
The Journal of Systems and Software 214 (2024) 112066

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Context-aware code generation with synchronous bidirectional decoder✩

Xiangyu Zhang a, Yu Zhou a,∗, Guang Yang a, Tingting Han b, Taolue Chen b

a College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
b School of Computing and Mathematical Sciences, Birkbeck, University of London, UK

A R T I C L E I N F O

Keywords:
Code generation
Transition system
Bidirectional decoder
Neural network

A B S T R A C T

Code generation aims to map natural language descriptions to code snippets. Recent approaches using
sequence-to-tree models have shown promising results. However, they generally adopt an autoregressive way to
predict the next token based on previous ones and do not consider potential future tokens. To address this issue,
we propose Contextor, a novel context-sensitive model employing a bidirectional decoder to generate tokens
in two different orders synchronously and interactively. Specifically, we employ two decoders to generate
two sequences of different traversals and share their context knowledge via the attention mechanism. As
a result, our model can synthesize both previous and future information simultaneously. To alleviate the
information leakage problem caused by the teacher-forcing training strategy and bidirectional decoding, we
propose an adapted scheduled sampling technique to prevent the decoders from contacting the actual label.
Furthermore, Contextor also features a bidirectional beam search algorithm to better interact with both
decoders. Experimental results demonstrate that our approach outperforms the state-of-the-art baselines.
1. Introduction

Neural code generation aims to map natural language descriptions
to code snippets via deep learning, and has attracted extensive at-
tention from natural language processing and software engineering
communities. With the help of neural code generation tools, developers
can accomplish their programming tasks more efficiently (Yang et al.,
2023a; Balog et al., 2016).

In previous studies, researchers have employed models with
sequence-to-sequence (seq2seq) architecture on the code generation
task. Generally, seq2seq models generate the target sequences in an au-
toregressive way, inferring the current token based on previous tokens
that the model has generated. These models are designed to mimic hu-
man intuition and the thought process involved in reading and writing
code. They have shown to be highly effective in generating code for var-
ious tasks (Yin and Neubig, 2018; Beau and Crabbé, 2022; Sun et al.,
2020; Yang et al., 2023b). However, the unidirectional dependence on
sequences may lead to context inconsistency. The following example is
from the CoNaLa (Yin et al., 2018) dataset, where the natural language
description is Get the first element of each row from a tensor A with
two dimensions and return a list. Unidirectional models may output
[i[0].item() for i in A.tolist()] , as the model does not

realize that it has taken out the value of the tensor i[0] and does

✩ Editor: Lingxiao Jiang.
∗ Corresponding author.
E-mail addresses: zhangx1angyu@nuaa.edu.cn (X. Zhang), zhouyu@nuaa.edu.cn (Y. Zhou), novelyg@outlook.com (G. Yang), t.han@bbk.ac.uk (T. Han),

t.chen@bbk.ac.uk (T. Chen).

not need to convert tensor A to list. In contrast, the correct code
snippets are supposed to be either [i[0] for i in A.tolist()]
or [i[0].item() for i in A] .

To address this issue, bidirectional models are leveraged which can
infer the target sequences from both left to right and right to left.
Such models utilize bidirectional decoding simultaneously and inter-
actively (Zhang et al., 2020; Zhou et al., 2019). Compared with models
based on the autoregressive decoding, the bidirectional decoder allows
to take into account both left and right context of the target text when
generating the output, which can lead to more accurate and coherent
text generation. Furthermore, in an autoregressive model, errors can
propagate through the generations, as each output is conditioned on
the previous ones. In contrast, bidirectional decoders generate output in
two directions, reducing the impact of errors on subsequent generation.

Despite that a bidirectional decoder can provide more contextual
information, there are some potential disadvantages. For example,
in natural language generation (NLG) tasks, the context information
provided by left-to-right decoding may not be useful for right-to-left
decoding because the information at both ends of a sentence may be
logically unrelated. We observe that code generation tasks exhibit the
same phenomenon. As illustrated in Table 1, we use UniXcoder (Guo
et al., 2022) to encode Python code and extract attention scores to eval-
uate the relevance between tokens. Following the previous work (Kou
vailable online 16 April 2024
164-1212/© 2024 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2024.112066
Received 3 April 2023; Received in revised form 11 April 2024; Accepted 14 April
 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:zhangx1angyu@nuaa.edu.cn
mailto:zhouyu@nuaa.edu.cn
mailto:novelyg@outlook.com
mailto:t.han@bbk.ac.uk
mailto:t.chen@bbk.ac.uk
https://doi.org/10.1016/j.jss.2024.112066
https://doi.org/10.1016/j.jss.2024.112066
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112066&domain=pdf

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.

r
s
t

𝑥
t
t
f
c

𝑝

Table 1
Using UniXcoder to encode and extract attention scores from the CoNaLa dataset.
Attention𝑓𝑖𝑟𝑠𝑡 denotes the attention score of the first layer of UniXcoder, Attention𝑙𝑎𝑠𝑡
epresents the attention score of the last layer, and Attention𝑎𝑣𝑒𝑟𝑎𝑔𝑒 indicates the average
core across all layers. Average denotes the average attention score of the current word
owards other words excluding special tokens, i.e., [𝐶𝐿𝑆], [𝐸𝑂𝑆].

First vs. last Second vs. penultimate Third vs.
antepenultimate

Attention𝑓𝑖𝑟𝑠𝑡 .011 .007 .021
Average .042 .037 .049

Attention𝑙𝑎𝑠𝑡 .023 .027 .039
Average .059 .059 .063

Attention𝑎𝑣𝑒𝑟𝑎𝑔𝑒 .007 .006 .017
Average .053 .052 .055

et al., 2023), we employ three evaluation methods to calculate rel-
evance, i.e., taking the attention scores from the first layer, the last
layer, and averaging the scores across all layers. We also calculate the
average attention score of the current word to all other words. We can
find that, for programming languages, the relevance between tokens
at both ends of the code is much lower than the average score. This
suggests that the traditional bidirectional decoding approach struggles
to provide effective contextual information. In addition, the informa-
tion sharing mechanism, while incorporating contextual information,
inevitably introduces noise to bidirectional models. Lastly, NLG models
utilize the teacher-forcing strategy to train the model by inputting the
previous ground-truth token to predict the next token. However, the
bidirectional decoder consists of two decoders that share information.
When training one decoder using the teacher-forcing strategy, the
ground-truth tokens are leaked to the other decoder during information
sharing (Zhang et al., 2020), which adversely affects the training
effectiveness.

Unlike natural language, code contains stronger structural informa-
tion that can be represented as a tree (Wang et al., 2022; Hussain
et al., 2020; Jiang et al., 2021b) or graph (Guo et al., 2021). As a
result, there is potential to integrate the structure information of code
into bidirectional decoding models, enabling the model to capture the
structural information besides other contextual aspects.

In this paper, we propose Contextor, a sequence-to-tree (seq2tree)
model with a context-sensitive bidirectional decoder for code gener-
ation. Our model is designed to interact with context information at
the code structure level by utilizing bidirectional decoding strategies
based on Abstract Syntax Trees (ASTs) traversal order. Compared with
vanilla bidirectional decoding, sharing context information based on
the traversal order of the ASTs can better represent the structural cor-
relation between ASTs’ nodes. Furthermore, by modeling the context of
the nodes, the model can also capture more grammatical information,
thus generating code with higher grammatical correctness.

In addition to exploring the structural characteristics of the code, we
propose a scheme to optimize the training and inference of bidirectional
decoding. We introduce the Adaptive Scheduled Sampling mechanism
to mitigate the issue of information leakage during training the bidirec-
tional decoder. To improve the results of the bidirectional model, we
also employ the bidirectional beam search algorithm, which allows the
model to generate multiple candidate results and obtain better solutions
during inference. The experimental results show that our proposed
method can achieve competitive results with fewer model parameters.
Moreover, our approach demonstrates the superiority over pre-training
models in terms of code grammar and structural correctness.

In summary, the main contributions of the current paper are as
follows.

• We propose Contextor that enhances context knowledge by using
a synchronous bidirectional decoder to improve the contextual
coherence for the code generation task. Additionally, Contextor
features a novel sampling technique that can alleviate the issue
2

of information leakage, and further improve the performance of
the model.

• We conduct comprehensive experiments and evaluate the per-
formance of our proposed approach Contextor on the public
dataset, and the results show that Contextor outperforms the
state-of-the-art baselines.

Structure of the paper. The remainder of the paper is organized as fol-
lows. In Section 2, we provide a brief introduction to the background of
this study. Section 3 describes the details of our approach. In Section 4,
we present the experimental settings and comparative results on the
public dataset. Sections 5 and 6 discuss threats to validity and related
works, respectively. Finally, in Section 7, we conclude our study and
outline future research directions.

To facilitate the replication and reuse of Contextor, we make our
source code, trained models, as well as the datasets in the GitHub
repository publicly available.1

2. Background

2.1. Seq2Tree techniques

In this part, we mainly introduce ASDL (Zephyr Abstract Syntax
Description Language), a context-free grammar used to describe the
structure of AST (Wang et al., 1997). In addition, we also briefly
introduce two state-of-the-art seq2tree code generation methods.

ASDL. ASDL is used to define the abstract syntax of compiler interme-
diate representations (IRs) and other tree-like data structures. Similar
to how regular expressions and context-free grammars describe the
lexical and syntactic structures of programming languages, ASDL offers
a concise way of representing the abstract syntax of programming
languages. ASDL grammar consists of two main constructs: types and
constructors. As shown in Fig. 1, stmt and expr are examples of composite
types, which represent Python statements and expressions, respectively.
composite types are defined by a series of constructors, each of which has
fields that define its subtrees. For instance, a FunctionDef constructor
has six fields, each of which specifies the structure of its corresponding
subtree. Each field is assigned a cardinality to indicate the number of
values it holds (single, optional ? and sequential *). ASDL provides
a concise notation for describing the abstract syntax of programming
languages, which is leveraged in this work.

TRANX. TRANX (Yin and Neubig, 2018) is a transition-based neural
semantic parser, aiming to generate ASTs (rather than code snippets
directly). Since tree-structure data are harder be directly put into deep
learning models, TRANX applies a transition system based on ASDL to
describe ASTs.

This system provides three actions to decompose the generation
procedure of an AST into a sequence of tree-constructing actions: (1)
APPLYCONSTR[c] action applies a constructor c to the composite
frontier field with the same type of c. This action appends the con-
structor to a list of constructors if the frontier field has a sequential
cardinality. (2) REDUCE action marks that the generation for a field
with optional (?) or sequential (*) has already been completed. (3)
GENTOEKN[v] action expands a primitive frontier field to generate
a token v.

Specifically, given an input of NL utterance 𝑥, instead of mapping
to code snippet 𝑦 directly, TRANX employs the transition system

o convert 𝑥 to an intermediate representation 𝑧, which is guided by
he user-defined, domain-specific grammar specified under the ASDL
ormalism. Then, it converts 𝑧 to code by rules. The probability of 𝑧
an be defined as:

(𝑧 ∣ 𝑥) =
∏

𝑡
𝑝
(

𝑎𝑡 ∣ 𝑎𝑡−1, 𝑥
)

1 https://github.com/NUAAZXY/CONTEXTOR.

https://github.com/NUAAZXY/CONTEXTOR

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Fig. 1. An example of ASDL.
Fig. 2. The workflow of Contextor.
where 𝑎𝑡 is the attention representing the correlation between NL
utterance 𝑥 and the current hidden state generated by the decoder.

TRANX uses an encoder–decoder framework with a standard bidi-
rectional LSTM encoder and a unidirectional LSTM decoder. The en-
coder encodes 𝑥 into vectorial representation then the decoder decodes
the output attention 𝑎𝑡 through the attention mechanism and maps
it to an action. This approach gives the parser high accuracy and
generalizability. The accuracy of TRANX is achieved through its use
of information from the syntax of the target meaning representations
(MR), which allows it to constrain the output space and model the flow
of information in the sentence. Meanwhile, its high generalizability
makes it easy to apply to new types of MR by simply writing a new
abstract syntax description that corresponds to the allowable structures
in the MR.

BertranX. BertranX (Beau and Crabbé, 2022) is an extension of the
TRANX system that employs BERT (Devlin et al., 2019) as an encoder
to better understand the input NL utterances. Additionally, BertranX
adapts the transition system introduced in TRANX by using Earley
Parser (Earley, 1970) to describe ASTs by a stack of dotted rules. The
Earley Parser is an algorithm for parsing strings that belong to a given
context-free language. In the case of BertranX, the Earley Parser is
employed to parse the ASTs. For instance, A → 𝛼∙X𝛽 is a dotted rule,
where 𝛼 represents a sequence of grammar symbols whose subtrees
have already been generated and X𝛽 is a sequence of grammar symbols
that are yet to be generated.

Similar to TRANX, BertranX also defines actions to describe ASTs:
(1) PREDICT(C) action aims to start the generation of a new subtree.
The GENERATE action adds a new node to a tree, whereas a COMPLETE
action signals the end of subtree generation and allows the process to
continue with the parent node. The set of PREDICT(C) is equivalent
to the number of constructors in the ASDL grammar, as each action
is parameterized the ASDL rule constructor (C). These constructors are
necessary for producing concrete ASTs from derivations. CLOSE action
is used to stop the generation if all rules are completed, and this action
is covered by PREDICT(C). (2) GENERATE(V) action is responsible
for generating terminal or primitive symbols. In the Python ASDL
grammar, ASTs are created with primitive leaf types (e.g., identifier,
3

int, string, constant) that require actual values. The set of possible
values V for these primitives is infinite, which means that the set of
GENERATE actions is also infinite.

2.2. Synchronous bidirectional decoding

Autoregressive models have limitations in predicting the next token
as they only rely on the previous tokens and do not have access
to future information. In contrast, synchronous bidirectional decod-
ing is a technique that leverages both past and future information
simultaneously to improve prediction accuracy.

Previous studies (Zhang et al., 2020; Zhou et al., 2019) employ
a bidirectional decoder to generate two sequences, one from left to
right and the other from right to left. Each decoder uses both previ-
ous and future predictions synchronously to generate context-coherent
information, which can be expressed as:

𝑝 (𝑦 ∣ 𝑥) =

⎧

⎪

⎨

⎪

⎩

∏

𝑡
𝑝
(→
𝑦𝑡 ∣

→
𝑦0, … ,

→
𝑦𝑡−1, 𝑥,

←
𝑦0,… ,

←
𝑦𝑡−1

)

if left-to-right
∏

𝑡
𝑝
(←
𝑦𝑡 ∣

←
𝑦0, … ,

←
𝑦𝑡−1, 𝑥,

→
𝑦0,… ,

→
𝑦𝑡−1

)

if right-to-left
(1)

where
→
𝑦 𝑡 (resp.

←
𝑦 𝑡) is the current output of the left-to-right (resp. right-

to-left) decoder, and 𝑥 is the input of the model. By considering the
surrounding context of each token, these bidirectional decoders are
able to generate more accurate predictions and improve the overall
performance of the model.

3. Approach

The workflow of Contextor is shown in Fig. 2, which consists
of three main components, i.e., data processing, model training, and
model application. In data processing, we normalize variables and con-
stant names using a substitution method. To fully utilize contextual
information, we then parse code snippets into two sequences of pre-
defined actions. These sequences differ in that one is generated from
a top-down, left-to-right traversal (L2R) of the AST, while the other
is generated from a top-down, right-to-left (R2L) traversal. In model

training, we feed both action sequences (denoted as 𝑌) and adjusted

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Fig. 3. The procedure of parsing code snippets.
i
i

action sequences (denoted as 𝑌 ′) into the bidirectional decoder to train
the model. Training a bidirectional decoder using teacher-forcing may
result in the issue of information leakage. To solve this, rather than use
the teacher-forcing decoding mechanism, we employ a novel sampling
method to alleviate the problem of information leakage during training.
During model application, We use bidirectional beam search algorithm
to optimize and utilize the decoding results from both ends, thus
enhancing the generation capacity.

In the rest of this section, we present the details of the preprocess-
ing (Section 3.1), the model structure (Section 3.2), the bidirectional
beam search algorithm (Section 3.3) as well as the adapted scheduled
sampling technique (Section 3.4).

3.1. Data processing

Substitution. Programming languages have an infinite set of lexical
symbols that include a wide range of variable names and constant iden-
tifiers. Instead of learning the statistics of a particular set of symbols,
we utilize a preprocessing method to normalize variable and constant
names. The goal of preprocessing is to replace the actual name of a
variable with a set of predefined standardized names that are known
to the statistical model. This replacement step renames all variables in
both natural language and code using a common name. Specifically, we
rename all variables defined by programmers as var_0, var_1, etc., and
all lists as lst_0, lst_1, etc..

Transition system. The conventional seq2tree model generates AST
nodes in a top-down, left-to-right traversal order. In our experiment,
we generate code snippets based on the two different traversal orders
of the AST, and share their context information synchronously. As
illustrated in Fig. 3, we utilize the parser proposed in BertranX (Beau
and Crabbé, 2022) to traverse the abstract syntax tree of the code
[1, 2+3] in two distinct directions. The first traversal sequence

follows the top-down, left-to-right traversal order as previous methods.
4

To ensure that the model can capture more structured information,
we adopt a top-down, right-to-left traversal method in the second
sequence. Specifically, we first perform an up-to-down traversal of
the AST. If the current node has more than one child, we reverse its
children with their subtrees, from N1, N2, N3 to N3, N2, N1, and so on.
Next, we traverse the adjusted tree in top-down, left-to-right traversal
order. By integrating contextual information from two directions, our
bidirectional decoder can utilize both context and structural knowledge
simultaneously.

3.2. Model architecture

The architecture of our proposed model is depicted in Fig. 4. Our
model contains a BERT encoder and a context-aware bidirectional
decoder. We will provide two decoder schemes, namely bidirectional
LSTM decoder and bidirectional Transformer decoder, which will be
elaborated in this section.

Encoder. We use BERT (Devlin et al., 2019) as the encoder of our
seq2tree model. BERT employs a transformer encoder, which makes it
capable of bidirectional encoding and feature extraction (Yang et al.,
2021). Given an NL sequence 𝑥 = (𝑥0, 𝑥1,… , 𝑥𝑚−1), BERT outputs an
ntermediate hidden state which represents the meaning of the NL,
.e., ℎ(𝑒𝑛𝑐_𝑜𝑢𝑡) = 𝐵𝐸𝑅𝑇 (𝑥).

Bidirectional LSTM Decoder. First, we introduce CONTEXTOR us-
ing the bidirectional LSTM decoder, i.e. Contextor𝐿𝑆𝑇𝑀 . As shown in
Fig. 3, an AST contains both semantic and structural information of
code, which introduces specific syntax information to the model. How-
ever, traditional neural network models have difficulty in leveraging
ASTs (Zhang et al., 2023). Unidirectional models serialize the nodes
of ASTs, such as TRANX (Yin and Neubig, 2018). This serialization
method is compatible with traditional generative models, but cannot es-
tablish effective contextual connections. Although GrammarCNN (Sun

et al., 2019) and CGML (Xie et al., 2021) consider the connections

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Fig. 4. The Contextor model architecture.
between contexts, these models are essentially unidirectional models
and cannot measure the structural information of code from a global
perspective.

In our approach, we use a bidirectional decoder consisting of two
LSTM decoders, namely LSTM𝐿2𝑅 and LSTM𝑅2𝐿, to decode sequences
of actions in different orders. The probability of the output action
sequence 𝑧 given the input sequence 𝑥 is defined as

𝑝 (𝑧|𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∏

𝑡
𝑝
(→
𝑧 𝑡 ∣

→
𝑧0, … ,

→
𝑧 𝑡−1, ℎ(𝑒𝑛𝑐_𝑜𝑢𝑡),

←
𝑧0,… ,

←
𝑧 𝑡−1

)

,

if left-to-right traversal
∏

𝑡
𝑝
(←
𝑧 𝑡 ∣

←
𝑧0, … ,

←
𝑧 𝑡−1, ℎ(𝑒𝑛𝑐_𝑜𝑢𝑡),

→
𝑧0,… ,

→
𝑧 𝑡−1

)

,

if right-to-left traversal

where
→
𝑧 𝑡 denotes the hidden state of the LSTM𝐿2𝑅 at time step 𝑡, and

←
𝑧 𝑡 represents the LSTM𝑅2𝐿’s output at time step 𝑡.

Take the LSTM𝐿2𝑅 as an example. As shown in Fig. 4, we employ the
attention mechanism to share the context information of the decoders.
At time step 𝑡, we input the guiding label 𝑦𝑡−1, the previous attention
𝑎𝑡−1, and the previous hidden state ℎ⃗𝑡−1 into the LSTM decoder and
obtain a new hidden state ℎ⃗𝑡 = 𝐿𝑆𝑇𝑀

(

[

𝑦𝑡−1 ∶ 𝑎𝑡−1
]

, ℎ⃗𝑡−1
)

where 𝑦𝑡−1
is the previous token, 𝑎𝑡−1 is the global attention output at time step
𝑡−1, [∶] denotes concatenation of two vectors. In particular, at time step
0, after the encoder outputs an intermediate hidden state ℎ(𝑒𝑛𝑐_𝑜𝑢𝑡), the
decoder outputs the first hidden state ℎ⃗0 by ℎ⃗0 = 𝐿𝑆𝑇𝑀

(

0⃗, ℎ(𝑒𝑛𝑐_𝑜𝑢𝑡)
)

.
where 0⃗ has the same dimension as the input to the LSTM cell.

The global attention mechanism, denoted by 𝑎𝑡, is comprised of
two fundamental types of attention, specifically the encoder–decoder
attention 𝑎(𝑒𝑛𝑐)𝑡 and the decoder–decoder attention 𝑎(𝑑𝑒𝑐)𝑡 . The encoder–
decoder attention 𝑎(𝑒𝑛𝑐)𝑡 computes the correlation between the encoder
outputs and the current hidden state generated by the decoder. This
attention mechanism computes a weighted sum of the encoder-side
context vectors and can be expressed using 𝑎(𝑒𝑛𝑐) =

∑𝑚−1 𝑤(𝑒𝑛𝑐) ℎ(𝑒𝑛𝑐_𝑜𝑢𝑡)
5

𝑡 𝑖=0 𝑡𝑖 𝑖
where

𝑤(𝑒𝑛𝑐)
𝑡𝑖 =

𝑒𝑥𝑝
(→
𝑚𝑡𝑖

)

∑𝑚−1
𝑗=0 𝑒𝑥𝑝

(→
𝑚𝑡𝑗

) ,
→
𝑚𝑡𝑖 = 𝐕(𝑒𝑛𝑐)tanh

(

𝐖(𝑒𝑛𝑐)
→
ℎ𝑡 + 𝐔(𝑒𝑛𝑐)ℎ(𝑒𝑛𝑐_𝑜𝑢𝑡)𝑖

)

Here, 𝐕, 𝐖, and 𝐔 are three neural networks with mutually inde-
pendent parameters.

The above formulas compute the relevance between the input NL
and the current hidden state generated by the LSTM𝐿2𝑅. In addition,
the Contextor𝐿𝑆𝑇𝑀 also focuses on the connection between the two
decoders. We propose a decoder–decoder attention mechanism to cal-
culate the relevance between the current LSTM𝐿2𝑅’s hidden state and
the hidden states of LSTM𝑅2𝐿. We then incorporate future knowledge
into the current decoding state through a weighted sum, thus making
the model context-sensitive. The decoder–decoder attention, denoted as
𝑎(𝑑𝑒𝑐)𝑡 , can be expressed as 𝑎(𝑑𝑒𝑐)𝑡 =

∑𝑡
𝑘=0 𝑤

(𝑑𝑒𝑐)
𝑡𝑘

←
ℎ𝑘 where

𝑤(𝑑𝑒𝑐)
𝑡𝑘 =

𝑒𝑥𝑝
(→
𝑛 𝑡𝑘

)

∑𝑡
𝑗=0 𝑒𝑥𝑝

(→
𝑛 𝑡𝑗

) and
→
𝑛 𝑡𝑘 = 𝐕(𝑑𝑒𝑐)tanh

(

𝐖(𝑑𝑒𝑐)
→
ℎ𝑡 + 𝐔(𝑑𝑒𝑐)

←
ℎ𝑘

)

Note ⃖⃖ℎ restores the past hidden states that the LSTM𝑅2𝐿 has decoded.
As future knowledge is obtained through weighting, this informa-

tion sharing method inevitably introduces noise to the model. To reduce
the impact of noise introduced by bidirectional decoding, we developed
a lightweight noise masking network. This network automatically sets
attention weights that are irrelevant to the current generation to zero,
effectively mitigating the impact of noise. The noise masking network
can be described as follows:

𝑤⃗(𝑑𝑒𝑐)
𝑡𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤⃗(𝑑𝑒𝑐)
𝑡𝑘 , 𝑤⃗(𝑑𝑒𝑐)

𝑡𝑘 ≥ sigmoid
(

𝑊 (𝑛𝑜𝑖𝑠𝑒)
[

→
ℎ𝑡 ∶

←
ℎ𝑘

])

0, 𝑤⃗(𝑑𝑒𝑐)
𝑡𝑘 < sigmoid

(

𝑊 (𝑛𝑜𝑖𝑠𝑒)
[

→
ℎ𝑡 ∶

←
ℎ𝑘

])

As described earlier, we utilize the additive attention mechanism to
obtain two kinds of basic attention 𝑎(𝑒𝑛𝑐) and 𝑎(𝑑𝑒𝑐). The first attention,
𝑡 𝑡

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.

s
t
s
h

d

a
t
𝐾

s
t
R
t
t
t
m
e
e
i
b

a
2

𝑎(𝑒𝑛𝑐)𝑡 , is used to capture the correlation between the current hidden
tate

←
ℎ𝑡 and the input natural language sequence. This allows the model

o focus more on the significant tokens in the input sequence. The
econd attention, 𝑎(𝑑𝑒𝑐)𝑡 , measures the correlation between the current
idden state

→
ℎ𝑡 and the history hidden states

←
ℎ generated by the other

decoder. By doing so, we can extract future information and utilize it
to generate a more informed and contextual output.

We combine both types of attention scores, to obtain the attention
𝑎𝑡 = tanh

(

𝐖
[

→
ℎ𝑡 ∶

→
𝑎
(𝑒𝑛𝑐)

𝑡 ∶
→
𝑎
(𝑑𝑒𝑐)

𝑡

])

. As a result, the final probability of

the result can be expressed as 𝑝
(

𝑧𝑡 ∣ 𝑥
)

= softmax
(

𝐕(𝑟𝑒𝑠)→𝑎 𝑡

)

.
Note that our model has two types of output (primitives and con-

structors), which correspond to different embeddings (as shown in
Section 2.1). Therefore, we employ two generators to generate each
type of action. The probability of the target action can be defined as:

𝑝
(→
𝑧 𝑡
|

|

|

𝑥
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝
(→
𝑧 𝑡 = 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸(𝑣)||

|

𝑥
)

= sof tmax
(

𝐕(𝑝𝑚𝑡)→𝑎 𝑡

)

,

if primitives

𝑝
(→
𝑧 𝑡 = 𝑃𝑅𝐸𝐷𝐼𝐶𝑇 (𝑐)||

|

𝑥
)

= sof tmax
(

𝐕(𝑐𝑠𝑡)→𝑎 𝑡

)

,

if constructors

Similarly, the LSTM𝑅2𝐿 outputs can be defined as follow:

𝑝
(←
𝑧 𝑡
|

|

|

𝑥
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝
(←
𝑧 𝑡 = 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸(𝑣)||

|

𝑥
)

= sof tmax
(

𝐕(𝑝𝑚𝑡)←𝑎 𝑡

)

,

if primitives

𝑝
(←
𝑧 𝑡 = 𝑃𝑅𝐸𝐷𝐼𝐶𝑇 (𝑐)||

|

𝑥
)

= sof tmax
(

𝐕(𝑐𝑠𝑡)←𝑎 𝑡

)

,

if constructors

Bidirectional Transformer Decoder. Transformer (Vaswani et al.,
2017a) can process the entire input data at once, unlike sequential
data processing methods such as LSTM. This characteristic allows for
parallel computing and considerably reduces processing time, resulting
in faster model training. In this paper, we also introduce a method that
utilizes bidirectional Transformer (Zhou et al., 2019) as the decoder,
i.e. Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟. Due to the fact that the Transformer is based
on self-attention mechanism and cannot capture contextual hidden
states at every time step during training, we designed a context-sharing
mechanism based on self-attention.

The vanilla Transformer uses self-attention to model the context,
and its hidden states can be represented as 𝑎(𝑠𝑒𝑙𝑓)𝑡 =

∑𝑡
𝑖=0 𝑤𝑡𝑖 𝑉𝑖 where

𝑤(𝑠𝑒𝑙𝑓)
𝑡𝑖 =

𝑒𝑥𝑝
(→
𝑚𝑡𝑖

)

∑𝑡
𝑗=0 𝑒𝑥𝑝

(→
𝑚𝑡𝑗

) and
→
𝑚𝑡𝑖 =

→
𝑄𝑡

→
𝐾

𝑇

𝑖
√

𝑑𝑘

Here, 𝑄, 𝐾, and 𝑉 represent the query, key, and value vectors intro-
uced by the Transformer.

Due to the parallel computing method of the Transformer, we
re unable to exchange the hidden states of two decoders sequen-
ially. As an alternative, we share information by exchanging the

and 𝑉 vectors between the decoders. Specifically, we use the 𝑄
from Transformer𝐿2𝑅 as the query vector and the 𝐾 and 𝑉 from
Transformer𝑅2𝐿 as the key and value vectors, respectively. The hidden
state can be represented as 𝑎(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑡 =

∑𝑡
𝑖=0 𝑤𝑡𝑖

←
𝑉 𝑖 where

𝑤(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)
𝑡𝑖 =

𝑒𝑥𝑝
(→
𝑛 𝑡𝑖

)

∑𝑡
𝑗=0 𝑒𝑥𝑝

(→
𝑛 𝑡𝑗

) and
→
𝑛 𝑡𝑖 =

→
𝑄𝑡

←
𝐾

𝑇

𝑖
√

𝑑𝑘

The attention output can be represented as the fusion of 𝑎(𝑠𝑒𝑙𝑓)𝑡 and
𝑎(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑡 , denoted as 𝑎𝑡 = 𝑎(𝑠𝑒𝑙𝑓)𝑡 + 𝜃 × tanh(𝐖(𝑝𝑟𝑜𝑗)𝑎(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑡), where 𝜃 is
the hyperparameter controlling attention towards future knowledge.
Similarly, the output of Transformer𝑅2𝐿 can be represented as

←
𝑎 𝑡 =

←
𝑎
(𝑠𝑒𝑙𝑓)

+ 𝜃 × tanh(𝐖(𝑝𝑟𝑜𝑗)←𝑎
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

)

6

𝑡 𝑡 w
By incorporating bidirectional propagation, Contextor is able to
model dependencies between past and future node pairs, which en-
hances its capacity for contextual analysis. In contrast to models with
unidirectional dependencies, bidirectional dependency relationships of-
fer Contextor more comprehensive connections. This enhanced con-
nectivity empowers the model with sufficient contextual and structural
knowledge of the abstract syntax tree.

3.3. Bidirectional beam search

To enhance the quality of code generation by facilitating the pro-
duction of multiple candidate outputs, we utilize the beam search
algorithm for decoding at inference. The beam search algorithm can
efficiently find the optimal solution in a limited search space, producing
a solution close to the optimal solution in the entire search space.
By setting a beam size 𝑘, we reserve the top 𝑘 temporary paths with
the highest probability at each time step. In a unidirectional decoder,
the beam search algorithm only needs to generate multiple candidate
results based on the probability distribution of the current decoder
output. However, a bidirectional decoder comprises two unidirectional
decoders that share information. During the training phase, we combine
the outputs of both decoders and optimize the model at each time step
based on the probability distribution generated by the current time
step. However, at inference, each decoder needs to combine the k-best
temporary paths preserved by the beam search algorithm with k-best
contextual information generated by the other decoder. The complexity
of combining each path with 𝑘 contextual information is significantly
high. Hence, we need select the most accurate result from the candidate
outputs as the contextual information.

To better utilize context knowledge from the decoders and reduce
time complexity, we propose a simple Bidirectional Beam Search al-
gorithm. Instead of enumerating all the paths generated by the other
decoder when calculating

→
𝑎𝑡, we choose the path with the current

highest probability score as the external knowledge. Fig. 5 shows an ex-
ample of a bidirectional beam search for generating code list(t) .
At time step 𝑡6, we obtain two temporary paths using the beam search
algorithm in the L2R Decoder. When predicting the next token, we use
the information of the highest-scoring path (indicated by the orange
arrow) in the R2L Decoder as the contextual information for the current
predicted token. In this way, we can reduce the time complexity and
still benefit from the context knowledge of the other decoder.

3.4. Adapted scheduled sampling

Although bidirectional decoding can enable the model to absorb
both past and future knowledge, it may cause information leakage
problem when using the teacher-forcing training strategy. The teacher-
forcing strategy predicts the next token

→
𝑦
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

𝑡 instructed by a pre-

vious gold token
→
𝑦
(𝑔𝑜𝑙𝑑)

𝑡−1 . For instance, as is shown in Fig. 6, at time
tep 𝑡5, the L2R Decoder predicts node cat guided by the previous true
oken torch via teacher-forcing. However, the decoding information of
2L Decoder is also visible, which leads to the leakage of the true labels

o L2R Decoder. An immediate consequence of information leakage is
hat the training loss in bidirectional decoding is misleadingly lower
han that of the loss in unidirectional decoding. Information leakage
ay have a significant impact on inference performance. Due to the

xposure of real labels during the training stage, both decoders will
xcessively rely on each other’s information. If one decoder decodes an
ncorrect token during the inference stage, the other decoder will also
e affected by it.

To alleviate information leakage caused by the bidirectional decoder
nd teacher forcing training strategy, previous work (Zhang et al.,
020) trains their decoders independently in the first training pass
ith teacher-forcing. Then, in the second training pass, they predict the

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Fig. 5. Bidirectional beam search.
Fig. 6. The procedure of bidirectional decoding. Solid arrows represent the workflow of the decoder. Dashed arrows show the node generated at the next time step.
next token
→
𝑦
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

𝑡 instructed by the previous predicted token
→
𝑦
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

𝑡−1
which is called student-forcing strategy.

Although this method can somewhat alleviate the information leak-
age problem, the change from teacher-forcing to student-forcing is too
sharp that the bidirectional models cannot adapt well. To bridge the
gap between teacher-forcing to student-forcing, We employ scheduled
sampling (Bengio et al., 2015) in our model. Scheduled sampling is
used to solve the inconsistency between the distribution of input data
during training and generation. In the early stage of training, this
method mainly uses real tokens as the input of the decoder, which
can quickly converge the model from a randomly initialized state to
a relatively good state. As the training progresses, this method will
gradually use more generated elements as the input of the decoder to
solve the problem of inconsistent data distribution.

Their work can also be defined as a method to narrow the gap
between teacher-forcing and student-forcing and is suitable to solve
7

our problem. As shown in Fig. 4, We use the probability based on an
exponential decay function to choose whether to use actual or predicted
tokens. The exponential decay function can be defined as 𝑝𝑟𝑜𝑏𝑒 = 𝜆𝑒1

where 𝑒 means the number of current training epochs, 𝑝𝑟𝑜𝑏𝑒 is the
probability of using the actual labels, 𝜆1 (𝜆1 < 1) is a hyper-parameter
that depends on the expected speed of convergence.

Note that the nodes generated earlier are more likely to be leaked.
So we adapt the formula as

𝑝𝑟𝑜𝑏𝑒𝑡 = 𝜆𝑒1 +
(

𝜆2
𝑚𝑎𝑥𝑠𝑡𝑒𝑝

)

∗ 𝑡 − 𝜆2

where 𝑡 is the time step of the generation. The term 𝜆𝑒1 ensures that the
model starts by using actual labels with high probability at the begin-
ning of training, while the term

(

𝜆2
𝑚𝑎𝑥𝑠𝑡𝑒𝑝

)

∗ 𝑡−𝜆2 gradually increases the

probability of using predicted tokens as training progresses because the
tokens in earlier time steps are likely to be leaked while generating a

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Fig. 7. Examples of CoNaLa.
Table 2
Hyper-parameters for model Contextor𝐿𝑆𝑇𝑀 .

Category Hyper-parameter Value

Model structure
Hidden size 512
Attention size 512
Dropout 0.3

Decay parameters 𝜆1 0.95
𝜆2 0.2

Model training
Optimizer Adam
Learning rate 1e−4
Batch size 32

Model application Beam size 15

sequence at training. By using this method, the model can either reduce
information leakage or take advantage of teacher-forcing strategy to
achieve faster convergence, depending on the specific situation.

4. Experiments

We mainly focus on the following four research questions:

RQ1: How effective is Contextor compared with state-of-the-art base-
lines?

RQ2: How does bidirectional decoding mechanism facilitate the gen-
eration of context-coherent code?

RQ3: What is the role of adapted scheduled sampling?
RQ4: What is the impact of different NL lengths, sequence lengths and

code lengths on the performance of Contextor?

In RQ1, we compare our proposed method Contextor with three
state-of-the-art baselines, i.e., (1) TRANX, which is a transition-based
neural abstract syntax parser for semantic parsing and code generation.
(2) BertranX, which is a state-of-the-art architecture that relies on
a BERT encoder and a grammar-based decoder for code generation.
(3) UniXcoder (Guo et al., 2022), a unified cross-modal pre-trained
encoder for code representation. (4) CodeGPT (Lu et al., 2021b), a pre-
trained decoder for code completion and text-to-code generation tasks.
(5) CodeT5+ (Wang et al., 2023), an open code pre-trained model
for code understanding and generation. To have a fair comparison, we
reuse the training parameters provided in the baselines.

In RQ2 and RQ3, we focus on evaluating the critical components
of our work. Finally, in RQ4, we analyze the impact of NL lengths,
sequence lengths and code lengths on the performance of Contextor
and compare it with the baselines.

Dataset. We evaluate Contextor on the CoNaLa dataset (Yin et al.,
2018), which consists of 600k NL-code pairs mined from StackOver-
flow, with 2879 of them having been manually rewritten. As shown
in Fig. 7, CoNaLa includes annotated NL questions and their corre-
sponding Python3 solutions. Although the code snippets in the CoNaLa
dataset are at the line granularity, their complex and extensive code
composition poses significant challenges to deep learning models.

Parameters. The hyper-parameters of Contextor𝐿𝑆𝑇𝑀 and
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 are shown in Tables 2 and 3 separately.

All the experiments are run on a workstation with Intel(R) Xeon(R)
Silver 4216 CPU @ 2.10 GHz, 32 RAM, and a GeForce RTX2080Ti GPU
with 11 GB memory. The running OS platform is Linux OS.
8

Table 3
Hyper-parameters for model Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟.

Category Hyper-parameter Value

Model structure

Hidden size 768
Attention size 768
Head num 12
Layer num 12
Dropout 0.1

Combining parameter 𝜃 0.2

Decay parameters 𝜆1 0.95
𝜆2 0.2

Model training
Optimizer AdamW
Learning rate 5e−5
Batch size 32

Model application Beam size 20

Table 4
Comparison between Contextor and baselines for CoNaLa datasets.

Approach BLEU CodeBLEU

TRANX 27.18 28.04
BertranX 30.02 30.34
UniXcoder 31.37 31.89
CodeGPT 35.27 33.13
CodeT5+ 35.92 33.95
Contextor𝐿𝑆𝑇𝑀 32.92 33.36
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 33.74 34.80

TRANX + mined 28.02 28.56
BertranX + mined 34.18 36.00
UniXcoder + mined 34.93 35.03
CodeGPT + mined 35.37 34.81
CodeT5+ + mined 36.21 35.12
Contextor𝐿𝑆𝑇𝑀 + mined 35.92 37.02
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 + mined 36.96 37.88

4.1. Results

RQ1: How effective is contextor compared with state-of-the-art baselines?
We use BLEU (Papineni et al., 2002) and CodeBLEU (Ren et al., 2020)
as automatic performance metrics. BLEU calculates the frequency of
repeated words between the predicted sequence and the target one,
which reflect the similarity of the two sentences. Although BLEU is the
dominant metric in natural language NLG tasks such as neural machine
translation (Wu et al., 2016; Stahlberg, 2020; Gu et al., 2017), which
estimates the similarity between the predicted sequence and the target
one by calculating the frequency of repeated words. However, it is
insufficient to evaluate the quality of code snippets as even a single
wrong token can make the code uncompilable. To address this, we also
use CodeBLEU, which is a weighted sum of four parts as follows:

𝐶𝑜𝑑𝑒𝐵𝐿𝐸𝑈 = 𝛼 ⋅ BLEU + 𝛽 ⋅ BLEU𝑤𝑒𝑖𝑔ℎ𝑡 + 𝛾 ⋅ Match𝑎𝑠𝑡 + 𝛿 ⋅ Match𝑑𝑓

where BLEU𝑤𝑒𝑖𝑔ℎ𝑡 is the weighted n-gram match which attaches more
weight to keywords in the programming language, Match𝑎𝑠𝑡 calculates
the syntactic information by matching the tree structure, Match𝑑𝑓 is
the semantic dataflow match.

We compared our method with five baseline programs in detail, and
the experimental results are shown in Table 4. Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 out-
performs all the baselines in terms of the BLEU and CodeBLEU metric.
In addition, the lightweight Contextor can achieve competitive
𝐿𝑆𝑇𝑀

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.

t
h
c

r
c

f
i

d
d

w
b
t
i
b

c
m
T
l

t
a
T
t
m

Table 5
Scores in every part of CodeBLEU on CoNaLa with mined data.

Model BLEU BLEU𝑤𝑒𝑖𝑔ℎ𝑡 Match𝑎𝑠𝑡 Match𝑑𝑓

TRANX 28.02 27.94 26.36 30.68
BertranX 34.18 33.92 34.44 41.45
UniXcoder 34.93 33.58 34.39 37.22
CodeGPT 35.37 34.11 32.15 37.61
CodeT5+ 36.21 34.24 33.18 36.85
Contextor𝐿𝑆𝑇𝑀 35.92 35.21 34.28 42.67
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 36.96 36.97 36.31 41.28

Table 6
Comparison of the results generated by two decoders under the same setting.

Model BLEU BLEU𝑤𝑒𝑖𝑔ℎ𝑡 Match𝑎𝑠𝑡 Match𝑑𝑓

Contextor𝐿𝑆𝑇𝑀 L2R 35.92 35.21 34.28 42.67
Contextor𝐿𝑆𝑇𝑀 R2L 35.79 35.01 34.32 42.31

Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 L2R 36.96 36.97 36.31 41.28
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 R2L 35.88 35.12 33.21 41.59

results with fewer parameters. When we only use rewritten the dataset
as the training data, we found that CodeT5+ and CodeGPT perform
better. This is mainly because the decoders of these two models were
pre-trained and learned more information. However, the decoders of
other models are randomly initialized, and it is difficult to achieve
good performances with a small amount of data. After using more
mined data, Contextor achieved better results. We also observe that
models generating ASTs achieve a higher score on CodeBLEU than
BLEU, while CodeGPT and CodeT5+ score higher on BLEU. Compared
with the code generated by pre-trained models, the code generated
by seq2tree models gets 100% on syntactic validity, whereas the pre-
trained model gets 92%. Thus, our results demonstrate the effectiveness
of our proposed bidirectional decoding method and the superiority of
seq2tree models for code generation tasks.

We also make a study on every part of CodeBLEU as shown in
Table 5. Among models generating ASTs, Contextor can outperform
other baselines in all the metrics because we employ a bidirectional
decoder to better interact with both past and future knowledge. Al-
though pre-trained models achieve relatively competitive results in
BLEU and BLEU𝑤𝑒𝑖𝑔ℎ𝑡, it has a disadvantage in Match𝑎𝑠𝑡 because the
code generated by these models cannot ensures the syntactic validity
and code without syntactic validity score zero on Match𝑎𝑠𝑡.

In Table 6, we compared the generation capabilities of two de-
coders. It can be observed that, when we applied the same criteria to
both decoders, there is a small difference in their results, indicating that
both decoders have the capability to generate high-quality code.

Summary for RQ1

Contextor can outperform the baselines in terms of two
evaluation metrics on the CoNaLa dataset.

RQ2: How does bidirectional decoding mechanism facilitate the gener-
ation of context-coherent code? To demonstrate the effectiveness of
he bidirectional decoding model, in this section, we will introduce
ow our bidirectional decoding mechanism facilitate the generation of
ontext-coherent code.

Fig. 8 provide a concrete example, which illustrates how our bidi-
ectional decoding model effectively generates context-consistent
ode. Specifically, given a natural language description write dataframe
df to a csv file, our model is trained to generate the target code
df.to_csv(csvfile) . At time step 𝑡5, our L2R Decoder generates

the method to_csv based on both the hidden state produced by the L2R
Decoder and the context information generated by the R2L Decoder.
9

Table 7
Comparison of Contextor using structure-level decoding methods with vanilla
bidirectional decoding.

BLEU BLEU𝑤𝑒𝑖𝑔ℎ𝑡 Match𝑎𝑠𝑡 Match𝑑𝑓

Contextor𝐿𝑆𝑇𝑀 35.92 35.21 34.28 42.67
Vanilla bidirectional LSTM 34.24 33.21 31.58 36.19

Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 36.96 36.97 36.31 41.28
Vanilla bidirectional transformer 35.12 34.37 33.28 37.71

Table 8
Comparison between Bidirectional Beam Search algorithm and Greedy algorithm.

Model Algorithm BLEU CodeBLEU

Contextor𝐿𝑆𝑇𝑀
Greedy 30.67 32.19
Bidirectional beam search 35.92 37.02

Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 Greedy 31.00 30.46
Bidirectional beam search 36.96 37.88

Table 9
Performance with different settings on CoNaLa.

Approach BLEU CodeBLEU

raw Contextor𝐿𝑆𝑇𝑀 32.90 34.31
Contextor𝐿𝑆𝑇𝑀 + Scheduled sampling 34.81 36.05
Contextor𝐿𝑆𝑇𝑀 + Adapted scheduled sampling 35.92 37.02

raw Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 33.72 35.91
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 + Scheduled sampling 35.58 36.23
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 + Adapted scheduled sampling 36.96 37.88

Importantly, the other decoder has already generated its parameter csv-
ile when the L2R Decoder generates this method, providing additional
nformation for the model.

We provide three attention heatmaps to prove our opinion. Fig. 9(a)
escribes the attention weights between the input sequence and the
ecoded results. When generating the node to_csv, more attention is

attached to the words csv and file from the input. More importantly,
Fig. 9(b) shows the attention weights between the decoders, demon-
strating the relevance of past and future nodes. As shown in this
figure, the LSTM𝐿2𝑅 attaches more importance to the node csvfile as

e anticipated. In addition, the heatmap of attention weights processed
y the noise masking network is shown in Fig. 9(c). We can see that
he noise masking network can mask out context information that is
rrelevant to generation, thereby reducing the noise introduced by the
idirectional decoding mechanism.

To illustrate the superiority of the structure-level bidirectional de-
oding approach we proposed, we compared it with the traditional
ethod of generating from both ends of the sequence, as shown in
able 7. Experimental results show that different traversal of the ASTs

eads to improved generation results.
The decoding algorithm is crucial in NLG models, as it can expand

he search space for model decoding. The Bidirectional Beam Search
lgorithm also has a significant impact in Contextor. As shown in
able 8, experimental results demonstrate that employing the bidirec-
ional beam search algorithm leads to substantial performance improve-
ents compared to the greedy algorithm.

Summary for RQ2

Contextor can obtain valuable contextual information through
bidirectional decoding.

RQ3: What is the role of adapted scheduled sampling?. To investigate the
effectiveness of adapted scheduled sampling, we conducted an ablation
study. We compared our original model with Contextor + scheduled
sampling and Contextor + adapted scheduled sampling. The results are
shown in Table 9.

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Fig. 8. An example of information sharing.
Fig. 9. Attention heatmaps.
The increase in BLEU and CodeBLEU can be explained in two ways.
On the one hand, for sequence prediction tasks, the main difference
between training and inference is whether use the actual previous
token or the predicted token generated by the model. To be specific,
conventional training approaches aim to minimize the loss given the
current state and the actual previous token, while the token is replaced
by the predicted token at inference which causes a discrepancy between
training and inference. Scheduled sampling gently changes the training
process from fully instructed by the actual target token to guided
mainly by the predicted token generated by the model, narrowing the
10
gap between training and inference. On the other hand, our bidirec-
tional decoder suffer from the information leakage problem, as shown
in Fig. 6. This problem is mainly caused by inputting the actual label
into one decoder that is visible to the other. As a result, we employ
scheduled sampling to gradually use the predicted label to train the
model and alleviate information leakage. Considering that the tokens
generated earlier are more likely to be leaked. So we continuously
adapt scheduled sampling to use more predicted tokens at the earlier
time step of generation. We also consider that the quality of the
sequences generated in the later stage is lower than that in the initial

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Fig. 10. The impact of adapted scheduled sampling on the development set’s BLEU and CodeBLEU scores, as well as the training set’s loss.
Table 10
Evaluation of the decay parameters for Contextor𝐿𝑆𝑇𝑀 .
𝜆1 𝜆2 BLEU CodeBLEU

0.98
0.1 33.91 34.81
0.2 34.50 36.11
0.3 35.12 35.91

0.95
0.1 34.68 36.21
0.2 35.92 37.02
0.3 34.31 36.26

0.92
0.1 35.03 36.29
0.2 35.23 36.37
0.3 34.79 35.03

Table 11
Evaluation of the decay parameters for Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟.

𝜆1 𝜆2 BLEU CodeBLEU

0.98
0.1 34.16 33.92
0.2 35.13 35.95
0.3 36.08 37.22

0.95
0.1 35.97 35.31
0.2 36.96 37.88
0.3 35.19 36.13

0.92
0.1 35.29 35.81
0.2 35.93 36.12
0.3 34.85 36.24

stage (Zhou et al., 2019). Therefore, we use more actual tokens to guide
our model in the later stage while generating a sequence. The ablation
experiment shows that adapted scheduled sampling yields performance
improvement.

Fig. 10 demonstrates the effect of adapted scheduled sampling
on the bidirectional decoding mechanism. In Fig. 10(a), we observe
that the model without adapted scheduled sampling achieves a quick
convergence by encountering the true labels during training, but suffers
from the issue of information leakage. As a result, its performance on
BLEU and CodeBLEU on the validation set is relatively poor. On the
other hand, Fig. 10(b) shows that the model using adapted scheduled
sampling has a slower decrease in loss and even an upward trend in the
later stages of training, but performs better on the validation set. This is
because the use of adapted scheduled sampling mitigates the problem
of information leakage, thereby reducing the gap between training and
inference.

Decay parameters played a crucial role in our experiment as
they determined the probability of selecting different guiding labels
during sampling. As shown in the Table 10 and Table 11, Contextor𝐿𝑆𝑇𝑀
and
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 perform the best when using 𝜆1 = 0.95 and 𝜆2 = 0.2.
This is because if 𝜆 is too large, the model relies too heavily on true
11
labels, resulting in information leakage issues. On the other hand, if 𝜆 is
too small, the model relies more on predicted labels, making it difficult
to converge.

Summary for RQ3

We demonstrated the effectiveness of adapted scheduled
sampling through an ablation study.

RQ4: What is the impact of different NL lengths, sequence lengths and code
lengths on the performance of contextor ? To investigate how different
NL lengths, sequence lengths and code lengths affect the performance
of Contextor and the baselines, we analyzed the CodeBLEU metric
scores of various action lengths generated by our proposed method
and the baselines. Fig. 11 shows the average CodeBLEU scores of
Contextor, BertranX, TRANX, and CodeT5+ for varying NL lengths,
sequence lengths and code lengths.

Fig. 11(a) illustrates that in cases where the NL input is lengthy,
Contextor, BertranX, and CodeT5+ perform better owing to their
pre-trained encoders. Additionally, BERT and CodeT5+, utilizing self-
attention mechanisms, can capture long-range dependency information,
making them better suited to processing longer inputs. From an overall
perspective, as depicted in Figs. 11(b) and 11(c), BertranX performs
better at generating shorter code and behavior sequences, while Con-
textor is superior at generating longer ones. This is due to the fact
that a unidirectional decoding model generates the current character
based on previously generated ones, causing errors to accumulate as
the text lengthens. However, the bidirectional decoding model, Con-
textor, predicts not only based on the preceding context but also on
the following context. In this situation, even if the previous predic-
tion is erroneous, the model can rectify it based on the information
supplied by the subsequent context, enhancing its code generation
capabilities. Furthermore, compared to Contextor𝐿𝑆𝑇𝑀 , we observe
that Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 performs better in generating longer code.
This is because the Transformer can capture dependencies over longer
distances through its self-attention mechanism.

Summary for RQ4

Contextor can generate higher quality code snippets com-
pared to baseline methods in the case of relatively long input
and target sequences.

4.2. Examples

For qualitative analysis, we present examples of code generated by
Contextor, BertranX, and CodeT5+ from Tables 12 to 14.

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Fig. 11. CodeBLEU score for different NL lengths, sequence lengths and code lengths in CoNaLa dataset.
Table 12
Code snippets generated by Contextor, BertranX, and CodeT5+, where ‘NL’ is the input natural language, ‘Gold’ is the reference
code snippet.
Example1

NL Sort a list of dictionaries list_to_be_sorted by the value of the dictionary key ‘name’
Gold newlist = sorted(list_to_be_sorted, key=lambda k:k[‘name’])
Contextor𝐿𝑆𝑇𝑀 sorted(list_to_be_sorted, key=lambda x:x[‘name’])
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 sorted(list_to_be_sorted, key=lambda x:x[‘name’])
BertranX sorted(list_to_be_sorted, key=lambda x:list(x.values()) [0])
CodeT5+ list = sorted(list_to_be_sorted, key=lambda x:x(‘name’)
Table 13
Code snippets generated by Contextor, BertranX, and CodeT5+, where ‘NL’ is the input natural language, ‘Gold’ is the reference
code snippet.
Example2

NL Convert unix timestamp ‘1347517370’ to formatted string ‘%Y-%m-%d %H:%M:%S’
Gold time.strftime(‘%Y-%m-%d%H:%M:%S’, time.localtime(1347517370))
Contextor𝐿𝑆𝑇𝑀 time.strftime(‘1347517370’, time.strftime(‘1347517370’, ‘%Y-%m-%d%H:%M:%S’))
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 time.strftime(‘%Y-%m-%d%H:%M:%S’)
BertranX time.mktime(time.mktime(datetime.datetime.fromtimestamp (s).timetuple()))
CodeT5+ time.strftime(‘%Y-%m-%d%H:%M:%S’, time.localtime(137))
Table 14
Code snippets generated by Contextor, BertranX, and CodeT5+, where ‘NL’ is the input
natural language, ‘Gold’ is the reference code snippet.

Example3

NL append list ‘list1’ to ‘list2’
Gold list2.append(list1)
Contextor𝐿𝑆𝑇𝑀 list1.append(list1)
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 list2.append(list1)
BertranX list2.append(list1)
CodeT5+ list2.append(list1)

In Table 12, it can be observed that the code generated by Contex-
tor is very similar to the gold snippet, indicating that our approach
can generate high-quality code corresponding to natural language.
However, BertranX fails to interpret the natural language, and the
output of CodeT5+ has a syntax problem. In Table 13, Contextor𝐿𝑆𝑇𝑀
has the problem of outputting duplicate code, which we attribute to the
12
beam search algorithm (Su and Collier, 2022). BertranX is unable to
output the corresponding code. Although CodeT5+ generates formally
correct code, it did not successfully copy the parameters in natural
language because of the out-of-vocabulary problem as we discussed
in Section 3.1. As shown in Table 14, there is a logical problem
with Contextor𝐿𝑆𝑇𝑀 ’s output, while the other baselines generate the
correct code. We think that the bidirectional decoding mechanism of
Contextor occasionally introduces noise to the model because one
decoder may output wrong or useless information that is irrelevant to
the other decoder.

5. Threats to validity

Internal validity. Threats to internal validity are related to experimental
errors and biases. To ensure a fair comparison with the baselines,
we used a public dataset and followed the methodology of previous
works (Yin and Neubig, 2018; Beau and Crabbé, 2022). We also reused
their code and trained models (if available) to avoid possible errors.

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.

g
s
p
f
d
s
t
Y
t
t
s
C
e
l
i
u
t
t
a

m
a
m
E
s
t
p
o

a
(

Table 15
The comparison results between our proposed approach Contextor and baselines using
scheduled sampling on CoNaLa dataset.

Approach BLEU CodeBLEU

TRANX 28.02 28.56
TRANX + scheduled sampling 29.03 29.31

BertranX 34.18 35.97
BertranX + scheduled sampling 34.43 35.82

Contextor𝐿𝑆𝑇𝑀 35.92 37.02
Contextor𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 36.96 37.88

External validity. Threats to external validity mainly focus on the gen-
eralizability of the results to other cases beyond the experimental
settings. In our work, we selected the CoNaLa dataset as our experimen-
tal dataset, which consists of Python code mined from Stack Overflow
and natural language descriptions mainly in the form of questions. We
believe that this dataset represents a diverse set of coding scenarios that
align with typical developer needs. Moreover, we note that generating
code in CoNaLa is a challenging task due to the relatively low number
of shared words between the natural language and code. Overall, we
consider CoNaLa to be a representative corpus for evaluating code
generation models.

Conclusion validity. As mentioned in RQ3, bidirectional decoding has
its problem with information leakage, so we employ adapted scheduled
sampling to alleviate this problem. However, models using scheduled
sampling can also have a positive effect on the final result. As a result,
to prove the effectiveness of the bidirectional decoding component
of our work, we also employ scheduled sampling on TRANX and
BertranX. Results in Table 15 can demonstrate the effectiveness of the
bidirectional decoding mechanism.

Construct validity. Finally, we discuss threats to construct validity,
which refers to the appropriateness of the automatic evaluation met-
rics. Previous works have commonly used BLEU as their evaluation
metric for code generation tasks. However, as we discussed in RQ4,
similarity between the predicted code and the target code cannot fully
represent the quality of the code. Thus, we opted to use CodeBLEU to
evaluate the results, which considers not only surface matching but also
grammatical and logical correctness.

6. Related work

Code generation. Automatic generation of code from natural language
has received increasing attention in software engineering and artificial
intelligence.

Ling et al. (2016) used Latent Predictor Networks to generate
eneral-purpose code from a mixed natural language and structured
pecification, which treat code generation as a sequence-to-sequence
roblem. Rabinovich et al. (2017) proposed abstract syntax networks
or code generation and semantic parsing, which utilized a modular
ecoder to generate ASTs in top-down order. They put forward a
equence-to-tree framework and combined the decoder with the atten-
ion mechanism to integrate the information of input natural language.
in and Neubig (2018) proposed TRANX, employing a transition system
o generate domain-dependent grammar and construct such grammar
o code. This method ensures syntactic correctness, and their transition
ystem can be extended to other domain-specific languages. Beau and
rabbé (2022) replaced the LSTM encoder in TRANX with a BERT
ncoder, which improves the ability to understand the input natural
anguage. They also made a detailed ablation study to demonstrate the
mpact of each component. Sun et al. (2020) proposed TreeGen, which
ses self-attention mechanism of Transformers (Vaswani et al., 2017b)
o alleviate the long-dependency problem. Based on such a sequence-
o-tree model, Hayati et al. (2018) proposed RECODE, a retrieval-based
pproach that extracts subtrees from retrieved code. Experiments show
13

m

that RECODE can benefit from the information from the retrieved code.
Jiang et al. (2021a) proposed a novel AST structure enhanced decoder
for code generation, which model the predictions of current actions and
future actions via multi-task learning. Wei et al. (2019) applied the
relation between code generation (CG) and code summarization (CS)
via dual learning. They designed a dual learning framework to train
CG and CS frameworks simultaneously to boost each other. Yang et al.
(2022) propose a novel template-augmented exploit code generation
approach Exploit-Gen based on CodeBERT. They used two encoders for
encoding and a fusion layer to fuse the information of the two encoders,
which improve the quality of the generation.

Besides, with the effectiveness and popularity of the pre-trained
models, researchers began to pre-train NL and code on Transformer
models in various ways. CodeBERT, proposed by Norouzi et al. (2021),
is pre-trained on the Code Search Net dataset (Husain et al., 2019).
This task consists of 6 million code functions and 2 million function-
documentation pairs collected from open-source projects. This corpus
contains about 6 million functions from open-source code among six
programming languages and 2 million function-documentation pairs
collected from open-source projects. They used masked language mod-
eling (MLM) and replaced token detection (RTD) to train the model.
Lu et al. (2021a) proposed CodeGPT. CodeGPT is based on the archi-
tecture of GPT-2 (Radford et al., 2019), which is a decoder-only model.
CodeT5 (Wang et al., 2021) is an encoder–decoder model pre-trained
on Transformers (Vaswani et al., 2017b) that take token type prediction
as a pre-training task. CodeT5 is based on T5 architecture that has been
demonstrated to improve code generation tasks.

Bidirectional decoding. Most NLG tasks generate a sequence in an auto-
regressive way, such as neural machine translation, code generation,
and code summarization which can be formalized as a sequence-to-
sequence problem. Generally, most previous works generate the target
sequence in a right-to-left manner. However, such a manner can only
utilize the previous knowledge to predict the next token that ignores
the future.

Watanabe and Sumita (2002) first explored bidirectional decoding
by decoding sequence in both left-to-right and right-to-left manner
independently and merging hypothesized partial outputs of two di-
rections. Su et al. (2019) leveraged the reverse target-side contexts
to enhance neural machine translation through asynchronous bidirec-
tional decoding. Zhang et al. (2018) proposed ABD-NMT to fully exploit
the source-side and target-side contexts to improve generation quality.
They equipped the conventional sequence-to-sequence model with a
backward decoder that independently generates the target sequence in
a right-to-left manner. Then they generate the sequence from left to
right, which employs the attention mechanism using the hidden state
from both the encoder and backward decoder. Zhang et al. (2020)
proposed a synchronous bidirectional decoding model that generates
sequences using both left-to-right and right-to-left decoding results
simultaneously and interactively. Unlike Zhang’s (Zhang et al., 2018)
work, their model generates left-to-right and right-to-left sequences
simultaneously, and both decoders generate sequences instructed by the
encoder’s output and the other’s hidden states.

7. Conclusion

In this paper, we have presented Contextor, a sequence-to-tree
odel with a context-sensitive bidirectional decoder for code gener-

tion. Different from previous work, we use the bidirectional decoding
echanism to support context-awareness at the code structure level.
xperiment results have shown that our approach outperforms the
tate-of-the-art baselines on the public dataset. In addition, we use
he scheduled sampling technique to mitigate the information leakage
roblem of the bidirectional decoding mechanism, which we believe is
f interests in its own right.

In the future, we plan to deploy our method on different model
rchitectures, such as Transformer (Vaswani et al., 2017a) and RWKV
Peng et al., 2023), and attempt to further improve the model’s perfor-

ance by increasing the number of parameters.

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
CRediT authorship contribution statement

Xiangyu Zhang: Writing – review & editing, Writing – original
draft, Software, Methodology, Data curation, Conceptualization. Yu
Zhou: Writing – review & editing, Supervision, Funding acquisition,
Formal analysis. Guang Yang: Methodology, Investigation, Data cu-
ration. Tingting Han: Writing – review & editing, Formal analysis.
Taolue Chen: Writing – review & editing, Funding acquisition, Formal
analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (No. 62372232), the Fundamental Research Funds for the
Central Universities, China (No. NG2023005), and the Collaborative
Innovation Center of Novel Software Technology and Industrialization,
China. T. Chen is partially supported by an oversea grant from the State
Key Laboratory of Novel Software Technology, Nanjing University,
China (KFKT2022A03), Birkbeck BEI School Project (EFFECT), China.

References

Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D., 2016. Deepcoder:
Learning to write programs. arXiv preprint arXiv:1611.01989.

Beau, N., Crabbé, B., 2022. The impact of lexical and grammatical processing on
generating code from natural language. In: Muresan, S., Nakov, P., Villavicencio, A.
(Eds.), Findings of the Association for Computational Linguistics: ACL 2022,
Dublin, Ireland, May 22-27, 2022. Association for Computational Linguistics, pp.
2204–2214.

Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N., 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R. (Eds.), Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada. pp. 1171–1179.

Devlin, J., Chang, M., Lee, K., Toutanova, K., 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Burstein, J., Doran, C.,
Solorio, T. (Eds.), Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers). Association for Computational Linguistics, pp. 4171–4186.

Earley, J., 1970. An efficient context-free parsing algorithm. Commun. ACM 13 (2),
94–102.

Gu, J., Bradbury, J., Xiong, C., Li, V.O., Socher, R., 2017. Non-autoregressive neural
machine translation. arXiv preprint arXiv:1711.02281.

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., Yin, J., 2022. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A.,
Fu, S., Tufano, M., Deng, S.K., Clement, C.B., Drain, D., Sundaresan, N., Yin, J.,
Jiang, D., Zhou, M., GraphCodeBERT: Pre-training code representations with data
flow. In: 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021.

Hayati, S.A., Olivier, R., Avvaru, P., Yin, P., Tomasic, A., Neubig, G., 2018. Retrieval-
based neural code generation. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J.
(Eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 - November 4, 2018. Association
for Computational Linguistics, pp. 925–930.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., Brockschmidt, M., 2019. Codesearchnet
challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:
1909.09436.

Hussain, Y., Huang, Z., Zhou, Y., Wang, S., 2020. CodeGRU: Context-aware deep
learning with gated recurrent unit for source code modeling. Inf. Softw. Technol.
14

125, 106309. http://dx.doi.org/10.1016/j.infsof.2020.106309.
Jiang, H., Song, L., Ge, Y., Meng, F., Yao, J., Su, J., 2021a. An AST structure enhanced
decoder for code generation. IEEE/ACM Trans. Audio, Speech, Lang. Process. 30,
468–476.

Jiang, H., Zhou, C., Meng, F., Zhang, B., Zhou, J., Huang, D., Wu, Q., Su, J., 2021b.
Exploring dynamic selection of branch expansion orders for code generation. arXiv
preprint arXiv:2106.00261.

Kou, B., Chen, S., Wang, Z., Ma, L., Zhang, T., 2023. Is model attention aligned with
human attention? An empirical study on large language models for code generation.
arXiv preprint arXiv:2306.01220.

Ling, W., Blunsom, P., Grefenstette, E., Hermann, K.M., Kociský, T., Wang, F.,
Senior, A.W., 2016. Latent predictor networks for code generation. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association
for Computer Linguistics.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C.B., Drain, D.,
Jiang, D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M., Gong, M.,
Zhou, M., Duan, N., Sundaresan, N., Deng, S.K., Fu, S., Liu, S., 2021a. CodeXGLUE:
A machine learning benchmark dataset for code understanding and generation. In:
Vanschoren, J., Yeung, S. (Eds.), Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, Virtual.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C., Drain, D.,
Jiang, D., Tang, D., et al., 2021b. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664.

Norouzi, S., Tang, K., Cao, Y., 2021. Code generation from natural language with
less prior knowledge and more monolingual data. In: Zong, C., Xia, F., Li, W.,
Navigli, R. (Eds.), Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event,
August 1-6, 2021. Association for Computational Linguistics, pp. 776–785.

Papineni, K., Roukos, S., Ward, T., Zhu, W., 2002. Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA,
USA. ACL, pp. 311–318.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho, S., Cao, H., Cheng, X.,
Chung, M., Grella, M., GV, K.K., et al., 2023. RWKV: Reinventing RNNs for the
transformer era. arXiv preprint arXiv:2305.13048.

Rabinovich, M., Stern, M., Klein, D., 2017. Abstract syntax networks for code generation
and semantic parsing. In: Barzilay, R., Kan, M. (Eds.), Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers. Association for
Computational Linguistics, pp. 1139–1149.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al., 2019. Language
models are unsupervised multitask learners. OpenAI Blog 1 (8), 9.

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sundaresan, N., Zhou, M., Blanco, A.,
Ma, S., 2020. CodeBLEU: a method for automatic evaluation of code synthesis.
CoRR abs/2009.10297, arXiv:2009.10297.

Stahlberg, F., 2020. Neural machine translation: A review. J. Artificial Intelligence Res.
69, 343–418.

Su, Y., Collier, N., 2022. Contrastive search is what you need for neural text generation.
arXiv preprint arXiv:2210.14140.

Su, J., Zhang, X., Lin, Q., Qin, Y., Yao, J., Liu, Y., 2019. Exploiting reverse target-side
contexts for neural machine translation via asynchronous bidirectional decoding.
Artificial Intelligence 277, 103168.

Sun, Z., Zhu, Q., Mou, L., Xiong, Y., Li, G., Zhang, L., 2019. A grammar-based
structural CNN decoder for code generation. In: The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019. AAAI Press, pp. 7055–7062. http://dx.doi.org/10.1609/aaai.
v33i01.33017055.

Sun, Z., Zhu, Q., Xiong, Y., Sun, Y., Mou, L., Zhang, L., 2020. TreeGen: A tree-
based transformer architecture for code generation. In: The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February
7-12, 2020. AAAI Press, pp. 8984–8991.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017a. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I., 2017b. Attention is all you need. In: Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (Eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. pp. 5998–6008.

Wang, D.C., Appel, A.W., Korn, J.L., Serra, C.S., 1997. The zephyr abstract syntax
description language. In: Ramming, C. (Ed.), Proceedings of the Conference on
Domain-Specific Languages, DSL’97, Santa Barbara, California, USA, October 15-17,
1997. USENIX, pp. 213–228.

Wang, Y., Le, H., Gotmare, A.D., Bui, N.D., Li, J., Hoi, S.C., 2023. Codet5+: Open
code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922.

http://arxiv.org/abs/1611.01989
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb2
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb3
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb4
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb5
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb5
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb5
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/2203.03850
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb9
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://dx.doi.org/10.1016/j.infsof.2020.106309
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb12
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb12
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb12
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb12
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb12
http://arxiv.org/abs/2106.00261
http://arxiv.org/abs/2306.01220
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb15
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb16
http://arxiv.org/abs/2102.04664
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb18
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb19
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb19
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb19
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb19
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb19
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb19
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb19
http://arxiv.org/abs/2305.13048
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb21
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb22
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb22
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb22
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb24
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb24
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb24
http://arxiv.org/abs/2210.14140
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb26
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb26
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb26
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb26
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb26
http://dx.doi.org/10.1609/aaai.v33i01.33017055
http://dx.doi.org/10.1609/aaai.v33i01.33017055
http://dx.doi.org/10.1609/aaai.v33i01.33017055
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb28
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb28
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb28
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb28
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb28
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb28
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb28
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb29
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb29
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb29
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb30
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb31
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb31
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb31
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb31
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb31
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb31
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb31
http://arxiv.org/abs/2305.07922

The Journal of Systems & Software 214 (2024) 112066X. Zhang et al.
Wang, Y., Wang, W., Joty, S.R., Hoi, S.C.H., 2021. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In:
Moens, M., Huang, X., Specia, L., Yih, S.W. (Eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021. Association
for Computational Linguistics, pp. 8696–8708.

Wang, W., Zhang, K., Li, G., Liu, S., Jin, Z., Liu, Y., 2022. A tree-structured transformer
for program representation learning. arXiv preprint arXiv:2208.08643.

Watanabe, T., Sumita, E., 2002. Bidirectional decoding for statistical machine trans-
lation. In: 19th International Conference on Computational Linguistics, COLING
2002, Howard International House and Academia Sinica, Taipei, Taiwan, August
24 - September 1, 2002.

Wei, B., Li, G., Xia, X., Fu, Z., Jin, Z., 2019. Code generation as a dual task of code
summarization. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E.B., Garnett, R. (Eds.), Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada. pp. 6559–6569.

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., et al., 2016. Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144.

Xie, B., Su, J., Ge, Y., Li, X., Cui, J., Yao, J., Wang, B., 2021. Improving tree-
structured decoder training for code generation via mutual learning. In: Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, the Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021. AAAI Press, pp. 14121–14128.

Yang, Z., Chen, S., Gao, C., Li, Z., Li, G., Lv, R., 2023a. Deep learning based code
generation methods: A literature review. CoRR abs/2303.01056.

Yang, G., Zhou, Y., Chen, X., Yu, C., 2021. Fine-grained pseudo-code generation method
via code feature extraction and transformer. In: 2021 28th Asia-Pacific Software
Engineering Conference. APSEC, IEEE, pp. 213–222.

Yang, G., Zhou, Y., Chen, X., Zhang, X., Han, T., Chen, T., 2022. ExploitGen: Template-
augmented exploit code generation based on CodeBERT. J. Syst. Softw. 111577.
http://dx.doi.org/10.1016/j.jss.2022.111577.

Yang, G., Zhou, Y., Chen, X., Zhang, X., Xu, Y., Han, T., Chen, T., 2023b. A syntax-
guided multi-task learning approach for turducken-style code generation. arXiv
preprint arXiv:2303.05061.

Yin, P., Deng, B., Chen, E., Vasilescu, B., Neubig, G., 2018. Learning to mine parallel
natural language/source code corpora from stack overflow. In: Chaudron, M.,
Crnkovic, I., Chechik, M., Harman, M. (Eds.), Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. ACM, pp. 388–389.

Yin, P., Neubig, G., 2018. TRANX: A transition-based neural abstract syntax parser for
semantic parsing and code generation. In: Blanco, E., Lu, W. (Eds.), Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November
4, 2018. Association for Computational Linguistics, pp. 7–12.

Zhang, A., Fang, L., Ge, C., Li, P., Liu, Z., 2023. Efficient transformer with code token
learner for code clone detection. J. Syst. Softw. 197, 111557. http://dx.doi.org/10.
1016/j.jss.2022.111557.
15
Zhang, X., Su, J., Qin, Y., Liu, Y., Ji, R., Wang, H., 2018. Asynchronous bidirectional
decoding for neural machine translation. In: McIlraith, S.A., Weinberger, K.Q.
(Eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. AAAI Press, pp.
5698–5705.

Zhang, J., Zhou, L., Zhao, Y., Zong, C., 2020. Synchronous bidirectional inference for
neural sequence generation. Artificial Intelligence 281, 103234.

Zhou, L., Zhang, J., Zong, C., 2019. Synchronous bidirectional neural machine
translation. Trans. Assoc. Comput. Linguist. 7, 91–105.

Xiangyu Zhang is currently pursuing the master degree with the College of Computer
Science and Technology of Nanjing University of Aeronautics and Astronautics. His
research interests include code generation.

Yu Zhou is currently a full professor of software engineering in the College of Computer
Science and Technology at Nanjing University of Aeronautics and Astronautics (NUAA).
He received his Ph.D. in computer science from Nanjing University in 2009 supervised
by Professor Jian Lü. From 2006–2007, he worked as a research assistant with Professor
Jiannong Cao in Department of Computing at Hongkong Polytechnic University. From
2007–2008, he was funded by a joint Ph.D. education program from China Scholarship
Council and studied at University of Zurich, supervised by Professor Harald Gall. Before
joining NUAA in 2011, he conducted PostDoc research on software engineering at
Politecnico di Milano, Italy, working with Professor Luciano Baresi. From 2015–2016,
he visited SEAL lab at University of Zurich, where he is also an adjunct researcher.
He is currently a senior member of IEEE/CCF, a member of Technical Committee (TC)
on System Software of CCF, a member of TC on Software Engineering of CCF, and
vice director of TC on Software of Jiangsu Computer Society. He has broad interests
in software engineering with a focus on intelligent software engineering, big data and
cloud computing, software evolution and reliability analysis, and co-authored more
than 100 papers in these fields.

Guang Yang is currently pursuing the Ph.D. degree with the College of Computer
Science and Technology of Nanjing University of Aeronautics and Astronautics. His
research interests include code generation and exploit code.

Tingting Han obtained her B.Sc. and MEng in Computer Science from Nanjing
University China, and her Ph.D. from RWTH Aachen University and University of
Twente. She was a Research Assistant at University of Oxford before joining Birkbeck.
Her Areas of interest: Formal verification and synthesis of probabilistic systems, and
its applications.

Taolue Chen is a Postdoctoral Researcher at University of Oxford (UK) and University
of Twente (The Netherlands);Ph.D. (CWI and Vrije Universiteit Amsterdam, The Nether-
lands), Master and Bachelor (Nanjing University, China), all in Computer Science. His
Areas of interest: Quantitative analysis and synthesis of computer program and systems,
logic in computer science, machine learning and data science, software engineering,
algorithms and computational complexity.

http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb33
http://arxiv.org/abs/2208.08643
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb35
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb35
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb35
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb35
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb35
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb35
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb35
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb36
http://arxiv.org/abs/1609.08144
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb38
http://arxiv.org/abs/2303.01056
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb40
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb40
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb40
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb40
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb40
http://dx.doi.org/10.1016/j.jss.2022.111577
http://arxiv.org/abs/2303.05061
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb43
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb44
http://dx.doi.org/10.1016/j.jss.2022.111557
http://dx.doi.org/10.1016/j.jss.2022.111557
http://dx.doi.org/10.1016/j.jss.2022.111557
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb46
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb47
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb47
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb47
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb48
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb48
http://refhub.elsevier.com/S0164-1212(24)00111-0/sb48

	Context-aware code generation with synchronous bidirectional decoder
	Introduction
	Background
	Seq2Tree Techniques
	Synchronous Bidirectional decoding

	Approach
	Data processing
	Model Architecture
	Bidirectional Beam Search
	Adapted Scheduled Sampling

	Experiments
	Results
	Examples

	Threats to Validity
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

