𝑘
𝑖=1 |𝑂 |𝑖 (resp. |I| ≤ |𝑂 ′ |). □

Consider the simple gadgets CM, XOR and Refresh in Figure 2 are (YCM, 2)-NI, (YXOR, 2)-NI and
(YRF, 2)-SNI, respectively. By applying Proposition 5 and checking the sets YCM, YXOR and YRF, we

can deduce that the gadgets CM and XOR are 2-NI and the gadget Refresh is 2-SNI. Furthermore,

when the input sharings are mutually independent, we can deduce that the gadgets CM, XOR and
Refresh are 2-probing secure.

3.4 Compositionality of (Y, 𝑑)-NI and (Y, 𝑑)-SNI Gadgets
In this subsection, we study the compositionality of (Y, 𝑑)-NI and (Y, 𝑑)-SNI gadgets which will

be leveraged to compute a set Y for each composite gadget.

We start by defining some notations. Given a gadget call y =ℓ 𝑓 (x1, · · · , x𝑚) to the gadget

𝑓 (a1, · · · , a𝑚), for every set Y, let Y[x1/a1, · · · , x𝑚/a𝑚]@ℓ be the set Y where

• a𝑖 [𝑗] for each 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑡 + 1 is replaced by x𝑖 [𝑗],
• and each local variable 𝑥 is replaced by 𝑥@ℓ .

Intuitively, Y[x1/a1, · · · , x𝑚/a𝑚]@ℓ lifts the set Y from the gadget 𝑓 (a1, · · · , a𝑚) to the gadget call
y = 𝑓 (x1, · · · , x𝑚), where formal arguments a1, · · · , a𝑚 are replaced by their corresponding inputs

x1, · · · , x𝑚 and local variables 𝑥 are appended with the label ℓ to avoid name conflict.

We present the composition rules using the gadget,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:12 Gao et al.

𝑔 ◦ 𝑓 (x1, · · · , x𝑚){ x𝑚+1, · · · , x𝑚+𝑘 = ℓ𝑓 𝑓 (x1, · · · , x𝑚);
z1, · · · , zℎ = ℓ𝑔𝑔(x1, · · · , x𝑚+𝑘);
return z1, · · · , zℎ ; }

which invokes the gadgets 𝑓 (a1, · · · , a𝑚) and 𝑔(b1, · · · , b𝑚+𝑘). For any set Y𝑓 (resp. Y𝑔) of variable
sets of 𝑓 (a1, · · · , a𝑚) (resp. 𝑔(b1, · · · , b𝑚+𝑘)), let 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔) be the set

Y′
𝑓
∪ (Y′

𝑔 \ {{x𝑗 [𝑖]} | 1 ≤ 𝑖 ≤ 𝑡 + 1,𝑚 + 1 ≤ 𝑗 ≤ 𝑚 + 𝑘},
where Y′

𝑓
denotes Y𝑓 [x1/a1, · · · , x𝑚/a𝑚]@ℓ𝑓 and Y

′
𝑔 denotes Y𝑔 [x1/b1, · · · , x𝑚+𝑘/b𝑚+𝑘]@ℓ𝑔 . In-

tuitively, 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔) is the union of Y𝑓 and Y𝑔 where formal arguments of 𝑓 (a1, · · · , a𝑚) and
𝑔(b1, · · · , b𝑚+𝑘) are substituted by their corresponding inputs and local variables are appended

with the corresponding labels ℓ𝑓 and ℓ𝑔 to avoid name conflict. The substitution ensures that

𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔) only contains variables of (𝑔 ◦ 𝑓)in (x1, · · · , x𝑚). Furthermore, the sets {x𝑗 [𝑖]} for
1 ≤ 𝑖 ≤ 𝑡 + 1,𝑚 + 1 ≤ 𝑗 ≤ 𝑚 + 𝑘 are removed from Y′

𝑔, as they are the same as the external probes

of 𝑓 (a1, · · · , a𝑚).
Composition rule R1. We present the first rule for composing a (Y, 𝑑)-NI gadget with another

(Y, 𝑑)-NI/(Y, 𝑑)-SNI gadget.
Lemma 1. If 𝑓 (a1, · · · , a𝑚) is (Y𝑓 , 𝑑)-NI and for any nonempty probe set 𝑂 on 𝑓 (a1, · · · , a𝑚)

and nonempty set O ⊆ Y𝑔 such that |𝑂 | + |O| = 𝑑 , the probe set 𝑂 [x1/a1, · · · , x𝑚/a𝑚]@ℓ𝑓 ∪⋃
O[x1/b1, · · · , x𝑚+𝑘/b𝑚+𝑘]@ℓ𝑔 on 𝑔 ◦ 𝑓 (x1, · · · , x𝑚) is I-simulatable for some set I ⊆ 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔)

with |I| ≤ 𝑑 , then the following statements hold:
(1) If 𝑔(b1, · · · , b𝑚+𝑘) is (Y𝑔, 𝑑)-NI, then 𝑔 ◦ 𝑓 (x1, · · · , x𝑚) is (𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔), 𝑑)-NI.
(2) If 𝑔(b1, · · · , b𝑚+𝑘) is (Y𝑔, 𝑑)-SNI, then 𝑔 ◦ 𝑓 (x1, · · · , x𝑚) is (𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔), 𝑑)-SNI.
Proof sketch. For any set consisting of at most 𝑑 internal probes𝑂 and 𝑑 − |𝑂 | external probes

𝑂𝑖 for each output sharing z𝑖 on 𝑔 ◦ 𝑓 (x1, · · · , x𝑚):
• If𝑂∪⋃ℎ

𝑖=1𝑂𝑖 contains only probes from 𝑓 (a1, · · · , a𝑚), then since 𝑓 (a1, · · · , a𝑚) is (Y𝑓 , 𝑑)-NI, we
get that𝑂∪⋃ℎ

𝑖=1𝑂𝑖 can be simulated with at most𝑑 variable sets fromY𝑓 [x1/a1, · · · , x𝑚/a𝑚]@ℓ𝑓 ,

hence can be simulated with at most 𝑑 variable sets from 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔).
• If𝑂∪⋃ℎ

𝑖=1𝑂𝑖 contains only probes from𝑔(b1, · · · , b𝑚+𝑘), then since𝑔(b1, · · · , b𝑚+𝑘) is (Y𝑔, 𝑑)-NI
(resp. (Y𝑔, 𝑑)-SNI), we get that𝑂 ∪⋃ℎ

𝑖=1𝑂𝑖 can be simulated by at most 𝑑 (resp. |𝑂 |) variable sets
from Y𝑔 [x1/b1, · · · , x𝑚+𝑘/b𝑚+𝑘]@ℓ𝑔 , hence can be simulated by at most 𝑑 (resp. |𝑂 |) variable sets
from 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔).

• If 𝑂 ∪⋃ℎ
𝑖=1𝑂𝑖 contains probes from both 𝑓 (a1, · · · , a𝑚) and 𝑔(b1, · · · , b𝑚+𝑘), we can conclude

the proof following from Proposition 3 and the fact that for any nonempty probe set 𝑂 ′′
on

𝑓 (a1, · · · , a𝑚) and any nonempty set O ⊆ Y𝑔 with |𝑂 ′′ | + |O| = 𝑑 , 𝑂 ′′ [x1/a1, · · · , x𝑚/a𝑚]@ℓ𝑓 ∪⋃
O[x1/b1, · · · , x𝑚+𝑘/b𝑚+𝑘]@ℓ𝑔 on the gadget 𝑔 ◦ 𝑓 (x1, · · · , x𝑚) is I-simulatable for some set

I ⊆ 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔) such that |I| ≤ 𝑑 . Indeed, since 𝑔(b1, · · · , b𝑚+𝑘) is (Y𝑔, 𝑑)-NI (resp. (Y𝑔, 𝑑)-SNI),
the variable subset 𝑂 ′

of 𝑂 ∪⋃ℎ
𝑖=1𝑂𝑖 that come from 𝑔(b1, · · · , b𝑚+𝑘) can be first simulated by

some set O[x1/b1, · · · , x𝑚+𝑘/b𝑚+𝑘]@ℓ𝑔 ⊆ Y𝑔 [x1/b1, · · · , x𝑚+𝑘/b𝑚+𝑘]@ℓ𝑔 with the desired size,

together with the remaining variables of 𝑂 ∪⋃ℎ
𝑖=1𝑂𝑖 (i.e., 𝑂

′′ [x1/a1, · · · , x𝑚/a𝑚]@ℓ𝑓), can be

simulated by at most 𝑑 (resp. |𝑂 |) variable sets from I ⊆ 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔).
This concludes the proof. □

Lemma 1 provides a sound approach for computing a setY from the setsY𝑓 andY𝑔 and checking
if the composite gadget𝑔◦ 𝑓 (x1, · · · , x𝑚) is (Y, 𝑑)-NI/(Y, 𝑑)-SNIwithout inlining the called gadgets.
This reduces the number of probe sets to be checked when computing the set Y and verifying

(Y, 𝑑)-NI/(Y, 𝑑)-SNI for the composite gadget 𝑔 ◦ 𝑓 (x1, · · · , x𝑚).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:13

Composition rule R2. One may notice that in the first composition rule R1, probe sets across the

gadget 𝑓 (a1, · · · , a𝑚) and the set Y𝑔 should be checked. We present the second composition rule

to further reduce the number of probe sets to be checked, and hence improve the efficiency. This

composition rule requires the preceding gadget 𝑓 (a1, · · · , a𝑚) to be (Y𝑓 , 𝑑)-SNI instead of its weak

counterpart (Y𝑓 , 𝑑)-NI.

Lemma 2. If 𝑓 (a1, · · · , a𝑚) is (Y𝑓 , 𝑑)-SNI and for any nonemptyset setO ⊆ Y𝑔 \ {{b𝑗 [𝑖]} | 𝑚+1 ≤
𝑗 ≤ 𝑚+𝑘, 1 ≤ 𝑖 ≤ 𝑡 +1} such that |O| ≤ 𝑑 , the set

⋃
O on the gadget 𝑔(b1, · · · , b𝑚+𝑘) is I-simulatable

for some I that only contains at most |O| input shares of each input sharing b𝑗 for𝑚 + 1 ≤ 𝑗 ≤ 𝑚 + 𝑘 ,
then the following statements hold:
(1) If 𝑔(b1, · · · , b𝑚+𝑘) is (Y𝑔, 𝑑)-NI, then 𝑔 ◦ 𝑓 (x1, · · · , x𝑚) is (𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔), 𝑑)-NI.
(2) If 𝑔(b1, · · · , b𝑚+𝑘) is (Y𝑔, 𝑑)-SNI, then 𝑔 ◦ 𝑓 (x1, · · · , x𝑚) is (𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔), 𝑑)-SNI.

Proof. The proof of Lemma 2 follows that of Lemma 1 except that we leverage (Y𝑓 , 𝑑)-SNI
of 𝑓 (a1, · · · , a𝑚), where the external shares of 𝑓 (a1, · · · , a𝑚) when passed to 𝑔(b1, · · · , b𝑚+𝑘) as
inputs, could be used in the gadget 𝑔(b1, · · · , b𝑚+𝑘) without requiring any sets of 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔) for
simulation. □

Lemma 2 provides an efficient approach for computing a set Y and checking if the composite

gadget 𝑔 ◦ 𝑓 (x1, · · · , x𝑚) is (Y, 𝑑)-NI/(Y, 𝑑)-SNI, without inlining the called gadgets. Recall that the
rule R1 (cf. Lemma 1) requires to check𝑂 [x1/a1, · · · , x𝑚/a𝑚]@ℓ𝑓 ∪

⋃
O[x1/b1, · · · , x𝑚+𝑘/b𝑚+𝑘]@ℓ𝑔

for any nonempty set probe 𝑂 on 𝑓 (a1, · · · , a𝑚) and nonempty set O ⊆ Y𝑔 such that |𝑂 | + |O| = 𝑑 .

By Lemma 2, we only need to check the sets fromO ⊆ Y𝑔\{{b𝑗 [𝑖]} | 𝑚+1 ≤ 𝑗 ≤ 𝑚+𝑘, 1 ≤ 𝑖 ≤ 𝑡+1}.
Therefore, this further reduces the number of sets to be checked when computing the set Y and

checking the composite gadget 𝑔 ◦ 𝑓 (x1, · · · , x𝑚).
In general, a composite gadget may contain more than two gadget calls. For such composite

gadgets, we will present a bottom-up algorithm in Section 4 which iteratively composes the head

and tail of the sequence of gadget calls by leveraging Lemma 1 and Lemma 2, where the head is the

first gadget call, and the tail is the remaining sequence of gadget calls.

As a warm-up, we exemplify our overall approach using the illustrating example shown in

Figure 2.

Example 1. Recall that the simple gadgets CM, XOR and Refresh are (YCM, 𝑑)-NI, (YXOR, 𝑑)-NI and
(YRF, 𝑑)-SNI, respectively, where YCM = {{a[𝑖], b[𝑗]} | 1 ≤ 𝑖, 𝑗 ≤ 3}, YXOR = {{a[𝑖], b[𝑖]} | 1 ≤ 𝑖 ≤
3}, and YRF = {{a[𝑖]} | 1 ≤ 𝑖 ≤ 3}. We build the proof from the bottom gadget call to the top one.
(1) For the gadget call d = CM(a, c): we compute the set

Y′
CM = YCM [a/a, c/b]@3 = {{a[𝑖], c[𝑗]} | 1 ≤ 𝑖, 𝑗 ≤ 3},

i.e., passing the actual parameters a and c to the formal arguments a and b and appending @3

to the local variables of CM.
(2) For the gadget calls c = XOR(a, e); d = CM(a, c): similar to the first step, we first compute

Y′
XOR = YXOR [a/a, e/b]@2 = {{a[𝑖], e[𝑖]} | 1 ≤ 𝑖 ≤ 3}.

By Lemma 1, we compute the set

YXORM2 = 𝑌𝑦′XOR ∪ (Y′
CM \ {{c[𝑖]} | 1 ≤ 𝑖 ≤ 3})

= {{a[𝑖], e[𝑖]}, {a[𝑖], c[𝑗]} | 1 ≤ 𝑖, 𝑗 ≤ 3}
and check if for any nonempty probe set 𝑂 on XOR and nonempty set O ⊆ YCM such that
|𝑂 | + |O| = 𝑑 , the probe set 𝑂 [a/a, e/b]@2 ∪ O[a/a, c/b]@3 can be simulated by two variable
sets of YXORM2. It is indeed the case.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:14 Gao et al.

(3) For the gadget calls e = Refresh(b); c = XOR(a, e); d = CM(a, c): we first compute the set

𝑌𝑦′RF = YRF [b/a]@1 = {{b[𝑖]} | 1 ≤ 𝑖 ≤ 3}.
Next, by Lemma 2, we compute

YXORMULTI = Y′
RF ∪ (YXORM2 \ {{e[𝑖]} | 1 ≤ 𝑖 ≤ 3})

= {{b[𝑖]}, {a[𝑖], e[𝑖]}, {a[𝑖], c[𝑗]} | 1 ≤ 𝑖, 𝑗 ≤ 3}
and check if for any O ⊆ YXORM2 \ {{e[𝑖]} | 𝑖 = 1, 2, 3} such that |O| ≤ 𝑑 ,

⋃
O can be simulated

by a set 𝐼 comprising shares of a and at most |O| shares of e. It is indeed the case.
Finally, we get that XORMULTI is (YXORMULTI, 2)-NI.
By checking that any two variable sets of YXORMULTI can be simulated by a set 𝐼 that only con-

tains at most two shares of each input sharing, we can prove that XORMULTI is 2-NI. For instance,
{{b[𝑖]}, {a[3], e[3]}} for 1 ≤ 𝑖 ≤ 3 can be simulated by the set {b[𝑖], a[3]} as E(e[3]) = b[3] ⊕
𝑟2@1 ⊕ 𝑟3@1 is masked by the random variables 𝑟2@1 and 𝑟3@1.

4 ALGORITHMIC VERIFICATION
Wefirst present a proof system for proving simulatability.We then propose algorithms for computing

Y for each gadget so that the gadget is (Y, 𝑑)-NI/(Y, 𝑑)-SNI. Finally, we present algorithms for

verifying 𝑑-NI/𝑑-SNI and 𝑑-probing security through the new notions (Y, 𝑑)-NI/(Y, 𝑑)-SNI.

4.1 A Proof System for Simulatability
Inspired by the notion of dominant random variable [Gao et al. 2019a], we introduce the no-

tion of perfect masking for computations based on which we devise a proof system for proving

simulatability.

A computation 𝑒 is perfectly masked by a random variable 𝑟 if 𝑟 (syntactically) occurs in 𝑒 exactly

once, and each operator ◦ along the path from 𝑟 to the root in the abstract syntax tree of 𝑒 must

satisfy one of the following conditions:

• ◦ ∈ {⊕, +,−,¬};
• ◦ is ⊙ and one of its children is a non-zero constant.

For instance, 𝑘 ⊕ 𝑟 is perfectly masked by 𝑟 while (𝑘 ⊕ 𝑟) ∧ 𝑟 is not perfectly masked by 𝑟 .

Fix a gadget 𝑓 (a1, · · · , a𝑚) and consider a probe 𝑥 on 𝑓 (a1, · · · , a𝑚). If E(𝑥) is perfectly masked

by a random variable 𝑟 , then the evaluation 𝑓 (x1, · · · , x𝑚)𝑥 is uniform for any inputs x1, · · · , x𝑚 . Re-

mark that the above two conditions are designated to obtain the uniform evaluation 𝑓 (x1, · · · , x𝑚)𝑥 .
In general, ◦ can be any univariate bijective function.

For a given computation 𝑒 , let sub(𝑒) denote the set of all the non-trivial sub-computations

in 𝑒 (i.e., including 𝑒 but excluding variables). We lift sub(·) to a set 𝐸 of computations, namely,

sub(𝐸) =
⋃

𝑒∈𝐸 sub(𝑒). For each computation 𝑒 ∈ sub(𝐸) and random variable 𝑟 , we denote by

𝐸 [𝑟/𝑒] the set 𝐸 of computations where all occurrences of 𝑒 are substituted by 𝑟 . This substitution

is called (𝑒, 𝑟)-simplification of 𝐸.

Given a variable set 𝑂 , we denote by E(𝑂) the set of computations {E(𝑥) | 𝑥 ∈ 𝑂}. For
two variable sets 𝑂1 and 𝑂2, we write 𝑂2

(𝑒,𝑟)
−→ 𝑂1, if the following three conditions hold: (i) 𝑒 ∈

sub(E(𝑂2)) is perfectly masked by the random variable 𝑟 ; (ii) 𝑟 only occurs in 𝑒 and does not occur

anywhere else in E(𝑂2); and (iii) E(𝑂2) [𝑟/𝑒] = E(𝑂1). Intuitively, 𝑂2

(𝑒,𝑟)
−→ 𝑂1 if the computations

E(𝑂2) are equivalent to the computations E(𝑂1) after applying an (𝑒, 𝑟)-simplification on E(𝑂2).
Since the random variable 𝑟 only occurs in 𝑒 and does not occur anywhere else in E(𝑂2), 𝑒 can be

seen as a random variable in the computations E(𝑂2). This implies that for any inputs x1, · · · , x𝑚 ,
the evaluation 𝑓 (x1, · · · , x𝑚)𝑂2

remains the same when 𝑒 is replaced by 𝑟 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:15

Proposition 6. If𝑂2

(𝑒,𝑟)
−→ 𝑂1, then for any variable set 𝐼 ,𝑂1 is 𝐼 -simulatable iff𝑂2 is 𝐼 -simulatable.

Proof. Suppose𝑂2

(𝑒,𝑟)
−→ 𝑂1. Then, the computation 𝑒 is perfectly masked by the random variable

𝑟 . Since 𝑟 only occurs in 𝑒 and does not occur anywhere else in E(𝑂2). Thus, we can deduce that

for any fixed inputs x1, · · · , x𝑚 , the evaluation of E(𝑂2) will not change after replacing all the

occurrences of 𝑒 in E(𝑂2) by 𝑟 , which implies that𝑂2 is 𝐼 -simulatable on 𝑓 (a1, · · · , a𝑚) iff 𝐼 suffices

to simulate 𝑂2 after replacing all the occurrences of 𝑒 in E(𝑂2) by 𝑟 . □

The judgement of our proof system is of the form ⊢ 𝐼 { 𝑂 , where 𝐼 and 𝑂 are two sets of

variables in 𝑓 (a1, · · · , a𝑚) such that 𝐼 does not contain any random variable. A judgement ⊢ 𝐼 { 𝑂

is valid iff the probe set 𝑂 is 𝐼 -simulatable.

𝑂 = 𝑂1 ⊎𝑂2 𝑂2 ⊆ 𝐼⋃
𝑥∈𝑂1

Var(E(𝑥)) \ {random variables} ⊆ 𝐼

⊢ 𝐼 { 𝑂
(Comp)

𝑂2

(𝑒,𝑟)
−→ 𝑂1 ⊢ 𝐼 { 𝑂1

⊢ 𝐼 { 𝑂2

(Dom)

Fig. 4. Proof rules.

The proof rules for deriving valid judgments are given in Figure 4. Rule Comp states that the

probe set 𝑂 can be partitioned into two subsets 𝑂1 and 𝑂2 such that 𝑂2 is a subset of 𝐼 and each

variable 𝑦 ∈ Var(E(𝑥)) involved in the computation E(𝑥) for 𝑥 ∈ 𝑂1 is either a random variable or

a member of 𝐼 . Rule Dom leverages Proposition 6 via (𝑒, 𝑟)-simplification. Intuitively, rule Comp

uses only the syntactic information of computations, while rule Dom is semantic where random

variables and operations are exploited. It is easy to see that the proof system is sound.

Theorem 1. If ⊢ 𝐼 { 𝑂 is valid, then the probe set 𝑂 on 𝑓 (a1, · · · , a𝑚) is 𝐼 -simulatable.

Proof. Suppose the judgement ⊢ 𝐼 { 𝑂 is valid, we prove that the probe set𝑂 on 𝑓 (a1, · · · , a𝑚)
is 𝐼 -simulatable by induction on the number𝑚 of derivation steps of the judgement ⊢ 𝐼 { 𝑂 .

• Base case𝑚 = 1. The judgement ⊢ 𝐼 { 𝑂 must be derived by applying the proof rule Comp.

Suppose 𝑂 = 𝑂1 ⊎𝑂2 such that

⋃
𝑥∈𝑂1

Var(E(𝑥)) \ {random variables} ⊆ 𝐼 and 𝑂2 ⊆ 𝐼 . From⋃
𝑥∈𝑂1

Var(E(𝑥)) \ {random variables} ⊆ 𝐼 , we get that𝑂1 is 𝐼 -simulatable. From𝑂2 ⊆ 𝐼 , we get

that 𝑂2 is 𝐼 -simulatable. Thus, 𝑂1 ⊎𝑂2 is 𝐼 -simulatable.

• Inductive step𝑚 > 1. The last derivation step of the judgement ⊢ 𝐼 { 𝑂 must be the proof

rule Dom. Suppose the premises of this step are 𝑂
(𝑒,𝑟)
−→ 𝑂1 and ⊢ 𝐼 { 𝑂1. Then the judgement

⊢ 𝐼 { 𝑂1 can be derived in𝑚 − 1 steps. By the induction hypothesis on the judgement ⊢ 𝐼 { 𝑂1,

we get that 𝑂1 is 𝐼 -simulatable. By Proposition 6, we get that 𝑂 is 𝐼 -simulatable.

This concludes the proof. □

4.2 Computing the Sets Y for Simple Gadgets
Given a security order 𝑑 , a security type 𝜏 ∈ {NI, SNI} and a simple gadget 𝑓 (a1, · · · , a𝑚), procedure
SGadget in Algorithm 1 computes a set Y ensuring (Y, 𝑑)-𝜏 of 𝑓 (a1, · · · , a𝑚). SGadget first

computes a candidate Y at Line 3 each of which is required to simulate a probe 𝑥 on 𝑓 (a1, · · · , a𝑚)
whose computation E(𝑥) only depends on input shares. The set Y is reduced at Line 4 according to

Proposition 2. We then verify if the gadget 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-NI/(Y, 𝑑)-SNI.
If 𝜏 is NI, by Proposition 3, it checks if any set of 𝑑 probes can be simulated by at most 𝑑 variable

sets of Y. This is achieved via invoking the procedure Explore
𝑑
(Line 6), which returns Y such

that 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-NI. Remark that Y initialized at Lines 3–4 may not suffice to ensure

(Y, 𝑑)-NI, thus Y should be extended by Explore
𝑑
(Line 25).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:16 Gao et al.

Algorithm 1 Computing Y for a simple gadget

1: Proc SGadget(𝑓 (a1, · · · , a𝑚), 𝑑, 𝜏)
2: Let (b1, · · · , b𝑘), P and Pint be output sharings, set of all the probes and set of all internal probes of

𝑓 (a1, · · · , a𝑚), respectively
3: Y = {Var(E(𝑥)) ⊆ ⋃𝑚

𝑖=1 a𝑖 | 𝑥 is a probe on 𝑓 (a1, · · · , a𝑚)}
4: Y = {𝑌 ∈ Y | �𝑌 ′ ∈ Y.𝑌 ⊂ 𝑌 ′}
5: if 𝜏 == NI then ⊲ Check (Y, 𝑑)-NI
6: return (Explore

𝑑 ({(𝑑,P)},Y, 𝜏), 𝜏)
7: for (𝑖 = 0; 𝑖 ≤ 𝑑 ; 𝑖 + +) do
8: Y=Explore𝑖 ({(𝑖,Pint), (𝑑 − 𝑖, b1), · · · , (𝑑 − 𝑖, b𝑘)},Y, 𝜏)
9: return (Y, 𝜏)
10: Proc Explore𝑑 ({(𝑑 𝑗 , 𝑋 𝑗)} 𝑗 ,Y, 𝜏)
11: if ∃ 𝑗, 𝑑 𝑗 > |𝑋 𝑗 | then return Y
12: {𝑂 𝑗 } 𝑗 =Choose({(𝑑 𝑗 , 𝑋 𝑗)} 𝑗)
13: (𝑟𝑒𝑠,Y′) = Check

𝑑 (⋃𝑗 𝑂 𝑗 ,Y)
14: if res == ⊤ then ⊲

⋃
𝑗 𝑂 𝑗 is Y

′
-simulatable if res is ⊤

15: {𝑂 𝑗 } 𝑗 = Extend
𝑑 ({(𝑂 𝑗 , 𝑋 𝑗\𝑂 𝑗)} 𝑗 ,Y′) ⊲ Extend the sets (𝑂 𝑗) 𝑗

16: Y′ = Y ⊲ Assign the assumption Y to Y′

17: else if 𝜏 == SNI then ⊲ Fail to prove that

⋃
𝑗 𝑂 𝑗 is Y

′
-simulatable

18: Abort and emit the set

⋃
𝑗 𝑂 𝑗 ⊲

⋃
𝑗 𝑂 𝑗 is a potential leak

19: for 𝑗 ; 0 ≤ 𝑖 𝑗 ≤ 𝑑 𝑗 s.t.
∑

𝑗 𝑖 𝑗 ≠ 0 do ⊲ Explore other possible probe sets

20: Y =Explore𝑑 ({(𝑑 𝑗 − 𝑖 𝑗 ,𝑂 𝑗), (𝑖 𝑗 , 𝑋 𝑗\𝑂 𝑗)} 𝑗 ,Y′, 𝜏)
21: return Y
22: Proc Check𝑑 (𝑂,Y) ⊲ Check if 𝑂 is I simulatable for I ⊆ Y with |I| = 𝑑

23: if ∃I ⊆ Y such that |I| = 𝑑 and ⊢ ⋃ I { 𝑂 is valid then
24: return (⊤, I) ⊲ 𝑂 is I-simulatable

25: Y = Y ∪ {{𝑥} | 𝑥 ∈ 𝑂 ∧ 𝑥 ∉
⋃
Y} ⊲ Fail to prove and extend Y

26: return (⊥,Y) ⊲ 𝑂 is I′-simulatable for I′ ⊆ Y with |I′ | = 𝑑

27: Proc Extend𝑑 ({(𝑂 𝑗 , 𝑋 𝑗)} 𝑗 ,Y) ⊲ Extend (𝑂 𝑗) 𝑗 using the witness Y
28: for all 𝑗, 𝑥 ∈ 𝑋 𝑗 do
29: 𝑂 =

⋃
𝑗 𝑂 𝑗 ∪ {𝑥}

30: (𝑟𝑒𝑠,Y′) =Check𝑑 (𝑂,Y)
31: if 𝑟𝑒𝑠 == ⊤ then
32: 𝑂 𝑗 = 𝑂 𝑗 ∪ {𝑥} ⊲

⋃
𝑗 𝑂 𝑗 is still Y-simulatable after adding 𝑥

33: return {𝑂 𝑗 } 𝑗

If 𝜏 is SNI, it checks for each 0 ≤ 𝑖 ≤ 𝑑 , if any set comprising 𝑖 internal and 𝑑 − 𝑖 external

probes per output sharing b𝑗 can be simulated by at most 𝑖 variable sets of Y. This is done by
invoking Explore

𝑖 ({(𝑖,Pint), (𝑑 − 𝑖, b1), · · · , (𝑑 − 𝑖, b𝑘)},Y, 𝜏) (Line 8), where Pint is the set of all

internal probes on 𝑓 (a1, · · · , a𝑚). We note if 𝜏 is SNI, the set Y initialized at Lines 3–4 will not be

extended by Explore
𝑖
, because it is useless for proving 𝑑-SNI/𝑑-probing security, nor improving

the verification efficiency. If no abort occurs, Y is returned such that 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-SNI,
otherwise a probe set 𝑂 is emitted (Line 18) which is a potential leak. The emitted probe sets are

recorded for further analysis, e.g., manual inspection or other computational-expensive techniques

to remove false positives when the extended Explore (i.e., Algorithm 2) is utilized for checking

𝑑-probing security (cf. Section 4.4).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:17

Explore
𝑑
checks if each probe set 𝑂 in the list of pairs {(𝑑 𝑗 , 𝑋 𝑗)} 𝑗 can be simulated by at most

𝑑 variable sets of Y, where (𝑑 𝑗 , 𝑋 𝑗) denotes taking 𝑑 𝑗 probes from the set 𝑋 𝑗 . (Note that

∑
𝑗 𝑑 𝑗

is the desired security order 𝑑 .) Explore𝑑 first chooses 𝑑 𝑗 probes from 𝑋 𝑗 for each pair (𝑑 𝑗 , 𝑋 𝑗)
(Line 12), resulting in subsets {𝑂 𝑗 } 𝑗 . Then it invokes Check

𝑑
(Line 13) to check if the set

⋃
𝑗 𝑂 𝑗

can be simulated by a set I of 𝑑 variable sets of Y. The procedure Check𝑑 returns a pair (𝑟𝑒𝑠,Y′)
comprising a flag 𝑟𝑒𝑠 and a family Y′

of variable sets. If there exists I ⊆ Y such that |I| = 𝑑

and ⊢ ⋃
I {

⋃
𝑗 𝑂 𝑗 is valid, Check

𝑑
returns (⊤, I), where I is the witness of the proof (Line 24).

Otherwise, Check
𝑑
returns (⊥,Y) where Y is extended with

⋃
𝑗 𝑂 𝑗 so that

⋃
𝑗 𝑂 𝑗 can be simulated

by 𝑑 variable sets after updating Y (Lines 25 and 26).

• If 𝑟𝑒𝑠 = ⊤, Explore𝑑 invokes the procedure Extend
𝑑
(Line 15) which for each pair (𝑂 𝑗 , 𝑋 𝑗 \

𝑂 𝑗), extends 𝑂 𝑗 with probes 𝑥 ∈ 𝑋 𝑗 \ 𝑂 𝑗 if the proof witness Y
′
is still able to prove the

extended probe set (Lines 30–32).

• If 𝑟𝑒𝑠 = ⊥ and 𝜏 = SNI, Explore𝑑 aborts and emits the probe set

⋃
𝑗 𝑂 𝑗 on which we failed

to prove (Line 18).

After that, to cover all the desired probe sets, the pairs {(𝑑 𝑗 , 𝑋 𝑗)} 𝑗 are partitioned into the pairs

{(𝑑 𝑗 − 𝑖 𝑗 ,𝑂 𝑗), (𝑖 𝑗 , 𝑋 𝑗 \ 𝑂 𝑗)} 𝑗 for all the combinations {𝑖 𝑗 } 𝑗 such that 0 ≤ 𝑖 𝑗 ≤ 𝑑 𝑗 and
∑

𝑗 𝑖 𝑗 ≠ 0,

where

∑
𝑗 𝑖 𝑗 ≠ 0 ensures that the exploring probe sets always contain probes from some 𝑋 𝑗 \𝑂 𝑗 ,

because otherwise they would have been proved. For each combination {𝑖 𝑗 } 𝑗 , Explore𝑑 recursively

invokes Explore
𝑑
to check the worklist {(𝑑 𝑗 − 𝑖 𝑗 ,𝑂 𝑗), (𝑖 𝑗 , 𝑋 𝑗 \𝑂 𝑗)} 𝑗 with the up-to-date set Y′

in the loop at Lines 7–8. Note that Y′
is an extension of Y if 𝑟𝑒𝑠 = ⊥. We remark that the loop at

Lines 7–8 exits early only when a probe set 𝑂 cannot be proved (i.e., an abort occurs at Line 18)

for computing Y of a simple gadget to be (Y, 𝑑)-SNI. Otherwise, the for-loop will not exit early,

because we have to make sure that none of possible probe sets result in an abort for the initial Y.

Theorem 2. The procedure SGadget(𝑓 (a1, · · · , a𝑚), 𝑑, 𝜏) always terminates and if it returns (Y, 𝜏)
for 𝜏 ∈ {NI, SNI}, then the simple gadget 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-𝜏 .
The termination of SGadget(𝑓 (a1, · · · , a𝑚), 𝑑, 𝜏) follows from Lemmas 3 and 4. We first prove

two invariant properties of all the invocations of the procedure Explore
𝑑
by induction on the

number of invocations of the procedure Explore
𝑑
.

Lemma 3. In Algorithm 1, each invocation Explore
𝑑 ({(𝑑 𝑗 , 𝑋 𝑗)} 𝑗 ,Y, 𝜏) has the following two

properties:
(1)

∑
𝑗 𝑑 𝑗 = 𝑑 if 𝜏 = NI and

∑
𝑗 𝑑 𝑗 ≤ 𝑘𝑑 if 𝜏 = SNI, where 𝑘 ≥ 1 is the number of output sharings;

(2) and
⋃

𝑗 𝑋 𝑗 = P, where P denotes the set of all the probes on 𝑓 (a1, · · · , a𝑚).

Now, we can show that Explore
𝑑
in Algorithm 1, hence Algorithm 1, always terminates.

Lemma 4. Each invocation of the procedure Explore𝑑 in Algorithm 1 always terminates

Proof. Observe that at each step of the recursive invocation of the procedure Explore
𝑑
, all the

sets {𝑋 𝑗 } are partitioned into two subsets {𝑂 𝑗 , 𝑋 𝑗 \𝑂 𝑗 } 𝑗 such that

⋃
𝑗 𝑂 𝑗 is non-empty and at least

one index 𝑖 𝑗 is non-zero. By Lemma 3, we have:

∑
𝑗 𝑑 𝑗 = 𝑑 if 𝜏 = NI and

∑
𝑗 𝑑 𝑗 ≤ 𝑘𝑑 if 𝜏 = SNI, and⋃

𝑗 𝑋 𝑗 = P. Therefore, along with the recursion, the number of 𝑑 𝑗 ’s decreases and the cardinality of

each 𝑋 𝑗 decreases, until there exists 𝑗 such that 𝑑 𝑗 > |𝑋 𝑗 |, Hence, the recursive invocation always

terminates. □

The following lemma ensures the correctness of Theorem 2.

Given a list of pairs {(𝑑 𝑗 , 𝑋 𝑗)} 𝑗 , let C({(𝑑 𝑗 , 𝑋 𝑗)} 𝑗) denote the set of all the possible subsets𝑂 ⊆ P
such that 𝑂 contains 𝑑 𝑗 elements of 𝑋 𝑗 for each pair (𝑑 𝑗 , 𝑋 𝑗), where P denotes the set of all the

probes.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:18 Gao et al.

Algorithm 2 Extended Explore

1: Proc ExtExplore𝑑 ({(𝑑 𝑗 ,X𝑗)} 𝑗 ,Y, 𝜏)
2: if ∃ 𝑗, 𝑑 𝑗 > |X𝑗 | then return Y
3: {O𝑗 } 𝑗 =ExtChoose({(𝑑 𝑗 ,X𝑗)} 𝑗)
4: (𝑟𝑒𝑠,Y′) = ExtCheck

𝑑 (⋃𝑗 O𝑗 ,Y)
5: if res == ⊤ then
6: {O𝑗 } 𝑗 = ExtExtend

𝑑 ({(O𝑗 ,X𝑗\O𝑗)} 𝑗 ,Y′)
7: Y′ = Y
8: else if 𝜏 == SNI then Abort and emit the set

⋃
𝑗 O𝑗

9: for 𝑗 ; 0 ≤ 𝑖 𝑗 ≤ 𝑑 𝑗 s.t.
∑

𝑗 𝑖 𝑗 ≠ 0 do Y =ExtExplore𝑑 ({(𝑑 𝑗 − 𝑖 𝑗 ,O𝑗), (𝑖 𝑗 ,X𝑗\O𝑗)} 𝑗 ,Y′, 𝜏)
10: return Y
11: Proc ExtCheck𝑑 (O,Y)
12: if ∃I ⊆ Y. |I| = 𝑑∧ ⊢ ⋃ I { ⋃

O then return (⊤, I)
13: Y = Y ∪ {𝑌 ∈ O | �𝑌 ′ ∈ Y.𝑌 ⊆ 𝑌 ′}
14: return (⊥,Y)
15: Proc ExtExtend𝑑 ({(O𝑗 ,X𝑗)} 𝑗 ,Y)
16: for all 𝑗, 𝑋 ∈ X𝑗 do
17: O =

⋃
𝑗 O𝑗 ∪ {𝑋 }

18: (𝑟𝑒𝑠,Y′) =ExtCheck𝑑 (O,Y)
19: if 𝑟𝑒𝑠 == ⊤ then O𝑗 = O𝑗 ∪ {𝑋 }
20: return {O𝑗 } 𝑗

Lemma 5. Suppose no abort occurs during all the invocations of Explore𝑑 and (Y, 𝜏) is the return
of Algorithm 1. For every invocation of Explore𝑑 with a list of pairs {(𝑑 𝑗 , 𝑋 𝑗)} 𝑗 and every probe set
𝑂 ∈ C({(𝑑 𝑗 , 𝑋 𝑗)} 𝑗), 𝑂 is covered, i.e., there exist a probe set 𝑂 ′ and a set of variable sets I ⊆ Y such
that 𝑂 ⊆ 𝑂 ′, |I| = 𝑑 and the judgement ⊢ ⋃ I { 𝑂 ′ is valid.

Proof. By induction on the number ℎ of invocations of the procedure Explore
𝑑
, where the base

case is the largest ℎ. Note that the largest ℎ exists by Lemma 4.

• Base case. Since no abort occurs during all the invocations of Explore𝑑 , then the ℎ-th invocation

of the procedure Explore
𝑑
must return at Algorithm 1 Line 11. Hence, there exists a pair (𝑑 𝑗 , 𝑋 𝑗)

such that 𝑑 𝑗 > |𝑋 𝑗 |. This implies that C({(𝑑 𝑗 , 𝑋 𝑗)} 𝑗) = ∅, thus, the result follows.
• Inductive step. Let {𝑂 𝑗 } 𝑗 be the sets before calling Explore

𝑑
at Algorithm 1 Line 20. For every

set 𝑂 ∈ C({(𝑑ℎ𝑗 , 𝑋ℎ
𝑗)} 𝑗), either 𝑂 ⊆ ⋃

𝑗 𝑂 𝑗 or 𝑂 ⊈
⋃

𝑗 𝑂 𝑗 . If 𝑂 ⊆ ⋃
𝑗 𝑂 𝑗 , the result follows from

the fact that Check
𝑑 (⋃𝑗 𝑂 𝑗) succeeds. If 𝑂 ⊈

⋃
𝑗 𝑂 𝑗 , then there must exist a combination of

values 𝑖 𝑗 : 0 ≤ 𝑖 𝑗 ≤ 𝑑 𝑗 such that

∑
𝑗 𝑖 𝑗 ≠ 0 and 𝑂 ∈ C({(𝑑 𝑗 − 𝑖 𝑗 ,𝑂 𝑗), (𝑖 𝑗 , 𝑋 𝑗\𝑂 𝑗)} 𝑗). By the

induction hypothesis, 𝑂 is covered.

This concludes the proof. □

4.3 Computing the Sets Y for Composite Gadgets
To compute the setsY for composite gadgets, as shown in Algorithm 2, we first extend the procedure

Explore
𝑑
such that variable sets 𝑋 𝑗 in the pairs {(𝑑 𝑗 , 𝑋 𝑗)} 𝑗 are sets X𝑗 of variable sets for which

𝑑 𝑗 variable sets of X𝑗 are added to 𝑂 𝑗 while other operations are generalized accordingly.

Following Lemmas 3 and 4, we can get that

Lemma 6. ExtExplore
𝑑 ({(𝑑 𝑗 ,X𝑗)} 𝑗 ,Y, 𝜏) has following properties:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:19

Algorithm 3 Computing Y for a composite gadget

1: Proc CGadget(𝑔(a′
1
, · · · , a′

𝑘
), 𝑑)

2: Let gstmt be the sequence of gadget calls of 𝑔(a′
1
, · · · , a′

𝑘
)

3: return GadgetCalls(gstmt, 𝑑) ⊲ Check gstmt

4: Proc Gadget(𝑓 (a1, · · · , a𝑚), 𝑑)
5: if 𝑓 is a simple gadget then
6: (Y, 𝜏) =SGadget(𝑓 (a1, · · · , a𝑚), 𝑑, SNI) ⊲ To prove (Y, 𝑑)-SNI
7: if Aborted then ⊲ Fail to prove (Y, 𝑑)-SNI
8: (Y, 𝜏) =SGadget(𝑓 (a1, · · · , a𝑚), 𝑑,NI) ⊲ To prove (Y, 𝑑)-NI
9: else (Y, 𝜏) =CGadget(𝑓 (a1, · · · , a𝑚), 𝑑)
10: return (Y, 𝜏)
11: Proc GadgetCalls(gstmt, 𝑑) ⊲ Recursively check gstmt
12: x1, · · · , xℎ =ℓ 𝑓 (y1, · · · , y𝑚) is Head(gstmt) ⊲ Get the head of gstmt
13: (Y, 𝜏) =Gadget(𝑓 (a1, · · · , a𝑚), 𝑑)
14: Y = Y[y1/a1, · · · , y𝑚/a𝑚]@ℓ ⊲ Rename the variables of Y
15: if Tail(gstmt)==empty then return (Y, 𝜏)
16: (Y1, 𝜏1) =GadgetCalls(Tail(gstmt), 𝑑)
17: Y′

1
= Y1 \ {{x𝑗 [𝑖]} | 1 ≤ 𝑖 ≤ 𝑡 + 1, 1 ≤ 𝑗 ≤ ℎ}

18: Y = Y ∪ Y′
1

19: if 𝜏 == SNI then ⊲ Check the condition of Lemma 2

20: for (𝑖 = 1; 𝑖 ≤ 𝑑 ; 𝑖 + +) do
21: Y2 = {𝐼 | 𝐼 comprises 𝑖 shares of x𝑗 for each 𝑗 and all the input shares of Tail(gstmt)}
22: ExtExplore

𝑖 ({(𝑖,Y′
1
)},Y2, SNI)

23: if Aborted or 𝜏 == NI then ⊲ Check the condition of Lemma 1

24: Let P be the set of all the probes of 𝑓 (a1, · · · , a𝑚)
25: 𝑋 = P[y1/a1, · · · , y𝑚/a𝑚]@ℓ

26: for (𝑖 = 1; 𝑖 < 𝑑 ; 𝑖 + +) do
27: Y =ExtExplore𝑑 ({(𝑖, {{𝑥}}𝑥∈𝑋), (𝑑 − 𝑖,Y1)},Y,NI)
28: return (Y, 𝜏 ′)

(1)
∑

𝑗 𝑑 𝑗 = 𝑑 if 𝜏 = NI and
∑

𝑗 𝑑 𝑗 ≤ 𝑘𝑑 if 𝜏 = SNI, where 𝑘 ≥ 1 is the number of output sharings;
(2) each invocation of ExtExplore𝑑 in Algorithm 2 always terminates;
(3) each set O ∈ C({(𝑑 𝑗 ,X𝑗)} 𝑗) is covered if no abort occurs, where C({(𝑑 𝑗 , 𝑋 𝑗)} 𝑗) now denotes

the set of all the sets O comprising of 𝑑 𝑗 sets from X𝑗 for each pair (𝑑 𝑗 ,X𝑗).

According to Lemmas 1 and 2, we present the procedure CGadget in Algorithm 3. Given a

composite gadget 𝑔(a′
1
, · · · , a′

𝑘
) and a security order 𝑑 , it computes a set Y such that the gadget

𝑔(a′
1
, · · · , a′

𝑘
) is (Y, 𝑑)-NI/(Y, 𝑑)-SNI by invoking the procedure GadgetCalls (Line 3) with the

sequence gstmt of gadget calls in the body of 𝑔(a′
1
, · · · , a′

𝑘
).

GadgetCalls(gstmt, 𝑑) first computes a setY for the first gadget call x1, · · · , xℎ =ℓ 𝑓 (y1, · · · , y𝑚)
of gstmt by invoking Gadget (Line 13), which returns a pair (Y, 𝜏) such that 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-
𝜏 with 𝜏 ∈ {NI, SNI}, where (Y, 𝑑)-NI is used only if an abort occurs when proving (Y, 𝑑)-SNI. The
set Y is revised accordingly using the actual parameters {y𝑗 }1≤ 𝑗≤𝑚 and the label ℓ (Line 14). The

pair (Y, 𝜏) is returned (Line 15) if the tail Tail(gstmt) is empty. Otherwise, it invokes GadgetCalls

to recursively compute a pair (Y1, 𝜏1) for the tail Tail(gstmt) such that Tail(gstmt) is (Y1, 𝑑)-𝜏1,
where Tail(gstmt) is regarded as a gadget.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:20 Gao et al.

Algorithm 4 Checking 𝑑-probing security

1: Proc Probing(𝑓 (a1, · · · , a𝑚), 𝑑)
2: (Y, 𝜏) =Gadget(𝑓 (a1, · · · , a𝑚), 𝑑)
3: ExtExplore

𝑑 ({(𝑑,Y)}, ∅, SNI)
4: for all probe sets 𝑂 emitted by Algorithm 2 at Line 8 do
5: 𝑟 =CheckByGPUEnum(𝑂)
6: if 𝑟 == No then return 𝑂 ⊲ 𝑂 is a potential flaw

7: return Yes ⊲ 𝑓 (a1, · · · , a𝑚) is 𝑑-probing secure

After proving that first gadget call is (Y, 𝑑)-𝜏 and the remaining gadget calls is (Y1, 𝑑)-𝜏1, we
compute the set Y of gstmt from Y and Y1 (Line 18), analogous to 𝜙𝑔◦𝑓 (Y𝑓 ,Y𝑔) in Lemmas 1 and 2.

We check the composition condition according to the security type 𝜏 of the gadget 𝑓 (a1, · · · , a𝑚).
• If 𝜏 = SNI, the condition of the composition rule R2 (i.e., Lemma 2) is checked by invoking

ExtExplore, i.e., the extension of the procedure Explore.

• If abort occurs during the loop at Lines 20–22 or 𝜏 is NI, the condition of the composition

rule R1 (i.e., Lemma 1) is checked by invoking ExtExplore.

Theorem 3. The procedure Gadget(𝑓 (a1, · · · , a𝑚), 𝑑) always terminates and if it returns (Y, 𝜏)
for 𝜏 ∈ {NI, SNI}, then the gadget 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-𝜏 .
Termination of Gadget(𝑓 (a1, · · · , a𝑚), 𝑑) follows from Lemma 6 and the correctness of Theo-

rem 3 follows from Lemma 1, Lemma 2 and Theorem 2.

4.4 Verifying 𝑑-Probing Security
We present the procedure Probing shown in Algorithm 4, to verify if a gadget is 𝑑-probing se-

cure by first proving (Y, 𝑑)-NI or (Y, 𝑑)-SNI. Probing(𝑓 (a1, · · · , a𝑚), 𝑑) checks if 𝑓 (a1, · · · , a𝑚) is
𝑑-probing secure when the computations of input sharings a𝑗 [𝑡 + 1] =𝑚𝑠 (𝑎 𝑗 , a𝑗 [1], · · · , a𝑗 [𝑡]) for
1 ≤ 𝑗 ≤ 𝑚 and𝑚𝑠 ∈ {+, ⊕} are given. It first invokes Gadget(𝑓 (a1, · · · , a𝑚), 𝑑) to compute a pair

(Y, 𝜏) so that 𝑓 (a1, · · · , a𝑚) is (Y, 𝑑)-𝜏 . Next, by Proposition 4, it checks if any 𝑑 variable sets of Y
can be simulated without using any secrets 𝑎1, · · · , 𝑎𝑚 by invoking ExtExplore

𝑑 ({(𝑑,Y)}, ∅, SNI).
The parameter 𝜏 is set to SNI when invoking ExtExplore

𝑑
, to disallow the update of Y during

checking. All the emitted probe sets 𝑂 by Algorithm 2 at Line 8 are recorded during ExtEx-

plore
𝑑 ({(𝑑,Y)}, ∅, SNI). These sets are potential leaks. To remove as many false positives as

possible, for each potential leak𝑂 emitted by Algorithm 2 at Line 8 on which the proof system fails,

we invoke the procedure CheckByGPUEnum(𝑂) which computes the evaluation (i.e., distribution)

𝑓 (a1, · · · , a𝑚)𝑂 by iteratively enumerating all the possible valuations of the secrets and random

variables fromF, similar tomaskVerif andHOME [Gao et al. 2021]. In our implementation, we adopt

the GPU-based brute-force algorithm in HOME. The gadget 𝑓 (a1, · · · , a𝑚) is 𝑑-probing secure, if
either no probe set 𝑂 is emitted at Line 8 of Algorithm 2 or all of them are proved by invoking

CheckByGPUEnum. Otherwise, 𝑂 is a potential flaw.

Theorem 4. 𝑓 (a1, · · · , a𝑚) is 𝑑-probing secure if Probing(𝑓 (a1, · · · , a𝑚), 𝑑) returns Yes.
The correctness of Theorem 4 follows from Proposition 4 and Theorem 3.

4.5 Verifying 𝑑-NI and 𝑑-SNI
We present the procedures CheckNI and CheckSNI shown in Algorithm 5, to verify if a gadget

𝑓 (a1, · · · , a𝑚) is 𝑑-NI or 𝑑-SNI by first proving (Y, 𝑑)-NI or (Y, 𝑑)-SNI.
Procedure CheckNI(𝑓 (a1, · · · , a𝑚), 𝑑) checks whether 𝑓 (a1, · · · , a𝑚) is 𝑑-NI. It computes a set Y

so that 𝑓 (a1, · · · , a𝑚) is either (Y, 𝑑)-NI or (Y, 𝑑)-SNI. It then computes the setX = {{a𝑗 [𝑖 𝑗]}1≤ 𝑗≤𝑚 |

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:21

Algorithm 5 Checking 𝑑-NI and 𝑑-SNI

1: Proc CheckNI(𝑓 (a1, · · · , a𝑚), 𝑑) ⊲ Check if 𝑓 (a1, · · · , a𝑚) is 𝑑-NI
2: (Y, 𝜏) =Gadget(𝑓 (a1, · · · , a𝑚), 𝑑) ⊲ 𝜏 is SNI or NI
3: X = {{a𝑗 [𝑖 𝑗]}1≤ 𝑗≤𝑚 | 1 ≤ 𝑖 𝑗 ≤ 𝑡 + 1}
4: ExtExplore

𝑑 ({(𝑑,Y)},X, SNI) ⊲ Check the condition of Proposition 5

5: return Yes

6: Proc CheckSNI(𝑓 (a1, · · · , a𝑚), 𝑑) ⊲ Check if 𝑓 (a1, · · · , a𝑚) is 𝑑-SNI
7: (Y, 𝜏) =Gadget(𝑓 (a1, · · · , a𝑚), 𝑑) ⊲ 𝜏 is SNI or NI
8: if 𝜏 ≠ SNI then return No ⊲ Fail to prove that 𝑓 (a1, · · · , a𝑚) is Y-SNI
9: X = {{a𝑗 [𝑖 𝑗]}1≤ 𝑗≤𝑚 | 1 ≤ 𝑖 𝑗 ≤ 𝑡 + 1}
10: ExtExplore

𝑑 ({(𝑑,Y)},X, SNI) ⊲ Check the condition of Proposition 5

11: return Yes ⊲ 𝑓 (a1, · · · , a𝑚) is Y-SNI

1 ≤ 𝑖 𝑗 ≤ 𝑡 + 1}, where each set {a𝑗 [𝑖 𝑗]}1≤ 𝑗≤𝑚 contains one input share of each input sharing a𝑗 .
Next, following Proposition 5, it invokes ExtExplore

𝑑 ({(𝑑,Y)},X, SNI) which checks if any 𝑑

variable sets of Y can be simulated by a set comprising at most 𝑑 input shares of each input sharing

a𝑗 . Recall that 𝜏 is set to SNI when invoking ExtExplore
𝑑
, to disallow the update of X during

checking. If CheckNI(𝑓 (a1, · · · , a𝑚), 𝑑) returns Yes, 𝑓 (a1, · · · , a𝑚) is 𝑑-NI.
Procedure CheckSNI(𝑓 (a1, · · · , a𝑚), 𝑑) checks whether the gadget 𝑓 (a1, · · · , a𝑚) is𝑑-SNI, similar

to CheckNI(𝑓 (a1, · · · , a𝑚), 𝑑), except that 𝜏 should be SNI.

Theorem 5. If the procedure CheckNI(𝑓 (a1, · · · , a𝑚), 𝑑) (resp. CheckSNI(𝑓 (a1, · · · , a𝑚), 𝑑)) re-
turns Yes, then the gadget 𝑓 (a1, · · · , a𝑚) is 𝑑-NI (resp. 𝑑-SNI).

The correctness of Theorem 5 follows from Proposition 5 and Theorem 3.

We remark that in theory, the (worse case) time-complexity of the verification (as well as

verifying the conditions in Lemmas 1 and 2) is exponential in the number of variables after inlining

no matter whether Lemmas 1 and 2 are applied. The composition of gadgets (i.e., Lemmas 1 and 2)

is polynomial in the number of variables when the conditions hold. In our experiments, Lemmas 1

and 2 are very effective in improving efficiency, cf. Table 3 for comparison between our tool and

the state-of-the-art tool maskVerif [Barthe et al. 2019].

5 EVALUATION
We implement our algorithms as a verification tool CONVINCE. We first evaluate the scalability of

CONVINCE on various higher-order composite gadgets based on efficient masked implementations

of finite-field multiplication, the key non-linear building block of symmetric ciphers. We then

show how to utilize CONVINCE to explore the design space of efficient higher-order masked

implementations based on the AES Sbox, and report more efficient variants. All those efficient

higher-order composite gadgets cannot be verified by all the existing compositional verification

approaches.

All experiments were conducted on a server with CentOS 7.6, Intel(R) Xeon(R) CPU E5-2690

v4@2.60GHz and 256GB RAM (only one core is used in our experiments).

In summary, the experimental results confirm that CONVINCE is more effective than the state-of-

the-art compositional approaches for proving efficient masked implementations of cryptographic

algorithms, and can be utilized by cryptographers to devise efficient and provable secure crypto-

graphic software and hardware.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:22 Gao et al.

Table 1. Statistics of four masked finite-field multiplication

𝑑
SecMult Para Comp UMA

#r #⊕ #∧ Type #r #⊕ #∧ Type #r #⊕ #∧ Type #r #⊕ #∧ Type

2 3 12 9 2-SNI 3 12 9 2-SNI 2 10 9 2-NI 2 10 9 2-NI
3 6 24 16 3-SNI 4 20 16 3-NI 4 20 16 3-NI 4 20 16 3-NI
4 10 40 25 4-SNI 5 30 25 4-NI 5 30 25 4-NI 5 30 25 4-NI
5 15 60 36 5-SNI 12 48 36 5-NI 11 45 36 5-NI 9 48 36 5-NI

5.1 Scalability of CONVINCE
To evaluate the effectiveness and efficiency of our approach for checking 𝑑-probing security, 𝑑-NI
and 𝑑-SNI of composite gadgets, we built benchmarks from four base composite gadgets, called B1,
B2, B3 and B4, where B1 is XORMULTI, the last three are taken from [Belaïd et al. 2018] (cf. Figure 1,

10 and 15 of [Belaïd et al. 2018]), all of which rely on finite-field multiplication. When SecMult is
used for finite-field multiplication in [Belaïd et al. 2018], B2with order-𝑡 secret masking is 𝑑-probing

secure for any orders 𝑡 and 𝑑 ≤ 𝑡 , B3 with order-𝑡 secret masking is not 𝑡-probing secure for some

(unknown) order 𝑡 , and B4 with order-𝑡 secret masking is a fixed version of B3 by refreshing one

of the input sharings of SecMult using a 𝑡-SNI Refresh gadget, and is 𝑑-probing secure for any

orders 𝑡 and 𝑑 ≤ 𝑡 .

We use three efficient masked implementations for finite-field multiplication, i.e., Para [Barthe

et al. 2017], Comp [Belaïd et al. 2016] and UMA [Groß and Mangard 2018], whose numbers of

randomness bits (#r), XOR operations (#⊕), AND operations (#∧), and security types are shown

Table 1, compared over the finite-field multiplication gadget SecMult [Ishai et al. 2003] originally
used in all four base composite gadgets. The corresponding security properties of those simple

gadgets are the best ones and can be proved by many existing tools such as maskVerif [Barthe
et al. 2019] and our tool CONVINCE. We did not compare CONVINCE with others on these simple

gadgets, because it is not the focus of this work. Note that Comp and UMA (resp. Para and UMA) are
the same implementations when the masking order 𝑡 = 2 (resp. 𝑡 = 3, 4) and all those gadgets for

finite-field multiplications with the same masking order are functionally equivalent.

Our benchmarks are obtained by equivalently replacing the gadget SecMult in a base gadget

“Base” with one efficient finite-field multiplication gadget “Multi”, yielding the benchmark “Base”
+ “Multi”. For instance, B1 + Para is the benchmark where the gadget Para is used for finite-field

multiplication in the base gadget B1. These give rise to a total of 12 combinations, none of which

with order-𝑑 secret masking can be proved of𝑑-probing secure or𝑑-NI by the existing compositional

approaches. We remark that none of B1, B2, B3 and B4 with the finite-field multiplication gadget

SecMult can be proved by the compositional approach [Barthe et al. 2016] as claimed in [Belaïd et al.

2018]. When SecMult in B1, B2, B3 and B4 are replaced with more efficient ones, the compositional

approach [Barthe et al. 2016] still fails while the resulting gadgets further go beyond the verification

capability of [Belaïd et al. 2018].

When verifying 𝑑-probing security, to ensure that any two input sharings are mutually indepen-

dent, presharing operations are added for each benchmark using Boolean secret masking, which

first computes sharings of input secrets and then invokes the benchmark with those sharings. As

mentioned in [Belaïd et al. 2016], from a practical point of view, cases 𝑑 ≤ 4 are actually used in

current real-life implementations. Thus, we consider secret masking orders 𝑑 such that 2 ≤ 𝑑 ≤ 5.

We do not consider the case 𝑑 = 1 because it is too trivial.

The verification results are reported in Table 2, where the security order 𝑑 is set to the masking

order 𝑡 . Column (Name) shows the benchmark name. Column (Result) shows the strongest security

type proved via CONVINCE, where ✗ denotes that there are some subsets of Y (the number of

such subsets is provided in the parentheses) that cannot be proved secure while all the other cases

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:23

Table 2. Verification results, where PS=Probing Security

Name

2nd-order 3rd-order 4th-order 5th-order

Result Time(s) Result Time(s) Result Time(s) Result Time(s)

B1+Para 2-NI 0.01 3-NI 0.19 4-NI 5 5-NI 255

B1+Comp 2-NI 0.01 3-NI 0.27 4-NI 6 5-NI 244

B1+UMA 2-NI 0.01 3-NI 0.19 4-NI 5 5-NI 288

B2+Para 2-PS 0.01 3-PS 0.17 4-PS 5 5-PS 374

B2+Comp 2-PS 0.01 3-PS 0.25 4-PS 6 5-PS 240

B2+UMA 2-PS 0.01 3-PS 0.17 4-PS 5 5-PS 279

B3+Para 2-PS 0.01 3-PS 0.42 ✗ (30) 21 ✗ (287) 738

B3+Comp 2-PS 0.01 3-PS 0.63 ✗ (30) 22 ✗ (287) 730

B3+UMA 2-PS 0.01 3-PS 0.42 ✗ (30) 21 ✗ (287) 770

B4+Para 2-PS 0.02 3-PS 0.72 4-PS 41 5-PS 2,849

B4+Comp 2-PS 0.02 3-PS 0.79 4-PS 41 5-PS 2,809

B4+UMA 2-PS 0.02 3-PS 0.72 4-PS 41 5-PS 2,854

are proved without invoking CheckByGPUEnum. Column (Time) shows the execution time in

seconds. We can observe that the security of all the benchmarks can be quickly proved in a few

seconds when the security order is no more than 3. At the 4th-order and 5th-order, CONVINCE
can still prove the security of 9 out of 12 benchmarks. To better understand the effectiveness of

our approach on these benchmarks, we manually check them to identify the strongest security

properties they may have. We find that (1) gadgets that are proved 𝑑-probing secure (PS) are indeed

not 𝑑-NI, (2) gadgets that are proved 𝑑-NI are not 𝑑-SNI, and (3) gadgets that cannot be proved

𝑑-probing secure remain unknown (6 cases) because they are too complicated to be determined

manually or proved automatically using existing tools including ours.

In detail, XORMULTI with the gadgets Para, Comp and UMA are proved of 𝑑-NI for all 𝑑 ∈ {2, 3, 4, 5}.
Example1, Example2 and Example2Corr with the gadgets Para, Comp and UMA are proved of 𝑑-

probing secure for 𝑑 ∈ {2, 3, 4, 5}, except for Example2 at 4th-order and 5th-order. Interestingly,

we prove that Example2 is actually 𝑑-probing secure for any 𝑑 ∈ {2, 3} when SecMult is replaced
by any of the Para, Comp and UMA. We found that Example2 has 30 subsets at 4th-order and 287

subsets at 5th-order that cannot be proved secure. We analyzed them manually and confirmed

that Example2 is indeed not 𝑑-probing security for any 𝑑 ∈ {4, 5} and any of the gadgets Para,
Comp and UMA. (Note that Example2 with masking order 𝑑 was not 𝑑-probing secure for some order

𝑑 [Belaïd et al. 2018]; it remains an open question to identify such an order explicitly.)

Recall that our composition rules, as well as Algorithm 3, may not produce the smallest set Y to

ensure (Y, 𝑑)-NI/(Y, 𝑑)-SNI. Nevertheless, our results show that Algorithm 3 is able to compute a

sufficiently satisfactory set Y for each gadget by which 𝑑-probing security or 𝑑-NI can be proved.

5.2 Application to the AES Sbox
We show how to utilizeCONVINCE to explore the design space of efficient masked implementations

based on the AES Sbox.

[Goudarzi and Rivain 2017] proposed a secure and efficient bitsliced masked implementation

of the AES Sbox (GR-Sbox) using order-𝑑 Boolean secret masking, which contains 32 gadget calls

to the 𝑑-SNI finite-field multiplication SecMult. In this implementation, for each SecMult, one of
two operands is refreshed via a 𝑑-SNI refresh gadget, resulting in 32 𝑑-SNI refresh gadget calls. To

obtain verified efficient implementations of the AES Sbox which is the key building block of AES,

[Belaïd et al. 2018] developed tightPROVE and proved that GR-Sbox remains 𝑑-probing secure at

any masking order 𝑑 with no 𝑑-SNI refresh gadget call prior to each SecMult, named BGR-Sbox.
This yields the AES Sbox with less refreshing. However, prior to this work it was an open problem

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:24 Gao et al.

Table 3. Statistics of Sboxes and verification time, where Timeout (T.O.) is set to be 10 hours

Benchmark #r

Number of operators

CONVINCE
maskVerif SILVER

XOR AND NOT Total [Barthe et al. 2015] [Knichel et al. 2020]

2nd-Order

GR-Sbox 192 825 288 4 1,117 19s 270s T.O.

BGR-Sbox 96 633 288 4 925 39s 252s T.O.

P-Sbox-v1 96 633 288 4 925 38s 563s T.O.

C-Sbox-v1 68 577 288 4 869 52s 466s T.O.

P-Sbox-v2 96 633 288 4 925 39s 449s T.O.

C-Sbox-v2 86 613 288 4 905 34s 665s T.O.

3rd-Order

GR-Sbox 384 1,484 512 4 2,000 1,837s T.O. T.O.

BGR-Sbox 192 1,100 512 4 1,616 22,463s T.O. T.O.

P-Sbox-v1 172 1,060 512 4 1,576 26,295s T.O. T.O.

C-Sbox-v1 172 1,060 512 4 1,576 25,912s T.O. T.O.

P-Sbox-v2 182 1,080 512 4 1,596 17,557s T.O. T.O.

C-Sbox-v2 182 1,080 512 4 1,596 17,186s T.O. T.O.

whether BGR-Sbox could be improved further. We show that CONVINCE can be used to explore the

design space of efficient gadgets using BGR-Sbox and report more efficient variants of BGR-Sbox.
To explore the design space of efficient gadgets using BGR-Sbox, we use two efficient masked

implementations for finite-field multiplication, i.e., Para [Barthe et al. 2017] and Comp [Belaïd et al.

2016] whose numbers of randomness bits (#r), XOR operations (#⊕), AND operations (#∧), and
security types are shown Table 1, compared over the finite-fieldmultiplication gadget SecMult [Ishai
et al. 2003]. All those gadgets for finite-field multiplications with the same masking order are

functionally equivalent.

We iteratively substitute one of 32 gadget calls to SecMult in BGR-Sboxwith themore efficient one

Para and verify if the implementation remains probing secure using CONVINCE. The substitution
is kept if it is secure, and this process is repeated until no more SecMult can be substituted, yielding

a new implementation, called P-Sbox-v1. Based on P-Sbox-v1, we apply similar substitutions to

SecMult and Para using Comp, yielding a new gadget, called C-Sbox-v1, as Comp is more efficient

than Para at the 2nd-order. Table 3 reports the amount of randomness and numbers of operations

of P-Sbox-v1 and C-Sbox-v1, compared to GR-Sbox and BGR-Sbox. We can observe that in general

P-Sbox-v1 and C-Sbox-v1 are more efficient than the state-of-the-art Sbox BGR-Sbox. To satisfy the

composition rules proposed by [Belaïd et al. 2018] so that one can build provable secure masked

implementations of full AES using more efficient implementations of Sbox, some gadget calls to

Para/Comp gadgets in P-Sbox-v1 and C-Sbox-v1 are replaced by SecMult, resulting in P-Sbox-v2 and
C-Sbox-v2. While they may use more randomness and operations than P-Sbox-v1 and C-Sbox-v1,
they are still more efficient than the state-of-the-art Sbox BGR-Sbox except for 2nd-order P-Sbox-v2.
As no existing compositional verifier can be used to verify BGR-Sbox after some substitutions,

we compare CONVINCE with two state-of-the-art open-sourced 𝑑-probing security verifiers

maskVerif [Barthe et al. 2019] and SILVER [Knichel et al. 2020] for which all the gadget calls

have to be inlined manually. We do not compare with HOME [Gao et al. 2021], QMVerif [Gao
et al. 2022], SCInfer [Zhang et al. 2018] and SC Sniffer [Eldib et al. 2014], REBECCA [Bloem et al.

2018] (and its variant CocoAlma [Gigerl et al. 2021; Hadzic and Bloem 2021]), because HOME
and REBECCA are significantly less efficient than maskVerif for verifying 𝑑-probing security of

the masked implementations of AES Sbox (cf. [Barthe et al. 2019; Gao et al. 2021]), and QMVerif,
SCInfer and SC Sniffer are limited to first-order security only. The verification results for 𝑑-probing

security are shown in the last three columns of Table 3, where the security order 𝑑 is set to be

the masking order 𝑡 . maskVerif fails on the 3rd-order Sbox implementations, and for the 2rd-order

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:25

Table 4. The number of randomness and operations in provable secure masking of full AES

Benchmark #r #XOR #AND #NOT #Operation

2nd-Order

GR-AES 30,720 151,344 46,080 640 198,064

BGR-AES 15,360 120,624 46,080 640 167,344

Para-AES 15,360 120,624 46,080 640 167,344

Comp-AES 13,760 117,424 46,080 640 164,144

3rd-Order

GR-AES 61,440 263,232 81,920 640 345,792

BGR-AES 30,720 201,792 81,920 640 284,352

Para-AES 29,120 198,592 81,920 640 281,152

Comp-AES 29,120 198,592 81,920 640 281,152

Sbox implementations, its verification time is at least 6.4 times more than that of CONVINCE.
SILVER does not terminate in 10 hours. CONVINCE can prove 𝑑-probing security of them without

invoking CheckByGPUEnum and SILVER is included here as it has never been compared with

other verifiers. However, we do not know if they are 𝑑-NI or 𝑑-SNI because they are too complicated

to be determined manually or proved automatically using existing tools including ours.

To demonstrate the efficiency gains in provable secure full AES using more efficient Sbox imple-

mentations P-Sbox-v2 and C-Sbox-v2, Table 4 shows the randomness and number of operations

of full AES Para-AES and Comp-AES using P-Sbox-v2 and C-Sbox-v2. We can observe that for the

3rd-order full AES, 1,600 random variables and 3,200 XOR operations are reduced over the state-

of-the-art BGR-AES that uses BGR-Sbox. Although we can deduce that the 𝑑-order benchmarks for

𝑑 = 2, 3 in Table 4 are 𝑑-probing secure according to the proved 𝑑-order probing security properties

of C-Sbox-v2 and P-Sbox-v2 and the composition rules of [Belaïd et al. 2018, Proposition 14] (indeed,

they are only 𝑑-probing secure,) no existing tool is able to directly prove them right now.

6 RELATEDWORK
In this section, we discuss the related work on automated formal verification of masked implemen-

tations and synthesis of leakage resilient programs against power side-channel attacks.

Non-compositional verifications. The pioneering work is done by [Moss et al. 2012], which

proposed a type system for checking masked implementations, limited to certain operations (i.e.,

⊕). [Bayrak et al. 2013] proposed heuristic rules based on don’t care random variables, however it is

neither sound nor complete. [Eldib et al. 2014] proposed a model-counting based approach which

reduces to a series of satisfiability problems which are checked by existing SMT solvers. While this

approach is sound and complete in theory, the reduction is exponential in the number of random

variables and thus limited to Boolean programs only. To mitigate the scalability issue of [Eldib et al.

2014], inference and symbolic approaches have been proposed [Meunier et al. 2020; Ouahma et al.

2017]. In general, the inference and symbolic approaches are efficient and sound but incomplete

while the model-counting based approaches are complete but not scalable, which motivated hybrid

approaches [Gao et al. 2019a,b; Zhang et al. 2018], bringing the best of two worlds. All the above

works focus on first-order probing security only and are non-compositional. In contrast to those

works, this work addresses higher-order probing security and our compositional approach is sound

for verifying higher-order probing security.

To verify higher-order probing security, [Barthe et al. 2015] proposed a language-level charac-

terization of 𝑑-probing security, called 𝑑-NI, based on which a sound verification approach was

presented. Following this line, [Bloem et al. 2018] proposed a Fourier analysis based approach to

verify higher-order probing security with glitch. Both of them are limited to Boolean programs

while arithmetic programs cannot be tackled. [Coron 2018] proposed an approach to support

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:26 Gao et al.

arithmetic programs by leveraging elementary transformations. The Fourier analysis based ap-

proach [Bloem et al. 2018] has been extended to verify RISC-V assembly implementations [Gigerl

et al. 2021] and further improved for verifying hardware circuits [Hadzic and Bloem 2021]. However,

this approach usually requires execution traces which have to be obtained from highly tedious

simulations and suffers from limited scalability (e.g., [Gigerl et al. 2021] took 18 minutes to verify

a first-order masked RISC-V implementation of AES Sbox, and [Hadzic and Bloem 2021] could

only verify a first-order masked hardware circuit of the first round of ten AES rounds). The hybrid

approach [Gao et al. 2019a] has been extended to verify higher-order probing security in [Gao et al.

2021], aided with a GPU based model-counting approach. SILVER [Knichel et al. 2020] proposed to

encode masked gadgets as a binary decision diagram on which the security is verified. All those

approaches are non-compositional and thus become intractable for large composite gadgets via

gadget inline. Compared with them, our approach can verify both Boolean and arithmetic programs

in a compositional way, thus is more efficient (cf. Section 5).

Compositional verification. Compositional approaches have been proposed to verify compos-

ite gadgets without gadget inline. [Barthe et al. 2016] extended the non-compositional 𝑑-NI no-
tion [Barthe et al. 2015] to compositional ones 𝑑-SNI and 𝑑-NI and proposed the first compositional

reasoning approach for verifying 𝑑-SNI and 𝑑-NI. This idea has been extended to verify 𝑑-probing

security, 𝑑-SNI and 𝑑-NI with glitches and transitions of simple gadgets [Barthe et al. 2019] while
does not support compositional reasoning. Though promising, this compositional approach fails

to verify efficient gadgets, hence may incur more random variables and operations. To overcome

this limitation, [Belaïd et al. 2018] proposed a new compositional verification approach, named

tightPROVE, for verifying 𝑑-probing security via matrix analysis. However, their approach can

only verify composite gadgets built up from specific gadgets, thus, tightPROVE+ [Belaïd et al. 2020]

is proposed to support more fixed implementations of operations. This line of work in general only

works for gadgets satisfying 𝑑-NI/𝑑-SNI which are stronger than 𝑑-probing security and rule out

many efficient masked implementations widely used in practice.

[Blot et al. 2017] lifted the SMT based approach of [Eldib et al. 2014] to higher-order probing

security with a new compositionality property that requires inserting unnecessary input encoders

for sequential composition, similar to inserting 𝑑-SNI Refresh gadgets. [Cassiers and Standaert

2020] proposed another security notion PINI achieving the same “trivial compositionality" of 𝑑-SNI,
and algorithms for verifying 𝑑-PINI notion have been proposed [Cassiers et al. 2021; Knichel et al.

2020]. Finally, [Gao et al. 2022] extended the non-compositional type system of [Gao et al. 2019a]

to a compositional type system. However, it requires user-defined annotations and is limited to

first-order security only.
Compared with existing compositional approaches, the current work targets 𝑑-probing security

of any given composition of gadgets, in particular, efficient masked implementations. To the best

of our best knowledge, it is a first-of-its-kind compositional approach for verifying higher-order

probing security of composite gadgets. We finally remark that this work is not intended to compete

with the existing compositional approaches on composite gadgets that can already be proved, but

is aimed to prove efficient composite gadgets that cannot be proved by the existing compositional

approaches, which is vital for resource limited devices, e.g., Internet of things devices.

Synthesis. Automatic synthesis of leakage resilient programs has been studied. Early work [Agosta

et al. 2012; Bayrak et al. 2011] relied on compiler-like pattern matching, and they do not use formal

verification to provide guarantees. With their model-counting based verification approaches, [Eldib

and Wang 2014] introduced a constraint-based synthesis approach which can generate verified

first-order leakage resilient programs, and [Blot et al. 2017] proposed a compositional synthesis

approach which is able to generate higher-order leakage resilient programs. [Barthe et al. 2016]

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:27

uses a proof system to check if a program is 𝑑-NI or 𝑑-SNI. In case it fails, some refresh gadgets

can be inserted to pass the check. This idea has been adopted in [Belaïd et al. 2020] by leveraging

the verifier tightPROVE+. [Wang et al. 2019] proposed an approach to eliminate compiler-induced

leakages by leveraging the type inference of [Zhang et al. 2018] to detect potential leakages.

Our focus is on verification, but could also be extended to synthesize leakage resilient programs

by inserting refresh gadgets, similar to [Barthe et al. 2016; Belaïd et al. 2020].

7 CONCLUSION AND FUTUREWORK
We have introduced new language-level security notions and novel compositional approaches, as

well as their implementation, for rigorously proving efficient masked implementations of crypto-

graphic algorithms. This work paves a new way for this task by explicitly tracking variables for

simulating probes.

This work fills the gap between compositional verification and efficient implementations of

gadgets. However, similar to prior work [Barthe et al. 2015, 2016; Belaïd et al. 2020, 2018; Blot

et al. 2017; Cassiers and Standaert 2020; Eldib et al. 2014; Gao et al. 2021; Meunier et al. 2020;

Ouahma et al. 2017; Zhang et al. 2018], we did not consider physical defaults (such as glitches and

transitions) [Barthe et al. 2019] which essentially allows the adversary to observe one or more

internal variables by one probe. Our approach could readily be adapted to verify security with

glitches or transitions (similar to [Barthe et al. 2019]), as our approach proves security by finding a

variable set to simulate each observable set while the size of the observable set does not matter. We

leave the extensions of transitions and glitches as future work.

Our approach only guarantees soundness, thus may introduce false positives. There exist non-

compositional and compositional verification approaches that are both sound and complete in

theory, but the former requires model-counting (e.g. [Barthe et al. 2019; Eldib et al. 2014; Gao et al.

2019a,b; Zhang et al. 2018]) that has limited scalability; the latter (e.g., [Belaïd et al. 2020, 2018])

only supports composite gadgets built up from some fixed implementations. Developing sound and

complete—and scalable—compositional verification approaches with full support of higher-order

efficient masked implementations would be challenging future work as well.

Our verification approach could potentially be applied for verifying Shamir’s secret sharing

scheme [Shamir 1979] which has beenwidely used in securemultiparty computation (MPC) [Cramer

et al. 2015]. Given a computation 𝑃 (𝑠), Shamir’s (𝑑, 𝑡)-threshold secret sharing scheme for 1 ≤ 𝑑 < 𝑡

splits the secret 𝑠 into 𝑡 shares (𝑓 (𝑥1), · · · , 𝑓 (𝑥𝑡)) for a random polynomial 𝑓 (𝑥) = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥2 +
· · · + 𝑎𝑑−1𝑥

𝑑−1
mod 𝑝 , a random prime 𝑝 > 𝑡 and 𝑡 random values 𝑥1, · · · , 𝑥𝑡 . Note that 𝑥𝑖 ’s, 𝑑 , 𝑡 ,

and 𝑞 are public. Moreover, the secret 𝑠 = 𝑓 (0) and the coefficients 𝑎1, · · · , 𝑎𝑑−1 can be recovered

by any 𝑑 shares of (𝑓 (𝑥1), · · · , 𝑓 (𝑥𝑡)) via Lagrange’s Interpolation Theorem, but cannot for any

𝑑 ′ < 𝑑 shares of (𝑓 (𝑥1), · · · , 𝑓 (𝑥𝑡)). The computation 𝑃 should be implemented by 𝑡 programs

𝑃1, · · · , 𝑃𝑡 in such a way that 𝑃 (𝑠) can be recovered by any 𝑑 shares of (𝑃1 (𝑓 (𝑥1)), · · · , 𝑃𝑡 (𝑓 (𝑥𝑡)))
whereas any 𝑑 ′ < 𝑑 parties of the programs 𝑃1, · · · , 𝑃𝑡 cannot infer any information of the secret

𝑠 . The latter can be reduced to checking whether the (intermediate) computation results of any

𝑑 ′ < 𝑑 parties of the programs 𝑃1, · · · , 𝑃𝑡 are statistically independent of the secret 𝑠 where our

verification approach could be adapted. We leave this as interesting future work.

8 DATA-AVAILABILITY STATEMENT
The tool and verification benchmarks (excluding full AES implementations) are available at [Gao

et al. 2023].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

286:28 Gao et al.

ACKNOWLEDGMENTS
Thiswork is supported by theNational Natural Science Foundation of China under Grant No.: 62072309,

CAS Project for Young Scientists in Basic Research under Grant No.: YSBR-040, ISCAS New Cultiva-

tion Project under Grant No.: ISCAS-PYFX-202201, State Key Laboratory of Novel Software Technol-

ogy, Nanjing University under Grant No.: KFKT2022A03, and Birkbeck BEI School Project EFFECT.

REFERENCES
Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. 2012. A code morphing methodology to automate power

analysis countermeasures. In Proceedings of the 49th Annual Design Automation Conference. 77–82. https://doi.org/10.

1145/2228360.2228376

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, François-Xavier Standaert,

and Pierre-Yves Strub. 2020. Improved parallel mask refreshing algorithms: generic solutions with parametrized non-

interference and automated optimizations. J. Cryptogr. Eng. 10, 1 (2020), 17–26. https://doi.org/10.1007/s13389-018-

00202-2

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub. 2015.

Verified Proofs of Higher-Order Masking. In Proceedings of the 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. 457–485. https://doi.org/10.1007/978-3-662-46800-5_18

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rébecca

Zucchini. 2016. Strong Non-Interference and Type-Directed Higher-Order Masking. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 116–129. https://doi.org/10.1145/2976749.2978427

Gilles Barthe, Sonia Belaïd, Pierre-Alain Fouque, and Benjamin Grégoire. 2019. maskVerif: Automated Verification of

Higher-Order Masking in Presence of Physical Defaults. In Proceedings of the 24th European Symposium on Research in
Computer Security. 300–318. https://doi.org/10.1007/978-3-030-29959-0_15

Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier Standaert, and Pierre-Yves Strub.

2017. Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model. In Proceedings of the
36th Annual International Conference on the Theory and Applications of Cryptographic Techniques. 535–566. https:

//doi.org/10.1007/978-3-319-56620-7_19

Gilles Barthe, Marc Olivier Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, and Lars Porth. 2021. Masking

in fine-grained leakage models: Construction, implementation and verification. IACR transactions on cryptographic
hardware and embedded systems (2021). https://doi.org/10.46586/tches.v2021.i2.189-228

Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier Standaert, and Paolo Ienne. 2011. A first step towards

automatic application of power analysis countermeasures. In Proceedings of the 48th Design Automation Conference.
230–235. https://doi.org/10.1145/2024724.2024778

Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. 2013. Sleuth: Automated Verification of Software

Power Analysis Countermeasures. In Proceedings of the 15th International Workshop on Cryptographic Hardware and
Embedded Systems. 293–310. https://doi.org/10.1007/978-3-642-40349-1_17

Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud. 2016.

Randomness Complexity of Private Circuits for Multiplication. In Proceedings of the 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques. 616–648. https://doi.org/10.1007/978-3-662-49896-5_22

Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud. 2017.

Private Multiplication over Finite Fields. In Proceedings of the 37th Annual International Cryptology Conference. 397–426.
https://doi.org/10.1007/978-3-319-63697-9_14

Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and Raphaël Wintersdorff. 2020. Tornado:

Automatic Generation of Probing-SecureMasked Bitsliced Implementations. In Proceedings of the 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques. 311–341. https://doi.org/10.1007/978-3-030-

45727-3_11

Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. 2018. Tight Private Circuits: Achieving Probing Security with the

Least Refreshing. In Proceedings of the 24th International Conference on the Theory and Application of Cryptology and
Information Security. 343–372. https://doi.org/10.1007/978-3-030-03329-3_12

Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb. 2022. IronMask: Versatile Verification of Masking

Security. In Proceedings of the 43rd IEEE Symposium on Security and Privacy. IEEE, 142–160. https://doi.org/10.1109/

SP46214.2022.9833600

Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. 2017. Optimal first-order boolean masking for embedded

IoT devices. In Proceedings of the International Conference on Smart Card Research and Advanced Applications. 22–41.
https://doi.org/10.1007/978-3-319-75208-2_2

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

https://doi.org/10.1145/2228360.2228376
https://doi.org/10.1145/2228360.2228376
https://doi.org/10.1007/s13389-018-00202-2
https://doi.org/10.1007/s13389-018-00202-2
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.46586/tches.v2021.i2.189-228
https://doi.org/10.1145/2024724.2024778
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-030-45727-3_11
https://doi.org/10.1007/978-3-030-45727-3_11
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1007/978-3-319-75208-2_2

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:29

Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard, and Johannes Winter. 2018. Formal

Verification of Masked Hardware Implementations in the Presence of Glitches. In Proceedings of the 37th Annual
International Conference on the Theory and Applications of Cryptographic Techniques. 321–353. https://doi.org/10.1007/978-
3-319-78375-8_11

Arthur Blot, Masaki Yamamoto, and Tachio Terauchi. 2017. Compositional Synthesis of Leakage Resilient Programs. In

Proceedings of the 6th International Conference on Principles of Security and Trust. 277–297. https://doi.org/10.1007/978-3-

662-54455-6_13

Nicolas Bordes and Pierre Karpman. 2021. Fast verification of masking schemes in characteristic two. In Proceedings
of the Annual International Conference on the Theory and Applications of Cryptographic Techniques. 283–312. https:

//doi.org/10.1007/978-3-030-77886-6_10

Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu Rivain. 2012. Higher-Order Masking

Schemes for S-Boxes. In Proceedings of the 19th International Workshop Fast Software Encryption. 366–384. https:

//doi.org/10.1007/978-3-642-34047-5_21

Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Standaert. 2021. Hardware Private Circuits: From

Trivial Composition to Full Verification. IEEE Trans. Computers 70, 10 (2021), 1677–1690. https://doi.org/10.1109/TC.

2020.3022979

Gaëtan Cassiers and François-Xavier Standaert. 2020. Trivially and Efficiently Composing Masked Gadgets With Probe

Isolating Non-Interference. IEEE Trans. Inf. Forensics Secur. (2020), 2542–2555. https://doi.org/10.1109/TIFS.2020.2971153

Jean-Sébastien Coron. 1999. Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In Proceedings
of the First International Workshop on Cryptographic Hardware and Embedded Systems. 292–302. https://doi.org/10.1007/3-

540-48059-5_25

Jean-Sébastien Coron. 2014. Higher Order Masking of Look-Up Tables. In Proceedings of the 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques. 441–458. https://doi.org/10.1007/978-3-642-

55220-5_25

Jean-Sébastien Coron. 2018. Formal Verification of Side-Channel Countermeasures via Elementary Circuit Transformations.

In Proceedings of the 16th International Conference on Applied Cryptography and Network Security. 65–82. https:

//doi.org/10.1007/978-3-319-93387-0_4

Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar Vadnala. 2015. Conversion from Arithmetic

to Boolean Masking with Logarithmic Complexity. In Proceedings of the 22nd International Workshop on Fast Software
Encryption. 130–149. https://doi.org/10.1007/978-3-662-48116-5_7

Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. 2014. Secure Conversion between Boolean and

Arithmetic Masking of Any Order. In Proceedings of the 16th International Workshop on Cryptographic Hardware and
Embedded Systems. 188–205. https://doi.org/10.1007/978-3-662-44709-3_11

Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. 2013. Higher-Order Side Channel Security

and Mask Refreshing. In Proceedings of the 20th International Workshop on Fast Software Encryption. 410–424. https:

//doi.org/10.1007/978-3-662-43933-3_21

Ronald Cramer, Ivan Bjerre Damgård, et al. 2015. Secure multiparty computation. Cambridge University Press.

Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. 2015. Making masking security proofs concrete. In

Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques. 401–429.
https://doi.org/10.1007/978-3-662-46800-5_16

Hassan Eldib and Chao Wang. 2014. Synthesis of Masking Countermeasures against Side Channel Attacks. In Proceedings of
the 26th International Conference on Computer Aided Verification. 114–130. https://doi.org/10.1007/978-3-319-08867-9_8

Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. Formal Verification Of Software Countermeasures against Side-

Channel Attacks. ACM Transactions on Software Engineering and Methodology 24, 2 (2014), 11. https://doi.org/10.1145/

2685616

Pengfei Gao, Hongyi Xie, Fu Song, and Taolue Chen. 2021. A Hybrid Approach to Formal Verification of Higher-Order

Masked Arithmetic Programs. ACM Trans. Softw. Eng. Methodol. 30, 3 (2021), 26:1–26:42. https://doi.org/10.1145/3428015

Pengfei Gao, Hongyi Xie, Pu Sun, Jun Zhang, Fu Song, and Taolue Chen. 2022. Formal Verification of Masking Countermea-

sures for Arithmetic Programs. IEEE Trans. Software Eng. 48, 3 (2022), 973–1000. https://doi.org/10.1109/TSE.2020.3008852
Pengfei Gao, Hongyi Xie, Jun Zhang, Fu Song, and Taolue Chen. 2019a. Quantitative Verification of Masked Arithmetic

Programs Against Side-Channel Attacks. In Proceedings of the 25th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. 155–173. https://doi.org/10.1007/978-3-030-17462-0_9

Pengfei Gao, Jun Zhang, Fu Song, and Chao Wang. 2019b. Verifying and Quantifying Side-channel Resistance of Masked

Software Implementations. ACM Trans. Softw. Eng. Methodol. 28, 3 (2019), 16:1–16:32. https://doi.org/10.1145/3330392

Pengfei Gao, Yedi Zhang, Fu Song, Taolue Chen, and Francois-Xavier Standaert. 2023. CONVINCE. https://github.com/S3L-

official/CONVINCE.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-662-54455-6_13
https://doi.org/10.1007/978-3-662-54455-6_13
https://doi.org/10.1007/978-3-030-77886-6_10
https://doi.org/10.1007/978-3-030-77886-6_10
https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1145/2685616
https://doi.org/10.1145/2685616
https://doi.org/10.1145/3428015
https://doi.org/10.1109/TSE.2020.3008852
https://doi.org/10.1007/978-3-030-17462-0_9
https://doi.org/10.1145/3330392
https://github.com/S3L-official/CONVINCE
https://github.com/S3L-official/CONVINCE

286:30 Gao et al.

Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick Bloem. 2021. Coco: Co-Design and Co-

Verification of Masked Software Implementations on CPUs. In Proceedings of the 30th USENIX Security Symposium.

1469–1468.

Louis Goubin. 2001. A Sound Method for Switching between Boolean and Arithmetic Masking. In Proceedings of the 3rd
International Workshop on Cryptographic Hardware and Embedded Systems. 3–15. https://doi.org/10.1007/3-540-44709-1_2

Louis Goubin and Jacques Patarin. 1999. DES and Differential Power Analysis (The "Duplication" Method). In Proceedings of
the First International Workshop on Cryptographic Hardware and Embedded Systems (CHES). 158–172. https://doi.org/10.

1007/3-540-48059-5_15

Dahmun Goudarzi and Matthieu Rivain. 2017. How Fast Can Higher-Order Masking Be in Software?. In Proceedings of
the 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques. 567–597. https:

//doi.org/10.1007/978-3-319-56620-7_20

Hannes Groß and Stefan Mangard. 2018. A unified masking approach. J. Cryptogr. Eng. 8, 2 (2018), 109–124. https:

//doi.org/10.1007/s13389-018-0184-y

Vedad Hadzic and Roderick Bloem. 2021. COCOALMA: A Versatile Masking Verifier. In Proceedings of the Formal Methods
in Computer Aided Design. 1–10. https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9

Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing Hardware against Probing Attacks. In

Proceedings of the 23rd Annual International Cryptology Conference. 463–481. https://doi.org/10.1007/978-3-540-45146-

4_27

Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. 2002. Address-Bit Differential Power Analysis of Cryptographic Schemes

OK-ECDH and OK-ECDSA. In Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded
Systems, Revised Papers. 129–143. https://doi.org/10.1007/3-540-36400-5_11

Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and Johannes Buchmann. 2018. Differential Power

Analysis of XMSS and SPHINCS. In Proceedings of the 9th International Workshop on Constructive Side-Channel Analysis
and Secure Design. 168–188. https://doi.org/10.1007/978-3-319-89641-0_10

Pierre Karpman and Daniel S Roche. 2018. New instantiations of the CRYPTO 2017 masking schemes. In Proceedings
of the International Conference on the Theory and Application of Cryptology and Information Security. 285–314. https:

//doi.org/10.1007/978-3-030-03329-3_10

HeeSeok Kim, Seokhie Hong, and Jongin Lim. 2011. A Fast and Provably Secure Higher-Order Masking of AES S-Box.

In Proceedings of the 13th International Workshop on Cryptographic Hardware and Embedded Systems. 95–107. https:

//doi.org/10.1007/978-3-642-23951-9_7

David Knichel, Pascal Sasdrich, and Amir Moradi. 2020. SILVER - Statistical Independence and Leakage Verification. In

Proceedings of the 26th International Conference on the Theory and Application of Cryptology and Information Security.
787–816. https://doi.org/10.1007/978-3-030-64837-4_26

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis. In Proceedings of the 19th Annual
International Cryptology Conference. 388–397. https://doi.org/10.1007/3-540-48405-1_25

Xuejia Lai and James L. Massey. 1990. A Proposal for a New Block Encryption Standard. In Proceedings of the Workshop on
the Theory and Application of of Cryptographic Techniques. 389–404. https://doi.org/10.1007/3-540-46877-3_35

Chao Luo, Yunsi Fei, and David R. Kaeli. 2018. Effective simple-power analysis attacks of elliptic curve cryptography on

embedded systems. In Proceedings of the International Conference on Computer-Aided Design. 115. https://doi.org/10.

1145/3240765.3240802

Quentin L. Meunier, Inès Ben El Ouahma, and Karine Heydemann. 2020. SELA: a Symbolic Expression Leakage Analyzer. In

Proceedings of the International Workshop on Security Proofs for Embedded Systems.
Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2012. Compiler Assisted Masking. In Proceedings of the

14th International Workshop on Cryptographic Hardware and Embedded Systems. 58–75. https://doi.org/10.1007/978-3-

642-33027-8_4

Inès Ben El Ouahma, Quentin Meunier, Karine Heydemann, and Emmanuelle Encrenaz. 2017. Symbolic Approach for

Side-Channel Resistance Analysis of Masked Assembly Codes. In Proceedings of the 6th International Workshop on Security
Proofs for Embedded Systems, Vol. 49. 17–32. https://doi.org/10.29007/hhnf

Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. 2009. Statistical Analysis of Second Order Differential Power Analysis.

IEEE Trans. Computers 58, 6 (2009), 799–811. https://doi.org/10.1109/TC.2009.15

Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. 2019. Generic Side-channel attacks on

CCA-secure lattice-based PKE and KEM schemes. IACR Cryptol. ePrint Arch. 2019 (2019), 948.
Matthieu Rivain and Emmanuel Prouff. 2010. Provably Secure Higher-Order Masking of AES. In Proceedings of the 12th

International Workshop on Cryptographic Hardware and Embedded Systems. 413–427. https://doi.org/10.1007/978-3-642-

15031-9_28

Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh. 2020. A Power Side-Channel Attack on the

CCA2-Secure HQC KEM. In Proceedings of the 19th International Conference on Smart Card Research and Advanced

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/s13389-018-0184-y
https://doi.org/10.1007/s13389-018-0184-y
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-36400-5_11
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-030-03329-3_10
https://doi.org/10.1007/978-3-030-03329-3_10
https://doi.org/10.1007/978-3-642-23951-9_7
https://doi.org/10.1007/978-3-642-23951-9_7
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-46877-3_35
https://doi.org/10.1145/3240765.3240802
https://doi.org/10.1145/3240765.3240802
https://doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.29007/hhnf
https://doi.org/10.1109/TC.2009.15
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28

Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks 286:31

Applications. 119–134. https://doi.org/10.1007/978-3-030-68487-7_8

Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613. https://doi.org/10.1145/359168.359176

Jingbo Wang, Chungha Sung, and Chao Wang. 2019. Mitigating power side channels during compilation. In Proceedings
of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 590–601. https://doi.org/10.1145/3338906.3338913

Weijia Wang, Chun Guo, François-Xavier Standaert, Yu Yu, and Gaëtan Cassiers. 2020. Packed Multiplication: How to

Amortize the Cost of Side-Channel Masking?. In Proceedings of the International Conference on the Theory and Application
of Cryptology and Information Security. 851–880. https://doi.org/10.1007/978-3-030-64837-4_28

WeijiaWang, Yu Yu, François-Xavier Standaert, Junrong Liu, ZhengGuo, andDawuGu. 2018. Ridge-BasedDPA: Improvement

of Differential Power Analysis For Nanoscale Chips. IEEE Trans. Information Forensics and Security 13, 5 (2018), 1301–1316.

https://doi.org/10.1109/TIFS.2017.2787985

Jun Zhang, Pengfei Gao, Fu Song, and ChaoWang. 2018. SCInfer: Refinement-Based Verification of Software Countermeasures

Against Side-Channel Attacks. In Proceedings of the 30th International Conference on Computer Aided Verification. 157–177.
https://doi.org/10.1007/978-3-319-96142-2_12

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 286. Publication date: October 2023.

https://doi.org/10.1007/978-3-030-68487-7_8
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3338906.3338913
https://doi.org/10.1007/978-3-030-64837-4_28
https://doi.org/10.1109/TIFS.2017.2787985
https://doi.org/10.1007/978-3-319-96142-2_12

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Language
	2.2 Probing Security
	2.3 Illustrating Example

	3 New Language-level Security Notions
	3.1 (Y,d)-Non-Interference
	3.2 (Y,d)-Strong Non-Interference
	3.3 Relating to d-Probing Security and d-NI/d-SNI
	3.4 Compositionality of (Y,d)-NI and (Y,d)-SNI Gadgets

	4 Algorithmic Verification
	4.1 A Proof System for Simulatability
	4.2 Computing the Sets Y for Simple Gadgets
	4.3 Computing the Sets Y for Composite Gadgets
	4.4 Verifying d-Probing Security
	4.5 Verifying d-NI and d-SNI

	5 Evaluation
	5.1 Scalability of CONVINCE
	5.2 Application to the AES Sbox

	6 Related Work
	7 Conclusion and Future Work
	8 Data-Availability Statement
	Acknowledgments
	References

