The Journal of Systems & Software 188 (2022) 111257

Contents lists available at ScienceDirect

SOFTWARE
The Journal of Systems & Software

»

journal homepage: www.elsevier.com/locate/jss

Automatic source code summarization with graph attention N

networks™ et
Yu Zhou *¢, Juanjuan Shen?, Xiaoqing Zhang ?, Wenhua Yang *¢, Tingting Han ,
Taolue Chen >*

2 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
b Department of Computer Science, Birkbeck, University of London, UK
¢ State Key Lab. for Novel Software Technology, Nanjing University, China

ARTICLE INFO ABSTRACT

Article history:

Received 7 June 2021

Received in revised form 15 November 2021
Accepted 2 February 2022

Available online 8 February 2022

Source code summarization aims to generate concise descriptions for code snippets in a natural
language, thereby facilitates program comprehension and software maintenance. In this paper, we
propose a novel approach-GSCS-to automatically generate summaries for Java methods, which
leverages both semantic and structural information of the code snippets. To this end, GSCS utilizes
Graph Attention Networks to process the tokenized abstract syntax tree of the program, which employ
a multi-head attention mechanism to learn node features in diverse representation sub-spaces, and
aggregate features by assigning different weights to its neighbor nodes. GSCS further harnesses an
additional RNN-based sequence model to obtain the semantic features and optimizes the structure by
combining its output with a transformed embedding layer. We evaluate our approach on two widely-
adopted Java datasets; the experiment results confirm that GSCS outperforms the state-of-the-art

Keywords:

Source code summarization
Recurrent neural network
Graph neural network

baselines.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Program comprehension is an indispensable activity in soft-
ware development and maintenance, since programs must be
sufficiently understood before they can be properly modified
(Cornelissen et al., 2009). It is reported that, on average, software
developers spend around 58% of time on program comprehension
related activities (Xia et al., 2018). Numerous studies (Stapleton
et al,, 2020; Takang et al., 1996; Tenny, 1988; Woodfield et al.,
1981) show that descriptive summaries, which explain the func-
tionality of code snippets by brief natural language sentences,
are conductive to software comprehension. However, manually
writing code summaries is time-consuming and laborious. To
ease the process, the last decade has witnessed a proliferation
of automatic code summarization techniques (Song et al., 2019).
These techniques were mainly based on pre-defined templates
and keyword extraction (Hill et al., 2009; Sridhara et al., 2010,
2011). More recently, inspired by the application of deep learning
in the field of natural language processing (NLP), researchers have
resorted to deep learning for source code summarization. Particu-
larly, models for neural machine translation (NMT) have become

* Editor: Earl Barr.
* Corresponding author at: Department of Computer Science, Birkbeck,
University of London, UK.
E-mail address: t.chen@bbk.ac.uk (T. Chen).

https://doi.org/10.1016/j.jss.2022.111257
0164-1212/© 2022 Elsevier Inc. All rights reserved.

the mainstream approach, where, generally speaking, source code
is viewed as pure text and an encoder-decoder framework is used
to provide code summaries (Sutskever et al., 2014).

Similar to natural languages, programming languages also ex-
hibit “naturalness” (Hindle et al., 2016), so adapting NMT models
to source code can be potentially effective. For instance, Iyer et al.
(2016) established the first end-to-end model, using Long-Short
Term Memory (LSTM) networks with an attention mechanism
to build a language model for summary generation. Allamanis
et al. (2016) introduced a neural convolutional attention model
to predict a short and descriptive name of a source code snippet.
Bolin et al. (Wei et al., 2019) applied dual learning framework
to train code summarization and code generation models based
on the duality between the two tasks. Ahmad et al. (2020)
employed the basic Transformer model to summarize source code
and improved the behavior with relative position representation
and a copy attention mechanism.

However, Maletic and Marcus (2001) suggested that software
engineers must examine both the structural aspect of source code
and the naturalness of code tokens to fully understand a program.
Different from natural languages, source code is not merely a
sequence of words (LeClair et al., 2020). Instead, it is strongly
structured and has massive identifiers. Besides, compared with
machine translation, source code has far fewer words directly
related to summaries, and the functionality of the code is usually
encoded in its nested structure. In light of this, researchers began

https://doi.org/10.1016/j.jss.2022.111257
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111257&domain=pdf
mailto:t.chen@bbk.ac.uk
https://doi.org/10.1016/j.jss.2022.111257

Y. Zhou, J. Shen, X. Zhang et al.

to study approaches to extract the structural information of the
code. In particular, the abstract syntax tree (AST), which expresses
the syntactic structure of a program in a tree form, has become
the mainstream tool for code analysis. For instance, Hu et al.
(2018) proposed the algorithm SBT which can flatten the AST of
a Java method to a sequence using nested parentheses. LeClair
et al. (2019) introduced two encoders to encode the code tokens
and the AST sequences separately. Shido et al. (2019) applied
extended Tree-LSTM to learn tree structures in ASTs directly.
LeClair et al. (2020) utilized Convolutional Graph Neural Net-
works (ConvGNNs), together with the source code sequence as
separated inputs, to the code summarization model.

The aforementioned neural network models have advanced
the state-of-the-art and can generate useful summaries in prac-
tice, but still have several limitations. First, source code usu-
ally contains complex nested structures, thus cannot be simply
treated as plain texts which would otherwise lose too much
information and inevitably degrade the model performance (Hel-
lendoorn and Devanbu, 2017). Second, existing models are in-
sufficient in processing structural information. For instance, SBT
introduces numerous brackets, which aggravates the long de-
pendency problem and introduces unnecessary redundant infor-
mation. Neither Tree-LSTM nor ConvGNN considers the current
context of the node in an AST. Namely, each node has its local
characteristics in an AST. Even if two nodes are with the same
identifiers, the roles they play in the local environment could
be different, but are treated equally in Tree-LSTM and ConvGNN.
As a result, for code summarization, the extraction and mod-
eling of code structure require further investigation. Third, the
order in source code is not fixed, and swapping partial tokens or
statements may not affect its functionality (e.g., a + b is equal
to b + a). However, for basic RNNs which were designed to
process sequential data, the position of each token is fixed during
encoding as a result of their sequential structure.

To overcome these limitations, in this paper, we propose
GSCS (Graph structure and Semantic sequence for Code
Summarization), a novel approach which is based on graph struc-
ture and semantic sequence for code summarization. It is widely
accepted that code is more amenable to graph or tree representa-
tions (Binkley, 2007; Ottenstein and Ottenstein, 1984), whereby
we apply graph neural networks to capture the structural features
of ASTs. To mitigate the out-of-vocabulary problem of AST nodes
and assimilate inner representations, we put forward a variant
of ASTs by splitting the method names, variable names, and long
string literals into subtokens which are linked to the correspond-
ing labeled nodes to retain the tree structure. Similar to the work
of LeClair et al. (2019) which encoded code and AST separately,
we adopt the sequence model, BiGRU (Chung et al., 2014), as the
semantic encoder for modeling the tokenized code sequences.

Once a code snippet is parsed into an AST, it may contain
redundancy. If one simply accumulates the child node features
with Tree-LSTM or ConvGNN, noise contained in these nodes may
propagate deeper especially when using multi-layer networks. To
this end, we exploit Graph Attention Network (GAT) proposed by
Petar et al. (Velickovic et al., 2017) to address the shortcomings
of graph convolution. In a nutshell, GAT can learn to automati-
cally assign different weights to neighbor nodes, encouraging the
adoption of useful structural information while ignoring noise
messages. Moreover, to handle the code sequence, we optimize
the basic Seq2Seq model inspired by Iyer et al. (2016) who used a
single embedding layer without any position feature. We combine
BiGRU with a transformed embedding layer (such as a residual
connection) to alleviate the effect of absolute position and long-
term dependence, which considerably improves the quality of the
generated summary.

In summary, in this paper, we highlight the importance of
the structural information in code snippets and design a new

The Journal of Systems & Software 188 (2022) 111257

neural network architecture to process both the structural and
the semantic information, yielding a novel data-driven approach
for code summarization. We conduct experiments on three pub-
lic datasets collected from GitHub, and the results endorse the
effectiveness of our approach over the-state-of-the-art solutions.
Moreover, to facilitate replication and reuse of our work, we have
made the implementation publicly available.'

Structure of the paper. The remainder of this paper is organized
as follows. Section 2 reviews the related work. Section 3 describes
the background of BiGRU and GAT. Section 4 presents the details
of our proposed approach. Section 5 empirically evaluates the
performance of the new approach with comparisons to baselines.
Section 6 discusses the threats to validity. Section 7 draws the
conclusion and discusses briefly the future work.

2. Related work

As a critical task in software engineering, a multitude of
studies have been conducted on code summarization. The goal
of automatic code summarization is to generate a brief yet ac-
curate representation of a code snippet. Heuristic rule-based
methods were first proposed. Hill et al. (2009) extracted natural
language phrases from source code identifiers, helping developers
to quickly identify relevant program elements. Sridhara et al.
(2010) summarized a Java method’s overall actions by exploiting
both structural and linguistic clues in the method. Sridhara et al.
(2011) described a technique to automatically generate descrip-
tive summaries for parameters of Java methods and provide
sufficient context for developers to understand the role of the
parameter in achieving the computational intent of a method. All
of the above approaches are based on pre-defined templates and
rules, which completely rely on prior knowledge of developers.
Thus it is inevitable that they fail to work when the code content
is outside the scope of the templates.

Several works exploited Information Retrieval (IR) technol-
ogy for source code summarization. Wong et al. (2013) mined
code-description mappings from Q&A sites and leveraged such
mappings to generate description summaries automatically for
similar code segments matched in open-source projects. Haiduc
et al. (2010) applied Latent Semantic Indexing (LSI) to select the
top five terms in the list ordered by cosine similarity to construct
the summary. However, the effect of these IR-based approaches
is limited by the similarity between the corpus and the tested
examples, which may generate summaries completely different
from the actual semantics.

In recent years, inspired by the development of machine learn-
ing, researchers began to investigate application of deep learning
in software engineering. Similar to machine translation, code
summarization is the mapping from programming language to
natural language. lyer et al. (2016) firstly presented an end-to-
end neural network called CODE-NN, which used an embedding
layer to encode the code tokens and combined them with Long-
Short Term Memory (LSTM) networks via an attention mecha-
nism to produce sentences that describe C# code snippets and
SQL queries. Allamanis et al. (2016) designed a convolutional
neural network to produce short, descriptive, function name-
like summaries with two attention mechanisms, i.e., one predicts
the next summary token based on the attention weights of the
input tokens, while another one is able to copy a code token
directly into the summary. Zhou et al. (2019) proposed to aug-
ment context information with techniques of program analysis
and then automatically generate code comments. Dual learn-
ing (He et al., 2016) was first proposed to learn from unlabeled
data based on the duality of tasks. It was further demonstrated

1 https://github.com/sjj0403/GSCS.

https://github.com/sjj0403/GSCS

Y. Zhou, J. Shen, X. Zhang et al.

that dual learning at a model level can solve a group of dual
tasks, such as neural machine translation and text analysis. Bolin
et al. (Wei et al.,, 2019) considered code summarization (CS)
and code generation (CG) as a pair of dual tasks. They added
regularization terms in the loss function to constrain the duality
between the two Sequence-to-Sequence models. Zhang et al.
(2020) proposed a retrieval-based neural source code summa-
rization approach by enhancing the neural network model with
the most similar code snippets retrieved from the training set.
This approach still suffered from the limitation of similarity.
Transformers (Vaswani et al., 2017) have become the mainstream
architecture in machine translation, which works on seq2seq
tasks using the multi-headed attention mechanism and realizes
parallel computing in the encoder. Ahmad et al. (2020) presented
a Transformer-based approach for source code summarization,
replacing the original absolute position representation with rela-
tive position and adding a copy attention mechanism to the basic
Transformer architecture, which has been proved to perform well.

Some neural network models consider the structural charac-
teristics of code. Hu et al. (2018) proposed an SBT algorithm,
transforming ASTs into a unique sequence as the input to an
LSTM. LeClair et al. (2019) expand on this idea by separating
the code sequence and the AST sequence into two different en-
coders to learn diverse features of code snippets. An AST is
of a tree-structure, so the inner features will be omitted after
being flattened while the problem of long-term dependence is
aggravated due to the geometric growth of the sequence length.
Thus Shido et al. (2019) applied extended Tree-LSTM for source
code summarization that can keep an AST’s internal structure.
Fernandes et al. (2018) extended the code sequence encoders
with Gated Graph Neural Networks that can reason about long-
distance relationships in strong structured data. LeClair et al.
(2020) used a ConvGNN-based encoder of graph2seq to model the
AST, combined with an RNN-based encoder modeling the code
sequence. Ziigner et al. (2021) proposed a multilingual model for
code summarization, called Code Transformer, which combined
distances computed on structure and context in the self-attention
operation. However, the latest technology is still facing the dif-
ficulty of extracting and employing structural information. ASTs
are complex and huge, so simple feature accumulation may blur
useful message without filtering.

3. Background

This section covers the supporting technologies behind our
work, including bidirectional gated recurrent units and graph
attention networks. Familiarity with neural network concepts like
RNNs and GNNs are needed as they are the basics in our approach.

3.1. Bidirectional gated recurrent units

RNNs establish a connection between the front and rear units
in the same layer, which considers the influence from front to
back and makes the unit have a certain memory function. Since
the semantics of one token is not only connected to the previous
information but also closely related to the information after the
current token. BiRNN (Schuster and Paliwal, 1997) was proposed
to train two RNNs based on forward and backward sequences
respectively, both of which are connected to an output layer. This
structure provides the output layer with complete past and future
context information for each item in the input sequence. As a
variant of BiRNN, bidirectional gated recurrent unit (BiGRU) has
been widely used in sentiment classification (Han et al., 2020),
entity-relationship extraction (Lv et al., 2020) and text classifica-
tion (Duan et al., 2020). At each time step t, the GRU (Cho et al,,
2014) takes not only the input of the current step but also the

The Journal of Systems & Software 188 (2022) 111257

hidden state outputted by its previous time step t — 1. In a BiGRU,
two independent GRUs are combined in a bidirectional fashion,
with one reading the input sequence in the forward direction and
the other in the backward direction. In addition, to capture the
long-term dependence in a long sequence, BiGRU controls the
flow of information through two different gating mechanisms,
i.e., reset gate and update gate. The reset gate combines the new
input information with the previous hidden state to filter memo-
ries that have nothing to do with the future work and the update
gate defines the amount of previous memory saved to the current
time step. Compared with another variant, BiLSTM (Hochreiter
and Schmidhuber, 1997), BiGRU significantly reduces the number
of parameters and training time (Chung et al., 2014). As a result,
in our framework, we adopt BiGRU to encode the code sequence.

3.2. Graph attention networks

Graph neural networks (GNNs) embed the graph structure
into the neural models and have been applied in various do-
mains, for instance, sequence labeling, relationship extraction,
event extraction, image classification, etc. Graph convolution net-
works (GCNs) (Kipf and Welling, 2017) extend convolution neural
networks for images to handle graph data. However, GCNs fail
to directly act on directed graphs or dynamic graphs, and all
neighbor nodes are treated equally. To address these problems,
graph attention networks (GAT) (Velickovic et al., 2017) were de-
veloped to adaptively control the contribution of adjacent nodes
by introducing the attention mechanism. The advantage is that
it can amplify the influence of the most important part of the
data. The main idea of GAT is to compute the hidden representa-
tions of each node in the graph, by attending over its neighbors,
following a self-attention strategy. It means that the weight of
adjacent node features is completely determined by the node
features themselves and is independent of the graph structure. To
learn the attention weights in different subspaces, GATs integrate
the outputs of multiple graph attention layers (GALs). Each GAL
trains the parameters of the specific attention function to deter-
mine the weights of neighboring nodes when aggregating feature
information.

4. Approach

Fig. 1 gives an overview of our approach GSCS, which mainly
consists of three parts: data processing, model training, and on-
line code summary generation. The neural network architecture
is designed to process both semantic and structural information
from source code. In particular, BIGRU and GAT are utilized to
process code tokens (cf. Section 4.2.1) and ASTs (cf. Section 4.2.2)
respectively.

4.1. Data processing

Three types of inputs are subject to data processing, i.e., source
code, related tokenized code, and the corresponding summary.
Specifically, the summary is the first descriptive sentence ex-
tracted from its Javadoc document. We parse the summary and
tokenize any CamelCase or snake_case user-defined identifiers
once found. The source code is used to generate structure infor-
mation, i.e., the node sequence and the adjacency matrix, and is
sent to the structural encoder. The tokenized code is generated
from the source code and used as the input of the semantic
encoder. For the above three sequences, we set a length thresh-
old. The ones below the threshold are filtered. Vocabularies for
code, node, and summary are built from the training sets, and
the words which are out of the vocabularies are replaced with
“unknown”.

Y. Zhou, J. Shen, X. Zhang et al.

The Journal of Systems & Software 188 (2022) 111257

Java Method

Ad jacency
Matrix

—

Shared Attention ‘

Source Files

BiGRU Output

> 5 | Tolnal’y
i IEI BiGRU|| LL AN /
[Embedding | [Fmbedding | ﬂ

1 Structural Encoder Semantic Encoder

Code Summary

t

a Data processing

b. Training the GSCS Model

c. Generating summaries with
the trained model

Fig. 1. An overview of the GSCS approach.

To generate the structural dataset, we parse the source code
of each Java method to ASTs and filter out those that fail to
parse. Based on the obtained ASTs, we set rules to tokenize partial
terminal nodes and mark them with specific class labels (such
as method names, variable names, and long strings), which is to
preserve the tree structure of the ASTs and equip each node with
explicit semantic information. Example 1 provides a Java method,
which serves as a running example to show the details of splitting
specific nodes.

Example 1. An example to show the details of tokenized AST

public void ClientInit(ParsingEvent pe){
m_teamName = pe.get("team_name");
CaseEvent ce = new CaseEvent(this, m_teamName);
for(CaseEventListener cel:CEListeners)
cel.Connecting(ce);

Compared with the original AST which is parsed with javalang
and shown in Fig. 2, three additional labeled nodes (i.e., Method-
nameSplit, VariableSplit and StringSplit) are designed to mark
the nodes that need to be tokenized. The original method name
node “Clientlnit” is replaced by the “MethodnameSplit” node
connected with several sub-nodes, i.e., “Client” and “Init”, which
are generated in accordance with the CamelCase rule. For string
nodes, we filter quotation marks out first, and then treat the blank
space as the separator. If the generated list still contains Camel-
Case or snake_case tokens, we carry out the segmentation again.
Following these rules, we obtain the final graphical structure
which ensures that each node retains its own semantic informa-
tion. We found that the tokenized AST reduces the vocabulary
overflow rate and is beneficial to the attention mechanism. The
tokenized AST of Example 1 is shown in Fig. 3. We obtain the node
sequence by preorder traversing the tokenized AST and record
edge information between nodes with the adjacency matrix (cf.
Section 4.2.2 for details).

4.2. Code summarization model

The architecture of our model is illustrated in Fig. 4. The model
contains two encoders, i.e., the semantic encoder and the struc-
tural encoder, which are to process tokenized code sequences
and tokenized ASTs respectively. The semantic encoder builds up
a language model on the code sequence with BiGRU, while the
structural encoder uses multiple Graph Attention Layers (GALs)
connected with BiGRU to encode tokenized AST. In general, given
the input code sequence X = (xq,...,X;), the input node se-
quence V = (vq,...,vy) and the adjacency matrix A, the code

summarization model aims to learn to generate the summary
sequence Z = (zy, .. ., Zym) based on the conditional probability

p(z1, ..., zZm | X1,, VN, A)

As shown in Fig. 4, our model architecture is mainly composed
of the semantic encoder, the structural encoder and the decoder.
In what follows, we introduce the details of these three parts.

-5 Xn, U1, -

4.2.1. Semantic encoder

We opt for a single layer BiGRU (Chung et al., 2014), a variant
of RNN, to encode the code sequence after an embedding layer,
which is simpler than LSTM but has a similar effect. Formally,

OutX, hidden = BiGRU(EM(X))

where OutX and hidden are the two outputs of BiGRU based on
the embedded input EM(X). In particular, hidden represents the
final hidden state of the BiGRU, which will be sent to the decoder
as the initial hidden state. OutX records the output features at
each time step, which consists of two inde_pe)ndent GRUs’ outputs
with opposite directions, i.e., OutX = [OutX | OutX]. To record
both the forward and backward contextual information in the
output of BiGRU, a vector addition is applied on OutX, i.e.,

H %
GRUOutX = OutX + OutX

As a sequence model, RNN emphasizes the order of the pro-
cessed tokens. However, in the current case some of the tokens
are indeed swappable. As a result, we put forward a transformed
embedding layer which fuses the features of the embedding layer
with the output of BiGRU to reduce the influence of absolute
positions. Specifically, through a learnable linear transformation,
ie.,

EmOutX = Linear(EM(X)),

we obtain EmOutX, which is to be added to GRUOutX, yielding
the final output OutputX of semantic encoder.

OutputX = EmOutX 4+ GRUOutX

4.2.2. Structural encoder

Similar to the semantic encoder, the structural encoder first
sends the sequences of nodes to an embedding layer, by which
each token is mapped to a vector. To take advantage of GAT, we
treat the tokenized AST as an undirected graph G = (V,E, A),
where V and E are respectively the sets of nodes and edges,
and A is the corresponding (symmetrical) adjacency matrix. In
particular, V. = {vq, ..., vy} is generated from the embedding
layer (where N is the number of nodes). To abuse the notation
slightly, we also use v; € R to denote the feature vector of the

Y. Zhou, J. Shen, X. Zhang et al.

The Journal of Systems & Software 188 (2022) 111257

MethodDeclaration

[Modififier| [ClientInit| [FornalParameter | | StatememtBExpression | [LocalVariableDeclaration| [ForStatement |

Referencr Type

public

Aszignment

IPars:i.ngEvmt I | MmberRefereme‘m]
[

Im_tea.m.ﬂa.mel m I Literal | get

Fig. 2. Parsed AST of Example 1 with javalang.

MethodDeclaration

I Modififier ” MethodnameSplit ” FormalParameter ” StatementExpression " LocalVariableDeclaration ” ForStatement]

| public] [Client ” Init | |Referen{m‘

it ” MemberReference | I]'f[ethodlnvncaticml

[Fazsing] [Bvert] [

Split]ILiterall get

[2] [eean] [vane

[ten] [name]

Fig. 3. Tokenized AST of Example 1 with our approach.

Attention

[
=

C—

[cuncat

Fig. 4. Model architecture of our approach.

node (where F is the dimension of the feature space). We send
G = (V,E,A) to GAT for updating the features of each node, i.e.,

V = GAT(V, E, A)

Structure of GAL. The graph attentional layer (GAL) is the sole
layer utilized throughout the GAT architecture (Velickovic et al.,
2017). As shown in Fig. 4, the structural encoder stacks GALs to
construct GAT. Each GAL selectively aggregates node information
within 1-hop neighborhood when updating node features to pro-
duce a new set of node vector V' = {v},...,vy}. (Note that

v € RF' and F’ can be different from F.) Firstly, to obtain high-
level features one learnable linear transformation W is required
to transform the input feature v to Wv, where W e RF*F s
referred to as a weight matrix.

The core of GAL is to introduce self-attention to calculate the
attention coefficient q for each pair of nodes, which is determined
by the feature vector itself and other nodes. g;; indicates the
importance of node j's features to node i and is defined as

qij = b [Wu; | Wj] (1)

Y. Zhou, J. Shen, X. Zhang et al.

where || is the concatenation operation and [Wv; || Wv;] € R is
a column vector, b” = [bT, b!] € R¥*" is a row vector. b" is to be
learned during model training. Intuitively, b? is the self attention
coefficient while b! is the attention coefficient of the node j.

As some pair of nodes may not have connections, the masked
attention mechanism, adopted by Petar et al. Velickovic et al.
(2017), assigns the attention coefficient to those connected nodes
only, which means that the node feature updating only focuses
on its neighbors and itself. Based on the edge matrix A, if there
is an edge from node j to node i, the attention coefficient g;; is
calculated by Eq. (1), otherwise it is set to be infinity.

_ | bTWu; | W1, ALiIlj] > 0
q%ij =\ o o/w (2)

By Eq. (2), we can observe that the attention mechanism is
asymmetric, thereby we regard the tokenized AST as an undi-
rected graph to enable the network to learn bidirectional features.
Namely, the weight assigned by the node i to its neighbor j can
be different from the weight which j allocates to i, although the
graph G is undirected.

To ensure the comparability of coefficients on different nodes,
the softmax function is applied to normalize these scores, after
applying a LeakyReLU nonlinearity with negative input slope o
to the obtained q; ;. Hence, the attention coefficient is calculated
as

Bij = softmax(LeakyReLU(q; ;))
_ exp(LeakyReLU(b" [Wu; || W;])) 3)
D en, exp(LeakyReLU(bT [W; | Wuy]))

where N; is the set of all adjacent nodes of the node i (including
itself); B;; represents the final weight coefficient assigned by the
node i to the node j and g;; is obtained by Eq. (2).

All the nodes in N; which are weighted by its attention co-
efficients are now combined to form a high-level node vector,
followed by the nonlinearity activation function sigmod to stan-
dardize the updated features:

vi/ =0 Z ﬂi.jWUj (4)

JeN;

Eq. (4) describes the update of a node from v; to v through a
single GAL. To capture the characteristics of nodes from various
angles, usually K independent attention mechanisms (multi-head
attention) can be built simultaneously as follows.

v = [0 | D 8wy (5)

JeN;

where | is the concatenation operation and K is the number
of heads. Intuitively, each independent GAL learns a different
weight matrix W*. The aggregated features from each GAL are
concatenated to obtain v/’ that contains KF’ features, so another
GAL is needed to realize the transformation of dimensions from
KF’ to F”.

We further introduce a GAL which takes the concatenation of
the outputs of the above K GALs as the input, namely,

B=0)_ W) (6)

JeN;

where W* € RF"*KF’_The purpose of this GAL is to aggregate the
neighboring node features, which encourages identifying deeper
information. As a result, the original node vector V is updated as
V = {v1, 03, ..., Uy} with the dimension of 512 through the GAT
shown in Fig. 4.

The Journal of Systems & Software 188 (2022) 111257

Finally, since GAT only captures the features of its local neigh-
bors (i.e., the information we aggregate is within 2 hops), another
BiGRU is connected with GAT to add the global information. We
carry out preorder traversal on the updated nodes V, obtaining
the node sequences in accordance with the order of the code
representation and send them to BiGRU.

~

OutV, hidden = BiGRU(V)

Similar to the semantic encoder, the final output of the structural
encoder is based on a vector addition, viz., OutputV = OutV +
OutV.

4.2.3. Decoder

For the Seq2Seq framework, the attention mechanism can
effectively guide decoding by assigning weights to the input
sequence according to the last hidden state, so the model can
focus on some more significant parts. In our approach, we adopt
the global attention mechanism proposed by Luong et al. (2015).
It defines an individual context vector ¢; for predicting each target
word z; as a weighted sum of all hidden states s1, ..., s, in the
encoder, i.e.,

n
Ci = ZO{iij (7)
j=1

where n is the length of the input sequence and the weight «;; of
each hidden state s; is computed as

_ exp(ej)
> e expleir)

where e; = score(h;_1, ;). Here score refers to a content-based
function which scores how well the inputs around position j
and the output at position i match. We choose the following
score function proposed by Luong et al. (2015) to calculate the
alignment score vector

oij

score(hi_1, s;) = Uj tanh(Wq[hi_1 || 5j]) (8)

Here, s; represents the hidden state at time step j in the encoder,
h;_1 is the last hidden state at the time step i in the decoder. After
concatenating h;_; and sj, the activation function tanh is used
to score the attention weight, where UaT and W, are learnable
network parameters.

When using double encoders, the previous work tends to
adopt a dual-attention architecture which computes the weight
distribution of two inputs with different parameters and con-
catenates the context vector directly. Our approach opts to use
a shared attention mechanism aiming to assign different weights
proportional to the two encoders’ hidden state. As shown in Fig. 4,
the weight is decided by the last state of the decoder h;_; and is
set to 1 : p, where p = o(y*°™(h;_;)). Based on the ratio, we
generate the final ¢; vector as

N

n
¢ = Z a;jOutputX; + p Z a;OutputV;
j=1 j=1

where o and o; are obtained from the alignment model shown
in Eq. (8); n and N are the sequence lengths of the two en-
coders respectively; OutputX; and OutputV; represent the final
outputs generated by two encoders respectively. In this man-
ner, the model can adaptively adjust the attention weights to
aggregate the text and structural information.

Based on the last hidden state of the decoder and the con-
catenation of the embedded z with the context vector c;, we
obtain two outputs at each step of the GRU, i.e., outZ; and h;. The
purpose of the decoder is to generate the target word according
to the distribution on the output vocabulary, which is guided

Y. Zhou, J. Shen, X. Zhang et al.

by the shared attention and the output of the GRU at the last
time step. Specifically, we perform a linear transformation on the
concatenation of out; and ¢; and apply the softmax function to
normalize the distribution.

outZ;, h; = GRU([EM(z) || ¢;], hi—1)

dist = softmax(W,[outZ; || ¢;])

According to the probability distribution dist, the token with
the highest probability in the target vocabulary is selected. In our
approach, we adopt beam search with a width of 4, a heuristic
graph search algorithm.

5. Evaluation

In this section, we first introduce our experimental set-up,
followed by overall results and the ablation study to evaluate
different approaches by measuring their accuracy on generating
Java methods’ summaries.

5.1. Experimental setup

Datasets. We conduct experiments on three publicly available
Java datasets. The first one collected by Hu et al. (2018) contains
over 87,000 Java methods with relatively complex inner struc-
tures. The second one extracted by Leclair and Mcmillan (2019)
contains over 2 million Java methods with relatively simple inner
structures. The third corpus is built by Husain et al. (2019) to
enable an evaluation of progress on code search. It includes six
programming languages and we select the Java subset which
contains about 500,000 Java methods.

For each dataset, we prepare two corresponding datasets,
i.e., the structural dataset and the semantic dataset for the struc-
tural encoder and semantic encoder respectively. For the seman-
tic dataset, we directly employ the tokenized datasets by Ahmad
et al. (2020) and LeClair et al. (2019) respectively, which would
facilitate the comparisons with baselines. In the Hu dataset, the
literals in a Java method were replaced by specified tokens and
then further split source code tokens of the form CamelCase
and snake_case to their respective sub-tokens. In the LeClair
dataset, all non-alphanumeric characters in the code sequence
were filtered and identifiers were split into subtokens. As the
Husain dataset does not provide a tokenized version, we simply
tokenize CamelCase and snake_case into sub-tokens and filter
empty functions or data containing chinese words. None of the
datasets include ASTs, so we use the javalang library? to generate
the associated ASTs from the raw source code and filter out
the part that fail to parse. For the summary sequence, the first
sentence of Javadoc was extracted as the natural language de-
scription in the Hu dataset while the first line of the Javadoc was
selected as the corresponding summary in the LeClair dataset.
Similarly, we extract the first sentence from the original JavaDoc
and filter out low-quality data, such as non-English descriptions,
incomplete sentences, etc.

Table 1 shows the partition of the three datasets for the train-
ing, validation and test respectively after filtering. In addition,
to reduce the impact of the order of the data on the model, all
datasets are shuffled in advance.

Metrics. We evaluate the source code summarization perfor-
mance using three metrics, BLEU-4 (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014), and ROUGE-L (Lin, 2004).
These metrics are widely used in the literature to measure the

2 https://pypi.org/project/javalang|.

The Journal of Systems & Software 188 (2022) 111257

Table 1

Corpus statistics for the partitioning of the three Java datasets.
Dataset Training Validation Test
Hu dataset 69,696 8,704 8,704
LeClair dataset 1,930,944 105,664 90,624
Husain dataset 337,760 11,136 20,896

Table 2
Corpus statistics for the unique tokens and average lengths of the three Java
datasets.

Dataset Hu dataset LeClair dataset Husain dataset
Unique tokens in code 20,162 221,716 225,082
Unique tokens in AST 28,264 470,523 380,582
Unique tokens in summary 25,619 96,208 49,028

Avg. tokens in code 120.10 29.58 153.51

Avg. tokens in AST 130.07 52.57 181.39

Avg. tokens in summary 17.76 7.61 11.89

quality of the generated summaries. BLEU is defined as the geo-
metric mean of n-gram matching precision scores multiplied by
a brevity penalty to prevent very short generated sentences. Par-
ticularly, we compute it based on the NLTK> library and choose
sentence level BLEU-4 with the smoothing function 4. METEOR
combines the unigram matching precision and the recall scores
using harmonic mean values and employs the synonym match-
ing mechanism. ROUGE-L computes the length of the longest
common sub-sequence between the generated sentence and the
reference, and focuses on the recall scores.

Hyper-parameters. Table 2 shows the corpus statistics of the
three Java datasets. We follow Ahmad et al. (2020) and LeClair
et al. (2019) to set the vocabulary sizes and maximum input
lengths on code and summary sequence. Based on the statistical
results, we set the parameters on the Husain dataset. The vocab-
ulary sizes of the code and summary in all datasets are set to be
50,000 and 30,000 respectively. The maximum lengths of code
and summary are set to be 150 and 50 in the Hu dataset, 50 and
13 in the LeClair dataset, and 180 and 30 in the Husain dataset.
Similarly, we build a 50,000-word list for AST nodes, and limit
its sequence length to 200, 100 and 240 respectively. We use
a single-layered GRU with 512 dimensions of the hidden states
and 512-dimensional word embeddings. The head number of GAT
is 4 and each GAL has a dimension of 128 on its output, the
concatenation of which are sent to another 512-dimension GAL.
Model parameters are optimized by Adam (Kingma and Ba, 2015)
with the initial learning rate of 0.002. The dropout rate and mini-
batch sizes of our model are set to be 0.2 and 32, respectively.
We modify the learning rate with StepLR supported by PyTorch,
which decays the learning rate for each epoch. We use beam
search in the inference process, whose size is set to be 4. We
apply gradient clipping to prevent gradients from becoming too
large and set the teacher forcing ratio to be 0.5. According to the
performance of the validation set, the best model is selected after
training 200 epochs on the Hu dataset, 10 epochs on the LeClair
dataset and 30 epochs on the Husain Dataset in the experiments.
The hyper-parameters of our GSCS model are listed in Table 3.
Our implementation is based on PyTorch 1.3.1.%

Hardware Configurations. To train our models, we use a server
with two Intel Xeon Silver 4216 CPUs, 64 GB RAM and four 2080Ti
GPUs.

3 https://nltk.org/.
4 https://pytorch.org/.

https://pypi.org/project/javalang/
https://nltk.org/
https://pytorch.org/

Y. Zhou, J. Shen, X. Zhang et al.

Table 3

Hyper-parameters of the GSCS model.
Parameter Value
Negative input slope of LeakyReLU nonlinearity (o) 0.2
Amount of independent attention mechanisms (K) 4
Dimension of the feature space (F) 512
Output dimension of GAL (F) 128

Out put dimension of an additional GAL (F”, cf. (6)) 512

Code vocabulary size 50,000
Node vocabulary size 50,000
Summary vocabulary size 30,000
Dropout rate 0.2
Teacher forcing ratio 0.5
Beam search size 4

5.2. Overall results

We compare the performance of GSCS with five baseline
methods, i.e., CODE-NN (Iyer et al., 2016), Dual model (Wei et al.,
2019), RNN+ConvGNN (LeClair et al., 2019), Transformer (Ahmad
et al., 2020) and Code Transformer (Ziigner et al., 2021). CODE-NN
is the first approach for code summarization based on neural net-
works, which encodes code sequence with embedding matrices
and applies LSTM to generate summary guided by the attention
mechanism. Dual model uses two independent attention-based
seq2seq neural networks to pretrain CS and CG, and then trains
them jointly by adding a regularization term utilizing the dual
constraints to the loss function. RNN+ConvGNN introduces ad-
ditional 2-layer ConvGNNs to encode the tree structure of the
code snippets and uses a dense layer to generate the summary
sequence. Transformer implements parallel encoding embedded
tokens and optimizes the CS model by introducing the copy
mechanism and relative positions. Code Transformer uses relative
distances instead of absolute positions in the attention computa-
tion and learns jointly from the structure and context of programs
while only relying on language-agnostic features. For CODE-NN,
we customize the identifier replacement rules for Java, as it was
originally designed for SQL and C#. For Dual model, to reduce the
time cost we expand the iteration interval of model validation
from 500 to 30,000 on the LeClair dataset which contains over 2
million Java methods. For Code Transformer, we change its output
from method names to summaries.

The experiment results are summarized in Table 4. We can
observe that GSCS outperforms the state-of-the-art techniques
on all datasets, with the combination of the semantic encoder
and structural encoder guided by a modified attention mech-
anism. CODE-NN performs the lowest among all the baselines.
The result of RNN+ConvGNN shows that there is no obvious
advantage when introducing the structure information with Con-
VGNN. Compared with other baselines, Transformer achieves the
best on the Hu dataset while it performs unstably on the LeClair
dataset. Code Transformer performs well on the LeClair dataset
but performs poorly on the other two. This may be because
the Code Transformer is designed to predict a method name
based on the function body. To test whether the improvements
of our approach over baselines are statistically significant, we
apply the Wilcoxon Rank Sum test (WRST) (Wilcoxon, 2010) to
compare GSCS with RNN+ConvGNN and Transformer, and the
p-values at 95% confidence level are 7.277e—13 and 8.212e—05
respectively, indicating significant improvements. Specifically, on
the Hu dataset, the metric scores of GSCS are increasing from
44,58, 26.43,54.76 to 46.35,29.19,54.98 for the Transformer
model. On the LeClair dataset, compared to Code Transformer,
the metric scores of GSCS are increased from 27.33, 20.69, 45.57
to 29.43, 22.81, 47.32 respectively. On the Husain dataset, GSCS
improves three metrics’ scores from 15.28, 12.33, 25.85 to 16.01,
12.87, 26.52 compared with RNN+ConvGNN.

The Journal of Systems & Software 188 (2022) 111257

To analyze the advantages of GSCS, we select the best two
baseline models of code summarization, i.e., RNN+ConvGNN and
Transformer, for further comparison. Particularly, we study the
impact of code length, summary length, and AST size on the
performance of the selected models. Fig. 5 shows the average
BLEU-4 scores on GSCS, RNN+ConvGNN and Transformer when
varying code length, summary length, and AST sizes (including
AST length, depth and width). It shows that, compared with
Transformer and GSCS, RNN+ConvGNN has a large performance
gap. However, by observing the performance trend in the five
figures, we can find that the gap is narrowing with the growth
of the code length, the summary lengths, or the AST lengths. In
addition, according to the average BLEU-4 scores on the code,
summary and AST of different lengths, we observe that GSCS
performs considerably better when the source code has a rel-
atively long length. This indicates that RNN-based model may
comprehend code snippets better on long sequences than the
Transformer architecture. Note that the depth represents the max
depth of an AST and the width means the maximum number of
children in an AST, both of which measure the complexity of a
code snippet. The statistics in Figs. 5(d) and 5(e) show that, in
contrast to RNN+ConvGNN and Transformer, GSCS enables code
summarization to comprehend the inner representations of Java
methods with complex structures better.

5.3. Ablation study

In the ablation experiment, we aim to identify the components
which contribute most to the performance of GSCS. To this end,
we train four models: RNN is the basic Seq2Seq model that
applies a single-layer BiGRU to build a language model on code
sequence and generates natural language summaries with GRU
guided by the attention mechanism. RNN_EM introduces embed-
ding, which uses the combination of the transformed embedding
layer and BiGRU as the semantic encoder output.

Table 5 shows the experimental results. We can see that
adding the transformed embedding layer is more effective than
applying a single BiGRU when encoding the code tokens. Fur-
thermore, we tested another model which simply encoded code
tokens using a single embedding layer (without BiGRU) which
achieved lower BLEU-4 scores. These results suggest that the
combination of (transformed) embedding layer and BiGRU is the
best option, as intuitively they can eliminate the impact on the
absolute location information of the code sequence, and alleviate
the long dependence problem of RNN.

Based on the basic Seq2Seq model, RNN_GAT adds GAT to
build the structural encoder on tokenized AST and combines
the semantic encoder with the structural encoder by a shared
attention mechanism. The result shows that GAT improves the
performance of the code summarization model, indicating the
availability of the stacking GALs. Specifically, compared with the
Seq2Seq model, the BLEU-4 score increases from 44.39 to 45.37
on the Hu Dataset, from 27.42 to 28.78 on the LeClair Dataset and
from 14.97 to 15.68 on the Husain dataset. This also illustrates
that the supplement of structure information can optimize the
code summarization model. Naturally, GSCS combining the two
components further enhances our model’s performance.

Fig. 6 records the impact of the introduction of transformed
EM and GAT on the performance of the Hu dataset, which demon-
strates the average BLEU-4 scores when varying code lengths,
summary lengths, AST sizes (including AST depth and width).
These figures demonstrate the main improvement with EM and
GAT. In particular, RNN, RNN_EM, RNN_GAT and GSCS corre-
spond to the four models in Table 4 respectively. Comparing the
yellow and blue solid lines in all five plots, we can see that the
full model, GSCS, is clearly superior to the basic Seq2Seq model.

Y. Zhou, J. Shen, X. Zhang

Table 4

et al.

The Journal of Systems & Software 188 (2022) 111257

Comparison of GSCS with the baselines: CODE-NN, Dual Model, RNN+ConvGNN, Transformer, Code Transformer and Seq2Seq.

Method Hu dataset LeClair dataset Husain dataset
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L
CODE-NN 27.60 12.61 41.10 16.20 13.44 26.85 10.77 6.19 17.5
Dual model 42.39 25.77 53.61 22.43 18.81 40.67 13.14 11.39 32.33
RNN+ConvGNN 42.24 26.28 50.71 25.24 19.35 42.96 15.28 12.33 25.85
Transformer 44.58 26.43 54.76 24.99 20.64 43.67 12.69 12.74 26.44
Code transformer 39.01 20.70 41.07 27.33 20.69 45.57 15.30 10.58 23.98
Seq2Seq 44.39 27.94 54.37 27.42 21.39 44.88 14.97 12.56 26.43
GSCS 46.35 29.19 54.98 2943 22.81 47.32 16.01 12.87 26.52
Table 5
Ablation study on our model. EM represents a transformed embedding layer.
Method EM GAT Hu dataset LeClair dataset Husain dataset
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

RNN - - 44,39 27.94 54.37 27.42 21.39 44.88 14.97 12.56 26.43
RNN_EM v - 45.37 28.26 54.28 28.78 22.38 46.61 15.68 12.52 26.22
RNN_GAT - v 45.74 28.91 54.57 28.73 22.50 46.80 15.76 12.81 26.25
GSCS v v 46.35 29.19 54.98 29.43 22.81 47.32 16.01 12.87 26.52

0.75 08

0.7 07

0.65

06 06

055 05

045

0.4 Lo

035 \/\ 02 /\

03 01

0.25

S SIS S \\Qx oS & \\Qx \‘1@ & < G vFQx ! 4.9 1014 15-19 20-24 25-30 30+ 40+ 50+
e RNN+COnvGNN Transformer s GSCS = RNN+ConvGNN Transformer s GSCS
(a) Code length (b) Summary length

035

025

c o o o o o
P TS~ 7

IRUEPKORPRS SRS

—— RNN+ConvGNN

SEFT S F SIS LSS S S8
P & O F FF PP PSS

Transformer ——— GSCS

(c) AST length

Transformer = GSCS

(¢) AST width

7 8 9 10 11 12 13 14
= RNN+ConvGNN Transformer
(d) AST depth

w /\/\/\
06
- \/\/\/\/

€ s 6 7 8 9 10 11 122 13 14 15 >Is

—— RNN+ConvGNN

Fig. 5. The average BLEU-4 scores (standardized with a range from 0.3 to 0.6) for RNN+ConvGNN, Transformer, and GSCS as a function of code (a), and summary
length (b) as well as AST length (c), depth (d), and width (e). We observe that the performance gap narrows as these metrics increase, however, we also observe
GSCS consistently performing well at high values.

Y. Zhou, J. Shen, X. Zhang et al.

0.73
068
063
058
053
048
043
038
033
028

SIS FFSESS S S
F AP EF S S F P o ()

—%— RNN**Xe+ RNN_EM

(a) Code length

RNN_GAT

0.79
0.74
0.69
0.64
059
054
049 -7
0.44

039

034

IR

(KPS RS
NS AP P K

S)
LIRS

S &8 S L
P AE R F P S

—%— RNN - +X: « RNN_EM

(c) AST length

RNN_GAT GSCS

0.8

0.75

0.55

X+ RNN_EM

RNN_GAT

The Journal of Systems & Software 188 (2022) 111257

15-19 20-24 25-30 30+

== RNN++ X+ RNN_EM RNN_GAT GSCS

(b) Summary length

< 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

—— RNN ++ X+ RNN_EM

(d) AST depth

RNN_GAT GSCS

(e) AST width

Fig. 6. The average BLEU-4 scores (standardized with a range from 0.3 to 0.6) for RNN, RNN_EM, RNN_GAT, and GSCS as a function of code (a), and summary length

(b) as well as AST length (c), depth (d), and width (e).

Figs. 6(a) and 6(c) illustrate that RNN_EM mainly improves the
result of short sequences whereas RNN_GAT contributes more to
long code snippets, which indicates that the transformed embed-
ding layer in our model mainly improves code summarization
on the source code with simple structures. Comparing the gray
dotted line with the blue solid line in Figs. 6(d) and 6(e), we find
that RNN_GAT advances the accuracy of the summaries better
than RNN_EM, especially when the AST is deeper or wider.

6. Threats to validity

Internal Validity. We study the internal threats from dimen-
sion setting, data shuffling and data filtering. As discussed in
Section 5.2, in the code summarization task, the setting of dimen-
sions has a significant impact on the final results. To eliminate

10

this effect, we conduct several experiments on different dimen-
sions from 256 to 640 with a separation of 128, and find that the
improvement tends to fatten out when the dimension reaches a
threshold. Thus, when comparing with baselines, we select the
results of the corresponding dimension for comparison. Specifi-
cally, the dimension size setting in Transformer and Dual model is
512 while RNN+4-ConvGNN is 256. In addition, shuffle is employed
to avoid the impact of data input order on network training. We
do so because data in the LeClair dataset are ordered according
to projects, and large amounts of Java methods with similar
functions or structures gather in a region. Experimental results
show that whether shuffling data or not affects the performance
of the Seq2Seq model around 2 percent. Another threat originates
from data filtering. GSCS requires that the source code can be
parsed into ASTs to extract structure information. However, some
data in the LeClair dataset fail to generate ASTs through the

Y. Zhou, J. Shen, X. Zhang et al.

javalang library. To address this concern, we cut off these data
pairs, which account for less than 1%. We also conduct contrastive
experiments with baselines and ablation study based on the
filtered dataset, to guarantee consistency.

External Validity. External validity can be illustrated by the gen-
eralizability and scalability of an approach. Experiments demon-
strate that GSCS is superior to all baselines in terms of multiple
evaluation metrics on three different Java datasets. Even if the
two datasets are both extracted from the open-source platform,
their quality and processing methods are different which, to a
great extent, reflects the universality of our method. In addition,
our approach is only experimented on Java methods to generate
corresponding summaries. However, we believe it can be ex-
tended in a rather straightforward manner to other programming
languages that can parse into ASTs with merely minor adaptation.

7. Conclusion

In this paper, we presented a novel approach, GSCS, to gen-
erate summaries for Java methods, which combines text features
with structure information of code snippets. GSCS splits terminal
nodes of the AST and treats the tokenized AST as an undirected
graph. The tokenized code sequence and split-ASTs are respec-
tively fed to two different encoders, namely, one is composed of
an embedding layer and BiGRU, and the other one uses multiple
graph attention layers jointed with a BiGRU. We demonstrate
that stacking graph attention layers enables the model to extract
useful node features, which is beneficial to source code summa-
rization. Experiments over three public datasets show that GSCS
outperforms the state-of-the-art approaches by a large margin.

For future work, we plan to extend our approach and ex-
periments to other programming languages. Further studies are
required to improve the performance of code summarization
based on, for example, an effective fusion of local and global
structures of code snippets.

CRediT authorship contribution statement

Yu Zhou: Devised the project and conceived the main concep-
tual framework, Wrote the manuscript, Provided critical feedback
and helped shape the research, Analysis and manuscript, Su-
pervised the project. Juanjuan Shen: Devised the project and
conceived the main conceptual framework, Carried out the im-
plementation and experiments, Wrote the manuscript, Provided
critical feedback and helped shape the research, Analysis and
manuscript. Xiaoqing Zhang: Carried out the implementation
and experiments, Provided critical feedback and helped shape
the research, Analysis and manuscript. Wenhua Yang: Wrote
the manuscript, Provided critical feedback and helped shape
the research, Analysis and manuscript. Tingting Han: Wrote
the manuscript, Provided critical feedback and helped shape the
research, Analysis and manuscript. Taolue Chen: Devised the
project and conceived the main conceptual framework, Wrote
the manuscript, Provided critical feedback and helped shape the
research, Analysis and manuscript, Supervised the project.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

11

The Journal of Systems & Software 188 (2022) 111257

Acknowledgments

This work was partially supported by the National Natural
Science Foundation of China (NSFC, No. 61972197), the Natural
Science Foundation of Jiangsu Province, China (No. BK20201292),
the Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization, China, and the Qing Lan Project,
China. T. Chen is partially supported by Birkbeck BEI School
Project (EFFECT), China and NSFC, China grant (No. 61872340, No.
62072309).

References

Ahmad, W.U,, Chakraborty, S., Ray, B., Chang, K., 2020. A transformer-based
approach for source code summarization. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020. pp. 4998-5007.

Allamanis, M., Peng, H., Sutton, C., 2016. A convolutional attention network
for extreme summarization of source code. In: Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016. pp. 2091-2100.

Binkley, D.W., 2007. Source code analysis: A road map. In: International Con-
ference on Software Engineering, ISCE 2007, Workshop on the Future of
Software Engineering, FOSE 2007, May 23-25, 2007, Minneapolis, MN, USA.
pp. 104-119.

Cho, K, van Merrienboer, B., Giilgehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, a Meeting of SIGDAT, a
Special Interest Group of the ACL. pp. 1724-1734.

Chung,]., Giilgehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. CoRR arXiv:1412.3555.
Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R., 2009. A
systematic survey of program comprehension through dynamic analysis. IEEE

Trans. Software Eng. 35 (5), 684-702.

Denkowski, MJ., Lavie, A., 2014. Meteor universal: Language specific translation
evaluation for any target language. In: Proceedings of the Ninth Workshop
on Statistical Machine Translation, WMT@ACL 2014, June 26-27, 2014,
Baltimore, Maryland, USA. pp. 376-380.

Duan, J., Zhao, H., Qin, W., Qiu, M., Liu, M., 2020. News text classification based
on MLCNN and BiGRU hybrid neural network. In: 3rd International Con-
ference on Smart BlockChain, SmartBlock 2020, Zhengzhou, China, October
23-25, 2020. pp. 137-142.

Fernandes, P., Allamanis, M. Brockschmidt,
summarization. CoRR arXiv:1811.01824.
Haiduc, S., Aponte,], Marcus, A., 2010. Supporting program comprehension
with source code summarization. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ICSE 2010,

Cape Town, South Africa, 1-8 May 2010. pp. 223-226.

Han, Y., Liu, M., Jing, W., 2020. Aspect-level drug reviews sentiment analysis
based on double BiGRU and knowledge transfer. IEEE Access 8, 21314-21325.

He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.-Y., Ma, W.-Y., 2016. Dual learning
for machine translation.

Hellendoorn, V.J., Devanbu, P.T., 2017. Are deep neural networks the best choice
for modeling source code? In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017. pp. 763-773.

Hill, E., Pollock, LL., Vijay-Shanker, K., 2009. Automatically capturing source
code context of NL-queries for software maintenance and reuse. In: 31st
International Conference on Software Engineering, ICSE 2009, May 16-24,
2009, Vancouver, Canada, Proceedings. pp. 232-242.

Hindle, A., Barr, E.T., Gabel, M., Su, Z.,, Devanbu, P.T., 2016. On the naturalness
of software. Commun. ACM 59 (5), 122-131.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput.
9 (8), 1735-1780.

Hu, X, Li, G, Xia, X,, Lo, D., Jin, Z., 2018. Deep code comment generation. In:
Proceedings of the 26th Conference on Program Comprehension, ICPC 2018,
Gothenburg, Sweden, May 27-28, 2018. pp. 200-210.

Husain, H., Wu, H. Gazit, T., Allamanis, M., Brockschmidt, M., 2019. Code-
searchnet challenge: Evaluating the state of semantic code search. CoRR
arXiv:1909.09436.

Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L., 2016. Summarizing source code
using a neural attention model. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers.

M., 2018. Structured neural

http://refhub.elsevier.com/S0164-1212(22)00027-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb1
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb2
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb2
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb2
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb2
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb2
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb2
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb2
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb3
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb3
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb3
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb3
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb3
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb3
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb3
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb4
http://arxiv.org/abs/1412.3555
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb6
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb6
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb6
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb6
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb6
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb7
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb8
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb8
http://arxiv.org/abs/1811.01824
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb10
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb11
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb12
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb13
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb14
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb15
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb15
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb15
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb16
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb16
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb16
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb17
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb17
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb17
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb17
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb17
http://arxiv.org/abs/1909.09436
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb19
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb19

Y. Zhou, J. Shen, X. Zhang et al.

Kingma, D.P., Ba, J., 2015. Adam: A method for stochastic optimization. In:
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. URL http:
//arxiv.org/abs/1412.6980.

Kipf, T.N., Welling, M., 2017. Semi-supervised classification with graph con-
volutional networks. In: 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

LeClair, A., Haque, S., Wu, L., McMillan, C., 2020. Improved code summarization
via a graph neural network. In: ICPC '20: 28th International Conference
on Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020.
pp. 184-195.

LeClair, A., Jiang, S., McMillan, C., 2019. A neural model for generating natural
language summaries of program subroutines. In: Proceedings of the 41st
International Conference on Software Engineering, ICSE 2019, Montreal, QC,
Canada, May 25-31, 2019. pp. 795-806.

Leclair, A., Mcmillan, C., 2019. Recommendations for datasets for source code
summarization.

Lin, C.-Y., 2004. ROUGE: A package for automatic evaluation of summaries. In:
Text Summarization Branches Out.

Luong, T., Pham, H., Manning, C.D., 2015. Effective approaches to attention-
based neural machine translation. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015. pp. 1412-1421.

Lv, J., Du,]J., Zhou, N., Xue, Z., 2020. BERT-BIGRU-CRF: a novel entity relationship
extraction model. In: 2020 IEEE International Conference on Knowledge
Graph, ICKG 2020, Online, August 9-11, 2020. pp. 157-164.

Maletic, J.I., Marcus, A., 2001. Supporting program comprehension using semantic
and structural information. In: Software Engineering, 2001. ICSE 2001.
Proceedings of the 23rd International Conference on.

Ottenstein, KJ., Ottenstein, L.M., 1984. The program dependence graph in
a software development environment. In: Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, Pittsburgh, Pennsylvania, USA, April 23-25,
1984. pp. 177-184.

Papineni, K., Roukos, S., Ward, T., Zhu, W.-]., 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In: Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics. Association
for Computational Linguistics, pp. 311-318.

Schuster, M., Paliwal, K.K., 1997. Bidirectional recurrent neural networks. IEEE
Trans. Signal Process. 45 (11), 2673-2681.

Shido, Y., Kobayashi, Y., Yamamoto, A., Miyamoto, A., Matsumura, T., 2019. Auto-
matic source code summarization with extended tree-LSTM. In: International
Joint Conference on Neural Networks, [JCNN 2019 Budapest, Hungary, July
14-19, 2019. pp. 1-8.

Song, X., Sun, H., Wang, X, Yan, J., 2019. A survey of automatic generation
of source code comments: Algorithms and techniques. IEEE Access 7,
111411-111428.

Sridhara, G., Hill, E., Muppaneni, D., Pollock, L.L. Vijay-Shanker, K., 2010.
Towards automatically generating summary comments for java methods. In:
ASE 2010, 25th IEEE/ACM International Conference on Automated Software
Engineering, Antwerp, Belgium, September 20-24, 2010. pp. 43-52.

Sridhara, G. Pollock, LL. Vijay-Shanker, K., 2011. Generating parameter
comments and integrating with method summaries. In: The 19th IEEE
International Conference on Program Comprehension, ICPC 2011, Kingston,
on, Canada, June 22-24, 2011. pp. 71-80.

Stapleton, S., Gambhir, Y., LeClair, A., Eberhart, Z, Weimer, W., Leach, K,
Huang, Y., 2020. A human study of comprehension and code summarization.
In: ICPC '20: 28th International Conference on Program Comprehension,
Seoul, Republic of Korea, July 13-15, 2020. pp. 2-13.

Sutskever, I, Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with
neural networks. In: NIPS.

Takang, A.A., Grubb, P.A., Macredie, R.D., 1996. The effects of comments and iden-
tifier names on program comprehensibility: an experimental investigation.
J. Program. Lang. 4 (3), 143-167.

Tenny, T., 1988. Program readability: Procedures versus comments. IEEE Trans.
Software Eng. 14 (9), 1271-1279.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,]., Jones, L, Gomez, A.N.
Kaiser, L., Polosukhin, I, 2017. Attention is all you need. In: Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA. pp. 5998-6008.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017.
Graph attention networks. CoRR arXiv:1710.10903.

Wei, B, Li, G., Xia, X,, Fu, Z., Jin, Z., 2019. Code generation as a dual task of code
summarization. In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada. pp. 6559-6569.

Wilcoxon, F., 2010. Some rapid approximate statistical procedures. Ann. New
York Acad. Sci. 52 (The Place of Statistical Methods in Biological and
Chemical Experimentation), 808-814.

12

The Journal of Systems & Software 188 (2022) 111257

Wong, E., Yang, J, Tan, L, 2013. Autocomment: Mining question
and answer sites for automatic comment generation. In: 2013
28th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013.
pp. 562-567.

Woodfield, S.N., Dunsmore, H.E., Shen, V.Y., 1981. The effect of modulariza-
tion and comments on program comprehension. In: ICSE '81. IEEE Press,
pp. 215-223.

Xia, X., Bao, L, Lo, D, Xing, Z,, Hassan, A.E., Li, S., 2018. Measuring program
comprehension: a large-scale field study with professionals. In: Proceedings
of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. p. 584.

Zhang, J., Wang, X., Zhang, H. Sun, H., Liu, X., 2020. Retrieval-based neu-
ral source code summarization. pp. 1385-1397. http://dx.doi.org/10.1145/
3377811.3380383.

Zhou, Y., Yan, X,, Yang, W., Chen, T., Huang, Z., 2019. Augmenting java method
comments generation with context information based on neural networks.
J. Syst. Softw. 156 (Oct.), 328-340.

Zigner, D., Kirschstein, T. Catasta, M., Leskovec,]., Giinnemann, S., 2021.
Language-agnostic representation learning of source code from structure and
context. In: 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021.

Yu Zhou is currently a full professor in the College of Computer Science and
Technology at Nanjing University of Aeronautics and Astronautics (NUAA). He
received his B.Sc. degree in 2004 and Ph.D. degree in 2009, both in Computer
Science from Nanjing University China. Before joining NUAA in 2011, he con-
ducted PostDoc research on software engineering at Politechnico di Milano, Italy.
From 2015-2016, he visited the SEAL lab at University of Zurich Switzerland,
where he is also an adjunct researcher. His research interests mainly include
software evolution analysis, mining software repositories, software architecture,
and reliability analysis. He has been supported by several national research
programs in China.

Juanjuan Shen received her B.Sc. degree in Computer Science, from Nanjing
University of Finance and Economics, China. She is currently a M.Sc. student
in the College of Computer Science and Technology at Nanjing University of
Aeronautics and Astronautics. Her research interests include software evolution
analysis, artificial intelligence, and mining software repositories.

Xiaoqing Zhang received her B.Sc. degree in Software Engineering, from Nanjing
University of Information, Science and Technology, China. She is currently a
M.Sc. student in the College of Computer Science and Technology at Nanjing
University of Aeronautics and Astronautics. Her research interests include deep
learning, and mining software repositories.

Wenhua Yang is currently an assistant professor in the College of Computer
Science and Technology at Nanjing University of Aeronautics and Astronautics.
He obtained his Ph.D. degree in computer science and technology from Nanjing
University in 2017. His research interests mainly include self-adaptive & cyber
physical systems, empirical software engineering.

Tingting Han received the Bachelor and Master degrees from Nanjing University,
China, both in Computer Science. She joined a bilateral Ph.D. program and
acquired a Ph.D. degree from the RWTH Aachen University (DE) and University of
Twente (NL). After that she was a research assistant at the University of Oxford
and currently she is a Senior Lecturer at the Department of Computer Science,
Birkbeck, University of London. Her research interests are mainly in formal
verification and synthesis, program analysis, as well as stochastic modeling
and machine learning in various applications, such as biometric verification,
autonomous driving, etc.

Taolue Chen received the Bachelor and Master degrees from Nanjing University,
China, both in Computer Science. He was a junior researcher (0iO) at the
CWI and acquired the Ph.D. degree from the Vrije Universiteit Amsterdam, The
Netherlands. He is currently a Lecturer at the Department of Computer Science,
Birkbeck, University of London. He was a research assistant at the University
of Oxford. His research interests are mainly in software engineering including
formal verification and synthesis, program analysis, as well as stochastic mod-
eling and machine learning in software engineering. He has co-authored over
100 peer-reviewed journal and conference papers, and has served as a technical
program committee member for various international conferences.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb21
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb22
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb23
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb24
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb24
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb24
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb25
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb25
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb25
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb26
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb27
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb28
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb29
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb30
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb31
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb32
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb33
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb33
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb33
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb33
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb33
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb34
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb35
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb36
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb36
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb36
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb36
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb36
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb36
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb36
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb37
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb37
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb37
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb38
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb38
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb38
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb38
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb38
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb39
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb40
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb42
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb43
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb44
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb45
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb46
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb46
http://dx.doi.org/10.1145/3377811.3380383
http://dx.doi.org/10.1145/3377811.3380383
http://dx.doi.org/10.1145/3377811.3380383
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb48
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb49
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb49
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb49
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb49
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb49
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb49
http://refhub.elsevier.com/S0164-1212(22)00027-9/sb49

	Automatic source code summarization with graph attention networks
	Introduction
	Related work
	Background
	Bidirectional gated recurrent units
	Graph attention networks

	Approach
	Data processing
	Code summarization model
	Semantic encoder
	Structural encoder
	Decoder

	Evaluation
	Experimental setup
	Overall results
	Ablation study

	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

