
The Journal of Systems & Software 197 (2023) 111577

T
a

b

c

d

w
c
o
2
a
e
w
s
t
a

N

N

(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

ExploitGen: Template-augmented exploit code generation based on
CodeBERT✩

Guang Yang a,b, Yu Zhou a,b,∗, Xiang Chen b,c,∗∗, Xiangyu Zhang a,b, Tingting Han d,
aolue Chen d,∗∗

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Key Laboratory of Safety-Critical Software, Ministry of Industry and Information Technology, Nanjing, China
School of Information Science and Technology, Nantong University, Nantong, China
Department of Computer Science and Data Science, Birkbeck, University of London, UK

a r t i c l e i n f o

Article history:
Received 16 June 2022
Received in revised form 21November 2022
Accepted 28 November 2022
Available online 1 December 2022

Keywords:
Exploit code
Code generation
Template parser
CodeBERT
Neural network

a b s t r a c t

Exploit code is widely used for detecting vulnerabilities and implementing defensive measures.
However, automatic generation of exploit code for security assessment is a challenging task. In this
paper, we propose a novel template-augmented exploit code generation approach ExploitGen based on
CodeBERT. Specifically, we first propose a rule-based Template Parser to generate template-augmented
natural language descriptions (NL). Both the raw and template-augmented NL sequences are encoded
to context vectors by the respective encoders. For better learning semantic information, ExploitGen
incorporates a semantic attention layer, which uses the attention mechanism to extract and calculate
each layer’s representational information. In addition, ExploitGen computes the interaction information
between the template information and the semantics of the raw NL and designs a residual connection
to append the template information into the semantics of the raw NL. Comprehensive experiments on
two datasets show the effectiveness of ExploitGen after comparison with six state-of-the-art baselines.
Apart from the automatic evaluation, we conduct a human study to evaluate the quality of generated
code in terms of syntactic and semantic correctness. The results also confirm the effectiveness of
ExploitGen.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Context. Exploit code (Bao et al., 2017) takes advantage of soft-
are vulnerabilities to cause unexpected behaviors during exe-
ution, such as controlling computer systems, causing a buffer
verflow, or launching a cyber-attack (Arce, 2004; Wang et al.,
010). Malicious exploit code can mount DDoS attacks, data theft,
nd run malware against the target systems, whereas benign
xploit code can be used to identify vulnerabilities of the soft-
are system, which can hopefully be repaired later. In software
ecurity research, exploit code is usually leveraged as the tool
o find security vulnerabilities, which motivates the research on
utomatic exploit code generation. This is a challenging task

✩ Editor: Aldeida Aleti.
∗ Corresponding author at: College of Computer Science and Technology,
anjing University of Aeronautics and Astronautics, Nanjing, China.

∗∗ Corresponding authors. School of Information Science and Technology,
antong University, Nantong, China.

E-mail addresses: yang.guang@nuaa.edu.cn (G. Yang), zhouyu@nuaa.edu.cn
Y. Zhou), xchencs@ntu.edu.cn (X. Chen), zhangx1angyu@nuaa.edu.cn
X. Zhang), t.han@bbk.ac.uk (T. Han), t.chen@bbk.ac.uk (T. Chen).
ttps://doi.org/10.1016/j.jss.2022.111577
164-1212/© 2022 Elsevier Inc. All rights reserved.
since exploit code requires specific programming and obfuscation
expertise.

In previous studies, researchers formalize the code generation
task as a sequence-to-sequence generation task. The naturalness
of code (Hindle et al., 2016) assumes that code exhibits pre-
dictable statistical properties like natural languages, which can
be captured in statistical language models and thus is used to
solve specific software engineering tasks. This has led to wide
application of deep learning in automatic code generation. Earlier
approaches resort to Encoder–Decoder models based on recurrent
neural networks (Mou et al., 2015; Ling et al., 2016; Yin and
Neubig, 2018) or convolutional neural networks (Sun et al., 2019),
which achieve promising results in domain-specific programming
languages (such as Shell Lin et al., 2018, SQL Yu et al., 2018, and
regular expressions Locascio et al., 2016). Late approaches (Sun
et al., 2020; Gemmell et al., 2020) utilize Transformer (Vaswani
et al., 2017). More recently, several studies (Norouzi et al., 2021;
Ahmad et al., 2021; Phan et al., 2021; Wang et al., 2021) focus
on the pre-trained language models (PLMs) for code generation
tasks, including general-purpose programming languages (such
as Java Iyer et al., 2018 and Python Yin et al., 2018).

However, previous approaches seldom consider the domain
knowledge of specific programming languages. In our considered

https://doi.org/10.1016/j.jss.2022.111577
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111577&domain=pdf
mailto:yang.guang@nuaa.edu.cn
mailto:zhouyu@nuaa.edu.cn
mailto:xchencs@ntu.edu.cn
mailto:zhangx1angyu@nuaa.edu.cn
mailto:t.han@bbk.ac.uk
mailto:t.chen@bbk.ac.uk
https://doi.org/10.1016/j.jss.2022.111577

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

s
t
l
b
o
g
t
h
c
m
o
t
w
e
d
g
g
A
a
i

2

Fig. 1. Difference between regular code and exploit code.

task, due to the limited number of datasets related to exploit code
and the low similarity between the exploit code and general pro-
gramming languages, we need to transfer the knowledge learned
from PLMs on general programming languages to the exploit code
domain via transfer learning (Weiss et al., 2016).

In neural code generation, the most essential step is to repre-
ent the semantic information of the natural language (NL) and
o generate the correct code. However a semantic discrepancy is
argely present between NL and programming languages (PL). To
ridge such gap and better understand the semantic information
f NL, researchers proposed CodeBERT (Feng et al., 2020), a lan-
uage model that uses the masked language model and replaced
oken detection method to pre-train both NL and PL. CodeBERT
as proven to have strong generalization capabilities (i.e., highly
ompetitive on downstream tasks related to multiple program-
ing languages) (Zhou et al., 2021). However, the performance
f the code generation model for exploit code can be affected by
he difference between exploit code and regular code. Therefore,
e aim to adjust CodeBERT to accommodate the task of automatic
xploit code generation. To bridge the discrepancy between the
atasets used by CodeBERT and the exploit code in line-level
ranularity, we use two adaptive pre-training methods (Gururan-
an et al., 2020) (i.e., Domain-Adaptive Pre-training and Task-
daptive Pre-training) to continue pre-training the CodeBERT,
nd obtain the fine-grained CodeBERT (FG-CodeBERT). Therefore,
n the sequel, CodeBERT used in ExploitGen denotes FG-CodeBERT
in the rest of this paper.
Motivation. The automatic exploit code generation is to explore
critical vulnerabilities before they are exploited by attackers.
Similar to the motivation of the previous exploit code generation
study (Liguori et al., 2021b), we aim to support both beginners
and experienced researchers, by making exploits easier to create
and reducing the learning difficulty. Exploit code is character-
ized by giving the attacker full control over the memory layout
and CPU registers, thus is able to attack low-level mechanisms
(e.g., heap metadata and stack return addresses) that are inac-
cessible through high-level programming languages. Fig. 1 uses
an example to explain the difference between regular code and
exploit code. Unlike regular code generation tasks that focus on
logically complex functional code fragments, exploit code con-
tains a large number of low-level arithmetic, logic operations, and
bit-level slices.

To explore the practical implications of our study, we gather
question posts with tags containing ‘exploit’ and ‘shell code’ from
Stack Overflow.1 We then count the number of answers to these

1 https://archive.org/download/stackexchange downloaded in September
022.
2

posts as well as the number of answers accepted by the ques-
tioner. The final results show that only 45% of the posts contain
answers that were accepted by the questioners. This shows that,
due to the specific domain of exploit code, writing exploit code
manually is a time-consuming and difficult task. Therefore, we
need an automatic way to generate exploit code and improve
developers’ productivity. In addition, since there is less work on
exploit code generation, defending against exploit code turns out
to be less effective. If we could produce exploit code in large
quantities, they would be useful to the research of detecting and
defending against exploit code.

Moreover, researchers (Heyman et al., 2021; Xu et al., 2022)
suggest code generation not only saves developers’ programming
time, but also automates the process of reminding developers
of code they may not remember or write at all, and prevents
developers from spending more time searching for it using code
search engines. Furthermore, while comments may be relatively
lengthy, writing them is still easier than writing code. Also in edu-
cational books about programming and algorithms, it is common
to use natural language or mathematical expressions to describe
the behavior of each line of statements in a program. This type of
detailed comment helps developers (Oda et al., 2015) to clarify
the logical thinking of the code because it explicitly describes
what the program needs to do. In particular, in the program
related to the exploit code, a large number of comments are
directed to each line of code rather than to the entire program,
which is also a feature of the exploit code.
Proposed solution. We propose a novel template-augmented ex-
ploit code generation approach ExploitGen based on CodeBERT. In
ExploitGen, a rule-based Template Parser is introduced to extract
special tokens from NL. The template-augmented NL and code can
be obtained accordingly. Since raw NL and template-augmented
NL are fed into ExploitGen at the same time, a raw encoder and a
template-augmented encoder (Temp Encoder) are used to encode
them respectively. To capture the contextual semantic informa-
tion in both encoders, a semantic attention layer is introduced.
Then an additional fusion layer is employed to L2-normalize these
two aspects of semantic information and fuse them by a special
residual connection. Finally, they are fed to the decoder and the
Beam Search algorithm is utilized for code generation.

To evaluate the effectiveness of ExploitGen, we conduct ex-
periments on two real-world exploit code datasets (Liguori et al.,
2021b), which were collected from publicly available databases,2 ,3
public repositories (e.g., GitHub), and programming guidelines.
We first compare ExploitGen with six state-of-the-art baselines
(Bahdanau et al., 2014; Vaswani et al., 2017; Yang et al., 2022;
Feng et al., 2020; Lu et al., 2021) in terms of three automatic
performance metrics (i.e., BLEU-4, ROUGE-W and Exact Match
Accuracy). The comparison results show that ExploitGen can
outperform these baselines. Moreover, we conduct a human study
to evaluate the quality of the generated code in terms of syntactic
correctness and semantic correctness. Finally, we also verify the
effectiveness of key components of ExploitGen by conducting a
set of ablation experiments. Our experiments show the shortcom-
ings of existing fully data-driven learning models on the exploit
code domain and suggest a new way of thinking for follow-up
studies.
Contributions. The main contributions of this paper can be sum-
marized as below.

• We present a novel template-augmented exploit code gen-
eration approach ExploitGen based on CodeBERT, which can
effectively integrate template information into the seman-
tics of the raw NL.

2 https://www.exploit-db.com/
3 http://shell-storm.org/shellcode/

https://archive.org/download/stackexchange
https://www.exploit-db.com/
http://shell-storm.org/shellcode/

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

S
t
t
p
s
S
S

2

e

2

g
w
2
S
d
d
i
P
B
w
T
p
L
R

w
p

L

w
r
t

i
d
C
i
p

L

σ

• We conduct comprehensive experiments to evaluate the
performance of ExploitGen on two large-scale datasets. The
result of the automated evaluation shows that ExploitGen
outperforms the state-of-the-art baselines.

• To facilitate the replication and reuse of ExploitGen, we
make our source code, trained models, as well as the datasets
in the GitHub repository publicly available.4

tructure. The rest of the paper is organized as follows. Sec-
ion 2 introduces the background of our work. Section 3 describes
he framework of ExploitGen and its key components. Section 4
resents the experimental design and result analysis. Discus-
ions and potential threats to validity are given in Section 5 and
ection 6 respectively. Section 7 reviews the related work, and
ection 8 concludes the paper.

. Background

In this section, we introduce the background of CodeBERT and
xploit code.

.1. CodeBERT

CodeBERT (Feng et al., 2020) is a bimodal programming lan-
uage (PL) and natural language (NL) oriented pre-training model,
hich is based on the Transformer architecture (Vaswani et al.,
017). CodeBERT is pre-trained on a large-scale dataset Code-
earchNet (Husain et al., 2019), which includes 2.1M bimodal
ata and 6.4M unimodal data with both bimodal NL-PL pairs
ata and unimodal code data. The CodeBERT pre-training data
s based on six programming languages (i.e., Go, Java, Javascript,
HP, Python, and Ruby), and the model setting is similar to Multi-
ERT (Wang et al., 2019), except that the data input is not tagged
ith a display to indicate which language the input data is in.
o utilize both bimodal and unimodal large-scale data, CodeBERT
roposes a hybrid objective loss function combining the Masked
anguage Model (MLM) (Devlin et al., 2019; Liu et al., 2019) and
eplaced Token Detection (RTD) (Clark et al., 2020).
MLM pre-training task uses bimodal data (i.e., NL-PL pairs),

here the NL-PL pair is used as input and randomly selected
ositions to replace with a special mask token [MASK].
Formally, the loss function is LMLM (θ) + LRTD(θ) where

MLM(θ) =

∑
i∈mw∪mc

− log pD1
(
xi | wmasked, cmasked)

here pD1 is the predicted token by model, mw and mc are the
andom set of positions for NL and PL to mask as the [MASK]
oken, which means wmasked and cmasked.

RTD pre-training task uses bimodal and unimodal data. Specif-
cally, it first uses unimodal NL and PL respectively to train the
ata generator to restore the randomly masked token, and then
odeBERT as a discriminator to determine whether the token
s the original masked token, which is a binary classification
roblem. The loss function of RTD is defined as follows.

RTD(θ) =

|e|+|c|∑
i=1

(
σ (i) · log pD2 (xcorrupt , i)

+ (1 − σ (i)) · (1 − log pD2 (xcorrupt , i))
)

(i) =

{
1, if xcorrupti = xi
0, otherwise.

4 https://github.com/NTDXYG/ExploitGen
3

2.2. Exploit code

Exploit code is the software program that takes advantage
of a bug or vulnerability to cause unintended or unanticipated
behavior to occur on computer software, hardware, or some-
thing electronic (usually computerized) by releasing a payload to
take control of a target system. It is a list of machine code or
executable instructions that are injected into the memory of a
computer to take control of the executing applications.

Exploit code takes control of a target system by triggering
exploits. It can be from a few bytes to several hundred of bytes
in size, while it can be used to kill or restart other processes,
cause a denial of service or compromise confidential information.
Exploit code usually releases a payload, which contains the code
that the attacker wants to execute and is commonly referred to
as shellcode.

Some security technologies can easily prohibit the execution of
pure exploit code because it contains specific information about
the destructive actions the attacker plans to conduct. Exploit
code typically involves how programs allocate memory, check
the validity of input data, and handle memory errors. Software
developers can avoid this threat by strictly defining the input data
and rejecting incorrect values.

In order to avoid exploit code being detected, exploit develop-
ers utilize encoding and decoding techniques to turn the original
exploit code into a new, consistent functional exploit code, which
is more difficult to detect by the security software, to evade
detection by security software.

Exploit code encoder is a program written in a high-level
language (usually Python) that performs mathematical operations
on the binary opcode to generate a new binary opcode and
append extra opcodes to the exploit code decoder. When this
attack payload is injected into the victim system and executed,
it decodes itself to obtain the original exploit code. Exploit code
decoder is written in Assembly language because it is part of the
attack payload.

3. Approach

The overall framework of ExploitGen is shown in Fig. 2. Pre-
vious studies (Liguori et al., 2021a,b, 2022) have shown that
domain-specific information in the exploit code (e.g., byte array,
hex array, and hex token) is largely present in NL.

To fully exploit this domain-specific information, we first pro-
pose a rule-based Template Parser to convert domain-specific to-
kens in the raw NL into special placeholders to generate template-
augmented NL and storage dictionary slot-map for storing real
tokens corresponding to placeholders. The Template Parser parses
the raw code according to the slot-map, converts the special
tokens in the code into special placeholders, and generates the
template-augmented code. The next step is to input the raw
NL (denoted as X) and the template-augmented NL (denoted
as X ′) into Raw Encoder and Temp Encoder, respectively. The
final contextual semantic vector is obtained after the semantic
attention layer and the fusion layer, and then fed into the decoder
to generate the corresponding template-augmented code by the
Beam Search algorithm. Finally, ExploitGen combines the slot-
map parsed by the Template Parser with the template-augmented
code generated by the model to parse the raw code.

In the rest of this section, we present the details of the pre-
processing (in Section 3.1), the model architecture (in Section 3.2)
as well as the model training (in Section 3.4).

3.1. Data processing

For data processing, ExploitGen pre-processes the NL and code
and then splits them into corresponding token sequences before
parsing them by the Template Parser.

https://github.com/NTDXYG/ExploitGen

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

S
t
s
t

v
s
N
u
f
o
f
o
t
s
‘

e
l
T
(

Fig. 2. Framework of ExploitGen.
c
i
t
t

Fig. 3. Example of Assembly code.

Fig. 4. Example of Python code.

yntax-based tokenization. For NL, ExploitGen uses the spacy5
ool for tokenization. For exploit code, we developed language-
pecific tokenization methods based on different language fea-
ures (particularly, Assembly and Python in our approach).

Exploit code in Assembly language is for IA-32 (the 32-bit
ersion of the x86 Intel Architecture) from publicly available
ecurity exploits. These Assembly instructions are written with
etwide Assembler (NASM) (Frank, 2000) for Linux. Each code
nit contains an optional label used to represent either an identi-
ier or a constant, and an instruction which identifies the purpose
f the statement and is followed by zero or more operands speci-
ying the data to be manipulated. Fig. 3 shows a simple example
f Assembly code. For this type of Assembly code, ExploitGen
okenizes mainly based on punctuation and spaces. For the code
hown in Fig. 3, it can be tokenized into [‘port’, ‘:’, ‘db’, ‘0xd4’, ‘,’,
0x31’, ‘,’, ‘0xc0’, ‘,’, ‘0xa8’, ‘,’, ‘0x3’, ‘,’, ‘0x77’].

Exploit code in Python is also from publicly available security
xploits. These Python code snippets are written for performing
ow-level arithmetic and logical operations and bit-level slicing.
he tokenization of Python code utilizes abstract syntax tree
AST). For example, the raw code is decoded2 += ‘%02x,’%x

5 https://github.com/explosion/spaCy
 t

4

Table 1
Regular expressions for Template Parser.
Type Regular expression

byte array b? ?\’’? ?\\x[0-9a-z\]+ ?\’’?

hex array (?<=\W)[,]*0x[a-f0-9]+

hex token (?<=\W)0x[a-f0-9]+

camelCase token (?<=\W)[a-z]*[A-Z]\w+

underline token (?<=\W)[a-z]+_\w+

function name [\w]+(?= function)|[\w]+(?= routine)

bracket values \[(.*?)\]

quote values (?P<quote>[‘’\’’])(?P<string>.*?)
(?P=quote)

math expression ((\d+\.?\d+|\w+)(?)(?:[\+\-
*\/%])(?))+(\d+\.?\d+|\w+)

the AST of which is shown in Fig. 4, and can be tokenized into
[‘decoded2’, ‘+=’, ‘%02x,’, ‘%’, ‘x’].

Rule-based template parser. Template Parser has two advantages.
Firstly, it can reduce the difficulty of the code generation task; and
secondly, it can alleviate the Out-of-Vocabulary (OOV) problem.
Without Template Parser, some domain-specific tokens could not
be recognized, which may lead to the generation of incorrect
code.

We propose a rule-based Template Parser, which uses regular
expressions to extract domain-special tokens (i.e., byte array,
hex array, hex token, camelCase token, underline token, function
name, bracket values, quote values, and math expression) from
NL. In addition, for some special tokens (i.e., register names in
Assembly code), ExploitGen uses the part-of-speech tags by Spacy
for identification. The regular expressions are given in Table 1.

These rules are scanned and applied when applicable. As an
example, for the raw assembly code add byte [esi], 0x10
and its corresponding NL is add 0x10 to the current byte in esi.
The Template Parser can parse that 0x10 is the hex token and esi
is the register name and then replaces the selected token in both
the raw code and NL with var#. Thus, the template-augmented NL
becomes add var0 current byte var1 and the template-augmented
code becomes add byte [var1], var0. Meanwhile, the slot-map is
obtained as {‘0x10’: ‘var0’, ‘esi’: ‘var1’}.

For raw Python code
def find_valid_xor_byte(bytes, bad_chars): and its
orresponding NL is define the function find_valid_xor_byte with
nput parameters bytes and bad_chars. Template Parser can parse
hat find_valid_xor_byte is the function name and bad_chars is
he underline token and then replaces the selected token in both
he raw code and NL with var#. Thus, template-augmented NL

https://github.com/explosion/spaCy

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

e
t

H
l
c

Fig. 5. Framework of our proposed approach ExploitGen.

becomes define function var0 with input parameters bytes and var1
and template-augmented code becomes def var0 (bytes, var1)
:. Meanwhile, the slot-map is obtained as {‘find_valid_xor_byte’:
‘var0’, ‘bad_chars’: ‘var1’}.

3.2. Model architecture

The architecture of our model is illustrated in Fig. 5. Our model
contains two encoders (i.e., raw encoder and temp encoder),
which process tokenized raw NL and template-augmented NL
respectively. ExploitGen then utilizes the semantic attention layer
and the fusion layer for better learning semantic information
and effective integration of template information into the se-
mantic information of the raw NL. Finally, ExploitGen resorts to
Transformer’s decoder to generate the probabilities of the code
sequences.

3.2.1. Encoder layer
Since the Template Parser is rule-based, it cannot ensure com-

plete accuracy and can fail in some cases. For example, Template
Parser may fail to parse the code due to problematic data prob-
lem. We use two examples in Fig. 6 to illustrate this problem. The
first example is for defining a variable. If the variable name in
NL does not match the variable name in the code, it will cause
the Template Parser restore to fail. The second example is for
importing a module. If the module name in NL does not match the
module name in the code, it will also cause the Template Parser
restore to fail.

Manually analyzing all the problematic data is laborious and
time-consuming. Therefore we alleviate this problem by con-
sidering dual encoders. Specifically, ExploitGen uses Raw En-
coder to encode the raw NL and uses Temp Encoder to encode
template-augmented NL respectively.
Raw Encoder. The Raw Encoder encodes the tokens of raw NL
and aims to learn the origin information within it. The encoder
is based on CodeBERT, which is described in Section 2. For a raw
NL, the Raw Encoder first tokenizes the inputs by the pretrained
Byte-level BPE (Wang et al., 2020) and obtains the sequence
X = x1, . . . , xn, where n is the length of this sequence. Since the
sequence length may be different for different inputs, we use a
padding operation to unify the sequence length to facilitate the
processing of the model. Supposing the maximum input length is
N , for the sequences whose length is less than N , we pad 0 to the
nd of these sequences. For the sequences whose length is larger
han N , we directly truncate the end of these sequences. The Raw
5

Encoder then feeds X into the model to obtain a set of context
vectors Craw ∈ Rbatch×12×N×dmodel , where batch means the batch
size, 12 is the number of stacked encoding layers in CodeBERT,
and dmodel is the size of the embedding dimension.
Temp Encoder. The Temp Encoder encodes the tokens of templ-
ate-argument NL and aims to learn the template information
within it. Similarly, for a template-argument NL sequence X ′

=

x′

1, . . . , x
′
n, the Temp Encoder also encodes it based on CodeBERT,

and returns a set of context vectors Ctemp ∈ Rbatch×12×N×dmodel .
Note that although the Raw Encoder and the Temp Encoder have
the same structure, they do not share parameters with each other.

In summary, Raw Encoder is used to understand NL containing
domain-specific key information since domain-specific token may
exhibit OOV problem. Temp Encoder is used to understand NL,
which does not contain domain-specific template information
(i.e., using rule to replace domain-specific token with a special
placeholder). The Fusion Layer is proposed to append the tem-
plate information to the domain-specific information, so that the
model can still understand NL even if the domain specific token
input by the developer is not in the model’s vocabulary.

3.2.2. Semantic attention layer
Researchers usually extract the last layer of semantic vectors

to input into the decoder (Feng et al., 2020). However, explor-
ing the learned representation at each layer in the BERT and
CodeBERT models is also investigated (Jawahar et al., 2019; Kar-
makar and Robbes, 2021). Specifically, the shallow layers in the
CodeBERT model focus more on learning Surface-level informa-
tion, the intermediate layers focus more on learning Syntactic
information and Structural information, and the deep layers focus
more on learning Semantic information. Although CodeBERT uses
multiple residual connections to retain the semantic information
learned in the previous layer, the semantic information learned
in the shallow layer will still be forgotten after 12 layers of
propagation. Since we propose two different encoders to learn
NL with domain-specific information and NL with template infor-
mation respectively, intuitively they may be learned in different
layers. Therefore, we propose the Semantic attention layer to
dynamically utilize the information learned by each layer.

Since Craw and Ctemp extract the output from each layer of
CodeBERT, their second dimension 12 can be viewed as main-
taining a semantic progression relationship from shallow layers
to deep layers. The semantic attention layer aims to combine the
semantics of each layer according to the assigned weights of each
layer. Therefore, we use the attention mechanism to extract the
more important representational information.

We formalize the context vectors C as c1, . . . , c12, where ci ∈

Rbatch×N×dmodel . ExploitGen first converts ci to ui via the full con-
nection layer, ui = tanh(Wci + b). Then the similarity between ui
and the context vector uj can be calculated and transformed into
a probability distribution by Softmax.

C̃ =

12∑
i=1

αici

where

αi = align(ui, uj) =
exp

(
uT
i uj

)∑12
j=1 exp

(
uT
i uj

)
ere, αi can be treated as the importance of the input for each
ayer. Therefore, using αi as a global weighted summation over ci
an generate the final semantic vector C̃ ∈ Rbatch×N×dmodel . Finally,
for both Craw and Ctemp, we can get the semantic vector C̃raw and
C̃ .
temp

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

3

m

G

G

n
c
v
v
l
c
f
t

G

p
w
t

C

3

q
o
y
E
s
i

Fig. 6. Two examples of failed template parser.
t
t
r

l
c
a
A
p
r
b
t
u
q
t
h
i

.2.3. Fusion layer
The fusion layer is used to efficiently combine the two se-

antic vectors C̃raw and C̃temp. In this study, we first use the
L2 Normalization to process the semantic vectors, which can
result in the normalized vectors, and then utilize the fusion
layer designed by Yang et al. (2019) due to its simplicity and
effectiveness. This fusion layer includes three splicing methods,
which are illustrated as follows.

C̃raw =
C̃rawC̃raw

 C̃temp =
C̃tempC̃temp


1 = F1([C̃raw; C̃temp]) G2 = F2([C̃raw; C̃raw − C̃temp])

3 = F3([C̃raw; C̃raw ◦ C̃temp])

Here, F1, F2, and F3 are three single-layer feedforward neural
etworks with mutually independent parameters. [;] means the
oncatenation of two vectors. - denotes the subtraction of two
ectors, which can highlight the difference between the two
ectors. ◦ means the dot product of two vectors, which can high-
ight the similarity between the two vectors. Then we directly
oncatenate the three obtained vectors, input them into another
eed-forward neural network and then compute the output G of
he fusion layer as follows.

(C̃raw, C̃temp) = tanh(W ([G1;G2;G3]) + b)

To prevent the loss of raw information and to mitigate the
roblem of gradient disappearance, we include a residual net-
ork in the fusion layer. Finally, ExploitGen computes the seman-
ic vectors C̄ and feeds it into the decoder.

¯ = G(C̃raw, C̃temp) + C̃raw

.2.4. Decoder layer
The Decoder aims to generate the target sequence y by se-

uentially predicting the probability of a word yi+1 conditioned
n the semantic vector C̄ and its previous generated words
1, . . . , yi. In this study, we use Transformer’s decoder part as the
xploitGen’s decoder. Specifically, the decoder uses the sentence
equence to predict the next word (i.e., the previous output is
nput to the Mask Multi-Head Attention layer). The function of
Mask Multi-Head Attention is to block the following words to
prevent information leakage. In the next step, the decoder first
computes the semantic vector C̄ and the current vector of the
decoder with Multi-Head Attention layer , i.e., its query comes
from the output of the decoder of the previous layer, both its
key and its value come from the semantic vector C̄ . Later, the
decoder passes the Residual Connection and Layer Normalization
6

layer, then enters the Feed-forward layer and performs residual
connection and layer normalization. The above step is repeated
by ExploitGen N times, where N represents the number of layers
of the decoder. Finally, the output of the decoder ht is input into
a fully connected neural network, which then passes a softmax
layer to predict the probability of the next token as follows.

P (yi | y1, . . . , yi−1) = softmax (Whi−1 + b) (1)

3.3. Model application

In the model application part, ExploitGen first pre-processes
he raw NL to obtain the raw NL sequence, the template-augmen-
ed NL sequence and the slot-map storing the domain knowledge,
espectively.

Then ExploitGen inputs the raw NL sequence and the temp-
ate-augmented NL sequence into model and generates the
orresponding template-argument code according to the prob-
bility. Previous studies (Wiseman and Rush, 2016; Freitag and
l-Onaizan, 2017) showed that using neural networks’ maximum
robability distribution to generate text often leads to low-quality
esults. Recently, most studies (Yang et al., 2021a,b, 2022) used
eam search to achieve better performance on text generation
asks. Therefore, in our proposed approach ExploitGen, we also
se the beam search to generate template-argument code se-
uences. Specifically, the beam search is a compromise between
he greedy strategy and the exhaustive strategy. It retains top-k
igh probability words at each step of the prediction as to the
nput for the next time step, where k denotes the beam size. The
larger the value of k, the greater the possibility of achieving better
performance, but at the cost of more computational cost.

In the last step, ExploitGen extracts the keys from the slot-
map and matches them with the placeholders of the template-
argument code. It replaces all keys in the template-argument
code with the corresponding memorized value.

3.4. Model training strategies

Since CodeBERT is pre-trained on code datasets with method-
level granularity, which is different for downstream tasks with
line-level granularity. Specifically, the line-level granularity means
that each line of code has a corresponding NL comment and
the method-level granularity means that each complete code
method segment has a corresponding NL comment. To bridge
the discrepancy between the dataset used by CodeBERT and the
exploit code based on line-level granularity in our work, we
propose FG-CodeBERT, which uses both Domain-Adaptive Pre-
training (DAPT) and Task-Adaptive Pretraining (TAPT) methods

for adaptive pre-training of CodeBERT. DAPT is meant to continue

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

p
(
C
a
i
m
o

w
p
g
a
M
o
A
t

d
N
t
p
s

a
t
o

a
a
t
t

G
a
a
t
s
c
c
g
E
t
o

4

s
v
b
p
e
e
o
a
S
a
T
d
a
c
D
g
T
t
c
g

Table 2
Statistics of datasets used in our empirical study.
Statistics Python Assembly

Train 14,790 3105
Dev 375 305
Test 375 305

Avg. tokens in nl 11.9 9.1
Mode. tokens in nl 4.0 4.0
Avg. tokens in code 9.5 5.1
Mode. tokens in code 6.0 4.0

nl length < 64 99.9% 100%
code length < 64 99.81% 99.68%

pre-training on a domain-relevant large-scale dataset, followed
by fine-tuning for a specific task. TAPT is meant to continue pre-
training on a task-relevant dataset, followed by fine-tuning for
a specific task. Gururangan et al. (2020) showed that both DAPT
and TAPT can improve model performance and combining these
two methods (i.e., DAPT followed by TAPT) can further improve
the model performance.

Therefore, we follow the Masked Language Model (MLM)
re-training method used in most pre-trained language models
e.g. BERT Devlin et al., 2019, RoBERTa Liu et al., 2019, and
odeBERT Feng et al., 2020), where line-level granularity code
nd their corresponding comments are concatenated together as
nput, randomly selected positions for code and comment are
asked, and then replaced with a special mask token. The goal
f the masked language model is to predict the original token.
For DAPT, we choose the SPoC (Kulal et al., 2019) dataset,

hich contains C++ problem solutions from Codeforces6 (a com-
etitive programming website). It contains a total of 18,356 pro-
rams, with an average of 14.7 lines per program. Each line is
nnotated with a NL given by a crowd of workers from Amazon
echanical Turk.7 On average, there were 7.86 tokens per line
f code and 9.08 tokens per NL. For TAPT, we then select the
ssembly and Python datasets used in our downstream task, and
he detailed statistics are shown in Table 2.

To learn the template information, we combined the above
atasets in three grouping ways (i.e., raw NL ⊕ raw code, raw
L ⊕ template-argument code, and template-argument NL ⊕

emplate-argument code) to obtain a total of 346,859 unique
airs of NL and code, where ⊕ means the concatenation of two
equences.
Since adaptive pre-training strategy can bridge the discrep-

ncy between CodeBERT and our task, we propose a two-stage
raining strategy to better initialize the corresponding parameters
f Raw Encoder and Temp Encoder respectively.
For the first stage, we construct the standard encoder–decoder

rchitecture by adding Transformer’s decoder to Raw Encoder
nd Temp Encoder. Their inputs and outputs are ⟨raw NL(X),
emplate-argument code(Y)⟩ and ⟨template-argument NL(X ′),
emplated-argument code(Y)⟩ respectively. Their loss functions
in the training process are defined as follows.

LRaw = −

|y|∑
i=1

log Pθ (yi|y < i, X)

LTemp = −

|y|∑
i=1

log Pθ (yi|y < i, X ′)

For the second stage, we extract the Raw Encoder and Temp
Encoder trained above and load the parameters into ExploitGen,

6 http://codeforces.com/
7 https://www.mturk.com/
7

which can guarantee a better initialization parameters for the
dual encoder in ExploitGen. Then the whole model is trained by
the loss function, which is defined as follows.

Lθ = −

|y|∑
i=1

log Pθ (yi|y < i, X, X ′)

Similar to the previous studies (Feng et al., 2020; Liguori et al.,
2021b), during the training phase, we fine-tune all parameters of
the CodeBERT model.

4. Experiments

In our empirical study, we mainly focus on the following five
research questions:

• RQ1: How effective is ExploitGen compared with the state-
of-the-art baselines in terms of automatic evaluation?

• RQ2: How effective is ExploitGen in terms of syntactic cor-
rectness and semantic correctness?

• RQ3: What is the impact of different NL lengths and code
lengths on the performance of ExploitGen?

• RQ4: What is the impact of different input formats on the
performance of ExploitGen?

• RQ5: What is the impact of Semantic Attention Layer and
Fusion Layer on the performance of ExploitGen?

• RQ6: What is the impact of Adaptive Pre-training Strategy
and Two-Stage Training Strategy on the performance of Ex-
ploitGen?

In RQ1, we evaluate whether and to what extent our Exploit-
en outperforms the baselines by automatic evaluation. Since
utomatic metrics are based on overlap, human study can better
nalyze the quality of the generated code. In RQ2, we evaluate
he performance of ExploitGen to generate the exploit code by
yntactic correctness and semantic correctness, where syntactic
orrectness is verified by static program analysis and semantic
orrectness is verified by human. In RQ3 and RQ4, we investi-
ate the impact of various input formats and input lengths of
xploitGen on its performance. In RQ5 and RQ6, we investigate
he impact of various training strategies and model components
f ExploitGen on its performance.

.1. Baselines

To show the competitiveness of ExploitGen, we select six
tate-of-the-art baselines, which were widely chosen in the pre-
ious studies on code generation. Specifically, we classify these
aselines into two groups. The first group includes three ap-
roaches based on training from scratch (i.e., Seq2Seq Bahdanau
t al., 2014, Transformer Vaswani et al., 2017, and DualSC Yang
t al., 2022). The second group includes three baselines based
n pre-trained models (i.e., CodeGPT Lu et al., 2021, CodeGPT-
dapted, and CodeBERT Feng et al., 2020).
eq2Seq. Seq2Seq (Bahdanau et al., 2014) is an encoder–decoder
rchitecture based on LSTM and attention mechanism.
ransformer. Transformer (Vaswani et al., 2017) is an encoder–
ecoder architecture based on the self-attention mechanism that
chieves better performance while reducing the computational
ost and improving parallel efficiency.
ualSC. DualSC (Yang et al., 2022) formalizes automatic shellcode
eneration and summarization as dual tasks. It uses a shallow
ransformer for model construction and designs a normaliza-
ion method Adjust_QKNorm. Finally, it uses a rule-based repair
omponent to improve the performance of automatic shellcode
eneration.

http://codeforces.com/
https://www.mturk.com/

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

C
a
2
m
d
s
C
c
o
m

4

l
(
s
t
a
a
t
a

w
P
d
t
d
i
b
T
f
L
f
t
2
v

t
t
n
s
m
s

4

R
i
B
u
p
t
4
o
c
R
c
t
m

E
2
p
b
g
t
g

4

A

odeGPT and CodeGPT-adapted. CodeGPT and CodeGPT-adapted
re based on the architecture and training objective of GPT-
(Budzianowski and Vulić, 2019), which is the decoder-only
odel. CodeGPT is pre-trained from scratch on CodeSearchNet
ataset (Lu et al., 2021) while CodeGPT-adapted learns this dataset
tarting from the GPT-2 checkpoint.
odeBERT. CodeBERT (Feng et al., 2020) employs the same ar-
hitecture as RoBERTa (Liu et al., 2019), which is the encoder-
nly model. CodeBERT aims to minimize the combined loss from
asked language modeling and replaced token detection.

.2. Datasets

In our empirical study, we conduct experiments on two pub-
icly available security exploit datasets shared by Liguori et al.
2021b) (i.e., Python data and Assembly data). Table 2 shows the
tatistical information of our used datasets. The first three rows of
his table represent the size of the training set, the validation set,
nd the test sets, respectively. The four middle rows represent the
verage and mode of NL and code lengths, respectively. The last
wo rows represent the percentage of NL and code whose lengths
re less than 64.
These datasets were gathered from real-world projects and

ere the first datasets targeted at generating exploit code. The
ython code of real exploits entails low-level operations on byte
ata for obfuscation purposes. Therefore, real exploits make ex-
ensive use of Python instructions for converting data between
ifferent encoders, for performing low-level arithmetic and log-
cal operations, and for bit-level slicing, which is the difference
etween this dataset and the previous generic Python dataset.
he Assembly codes of real exploits were collected from shellcode
or IA-32 and written for the Netwide Assembler (NASM) for
inux. To make a fair comparison with the previous work, we
ollow the dataset split setting of Liguori et al. (2021b), and the
est sets cover 20 different exploits (i.e., 20 Python programs and
0 Assembly programs). The purpose of this dataset split is to
erify the accuracy of generating complete exploit code.
Since not every line of code has a corresponding comment,

o mitigate bias, Liguori et al. (2021b) reused comments writ-
en by developers in the program code. When comments were
ot available, they followed the style of books/tutorials on As-
embly/Python and shellcode programming to write comments
anually. We take a complete file of code8 from the test set, as
hown in Fig. 7.

.3. Performance metrics

In our study, we use three performance metrics (i.e., BLEU,
OUGE and Exact Match Accuracy), which have been widely used
n neural machine translation and code generation.
LEU. BLEU (Papineni et al., 2002) is a set of measures for eval-
ating a candidate sentence and the reference sentence to cover
recision. In this study, we use BLEU-4, which means to compare
he degree of overlap between the reference sentence and the
-gram in the generated sentence, and the higher the degree
f overlap, the higher the quality of the model generation is
onsidered. For implementation, we utilize the nltk9 library
OUGE. ROUGE (Lin, 2004) is a set of measures for evaluating a
andidate sentence and the reference sentence to cover recall. In
his study, we use ROUGE-W, where W indicates the degree of
atching of the longest common sub-sequence LCS with weights.

8 https://www.abatchy.com/2017/05/rot-n-shellcode-encoder-linux-x86
9 https://github.com/nltk/nltk
8

Fig. 7. Examples of real-world exploit code and their corresponding comments.

Table 3
Hyper-parameters and their values in our empirical study.
Category Hyper-parameter Value

Model structure
n_layers 6
n_heads 12
hidden_size 764

Model training

optimizer AdamW
learning rate 4e−5
batch size 32
max nl length 64
max code length 64

Model application beam size 10

The longer the successive sub-sequence, the greater the weights.
For implementation, we utilize the easy-rouge10 library.
xact Match Accuracy. Exact Match Accuracy (Yin and Neubig,
017) is the fraction of exactly matching samples between the
redicted output and the reference. Different from similarity-
ased measures, Exact Match Accuracy considers whether the
enerated code is identical to the ground truth code. Therefore
his measure can accurately evaluate the effectiveness of the
enerated exploit code.

.4. Experimental settings

daptive Pre-training Hyper-parameters. Following the studies
of Devlin et al. (2019) and Feng et al. (2020), we set the input
masking probability to 15%. We use AdamW to update the pa-
rameters and use the following set of hyper-parameters to train
models: batch size is 64, learning rate is 4e-5, max length is 64,
and the max training step is 100K.
Two-Stage Training Hyper-parameters. The hyper-parameters
of ExploitGen can be classified into three categories (i.e., the
hyper-parameters for the model structure, the hyper-parameters
in the model training phase, and the hyper-parameters in the
model application phase). These hyper-parameters and their val-
ues are shown in Table 3. Notice ‘n layers’ means the number of
layers in decoder.
Hardware Configurations. All the experiments run on a work-
station with an Intel(R) Core(TM) i7-11700 CPU, 64 GB RAM, and
a GeForce RTX3090 GPU with 24 GB memory. The running OS
platform is Linux OS.

10 https://pypi.org/project/easy-rouge/

https://www.abatchy.com/2017/05/rot-n-shellcode-encoder-linux-x86
https://github.com/nltk/nltk
https://pypi.org/project/easy-rouge/

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

G
d
g
p

p
c

p ,
E
t
4
A
t
l
r
o
t

e
a
r
g

p
s
i
4
s
a
b
c
w
f
a
M
T
l
o
d
t
s

g
t
p
S

a

Table 4
The comparison results between our proposed approach ExploitGen and
baselines for two different datasets.
Dataset Approach BLEU-4 (%) ROUGE-W (%) Accuracy (%)

Python

Seq2Seq 69.92 60.18 37.33
Transformer 75.23 63.21 41.07
DualSC 80.29 67.17 53.87
CodeGPT 79.36 67.10 48.80
CodeGPT-adapted 86.62 71.40 62.67
CodeBERT 87.93 72.73 59.47
ExploitGen 91.27 75.68 70.93

Assembly

Seq2Seq 64.67 56.43 32.46
Transformer 70.40 59.62 38.36
DualSC 75.83 64.89 50.49
CodeGPT 72.05 66.70 48.52
CodeGPT-adapted 80.70 68.62 61.31
CodeBERT 81.55 67.37 51.80
ExploitGen 88.70 74.25 66.89

4.5. Results

RQ1: How effective is ExploitGen compared with the state-of-the-
art baselines?. In this RQ, we want to investigate how effective
ExploitGen is and how much performance improvement Exploit-
en can achieve over the state-of-the-art baselines. As intro-
uced in Section 4.1, we use six state-of-the-art source code
eneration techniques as baselines. Since in the automatic ex-
loit code generation task, we use the Template Parser to parse

the raw NL and get the template-augmented NL and template-
augmented code. To guarantee a fair comparison between Ex-
loitGen and baselines, we also apply this component to our
onsidered baselines.
We show the comparison results between our proposed ap-

roach ExploitGen and baselines in Table 4. For the Python dataset
xploitGen achieves 3.80% to 30.53%, 2.95% to 15.50%, and 8.26%
o 33.60% improvements over the baselines in terms of BLEU-
, ROUGE-W, and Exact Match Accuracy respectively. For the
ssembly dataset, ExploitGen achieves 8.77% to 37.16%, 5.63%
o 17.82%, and 5.58% to 34.43% improvements over the base-
ines in terms of BLEU-4, ROUGE-W, and Exact Match Accuracy
espectively. Therefore, compared to the baselines, ExploitGen
utperforms all the six baselines in terms of three metrics on the
wo datasets.

In addition, we show two examples with the ground-truth
xploit code and the exploit code generated by ExploitGen and
ll baselines in the Python dataset and the Assembly dataset
espectively. From Table 5, we can observe that ExploitGen can
enerate higher quality code compared to baselines.
To examine the performance difference in view of each com-

arison between ExploitGen and baselines, We use Wilcoxon
igned-rank test to examine whether the performance difference
s statistically significant in terms of performance metrics BLEU-
, ROUGE-W, and Exact Match Accuracy. Notice here we only
elected three baseline methods, since the baseline CodeGPT-
dapted can perform best in terms of the metric ROUGE-W, the
aseline CodeBERT can perform best in terms of Exact Match Ac-
uracy, and the baseline Transformer can be used as a comparison
ithout pre-trained models. In our study, the hypothesis is set as

ollows, H0: There is no significant difference between ExploitGen
nd the baselines in terms of metrics BLEU-4 ROUGE-W and Exact
atch Accuracy. The significance level of this test is set as 0.05.
he results are shown in Table 6 and we find all the p-values are
ower than 0.05. These statistical results can lead to the rejection
f the null hypothesis, which means that there exists a significant
ifference between our approach and baselines in terms of all
he considered metrics. Note that the results listed in Table 4
how that our approach outperforms other baselines, so we can
9

Table 5
Examples of the ground truth exploit code, and the exploit code
generated by ExploitGen and all baselines.
Type Example

Python

NL: set the variable z to bitwise not x
Seq2Seq: new = x x x
Transformer: z = x ∧ x
DualSC: z = x % z
CodeGPT: z = x
CodeGPT-adapted: z = bitwise
CodeBERT: z = x ∧ 10
ExploitGen: z = ∼ x
Ground Truth: z = ∼ x

Assembly

NL: not operation of current byte in esi
Seq2Seq: dec byte esi
Transformer: mov var1 , byte [esi]
DualSC: negate all
CodeGPT: nop
CodeGPT-adapted: pop byte [esi]
CodeBERT: nop
ExploitGen: not byte [esi]
Ground Truth: not byte [esi]

draw a conclusion that ExploitGen significantly achieves better
performance than other baseline approaches.

Summary for RQ1

ExploitGen can significantly outperform the baselines in
terms of three performance metrics on both the Python
dataset and the Assembly dataset.

RQ2: How effective is ExploitGen in terms of syntactic correct-
ness and semantic correctness?. Although the results show that
ExploitGen can correctly generate individual lines of code with
high probability in automatic evaluation, we need to verify the
performance of ExploitGen for generating the entire software
exploit code. At the same time, we find that there are semanti-
cally identical but written differently codes (e.g., in Python code,
a += b is exactly equivalent to a = a + b). This implies that
automatic evaluation may not correctly reflect the performance
of the model. Therefore, we followed the methodology of Liguori
et al. (2021b, 2022) and evaluate the ability of ExploitGen to
enerate semantic correctness and syntactic correctness code for
he entire software exploit code (i.e., all lines of code in the
rogram) using two new metrics.
yntactic Correctness. This metric means that the generated

code conforms to the syntax rules of the programming language,
which we first analyze with static tools and then review by hand.
Semantic Correctness. This metric means that the generated
code should not only conform to the syntax rules of the pro-
gramming language, but also maintain the semantic consistency
of the code. We first perform an initial screening by Exact Match
Accuracy to find out the inconsistent code and then review them
manually to filter out the semantically consistent code.

In our human evaluation, following the previous studies (Liu
et al., 2018; Hu et al., 2020, 2022) we hire three third-year post-
graduate students majoring in Software Engineering as reviewers,
who have about five years of experience in code development
with Python and Assembly languages. We use the entire 20
programs in the Python test set and Assembly test set, which in-
clude human-written exploit code and the exploit code generated
by ExploitGen. We follow the experimental design principles11
nd conduct a within-subject experiment, as each reviewer will

11 https://opentextbc.ca/researchmethods/chapter/experimental-design/

https://opentextbc.ca/researchmethods/chapter/experimental-design/

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

a
c
s
b

w
t
W
s
r
T
w

o
b
o
c
c
a
g
g

N
w
l

Fig. 8. An example questionnaire used in the human evaluation.
Table 6
The performance difference (measure by p value) between ExploitGen and the baselines based on
Wilcoxon signed-rank test on the two datasets.
Dataset Baseline BLEU-4 (%) ROUGE-W (%) Accuracy (%)

Python
CodeGPT-adapted 1.84e−5 2.68e−5 4.11e−4
CodeBERT 6.20e−5 3.98e−5 2.26e−7
Transformer 1.15e−25 1.45e−24 3.67e−24

Assembly
CodeGPT-adapted 1.68e−5 4.69e−5 0.05
CodeBERT 8.53e−9 3.28e−10 8.92e−9
Transformer 1.64e−21 4.29e−20 4.85e−18
a

m
p
I
w
E
b
l
c
m
i

respond to the same questions under the same condition. We
design a questionnaire containing 680 pairs (375 pairs of Python
code snippets and 305 pairs of Assembly code snippets in the
test set) where each pair contains an input comment, two code
snippets generated by CodeBERT and ExploitGen respectively, and
reference code snippet. We send each post-graduate student a
opy of the questionnaire and ask them to evaluate the two code
nippets for each comment. An example of the questionnaire can
e found in Fig. 8.
Each reviewer was asked to vote for each program, judging

hether the semantics of the generated program is correct. When
he judgments are consistent, we directly adopt their decision.
hen they disagree with the judgment, we use the majority-vote

trategy. During the review process, reviewers could discuss and
esort to external resources (e.g., Wikipedia and Q&A websites).
o ensure the fairness of the comparison, reviewers do not know
hich code snippet is generated by which method.
The results are shown in Fig. 9 and the details are available

n the GitHub repository.12 Here Total indicates the total num-
er of lines of code for the program. Sem indicates the number
f semantic correctness lines in the generated code. Syn indi-
ates the number of syntactic correctness lines in the generated
ode. Based on these results, we find that although our approach
chieves high accuracy for code generation tasks at the line-level
ranularity, there is still much room for improvement for code
eneration tasks at the granularity of the entire program.

Summary for RQ2

ExploitGen can achieve high accuracy at the line-level
granularity but still needs improvement at program-level
granularity.

RQ3: What is the impact of different NL lengths and code lengths on
the performance of ExploitGen ?. To explore how do the different
L lengths and code lengths effect the performance of ExploitGen,
e further analyzed the ROUGE-W metrics score of different NL

engths and code lengths for our proposed approach and the

12 https://github.com/NTDXYG/ExploitGen/tree/main/result/Human
10
baselines. Fig. 10 presents the average ROUGE-W metrics scores
of ExploitGen, CodeBERT, and Transformer for varying NL lengths
nd code lengths.
As Fig. 10 illustrates, from a holistic point of view, the perfor-

ance of ExploitGen is better than CodeBERT slightly. Both Ex-
loitGen and CodeBERT are better than Transformer significantly.
n summary, ExploitGen can generate higher quality exploit code
ith shorter NL length and CODE length. For the Python dataset,
xploitGen can generate higher quality exploit code compared to
aseline methods when NL length is lower than 40 or when CODE
ength is lower than 40. For the Assembly dataset, ExploitGen
an generate higher quality exploit code compared to baseline
ethods when NL length is lower than 35 or when CODE length

s lower than 50.

Summary for RQ3

ExploitGen can generate higher quality exploit code com-
pared to baseline methods in the case of relatively short
lengths of NL and Code.

RQ4: What is the impact of different input formats on the perfor-
mance of ExploitGen ?. In this RQ, we want to investigate the
role of different input formats in the exploit code generation task.
We compare the input formats in four different combinations of
model components:
Raw ↦→ Raw. This input format means that we only use Raw
Encoder, treating raw natural language as input and raw code as
output.
Raw ↦→ Temp. This input format means that we only use Raw
Encoder, treating raw natural language as input and template-
augmented code as output.
Temp ↦→ Temp. This input format means that we only use Temp
Encoder, treating template-Augmented natural language as input
and template-augmented code as output.
Dual ↦→ Temp. This input format means that we use both Raw
Encoder and Temp Encoder, treating raw natural language and
template-augmented natural language as input and template-
augmented code as output.

We show the ablation results in Table 7 from the input
format perspective. For the Python data, using Raw ↦→ Temp

https://github.com/NTDXYG/ExploitGen/tree/main/result/Human

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

1
M
↦

Fig. 9. Results of our proposed method on syntactic correctness and semantic correctness by human evaluation.
Table 7
The ablation results in terms of input formats.
Dataset Input format BLEU-4 (%) ROUGE-W (%) Accuracy (%)

Python

Raw ↦→ Raw 80.57 68.76 56.27
Raw ↦→ Temp 87.83 72.50 62.40
Temp ↦→ Temp 87.56 72.29 61.60
Dual ↦→ Temp 91.27 75.68 70.93

Assembly

Raw ↦→ Raw 72.26 66.98 53.11
Raw ↦→ Temp 86.55 73.01 62.95
Temp ↦→ Temp 83.12 69.34 54.09
Dual ↦→ Temp 88.70 74.25 66.89
7
a

can achieve 7.26%, 3.74%, and 6.13% improvements in terms of
BLEU-4, ROUGE-W, and Exact Match Accuracy respectively. Using
Temp ↦→ Temp can achieve 6.99%, 3.53%, and 5.33% improve-
ments in terms of BLEU-4, ROUGE-W, and Exact Match Accuracy
respectively. Using Dual ↦→ Temp can achieve 10.70%, 6.81%, and
4.66% improvements in terms of BLEU-4, ROUGE-W, and Exact
atch Accuracy respectively. For the Assembly data, using Raw

→ Temp can achieve 14.29%, 6.03%, and 9.84% improvements in
 p

11
terms of BLEU-4, ROUGE-W, and Exact Match Accuracy respec-
tively. Using Temp ↦→ Temp can achieve 10.86%, 2.36%, and 0.98%
improvements in terms of BLEU-4, ROUGE-W, and Exact Match
Accuracy respectively. Using Dual ↦→ Temp can achieve 16.44%,
.25%, and 13.78% improvements in terms of BLEU-4, ROUGE-W,
nd Exact Match Accuracy respectively.
The performance of the model decreases substantially if the

arsing replacement is not performed using the template parser;

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

i
L
m
W

m
s
D
O
E

Fig. 10. Results of our proposed method and the baselines on ROUGE-W metrics score for varying NL lengths and code lengths.
Table 8
The ablation results in terms of model components.
Dataset SEM FUS BLEU-4 (%) ROUGE-W (%) Accuracy (%)

Python

– – 89.27 73.16 61.75
✓ – 89.65 73.24 63.04
– ✓ 90.00 74.75 69.07
✓ ✓ 91.27 75.68 70.93

Assembly

– – 83.52 70.24 60.52
✓ – 84.86 71.52 62.45
– ✓ 87.59 74.16 66.23
✓ ✓ 88.70 74.25 66.89
the performance of the model also decreases if both NL and code
are not replaced. Therefore, the results show the effectiveness of
our proposed Rule-based template parser and Dual Encoders.

Summary for RQ4

In terms of input formats, using both raw NL and
template-augmented NL can have a positive impact
on performance. The performance of the model can
be effectively improved by using both raw NL and
template-augmented NL.

RQ5: What is the impact of Semantic Attention Layer and Fusion
Layer on the performance of ExploitGen?. In this RQ, we want to
nvestigate the role of Semantic Attention Layer (SEM) and Fusion
ayer (FUS) in the exploit code generation task. We compare the
odel performance in the following four different combinations.
ithout SEM and FUS. This combination consists of Raw En-

coder, Temp Encoder, and Decoder Layer. We extract the two
semantic vectors of the last layer of the two encoders and su-
perimpose the two semantic vectors before inputting them to
Decoder Layer for decoding.
Only With SEM. This combination consists of Raw Encoder, Temp
Encoder, Semantic Attention Layer, and Decoder Layer. We add Se-
antic Attention Layer to the semantic vector extraction, and then
uperimpose the two semantic vectors before inputting them to
ecoder Layer for decoding.
nly With FUS. This combination consists of Raw Encoder, Temp
ncoder, Fusion Layer, and Decoder Layer. We extract the two
12
semantic vectors of the last layer of the two encoders and then
fusion the two semantic vectors before inputting them to Decoder
Layer for decoding.
With SEM and FUS. This combination consists of Raw Encoder,
Temp Encoder, Semantic Attention Layer, Fusion Layer, and De-
coder Layer. We apply Semantic Attention Layer to the semantic
vector extraction and then fusion the two semantic vectors before
inputting them to Decoder Layer for decoding.

We show the ablation results from the model component per-
spective in Table 8. For the Python data, using Semantic Attention
Layer alone can achieve 0.38%, 0.08%, and 1.29% improvements in
terms of BLEU-4, ROUGE-W, and Exact Match Accuracy respec-
tively. Using Fusion Layer alone can achieve 0.73%, 1.59%, and
7.32% improvements in terms of BLEU-4, ROUGE-W, and Exact
Match Accuracy respectively. Using both Semantic Attention Layer
and Fusion Layer can achieve 2.00%, 2.41%, and 9.18% improve-
ments in terms of BLEU-4, ROUGE-W, and Exact Match Accuracy
respectively. For the Assembly data, using Semantic Attention
Layer alone can achieve 1.34%, 1.28%, and 1.93% improvements in
terms of BLEU-4, ROUGE-W, and Exact Match Accuracy respec-
tively. Using Fusion Layer alone can achieve 4.07%, 3.92%, and
5.71% improvements in terms of BLEU-4, ROUGE-W, and Exact
Match Accuracy respectively. Using both Semantic Attention Layer
and Fusion Layer can achieve 5.18%, 4.02%, and 6.37% improve-
ments in terms of BLEU-4, ROUGE-W, and Exact Match Accuracy
respectively.

To get a more intuitive view of the motivation and effective-
ness of the Semantic Attention Layer, we take a sample from
the python dataset as an example. The raw NL of this sample is

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

t
T
t
W
m
p
O
A
o
d
F
O
T
a
B
p

Fig. 11. Visualization of layer weights in Semantic Attention Layer.
Table 9
The ablation results in terms of training strategies.
Dataset APT TST BLEU-4 (%) ROUGE-W (%) Accuracy (%)

Python

– – 90.10 74.43 66.93
✓ – 90.56 74.89 67.47
– ✓ 90.33 74.86 68.80
✓ ✓ 91.27 75.68 70.93

Assembly

– – 84.20 71.57 60.98
✓ – 85.84 72.75 62.00
– ✓ 86.61 73.06 64.34
✓ ✓ 88.70 74.25 66.89
‘‘get the hexadecimal value of suplX and reverse its order then
store the value in rev_suplx’’, and the corresponding temp NL
is ‘‘get hexadecimal value of var0 and reverse its order then
store value in var1’’. We visualize the weights learned by the
Semantic Attention Layer in Raw Encoder and Temp Encoder
respectively, and the results are shown in Fig. 11. We can observe
that for Raw Encoder, more attention is paid to the semantic
information learned in the last layer; while for Temp Encoder,
more attention is paid to the information learned in the last three
layers, especially more sensitive to the information learned in the
penultimate layer.

Summary for RQ5

In terms of model components, Semantic Attention Layer
and Fusion Layer both have a positive impact on perfor-
mance. The performance of the model can be effectively
improved by using both Semantic Attention Layer and
Fusion Layer.

RQ6: What is the impact of Adaptive Pretraining and Two-Stage
Training on the performance of ExploitGen?. In this RQ, we want
o investigate the role of Adaptive Pretraining (APT) and Two-Stage
raining (TST) in the exploit code generation task. We compare
he model performance in four training strategies:
ithout APT and TST. This training strategy means that the
odel is fine-tuned directly on CodeBERT without additional
rocessing when training it.
nly With APT. This training strategy means that we use the
daptive Pretraining. Specifically, we first continue the adaptation
f the model with a self-supervised pre-training approach on the
omain-related and task-related datasets for CodeBERT to obtain
G-CodeBERT, then the model is fine-tuned on FG-CodeBERT.
nly With TST. This training strategy means that we use the
wo-Stage Training. We first perform training on Raw Encoder
nd Temp Encoder respectively based on the parameters of Code-
ERT to better initialize the corresponding parameters. Then all
arameters of the model are updated for training.
13
With APT and TST. This training strategy means that we use both
Adaptive Pretraining and Two-Stage Training. We first perform the
training on Raw Encoder and Temp Encoder respectively based on
the parameters of FG-CodeBERT. Then we update all parameters
of the model.

We show the ablation results in Table 9 from the model train-
ing perspective. For the Python data, using Adaptive Pretraining
alone can achieve 0.46%, 0.45%, and 0.54% improvements in terms
of BLEU-4, ROUGE-W, and Exact Match Accuracy respectively.
Using Two-Stage Training alone can achieve 0.23%, 0.43%, and
1.87% improvements in terms of BLEU-4, ROUGE-W, and Exact
Match Accuracy respectively. Using both Adaptive Pretraining and
Two-Stage Training can achieve 1.17%, 1.14%, and 4.00% improve-
ments in terms of BLEU-4, ROUGE-W, and Exact Match Accuracy
respectively. For the Assembly data, using Adaptive Pretraining
alone can achieve 1.64%, 1.18%, and 1.02% improvements in terms
of BLEU-4, ROUGE-W, and Exact Match Accuracy respectively.
Using Two-Stage Training alone can achieve 2.41%, 1.49%, and
3.36% improvements in terms of BLEU-4, ROUGE-W, and Exact
Match Accuracy respectively. Using both Adaptive Pretraining and
Two-Stage Training can achieve 4.50%, 2.69%, and 5.91% improve-
ments in terms of BLEU-4, ROUGE-W, and Exact Match Accuracy
respectively.

Our results show that adding Adaptive Pretraining and Two-
Stage Training can lead to better performance when using pre-
trained language models for downstream tasks.

Summary for RQ6

Adaptive Pretraining and Two-Stage Training can have a
positive impact on performance of ExploitGen. The per-
formance of the model can be effectively improved by
using both Adaptive Pretraining and Two-Stage Training.

5. Discussion

As shown in our empirical study and human study, our model
can achieve better performance in generating exploit code. In

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

g
E
g
g
i
S

s
o
a
E
P
e
m
p
N
t
x
t
V
t
P
s
t
t

6

I
i
t
a
i
w
a
C
t

c

Table 10
Semantical errors with corresponding examples, each example with the corresponding comment (NL), the ground
truth exploit code, and the exploit code generated by ExploitGen.
Error type Example

Slice Error

NL: nbits is the second element of sys.argv
converted to integer
Ground Truth: nbits = int(sys.argv[2])
ExploitGen: nbits = int(sys.argv[1])

Placeholder Error

NL: concatenate the string ’\x1c\x0f\x88\xdf\x88\xd0\x30\xd8’
to decoder_stub
Ground Truth: decoder_stub += ’\x1c\x0f\x88\xdf\x88\xd0\x30\xd8’
ExploitGen: var3 += ’\x1c\x0f\x88\xdf\x88\xd0\x30\xd8’

Variable Name Error

NL: Take the absolute value of subfs then convert subfs to an integer,
then cast to a hexadecimal, slice the variable rev_suplx between the indicies
0 and 2 then cast rev_suplx to the type int16,
store the value of the summation in the variable xxx.
Ground Truth: xxx = hex(int(abs(subfs)) + int(rev_suplx[0:2],16))
ExploitGen: temp = hex(int(abs(subfs)) + int(rev_suplx[0:2],16))

Variable Value Error
NL: W is a string ’\033[0m’
Ground Truth: W = ’\033[0m’
ExploitGen: W = ’\x1b[0m’
a
w
T
c
i
f
a
e
u
c
c

7

7

i
r
b
p
t

this section, we want to further investigate when ExploitGen
enerates the wrong exploit code. To explore the limitations of
xploitGen, we count all the samples of semantical errors in the
enerated exploit code and manually summarize the error code
enerated by ExploitGen into four error types, which are shown
n Table 10.
lice Error. We find that this type of semantically errors is caused

by the Template Parser, for example, the input NL is nbits is the
econd element, but the model output is sys.argv[1]. For this type
f error, we attribute it to the fact that when generating template-
ugmented NL, we just template the numbers and do not handle
nglish words like ‘first’/’second’ very well.
laceholder Error. We find that this type of the semantically
rrors is caused by the uncontrollability of the deep learning
odel, which is due to the fact that ExploitGen is controlled by
robabilities when generating the code. For example, the input
L is concatenate the string ’\x1c\x0f\x88\xdf\x88\xd0\x30\xd8’
o decoder_stub, the slot_map is ’\x1c\x0f\x88\xdf\x88\xd0\
30\xd8’: ‘var0’, ’decoder_stub’: ‘var1’, but generated code con-
ains var3. This causes ExploitGen to be unable to restore var3.
ariable Name Error and Variable Value Error. We find that
hese two types of semantical errors are caused by both Template
arser and the model. One reason is that the Template Parser is
till deficient in template generation, and another reason is that
he variable names or variable values appear in the input NL, but
he model does not output correctly.

. Threats to validity

nternal threats. The first internal threat is the potential defects
n the implementation of our proposed method. To alleviate this
hreat, we first check code carefully and use mature libraries, such
s PyTorch and Transformers. The second internal threat is the
mplementation of the baseline methods. To alleviate this threat,
e try our best to re-implement their approach(i.e., Seq2Seq
nd Transformer we implement them by OpenNMT,13 DualSC,14
odeBERT,15 CodeGPT, and CodeGPT-adapted16 we implement
hem by their shared script).

13 https://github.com/OpenNMT/OpenNMT-py
14 https://github.com/NTDXYG/DualSC
15 https://github.com/microsoft/CodeBERT/tree/master/CodeBERT/code2nl
16 https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/text-to-
ode/code
 i

14
External threats. The main external threat is the representative-
ness of the choice datasets. To alleviate this threat, we select
the two popular corpora provided by Liguori et al. (2021b) and
the quality of these two corpora is guaranteed. Both datasets
are extracted from real-world vulnerability code repositories,
and Liguori et al. (2021b) manually comment the missing com-
mented code data by hand to ensure the high quality of these
two datasets. Another threat is the quality of the human study. To
alleviate this threat, we hire independent reviewers who have ex-
pertise in coding with Python and Assembly languages. They are
encouraged to discuss and access relevant information through
the Internet for unfamiliar concepts. To ensure the fairness of the
comparison, the source information of the code snippet was not
exposed.

Construct validity. The first construct validity relates to the suit-
ability of our evaluation measures. To alleviate this construct
threat, we use three evaluation measures, namely BLEU, ROUGE-
W and Exact Match Accuracy. Moreover, we also conduct a human
study and compute the p-value by using the Wilcoxon signed-
rank test to further verify the effectiveness of our proposed
hybrid approach. The second construct validity is that we do
not consider whether the code generated by ExploitGen can be
valid attack on the program. On the one hand, this is because
e focus on exploit code generation at the line-level granularity.
his can make it easier for software maintainers to write exploit
ode to test their programs when they are unfamiliar with certain
nstructions. On the other hand, because the data set is collected
rom existing vulnerability repositories, most of the previously
ttacked programs have already been fixed, so there are not
nough flawed programs for us to test. Therefore, we mainly eval-
ate the effectiveness of ExploitGen by considering the syntactic
orrectness and semantic correctness of the generated exploit
ode.

. Related work

.1. Research on code generation

Code generation, as an important topic in the field of min-
ng software repositories, has received a lot of attention from
esearchers. Recently, most of the studies followed deep learning-
ased methods (i.e., encoder–decoder framework) and achieved
romising results. Mou et al. (2015) first proposed to generate
he corresponding code snippets from the user’s natural language
ntent descriptions by using deep learning, where the dataset

https://github.com/OpenNMT/OpenNMT-py
https://github.com/NTDXYG/DualSC
https://github.com/microsoft/CodeBERT/tree/master/CodeBERT/code2nl
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/text-to-code/code
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/text-to-code/code

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

w
s
t
c
e
d
g
t
a
(
a
u
t
u
u
t
(
t
i
d
t
g
o
t
f
t
t
p
d
t
o
p
w
d
(
s
s
e
(
o
e
a
c

t
e
T
n
A
i
T
b
f
s
e
t
a
f
t
a
i
2
d
e
e
b

r
m
f
t
f
p
e
t
a

s
p
O
f
t
d

t

as collected from a pedagogical programming online judge (OJ)
ystem. They constructed a standard encoder–decoder architec-
ure through RNN models to investigate whether neural models
an synthesize executable, functionally coherent programs. Ling
t al. (2016) used the LSTM model to construct the encoder–
ecoder architecture, which combines character-level softmax for
enerating code tokens and pointer networks (See et al., 2017)
o copy key code from the natural language. Also, they proposed
new corpus for card games code, such as Magic the Gathering

MTG) and Hearthstone (HS). Rabinovich et al. (2017) proposed
novel neural network, Abstract Syntax Network(ASN), which
ses the Abstract Syntax Description Language(ADSL) to limit
he neural network’s ability to generate syntax trees and then
se the syntax trees to generate the corresponding code. They
sed the LSTM model and attention mechanism to construct
he ASN, and experiment on the HS dataset. Yin and Neubig
2018) proposed TRANX, which is based on ASDL, LSTM, at-
ention mechanism, and copy mechanism. TRANX turns an AST
nto a general-purpose intermediate(MR) through an encoder–
ecoder architecture for a given natural language, then parses
he MR into a corresponding code according to domain-specific
rammar advice. Hayati et al. (2018) proposed RECODE based
n TRANX, which integrated information retrieval methods into
he Seq2Seq model. The retrieval component improved the per-
ormance of a previously state-of-the-art model, according to
heir research. Wei et al. (2019) formalized the code generation
ask and the code summarization task as dual tasks, and they
ropose a dual training framework to simultaneously learn the
uality between code and comments. To strengthen the duality,
hey created a novel restriction on attention mechanism based
n LSTM-based encoder–decoder architecture. Sun et al. (2019)
resented a grammar-based structural convolutional neural net-
ork(CNN) for code generation that generated a program by pre-
icting the programming language’s grammar rules. Hussain et al.
2020b) first proposed a transfer learning-based approach that
ignificantly improves the performance of deep learning-based
ource code models and later proposed the CodeGRU (Hussain
t al., 2020a) to better model the source code. Hussain et al.
2021) proposed a deep semantic net (DeepSN) that makes use
f semantic information of the source code. DeepSN uses an
nhanced hierarchical CNN to learn useful semantic information
nd uses LSTM to capture the source code’s long and short-term
ontext dependencies.
With the introduction of the Transformer, researchers began

o apply the Transformer model to code generation tasks. Sun
t al. (2020) proposed a novel tree-based neural architecture,
reeGen. TreeGen employs Transformers’ self-attention mecha-
ism to handle the long-dependency problem, as well as a novel
ST reader (encoder) to include grammar rules and AST structures
nto the model. Gemmell et al. (2020) presented the Relevance
ransformer, a novel model that uses pseudo-relevance feed-
ack to incorporate external knowledge. The Relevance Trans-
ormer forces diversity while biasing the decoding process to be
imilar to previously received code (copy mechanism). Norouzi
t al. (2021) used CodeBERT as the encoder and use a 4-layer
ransformer decoder, In addition, they toke copy attention into
ccount in the model. Ahmad et al. (2021) proposed the uni-
ied pre-training model for program understanding and genera-
ion, PLBART. PLBART was built on the Transformer architecture
nd took advantage of the unlabeled data in PL and NL by us-
ng the denoising pre-training work from BART (Lewis et al.,
020). PLBART fed noisy sequences into the encoder, and the
ecoder outputs the original sequences to remove the noise. Phan
t al. (2021) proposed CoTexT, a pre-trained, transformer-based
ncoder–decoder model that learns the representational context

etween natural language and programming language. CoTexT f

15
was based on the T5 architecture (Raffel et al., 2020) and pre-
trained on large programming language corpora that are used
by self-supervision methods to gain general language and code
knowledge. Wang et al. (2021) proposed CodeT5, an encoder–
decoder model based on pre-trained transformers that take to-
ken type information into account. CodeT5 is based on the T5
architecture, which uses denoising sequence-to-sequence pre-
training and has been demonstrated to improve natural language
understanding and generation.

Different from the aforementioned work, our approach consid-
ers features specific to the exploit code and utilizes correspond-
ing encoders, as well as attention mechanisms, to capture such
features in the code generation process.

7.2. Research on exploit code generation

For the specific exploit code generation domain, it is in a
fledgling state as the labeled data set is very limited. Liguori
et al. (2021a) were the first to Assemble and release the Shell-
code_IA32, which contains challenging but common Assembly
instructions together with their natural language descriptions.
After that, they experimented with standard methods in neural
machine translation to establish baseline performance levels on
shellcode generation task. Later, Liguori et al. (2022) conducted a
large-scale empirical study on this dataset and proposed a new
metric for evaluating NMT’s accuracy in generating shellcode.
The empirical analysis showed that NMT can generate Assembly
code from natural language with excellent accuracy and in many
cases can generate complete shell code without errors. Yang et al.
(2022) formalized the shellcode generation and summarization
as a dual task, constructed a shallow Transformer for model
construction. To adapt these low-resource tasks, they designed
a normalization method Adjust_QKNorm. Finally, to alleviate the
problem of out-of-vocabulary, they proposed a rule-based repair
component to improve the performance of shellcode genera-
tion. Liguori et al. (2021b) extended the Shellcode IA32 dataset
and presented a method (EVIL) for generating exploit code in As-
sembly/Python from natural language descriptions. In our paper,
we also conduct empirical studies on their released dataset.

Compared with previous exploit code generation studies that
were largely based on deep learning, our approach complements
the data-driven methods with rule-based template information
and achieves promising results.

8. Conclusion and future work

In this paper, we propose the template-augmented exploit
code generation method ExploitGen based on CodeBERT. The
esults of the automated evaluation show that our proposed
ethod ExploitGen outperforms the state-of-the-art baselines

rom the previous studies of automatic code generation on the
wo corpora. Moreover, we also verify the input lengths, input
ormats rationality, training methods rationality, and model com-
onents rationality of ExploitGen by designing a set of ablation
xperiments. We design an additional human study to evaluate
he quality of the generated code in terms of syntactic correctness
nd semantic correctness.
There are a number of applications of exploit code. For in-

tance, for security assessment writing exploit code is indis-
ensable, but its manual development turns out to be costly.
ur approach can accelerate this process and reduce the cost
or practitioners. Moreover, researchers can adopt our approach
o generate exploit code which can facilitate the research of
etection and defense of exploit code.
For future work, we plan to improve the performance of

he Template Parser, for example by extracting the numeric in-

ormation contained in words. We also plan to implement our

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

a
a
t
e
S
u
t
d

C

Y
e
t
–

D

c
t

D

A

d
o
t
a
w
i
C
K
s
N

R

A

A
B

B

B

C

D

F

F

pproach as a plugin in mainstream IDEs to provide better us-
bility. Moreover, our proposed approach is mainly designed for
he automated generation of exploit code, but it can easily be
xtended to other domain-specific code generation tasks, such as
hell (Lin et al., 2018) and SQL (Yu et al., 2018), since these tasks
sed similar corpora as ours in terms of the granularity level, and
he comments in these corpora also contain a large number of
omain-specific tokens.

RediT authorship contribution statement

Guang Yang: Data curation, Software, Writing – original draft.
u Zhou: Conceptualization, Methodology, Writing – review &
diting, Supervision. Xiang Chen: Data curation, Software, Valida-
ion. Xiangyu Zhang: Software, Validation. Tingting Han:Writing
review & editing. Taolue Chen: Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work is supported by the National Natural Science Foun-
ation of China (No. 61972197), the Natural Science Foundation
f Jiangsu Province (No. BK20201292), the Collaborative Innova-
ion Center of Novel Software Technology and Industrialization,
nd the Open Project of Key Laboratory of Safety-Critical Soft-
are for Nanjing University of Aeronautics and Astronautics, Min-

stry of Industry and Information Technology (No. NJ2020022). T.
hen is partially supported by an oversea grant from the State
ey Laboratory of Novel Software Technology, Nanjing Univer-
ity (KFKT2022A03), Birkbeck BEI School Project (EFFECT) and
ational Natural Science Foundation of China (No. 62272397).

eferences

hmad, W., Chakraborty, S., Ray, B., Chang, K.-W., 2021. Unified pre-training for
program understanding and generation. In: Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. pp. 2655–2668.

rce, I., 2004. The shellcode generation. IEEE Secur. Priv. 2 (5), 72–76.
ahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473.
ao, T., Wang, R., Shoshitaishvili, Y., Brumley, D., 2017. Your exploit is mine: Au-

tomatic shellcode transplant for remote exploits. In: 2017 IEEE Symposium
on Security and Privacy. SP, IEEE, pp. 824–839.

udzianowski, P., Vulić, I., 2019. Hello, it’s GPT-2-how can I help you? Towards
the use of pretrained language models for task-oriented dialogue systems.
In: Proceedings of the 3rd Workshop on Neural Generation and Translation.
pp. 15–22.

lark, K., Luong, M.-T., Le, Q.V., Manning, C.D., 2020. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:
2003.10555.

evlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Vol. 1. Long and
Short Papers, pp. 4171–4186.

eng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., et al., 2020. CodeBERT: A pre-trained model for programming
and natural languages. In: Findings of the Association for Computational
Linguistics: EMNLP 2020. pp. 1536–1547.

rank, C., 2000. Making plain binary files using a C compiler (i386+).
16
Freitag, M., Al-Onaizan, Y., 2017. Beam search strategies for neural machine
translation. In: Proceedings of the First Workshop on Neural Machine
Translation. pp. 56–60.

Gemmell, C., Rossetto, F., Dalton, J., 2020. Relevance transformer: Generating
concise code snippets with relevance feedback. In: Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. pp. 2005–2008.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D.,
Smith, N.A., 2020. Don’t stop pretraining: Adapt language models to domains
and tasks. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. pp. 8342–8360.

Hayati, S.A., Olivier, R., Avvaru, P., Yin, P., Tomasic, A., Neubig, G., 2018. Retrieval-
based neural code generation. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. pp. 925–930.

Heyman, G., Huysegems, R., Justen, P., Van Cutsem, T., 2021. Natural language-
guided programming. In: Proceedings of the 2021 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. pp. 39–55.

Hindle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P., 2016. On the naturalness of
software. Commun. ACM 59 (5), 122–131.

Hu, X., Chen, Q., Wang, H., Xia, X., Lo, D., Zimmermann, T., 2022. Correlating
automated and human evaluation of code documentation generation quality.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 31 (4), 1–28.

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z., 2020. Deep code comment generation
with hybrid lexical and syntactical information. Empir. Softw. Eng. 25 (3),
2179–2217.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., Brockschmidt, M., 2019. Code-
searchnet challenge: Evaluating the state of semantic code search. arXiv
preprint arXiv:1909.09436.

Hussain, Y., Huang, Z., Zhou, Y., 2021. Improving source code suggestion with
code embedding and enhanced convolutional long short-term memory. IET
Softw. 15 (3), 199–213.

Hussain, Y., Huang, Z., Zhou, Y., Wang, S., 2020a. CodeGRU: Context-aware deep
learning with gated recurrent unit for source code modeling. Inf. Softw.
Technol. 125, 106309.

Hussain, Y., Huang, Z., Zhou, Y., Wang, S., 2020b. Deep transfer learning for
source code modeling. Int. J. Softw. Eng. Knowl. Eng. 30 (05), 649–668.

Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L., 2018. Mapping language to
code in programmatic context. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. pp. 1643–1652.

Jawahar, G., Sagot, B., Seddah, D., 2019. What does BERT learn about the structure
of language? In: ACL 2019-57th Annual Meeting of the Association for
Computational Linguistics.

Karmakar, A., Robbes, R., 2021. What do pre-trained code models know about
code? In: 2021 36th IEEE/ACM International Conference on Automated
Software Engineering. ASE, IEEE, pp. 1332–1336.

Kulal, S., Pasupat, P., Chandra, K., Lee, M., Padon, O., Aiken, A., Liang, P.S., 2019.
Spoc: Search-based pseudocode to code. Adv. Neural Inf. Process. Syst. 32.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-
anov, V., Zettlemoyer, L., 2020. BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. pp. 7871–7880.

Liguori, P., Al-Hossami, E., Cotroneo, D., Natella, R., Cukic, B., Shaikh, S., 2021a.
Shellcode_IA32: A dataset for automatic shellcode generation. In: Proceed-
ings of the 1st Workshop on Natural Language Processing for Programming.
NLP4Prog 2021, pp. 58–64.

Liguori, P., Al-Hossami, E., Cotroneo, D., Natella, R., Cukic, B., Shaikh, S., 2022.
Can we generate shellcodes via natural language? An empirical study. Autom.
Softw. Eng. 29 (1), 1–34.

Liguori, P., Al-Hossami, E., Orbinato, V., Natella, R., Shaikh, S., Cotroneo, D.,
Cukic, B., 2021b. EVIL: exploiting software via natural language. In: 2021 IEEE
32nd International Symposium on Software Reliability Engineering. ISSRE,
IEEE, pp. 321–332.

Lin, C.-Y., 2004. Rouge: A package for automatic evaluation of summaries. In:
Text Summarization Branches Out. pp. 74–81.

Lin, X.V., Wang, C., Zettlemoyer, L., Ernst, M.D., 2018. NL2bash: A corpus and
semantic parser for natural language interface to the linux operating sys-
tem. In: Proceedings of the Eleventh International Conference on Language
Resources and Evaluation. LREC 2018.

Ling, W., Blunsom, P., Grefenstette, E., Hermann, K.M., Kočiskỳ, T., Wang, F., Se-
nior, A., 2016. Latent predictor networks for code generation. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics.
Volume 1: Long Papers, pp. 599–609.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V., 2019. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692.

Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X., 2018. Neural-
machine-translation-based commit message generation: how far are we? In:
Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. pp. 373–384.

http://refhub.elsevier.com/S0164-1212(22)00253-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb2
http://arxiv.org/abs/1409.0473
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb5
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb5
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb5
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb5
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb5
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb5
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb5
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb9
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb15
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb15
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb15
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb16
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb16
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb16
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb16
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb16
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb17
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb17
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb17
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb17
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb17
http://arxiv.org/abs/1909.09436
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb20
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb20
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb20
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb20
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb20
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb24
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb24
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb24
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb24
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb24
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb25
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb25
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb25
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb32
http://arxiv.org/abs/1907.11692
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb34

G. Yang, Y. Zhou, X. Chen et al. The Journal of Systems & Software 197 (2023) 111577

L

L

M

N

O

P

P

R

R

S

S

S

V

W

W

W

W

W

W

W

X

Y

Y

ocascio, N., Narasimhan, K., DeLeon, E., Kushman, N., Barzilay, R., 2016. Neural
generation of regular expressions from natural language with minimal
domain knowledge. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. pp. 1918–1923.

u, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C.,
Drain, D., Jiang, D., Tang, D., et al., 2021. Codexglue: A machine learning
benchmark dataset for code understanding and generation. arXiv preprint
arXiv:2102.04664.

ou, L., Men, R., Li, G., Zhang, L., Jin, Z., 2015. On end-to-end program generation
from user intention by deep neural networks. arXiv preprint arXiv:1510.
07211.

orouzi, S., Tang, K., Cao, Y., 2021. Code generation from natural language with
less prior knowledge and more monolingual data. In: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing. Volume
2: Short Papers, Association for Computational Linguistics, pp. 776–785. http:
//dx.doi.org/10.18653/v1/2021.acl-short.98, Online. URL https://aclanthology.
org/2021.acl-short.98.

da, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S., Toda, T., Nakamura, S., 2015.
Learning to generate pseudo-code from source code using statistical machine
translation. In: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering. ASE, IEEE, pp. 574–584.

apineni, K., Roukos, S., Ward, T., Zhu, W.-J., 2002. BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics. pp. 311–318.

han, L., Tran, H., Le, D., Nguyen, H., Annibal, J., Peltekian, A., Ye, Y., 2021. CoTexT:
Multi-task learning with code-text transformer. In: Proceedings of the 1st
Workshop on Natural Language Processing for Programming. NLP4Prog 2021,
pp. 40–47.

abinovich, M., Stern, M., Klein, D., 2017. Abstract syntax networks for code
generation and semantic parsing. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics. Volume 1: Long Papers, pp.
1139–1149.

affel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., Liu, P.J., 2020. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res. 21 (140), 1–67.

ee, A., Liu, P.J., Manning, C.D., 2017. Get to the point: Summarization with
pointer-generator networks. In: Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics. Volume 1: Long Papers, pp.
1073–1083.

un, Z., Zhu, Q., Mou, L., Xiong, Y., Li, G., Zhang, L., 2019. A grammar-based
structural cnn decoder for code generation. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. (01), pp. 7055–7062.

un, Z., Zhu, Q., Xiong, Y., Sun, Y., Mou, L., Zhang, L., 2020. Treegen: A tree-
based transformer architecture for code generation. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 34. (05), pp. 8984–8991.

aswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. In: Advances in Neural
Information Processing Systems. pp. 5998–6008.

ang, C., Cho, K., Gu, J., 2020. Neural machine translation with byte-level
subwords. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. (05), pp. 9154–9160.

ang, Y., Li, X.-H., Guan, L., Cui, B.-J., 2010. Attack and defending technology of
shellcode. Comput. Eng. 36 (18), 165–168.

ang, Z., Mayhew, S., Roth, D., et al., 2019. Cross-lingual ability of multilingual
bert: An empirical study. arXiv preprint arXiv:1912.07840.

ang, Y., Wang, W., Joty, S., Hoi, S.C., 2021. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation.
In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. pp. 8696–8708.

ei, B., Li, G., Xia, X., Fu, Z., Jin, Z., 2019. Code generation as a dual task of code
summarization. In: Advances in Neural Information Processing Systems. pp.
6563–6573.

eiss, K., Khoshgoftaar, T.M., Wang, D., 2016. A survey of transfer learning. J.
Big Data 3 (1), 1–40.

iseman, S., Rush, A.M., 2016. Sequence-to-sequence learning as beam-search
optimization. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. pp. 1296–1306.

u, F.F., Vasilescu, B., Neubig, G., 2022. In-ide code generation from natural lan-
guage: Promise and challenges. ACM Trans. Softw. Eng. Methodol. (TOSEM)
31 (2), 1–47.

ang, G., Chen, X., Cao, J., Xu, S., Cui, Z., Yu, C., Liu, K., 2021a. ComFormer:
Code comment generation via transformer and fusion method-based hybrid
code representation. In: 2021 8th International Conference on Dependable
Systems and their Applications. DSA, IEEE, pp. 30–41.

ang, G., Chen, X., Zhou, Y., Yu, C., 2022. DualSC: Automatic generation and
summarization of shellcode via transformer and dual learning. arXiv preprint
arXiv:2202.09785.
17
Yang, R., Zhang, J., Gao, X., Ji, F., Chen, H., 2019. Simple and effective text
matching with richer alignment features. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. pp. 4699–4709.

Yang, G., Zhou, Y., Chen, X., Yu, C., 2021b. Fine-grained pseudo-code generation
method via code feature extraction and transformer. arXiv preprint arXiv:
2102.06360.

Yin, P., Deng, B., Chen, E., Vasilescu, B., Neubig, G., 2018. Learning to mine aligned
code and natural language pairs from stack overflow. In: 2018 IEEE/ACM
15th International Conference on Mining Software Repositories. MSR, IEEE,
pp. 476–486.

Yin, P., Neubig, G., 2017. A syntactic neural model for general-purpose code
generation. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics. Volume 1: Long Papers, pp. 440–450.

Yin, P., Neubig, G., 2018. TRANX: A transition-based neural abstract syntax
parser for semantic parsing and code generation. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. pp. 7–12.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I., Yao, Q., Ro-
man, S., et al., 2018. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-SQL task. In: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing.
pp. 3911–3921.

Zhou, X., Han, D., Lo, D., 2021. Assessing generalizability of CodeBERT. In:
2021 IEEE International Conference on Software Maintenance and Evolution.
ICSME, IEEE, pp. 425–436.

Guang Yang is currently pursuing the Ph.D. degree with the College of Computer
Science and Technology of Nanjing University of Aeronautics and Astronautics.
His research interests include code generation and exploit code.

Yu Zhou is currently a full professor in the College of Computer Science and
Technology at Nanjing University of Aeronautics and Astronautics (NUAA). He
received his BSc degree in 2004 and PhD degree in 2009, both in Computer
Science from Nanjing University China. Before joining NUAA in 2011, he con-
ducted PostDoc research on software engineering at Politechnico di Milano, Italy.
From 2015-2016, he visited the SEAL lab at University of Zurich Switzerland,
where he is also an adjunct researcher. His research interests mainly include
software evolution analysis, mining software repositories, software architecture,
and reliability analysis. He has been supported by several national research
programs in China.

Xiang Chen received the B.Sc. degree in information management and system
from Xi’an Jiaotong University, China in 2002. Then he received the M.Sc., and
Ph.D. degrees in computer software and theory from Nanjing University, China
in 2008 and 2011 respectively. He is with the School of Information Science
and Technology at Nantong University as an associate professor. His research
interests are mainly in software engineering. In particular, he is interested in em-
pirical software engineering, mining software repositories, software maintenance
and software testing. In these areas, he has published over 60 papers in refereed
journals or conferences, such as IEEE Transactions on Software Engineering,
Information and Software Technology, Journal of Systems and Software, IEEE
Transactions on Reliability, Journal of Software: Evolution and Process, Software
Quality Journal, Journal of Computer Science and Technology, ASE, ICSME, SANER
and COMPSAC. He is a senior member of CCF, China, and a member of IEEE and
ACM.

Xiangyu Zhang is currently pursuing the master degree with the College of
Computer Science and Technology of Nanjing University of Aeronautics and
Astronautics. His research interests include code generation.

Tingting Han obtained her B.Sc. and MEng in Computer Science from Nanjing
University China, and her Ph.D. from RWTH Aachen University and University
of Twente. She was a Research Assistant at University of Oxford before joining
Birkbeck. Her Areas of interest: Formal verification and synthesis of probabilistic
systems, and its applications.

Taolue Chen is a Postdoctoral Researcher at University of Oxford (UK) and
University of Twente (The Netherlands);Ph.D. (CWI and Vrije Universiteit Ams-
terdam, The Netherlands), Master and Bachelor (Nanjing University, China), all in
Computer Science. His Areas of interest: Quantitative analysis and synthesis of
computer program and systems, logic in computer science, machine learning and
data science, software engineering, algorithms and computational complexity.

http://refhub.elsevier.com/S0164-1212(22)00253-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb35
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/1510.07211
http://arxiv.org/abs/1510.07211
http://arxiv.org/abs/1510.07211
http://dx.doi.org/10.18653/v1/2021.acl-short.98
http://dx.doi.org/10.18653/v1/2021.acl-short.98
http://dx.doi.org/10.18653/v1/2021.acl-short.98
https://aclanthology.org/2021.acl-short.98
https://aclanthology.org/2021.acl-short.98
https://aclanthology.org/2021.acl-short.98
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb41
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb41
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb41
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb41
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb41
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb41
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb41
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb47
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb47
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb47
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb47
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb47
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb49
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb49
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb49
http://arxiv.org/abs/1912.07840
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb51
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb51
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb51
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb51
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb51
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb51
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb51
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb52
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb52
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb52
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb52
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb52
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb53
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb53
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb53
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb54
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb54
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb54
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb54
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb54
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb55
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb55
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb55
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb55
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb55
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb56
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb56
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb56
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb56
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb56
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb56
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb56
http://arxiv.org/abs/2202.09785
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb58
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb58
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb58
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb58
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb58
http://arxiv.org/abs/2102.06360
http://arxiv.org/abs/2102.06360
http://arxiv.org/abs/2102.06360
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb60
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb60
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb60
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb60
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb60
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb60
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb60
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb61
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb61
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb61
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb61
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb61
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb62
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb62
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb62
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb62
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb62
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb62
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb62
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb63
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb64
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb64
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb64
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb64
http://refhub.elsevier.com/S0164-1212(22)00253-9/sb64

	ExploitGen: Template-augmented exploit code generation based on CodeBERT
	Introduction
	Background
	CodeBERT
	Exploit Code

	Approach
	Data Processing
	Model Architecture
	Encoder Layer
	Semantic Attention Layer
	Fusion Layer
	Decoder Layer

	Model Application
	Model Training Strategies

	Experiments
	Baselines
	Datasets
	Performance Metrics
	Experimental Settings
	Results

	Discussion
	Threats to Validity
	Related Work
	Research on Code Generation
	Research on Exploit Code Generation

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

