
The Journal of Systems and Software 156 (2019) 328–340

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

In Practice

Augmenting Java method comments generation with context

information based on neural networks

Yu Zhou

a , ∗, Xin Yan

a , Wenhua Yang

a , Taolue Chen

b , c , Zhiqiu Huang

a

a College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
b Department of Computer Science and Information Systems, Birkbeck, University of London, UK
c State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

a r t i c l e i n f o

Article history:

Received 12 February 2019

Revised 20 July 2019

Accepted 23 July 2019

Available online 24 July 2019

Keywords:

Comment generation

Neural networks

Natural language processing

a b s t r a c t

Code comments are crucial to program comprehension. In this paper, we propose a novel approach Con-

textCC to automatically generate concise comments for Java methods based on neural networks, lever-

aging techniques of program analysis and natural language processing. Firstly, ContextCC employs pro-

gram analysis techniques, especially abstract syntax tree parsing, to extract context information including

methods and their dependency. Secondly, it filters code and comments out of the context information to

build up a high-quality data set based on a set of pre-defined templates and rules. Finally, ContextCC

trains a code comment generation model based on recurrent neural networks. Experiments are conducted

on Java projects crawled from GitHub. We show empirically that the performance of ContextCC is supe-

rior to state-of-the-art baseline methods.

© 2019 Elsevier Inc. All rights reserved.

p

J

w

c

o

e

A

o

c

l

m

t

p

t

t

g

r

a

t

W

m

a
1. Introduction

Program comprehension represents an expensive and time-

consuming task in software development and maintenance

(Xia et al., 2018). Comments written in natural languages can

greatly facilitate programmers to understand the meaning of a

code snippet (Takang et al., 1996; Tenny, 1988; Forward and Leth-

bridge, 2002), since they provide useful insights into code func-

tionalities and the intention underpinning the design choices. Un-

fortunately, comments in software artifacts are often incomplete,

outdated, incorrect or otherwise missing, partially because com-

menting code is generally time-consuming and laborious, and thus

programmers often ignore writing and updating the comments ei-

ther intentionally or unconsciously. Automatic generation of code

comments can be a valuable alternative to alleviate programmers’

burden in software maintenance and to enhance program compre-

hension.

An intuitive way to generate comments is via pre-defined

templates and rules. Templates were designed to generate com-

ments for the conditions under which exceptions may be

thrown (Buse and Weimer, 2008). However, the work Buse and

Weimer (2008) only focused on statements related to excep-

tion triggering conditions, which limits its generality and ap-
∗ Corresponding author.

E-mail address: zhouyu@nuaa.edu.cn (Y. Zhou).

m

a

n

b

https://doi.org/10.1016/j.jss.2019.07.087

0164-1212/© 2019 Elsevier Inc. All rights reserved.
licability. In Sridhara et al. (2010) , selected statements from

ava methods were extracted for which natural language phrases

ere then generated. Follow-up studies identified and described

ode segments that implement high-level actions within meth-

ds (Sridhara et al., 2011b), and generated comments for param-

ters to be part of the method comments (Sridhara et al., 2011a).

side from the need to manually define templates and rules, an-

ther prerequisite of their approaches is that source code must

ontain meaningful and descriptive identifiers. Beyond the method

evel, Moreno et al. (2013) proposed an approach to generate com-

ents for Java classes. Similarly, a set of templates was designed

o conduct content selection and text generation. Although the

erformance is promising, the approach shares the same limita-

ions of the template-based methods. Unavoidably, these limita-

ions would jeopardize the applicability of these approaches for

enerating code comments.

There are also approaches which are based on information

etrieval (IR) techniques to generate code comments. Gener-

lly, these approaches utilize tokens in documents to calculate

he similarity between documents and queries. For example,

ong et al. (2013) proposed to mine the code and description

appings from Stack Overflow and then to harness them to gener-

te description comments automatically for similar code segments

atched in open-source projects. Allamanis et al. (2015b) created

 probabilistic model over the code which was used to retrieve

atural language snippets. Haiduc et al. (2010) examined a num-

er of methods, e.g., term frequency-inverse document frequency

https://doi.org/10.1016/j.jss.2019.07.087
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.07.087&domain=pdf
mailto:zhouyu@nuaa.edu.cn
https://doi.org/10.1016/j.jss.2019.07.087

Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340 329

Example 1. (a) Represents the original code sequence of the Java method; (b) rep-

resents the filtered code sequence without making identifier replacement opera-

tion; (c) represents the final code sequence.

(

f

t

s

o

N

t

s

a

R

f

d

t

s

a

o

l

d

t

l

i

d

a

l

t

a

S

m

s

s

a

o

b

a

o

a

c

d

e

a

F

o

o

s

c

w

E

w

i

o

a

t

J

a

O

p

e

m

m

u

w

a

r

t

m

p

l

s

t

4

t

l

S

p

p

v

TF-IDF) and latent semantic indexing (LSI), to select keywords

or code summary. In order to generate comments for the code,

hese IR-based approaches rely on assumptions that similar code

nippets exist in the repository which could later be retrieved.

Neural Networks have demonstrated great promise in a variety

f natural language processing (NLP) tasks. In particular, Recurrent

eural Networks (RNNs) are widely exploited to learn from the

raining code and comments to generate new comments. For in-

tance, Iyer et al. (2016) presented CODE-NN, an end-to-end neural

ttention model using long short-term memory (LSTM, a variant of

NN) units, to generate comments of C# and SQL code by learning

rom online programming websites. Allamanis et al. (2015a) intro-

uced an attentional neural network that employs convolution on

he input tokens to convert source code snippets into short and de-

criptive function name-like comments. Hu et al. (2018) proposed

n algorithm, SBT, to generate descriptive comments for Java meth-

ds based on RNNs.

These neural network based approaches are effective, yet have

imitations. First, the code snippets are simply treated as indepen-

ent symbols and are directly fed to the neural network, in which

he context information (e.g., the type information of variables) is

argely ignored. As a result, the information in the code snippet is

ncomplete, which inevitably degrades the quality of the collected

ata. For example, as illustrated in Example 1 (a), the identifiers val

nd M03 are used directly in the method body whereas the dec-

arations of these variables are in the enclosed class. This suggests

hat examining the method solely may not be able to capture valu-

ble context information such as the type and literal information.

econd, these approaches pay little attention to the quality of com-

ents in the collected data set. Usually they merely take the first

entence of Javadoc comments as the default comments of code

nippets without further processing. However, we have found that

 considerable portion of these comments contain useless, little
r even no information. Apparently, these comments should have

een removed from the training set.

To address the above limitations, we propose ContextCC ,

n approach to automatically generate method comments based

n neural networks. Different from the approaches mentioned

bove, it takes context information into account. In general, the

ontext inform may be from Java method themselves or their

ependency. First, instead of treating methods as independent

ntities, ContextCC takes the entire Java project as a unit to

nalyze so as to extract more complete contextual information.

or example, as illustrated in Example 1 (a), the type information

f val and the literal information of M03, M13 and M23 are part

f context information and can be extracted via the abstract

yntax tree (AST) of the Java method. Second, with the extracted

ontext information, we reconstruct the code to complement

ith the contextual information. For example, as illustrated in

xample 1 (b), the identifiers M03, M13 and M23 are replaced

ith their literals (i.e., 12, 13 and 14) respectively, and the type

nformation of the identifier var is supplemented in the formula

f FIELDDECLARATION [float [] val ;]} .
Comments have many types and can be used to communicate

 variety of information. In our work, we focus on a particular

ype of comments which mainly describes the intention of the

ava method. In literature, some other terms, such as summaries

nd summarization , are used interchangeably as “comments” here.

bserve that the first sentence of a Javadoc comment usually ex-

resses the meaning of the whole method whereby we take and

xtract it as the standard comment of the method. However, as

entioned before, in many cases the first sentence of Javadoc com-

ents suffers from a low quality. To cope with this issue, we man-

ally design a set of pre-defined templates and rules combined

ith Part-of-Speech (POS) tagging technique to filter comments, so

s to build a high-quality data set.

In summary, our proposed approach ContextCC augments neu-

al network based comments generation with context informa-

ion, aiming to automatically generate concise comments for Java

ethods. We have conducted experiments on a large-scale of Java

rojects crawled from Github and compared with existing base-

ines. The experimental results show that our approach is con-

iderably more effective. Concretely, for code comment generation

ask for Java methods, our approach improves the results of BLEU-

 from 38.08% to 40.52% and that of METEOR scores from 26.83%

o 28.51% on the benchmark data sets, respectively.

The main contributions of this paper can be summarized as fol-

ows.

• We highlight the importance of contextual information dur-

ing the comments generation process, and propose a novel ap-

proach incorporating such information to automatically gener-

ate code comments based on neural networks. Our approach

outperforms strong baseline work in terms of multiple metrics

such as BLEU-4 and METEOR.
• A large-scale empirical study has been conducted to demon-

strate the feasibility of our approach. The accompanying data

set contains around 540,0 0 0 Java methods extracted from over

6700 projects from Github. Remarkably, our data set also in-

cludes the contextual information which could be reused and

extended in other similar or related studies.

The remainder of this paper is structured as follows.

ection 2 introduces the related work. Section 3 presents our pro-

osed approach. Section 4 describes our experimental setup and

rovides experimental results. Section 5 discusses the threats to

alidity. Finally, Section 6 concludes our work.

330 Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340

3

f

c

p

a

p

e

3

p

i

J

2

r

A

W

c

o

a

t

a

i

S

3

t

t

3

v

n

t

v

s

s

n

n

n

c

w

m

l

e

3

d

c

i

i

w

p

n

p

1 http://help.eclipse.org/ .
2. Related work

There has been a large body of research on generating com-

ments from source code. Generally, the related work can be clas-

sified into three categories: templates based, IR based, and neural

networks based approaches.

A common and intuitive way to generate code comments

is through pre-defined templates and rules (Abid et al., 2015;

Moreno et al., 2013; Zhang et al., 2011; Kamimura and Murphy,

2013; Cortés-Coy et al., 2014; Buse and Weimer, 2008; 2010; Zhou

et al., 2017; 2018). Hill et al. (2009) introduce Software Word Us-

age Model (SWUM) model which can translate Java method in-

vocations into descriptive statements. Sridhara et al. (2010) use

SWUM combined with a group of pre-defined templates and rules

to generate comments for Java methods. Sridhara et al. (2011b) ex-

tend their prior work to automatically detect and describe the high

level actions in Java methods. As the complementary of prior tasks,

Sridhara et al. (2011a) introduce a new technique to generate com-

ments for parameters and treat the descriptions as part of method

summary. Beyond method level, Moreno et al. (2013) develop an

approach that generates summaries for Java classes. They design a

set of stereotypes and templates to make operations of content se-

lection and text generation. Although the performance is convinc-

ing and promising, the two methods highly depend on high quality

of names of identifiers and methods. Once they are named poorly,

the methods may finally fail.

There exist some IR technique based approaches for code

summarization. Such techniques utilize tokens in documents

to calculate the similarity between documents and queries.

Wong et al. (2013) propose a method to retrieve comments that

mines < code, text > pairs from Stack Overflow, and then tries to

match the code in question with an example in stack overflow.

Allamanis et al. (2015b) create a probabilistic model over code, but

use it in the opposite direction to also retrieve full natural lan-

guage snippets. Haiduc et al. (2010) examine a number of methods

for selecting which keywords to use in a summary, including the

lead method, TF-IDF, or LSI.

With great promise in many natural language preprocessing

tasks, deep learning based approaches are gaining more and more

attention. Spontaneously, researchers attempt to utilize the advan-

tages of neural networks, especially RNNs, to extract the features

of codes and comments and then automatically create code com-

ments. These deep learning based approaches could be applied to

both Domain-Specific Languages (DSLs) such as SQL, and General-

Purpose Languages (GPLs) such as Java. Iyer et al. (2016) present

CODE-NN, an end-to-end neural attention model using LSTMs to

generate summaries of C# and SQL statements by learning from

noisy online programming websites. Yao et al. (2019) propose an

effective framework based on reinforcement learning, which ex-

plicitly employs a deep learning based code annotation model to

generate annotations that can be used for the retrieval task of SQL

statements. Allamanis et al. (2015a) introduce an attentional neu-

ral network that employs convolution on the input tokens to con-

vert source code snippets into short, descriptive function name-

like summaries. Hu et al. (2018) propose an algorithm named SBT

combined with Seq2Seq model to generate descriptive comments

for Java methods. There exists other approaches for generating

comments for source codes by leveraging deep neural networks.

Liang and Zhu (2018) make use of a new recursive neural network

called Code-RNN to convert source code into one vector and then

introduce a new recurrent neural network, Code-GRU, to generate

text descriptions for the code. However, what the most existing ap-

proaches ignore is the quality of data set itself. With only simple

filter operations, the data set is used to train deep neural network

models, which may result that the performance of final models are

barely satisfactory, since deep neural networks are driven by data.
. The ContextCC approach

In this section, we present our approach, ContextCC , which

ollows the process illustrated in Fig. 1 . Our approach generates

ode comments for Java methods in the following steps: (1) data

reparation; (2) context information extraction; (3) code filtering

nd reconstruction; (4) comments filtering by pre-defined tem-

lates combined with POS tagging technique; (5) comment gen-

ration model training.

.1. Data preparation

To build up a high-quality data set, we crawl over 6700 Java

rojects from Github to extract their methods and the correspond-

ng Javadoc comments. We employ AST parsing to analyze each

ava project. Particularly, we resort to Eclipse JDT (Fuhrer et al.,

007) to conduct the AST analysis where MethodDeclaration 1 nodes

epresent a Java method declaration. We traverse the generated

STs of the Java files and locate all the MethodDeclaration nodes.

e then extract Java methods and their corresponding Javadoc

omments from the nodes of this type. Note that not all Java meth-

ds have associated comments, and only those with comments

re considered. For each Java method and its comment, we record

heir mapping relation and then apply the filtering operations sep-

rately (cf. Sections 3.2 –3.4) to prepare a data set for the train-

ng of the neural network model for code comment generation (cf.

ection 3.5).

.2. Context information extraction

As mentioned before, context information consists of two parts:

he methods and their dependency. In this step, we still leverage

he AST tree and utilize numerous APIs provided by Eclipse JDT.

.2.1. Information from Java methods

We categorize the identifiers as: method names (M), literals (L),

ariable names (V), names of variable types (P), method invocation

ames (I) and names of inner method declarations (D). To achieve

his, methods are first transformed to ASTs. For each AST, we tra-

erse it and focus on specific types of its nodes to extract the name

ets.

Formally, given an AST tree T of a method, we use depth-first

earch to traverse T . Specifically, we focus on MethodDeclaration

odes for M and D, NumberLiteral, StringLiteral and CharacterLiteral

odes for L, SimpleType, PrimitiveType, QualifiedName, QualifiedType

odes for P , method invocation related nodes (e.g., MethodInvo-

ation, SuperMethodInvocation) for I and SimpleName nodes for V ,

hich means we aim to build the set S = { M, L, V, P, I, D } of infor-

ation from methods themselves. By invoking related APIs, the re-

ated AST nodes in T can be located precisely and the set S can be

asily built up.

.2.2. Dependency information

Java methods could be very difficult to interpret without depen-

ency information. Concretely, dependency information mainly in-

ludes (1) field declaration information (F), (2) method declaration

nformation for method invocations (C), and (3) qualified names

nformation (Q). To obtain the dependency information effectively,

e need to regard the project as a unit and then parse the whole

roject.

By employing the JDT toolkit, we can successfully find the AST

odes we are interested in and then extract the corresponding de-

endency information via the following three stages.

http://help.eclipse.org/

Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340 331

Fig. 1. Overview of our approach.

Example 2. (a) Represents the original code sequence of the Java method; (b) rep-

resents the filtered code sequence without making identifier replacement operation.

J

s

a

i

s

3

3

g

(

t

i

fi

t

m

M

m

t

(

r

h

e

3

a

m

t

t

s

t

a

T

o

t

v

t

o

r

o

3

i
• First, we concentrate on field related nodes (e.g., FieldAccess, Su-

perFieldAccess). However, it is incomplete to only take informa-

tion from these nodes. We also recognize fields from the set of

variable names V . By merging the two parts of information, we

realize the extraction of field declaration information (F) which

consists of the types, names and initializers of related fields.
• Second, we focus on method invocation related nodes (e.g.,

MethodInvocation, SuperMethodInvocation) to obtain C for each

method invocation. Here, we extract the information of corre-

sponding qualified classes (e.g., CCTMXTiledMap in Example 2)

and parameter types (e.g., CGPoint in Example 2) as C .
• Third, we traverse QualifiedName nodes. Specifically, if a Qual-

ifiedName node refers to a literal (cf. Section 3.3), we build a

map from the qualified name of the QualifiedName node to the
homologous literal. Therefore, the qualified names information

(Q) is extracted as a map set. Ultimately, with F, C, Q extracted,

we build the set Y = { F , C, Q} .
During these steps, we only traverse the corresponding ASTs of

ava methods and extract useful information without changing the

tructures of the ASTs. By combining the method information (S)

nd dependency information (Y), we obtain and store the context

nformation for each method which provides the input for the next

tep.

.3. Code filtering and reconstruction

.3.1. Field Replacement

We divide literals in methods into the following three cate-

ories: number literals (e.g., int, float, double, Integer), string literals

e.g., String, CharSequence), and character literals (e.g., char, Charac-

er). For a method without its contextual information, it is virtually

mpossible to interpret field literals. As illustrated in Example 1 (a),

elds M03, M13 and M23 in fact represent 12, 13 and 14, respec-

ively (with the int type in the specific Java class). However, the

ethod per se does not inform the related field declaration for

03, M13 and M23 . To address this issue, we apply field replace-

ent operations, i.e., to recognize and replace fields with their ini-

ializers by leveraging the extracted field declaration information F

cf. Section 3.2). As shown in Example 1 (b), M03, M13 and M23 are

eplaced by 12, 13 and 14 respectively. Considering that these fields

ave been replaced with certain kinds of literals, the replaced lit-

rals are taken as complement of literal information (L).

.3.2. Field Declaration Supplement

Similar to the field replacement, field declaration supplement

ims to complement the related field declaration information for

ethods. The difference is that we focus on the fields whose ini-

ializers do not refer to literals. As shown in Example 1 (a), al-

hough the exact type of the variable val is unavailable by in-

pecting the source code of the method alone, one can analyze

he class level files to get the related field declaration statements

nd then fill the missing type information (i.e., float [] val).
o avoid introducing too much redundant information, we focus

n the type information without supplementing the initializer of

he field declaration. To distinguish related field declarations from

ariable declarations in the method, we define specific templates

o represent related field declaration information (cf. the template

f FieldAccess in Table 1). As shown in Example 1 , the field decla-

ation information of the variable, val , is supplemented in the form

f FIELDDECLARATION [float [] val] .

.3.3. Qualified name replacement

Due to the dependency among source files in a project, qual-

fied names are often introduced. As shown in Example 2 , the

332 Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340

Table 1

Templates for dependency information. FIELDDECLARATION refers to a special token. VarDeclarationList refers to a list of variable

declarations. QualifiedClass refers to a qualified class name, VarName refers to a variable name, Identifier refers to a method name,

(ParamType {, ParamType }]) refers to a list of parameter types and ([ParamName {, ParamName }]) refers to a list of parameter

names. i represents a nonnegative integer and can increase with nested layers of some specific statements (e.g., IfStatement).

Category Templates/Rules

MethodInvocation QualifiedClass. Identifier (ParamType {, ParamType }]) ([ParamName {, ParamName }])

(QualifiedClass) VarName. Identifier (ParamType {, ParamType }]) ([ParamName {, ParamName }])

FieldAccess FIELDDECLARATION [VarDeclarationList]

IfStatement IF_i ENDIF_i ELSE_i ENDELSE_i

ForStatement FOR_i ENDFOR_i

EnhancedForStatement ENHANCEDFOR_i ENDENHANCEDFOR_i

Example 3. (a) Represents the original code sequence of a Java method; (b) repre-

sents the filtered code sequence without making identifier replacement operation.

3

J

w

p

t

s

h

e

i

t

i

e

l

i

I

m

t

t

c

c

3

t

t

qualified name, CCTMXTiledMap.CCTMXOrientationOrtho ,
is actually 0 of int type. Such information can be obtained

from the QualifiedName information Q which is part of the

dependency information. In the above mentioned example,

we collect the dependency information and replace CCTMX-

TiledMap.CCTMXOrientationOrtho with 0. It is notable that the re-

placement occurs only when the corresponding qualified name

refers to a literal (e.g., a string literal).

3.3.4. Method invocation reconstruction

A method invocation node in AST can be simply expressed by

the following BNF:

[Expression.] Identifier ([Expression {, Expression }])

Here Expression may represent different types of AST nodes

(e.g., Name). The format is as below:

[VarName/QualifiedClass.]

Identifier

([ParamName {, ParamName }])

The first line could be either a variable name or a qualified

class; the second line Identifier refers to a method name; the third

line refers to a list of parameter names. Based on the representa-

tion, we define two templates to reconstruct method invocations

(cf. MethodInvocation in Table 1). The first (resp. second) template

is used when a method invocation occurs without (resp. with) the

VarName part.

Method invocations exist and play an important role in most

of methods. However, with only the source code in methods we

may not be able to obtain the qualified class or parameter types of

the method invocation. As illustrated in Example 2 (a), we cannot

understand the qualified class of the method invocation position-

ForOrthoAt with class source code alone. In our approach, we ex-

tract and leverage the method declaration information for method

invocations (C) to complement the lost information of qualified

class and parameter types by analyzing the whole project. The re-

constructed code is represented as line 5 in Example 2 (b), which

is matched with the first template of MethodInvocation in Table 1 .

3.3.5. Try-catch filter

A try block in a method can help capture exceptions which

is usually followed by a catch block as the exception handler. In

light of the fact that the catch clauses are usually not addressed

in code comments, we only consider the try block. Namely, when

traversing the AST of a Java method, we concentrate on all TryS-

tatement nodes. This could decrease the length of code sequences,

compress the size of vocabulary and cut off redundant information,

contributing to a high-quality dataset.
.3.6. Loop and condition reconstruction

Some loop and condition statements account for a vital role in

ava methods. To emphasize the importance of these statements,

e choose and reconstruct if-else and for statements by the tem-

lates in Table 1 . Thereinto, if-else statements are set to match with

he template of IfStatement , while for statements containing two

tyles are set to match with the template of ForStatement and En-

ancedForStatement respectively. We illustrate this process with an

xample for IfStatement category as follows (Example 3).

From the above example, we can see that each matched if-else

s replaced with the IfStatement template in Table 1 . To be specific,

he first if is replaced with the specific token IF0, and the first else

s matched with the first if and then replaced with ELSE0. At the

nd of if section, we add a specific token ENDIF0 for end. Simi-

arly, we add ENDELSE0. The second if is replaced with IF1 since it

s a nested if structure. Correspondingly, a token ENDIF1 is added.

t is also noteworthy that the punctuation is unnecessary and re-

oved since the token ENDELSE0 has expressed the meaning of

ermination. To explain the way to replace keywords with specific

okens (e.g., FOR0), we represent the algorithm of ForStatement re-

onstruction in Algorithm 1 . Other cases of loop and condition re-

onstruction algorithms are similar.

.3.7. Identifier replacement

There exist numerous unique tokens whose size far exceeds

hat of a reasonable vocabulary. Therefore, we need to compress

he vocabulary size.

Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340 333

Table 2

Identifier replacement where i represents a nonnegative integer.

Category Special tokens

Method Name Replacement < METHODNAME >

Method Invocation Replacement < METHODINVOCATION_i >

Literal

Replacement

STRINGLITERAL

< NUMLITERAL_i >

< CHARACTERLITERAL >

Variable Type Replacement < SIMPLETYPE_i >

Variable Name Replacement < SIMPLENAME_i >

Method Declaration Replacement < METHODDECLARATIONNAME_i >

v

t

c

F

q

u

m

o

n

m

m

s

t

fi

i

t

c

s

w

e

a

c

s

w

m

o

t

t

t

a

A

I

O

Table 3

Defined templates/rules for filtering comments with three categories of Automa-

tion, Indications and Uninformative . A template ending with the punctuation ∗

represents that its lower case is another kind of template. < hyperlink > starts

with “http(s)://” or “ < a?href”.

Category Templates/Rules

Automation //TODO:

TODO

Indications Tests for ∗

For test ∗

bug/Bug/BUG

For debug ∗

WARNING :

note/Note/NOTE :

Not implement ∗

not been implemented

NOT IMPLEMENTED

∗

TEST METHOD

∗

NEVER EVER SAVE THIS REFERENCE ∗

Uninformative < hyperlink >

prepare - e.g., get Parameters

do not use

3

i

c

s

A

m

J

d

3

f

a

p

m

s

a

u

n

To this aim, we introduce a replacement algorithm to limit the

ocabulary size in a reasonable range. Specifically, we replace iden-

ifiers in Java methods with some specific tokens by leveraging the

ontext information, especially information from Java methods (S).

irstly, we integrate and sort all unique tokens by occurrence fre-

uency and choose the top 30,0 0 0 tokens as the origin code vocab-

lary. Then, for those tokens from the origin code vocabulary, we

ake corresponding replacement operations. As for replacement

perations, they can be divided into six categories, i.e., method

ame replacement, method invocation replacement, literal replace-

ent, variable type replacement, variable name replacement and

ethod declaration replacement. Correspondingly, we introduce

ome special tokens as substitutions (see Table 2). Considering that

here exists only one name for each method, we add only one

xed token < METHODNAME > as a substitution. Since it is mean-

ngless to distinguish string literals from each other, we replace

hem with the fixed token STRINGLITERAL. Similarly, we replace

haracter literals with token < CHARACTERLITERAL > . As for other

pecial tokens, they all contain a variable i , a nonnegative integer,

hich aims to give a unique identifier. After such replacement op-

ration, the tokens out of vocabulary will be replaced with the

bove mentioned tokens. Therefore, the size of unique tokens for

ode can be reduced to a limited range. For example, Example 1 (b)

hows the code sequence of the Java method before replacement,

hile Example 1 (c) represents the final code sequence of the Java

ethod with all code filtering and reconstruction operations. In

ur data set, the final vocabulary size for code is 30,351. However,

he prerequisite is that we can extract necessary information from

hese methods (cf. Section 3.2). By leveraging this extracted con-

ext information, we can compress the code vocabulary consider-

bly and build the final code vocabulary for training models.
lgorithm 1 ForStatement Reconstruction.

nput: A nonnegative integer for counting the nested layers of for

structure, count;An AST node, ForStatement, for representing for

structure, r;A token sequence of for structure, seq .

utput: A reconstructed token sequence of for structure, seq .

1: initial count ← 0

2: function Reconstrctor (r, count, seq)

3: if r.isF orStatement then

4: for ← FORi //replace current keyword for with specific to-

ken FORi and i is a nonnegative integer and is equal to count

5: count++

6: end if

7: if r.hasChild then

8: for c in r.childs do

9: Reconstrctor (c , count , seq)

10: end for

11: end if

12: add token ENDFORi // i is same to the i in token FORi

13: return seq

14: end function

3

w

c

t

s

m

o

m

t

3

p

a

s

t

m

s

I

m

o

.3.8. Method elimination

We hypothesize that not all methods are worth considering. For

nstance the purpose of a constructor is to create an instance of a

lass, which is straightforward for developers to read and under-

tand, and thus makes little sense to be included into the dataset.

s a result, we leave out all constructors, getter, setter and test

ethods. Besides, we restrict the lengths of token sequences for

ava methods to be in the range of 10 to 400. (Otherwise they are

eemed to be overly simple or complicated.)

.4. Comment filtering

Our training set originates from numerous open source projects

rom GitHub which feature comments of varying quality. However,

 high-quality dataset is crucial to train a neural network. For this

urpose, we need to distill these comments.

The first sentence of a Javadoc comment usually expresses the

eaning of the whole method. Thus, we choose to take it as the

tandard comment of the method. (Methods with no comments

re simply ignored.) Moreover, quantities of comments contain

seless, little or even no information, which should also be elimi-

ated.

.4.1. Filter by templates

Considering a comment like “never ever save this reference”,

hich cannot directly provide any useful information for program

omprehension. To remove these comments, we define a set of

emplates which are listed in Table 3 . They are used to address a

ignificant amount of comments which either indicate the current

ethod is for testing, debugging, not implemented, useless and so

n, or are automatically generated by some IDE tools (like ‘todo’

essages), or otherwise contain warning information not to use

hese comments or methods.

.4.2. Filter by POS tagging

To further improve the quality of the dataset, we adopt the

art-of-speech (POS) tagging technique. Particularly, we posit that

 qualified comment should at least contain a verb in order to de-

cribe its main motivation. Therefore, comments without a verb are

o be removed. We make use of the Stanford Tagger, which is the

ost commonly used tagger for English and has been applied to

oftware artifacts (Binkley et al., 2011; Tian and Lo, 2014) widely.

n particular, we set two thresholds to constrain the size of com-

ents to be in the range of 3 to 30. (The comments which are our

f the range are not considered.)

334 Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340

Fig. 2. Seq2Seq model with attention mechanism.

w

t

r

I

o

fi

t

a

e

d

s

c

w

m

α

w

p

t

t

s

4

4

f

a

G

t

t

t

3.4.3. Identifier replacement

Observe that many identifiers in code occur in the correspond-

ing comments as well. We therefore apply the similar replace-

ment described in Section 3.3 to the comments. We sort all unique

tokens ordered by frequency and choose the top 30,0 0 0 tokens

as the comment vocabulary. For those tokens not in the com-

ment vocabulary we apply the four kinds of replacement, i.e.,

method name replacement, method invocation replacement, vari-

able type replacement and variable name replacement. Note that

the replacement must respect the constraint that the replaced to-

kens in comments should be consistent with the corresponding re-

placed tokens in code. For example, if one token occurring in code

and comment is out of the two vocabularies and replaced with

< SIMPLENAME_1 > , the token in comment will be replaced with

< SIMPLENAME_1 > likewise. In this case, even if one token is re-

placed with a special token, it can be converted to the origin form

by recording and leveraging extracted information. In this way, our

approach can not only decrease the size of comment vocabulary,

but also store the original forms of replaced tokens to help recover

the replaced tokens.

3.5. Seq2Seq model

In this step, we train our code comment generation neural net-

work by applying a Seq2Seq model which has been widely used

for Neural Machine Translation (NMT) tasks (Sutskever et al., 2014;

Rush et al., 2015).

Generally speaking, a Seq2Seq model can be simply divided into

two recurrent neural networks (RNNs): the encoder which maps

the input sequence into a fix-dimensional vector, and the decoder ,

which maps the vector to the target sequence. In this paper, we

choose LSTM, a variant of RNN, as the encoder and the decoder.

Fig. 2 illustrates the general architecture of a Seq2Seq model.

Given the input sequence X = (x (1) , x (2) , . . . , x (n)) , the target of the

Seq2Seq model is to learn to generate the output sequence Y =
(y (1) , y (2) , . . . , y (l)) . The aim of the model training is to estimate

the conditional probability:

p
(
y (1) , y (2) , . . . , y (l) | x (1) , x (2) , . . . , x (n)

)

The model computes the conditional probability by first obtain-

ing a fixed-dimensional representation v of the input sequence

X = (x (1) , x (2) , . . . , x (n)) (e.g., the last hidden state of the Encoder),

and then computing the probability of Y = (y (1) , y (2) , . . . , y (l))
ith a standard LSTM-Language Model (LSTM-LM) formula-

ion (Sutskever et al., 2014) whose initial hidden state is set to the

epresentation v :

p
(
y (1) , y (2) , . . . , y (l) | x (1) , x (2) , . . . , x (n)

)

=

l ∏

i =1

p(y (i) | v , y (1) , y (2) , . . . , y (i −1)) (1)

n (1), p(y (i) | v , y (1) , y (2) , . . . , y (i −1)) is represented as a softmax

ver all the words in the vocabulary.

Unfortunately, when the input sequence is too long, it is dif-

cult for v to store enough information which motivates the in-

roduction of the attention mechanism (Bahdanau et al., 2014). It

llows the Encoder to look up tokens in the input sequence when-

ver necessary. More concretely, the attention mechanism intro-

uces a context vector c i which is usually computed as a weighted

um of the hidden states h j from the Encoder, i.e.,

 i =

n ∑

j=1

αi j h j (2)

here the weight αij of each h j is computed by the following for-

ula:

i j =

exp(e i j) ∑ n
k =1 exp(e ik)

here e i j = a (s i −1 , h j) . Here, a is an alignment model which is

arametrized as a feedforward neural network and is jointly

rained with all the other components; s i is the hidden state at

ime step i in the Decoder, computed by

 i = f (s i −1 , y i −1 , c i) (3)

. Evaluation

.1. Experimental setup

We train a neural network to automatically generate comments

or Java methods. To this end, we extract 〈 code, comment 〉 pairs

nd build up a data set from 6705 Java projects downloaded from

itHub. By adopting the AST parser and the filter operations men-

ioned in Section 3 , we obtain 542,429 〈 code, comment 〉 pairs. We

hen divide the pairs into the training set, the validation set and

he test set with the ratio of 8:1:1.

Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340 335

Fig. 3. Distribution of filtered code length.

Fig. 4. Distribution of filtered comment length.

Table 4

Statistics of all Java methods.

Projects Java methods Category Total Unique

6,705 542,429 Code 38,136,348 1,002,976

comment 6,351,337 117,536

Table 5

Statistics for filtered Java methods on training set.

Category Unique tokens Occurrence number > 2 Average length

Code 30,351 – 79.36

Comment 96,241 29,433 10.40

f

a

h

a

t

t

(

l

t

o

a

4

q

p

a

i

a

a

W

p

a

5

f

fi

e
Tables 4 and 5 give an overview of the collected data be-

ore and after processing respectively. Table 4 shows that there

re more than 1,0 0 0,0 0 0 unique tokens in code which is pro-

ibitively large. The unique tokens in comments are over 110,0 0 0

mong which only about 30,0 0 0 unique tokens occur at least two

imes. Therefore, we set the size of the vocabulary for comments

o 30,0 0 0. Similarly, the size of the vocabulary for codes is 30,351

cf. Section 3.2).
Figs. 3 and 4 illustrate the distributions of the filtered code

ength and comment length respectively. Based on our statistics,

he methods with less than 190 tokens account for more than 90%

f the collected data, and the comments with less than 22 tokens

ccount for more than 95% of the whole.

.1.1. Training

We add special tokens < sos > and < eos > to our training se-

uences as the start flag and the end flag respectively. After the

rocessing described in Section 3.3 , there exists no < unk > token

nd the final size of the vocabulary for code is 30,351. The model

s implemented in Python by leveraging the Tensorflow framework

nd extending the encoder-decoder model. Our hyper-parameters

re determined based on the performance on the validation set.

e use minibatch stochastic gradient descent to train and update

arameters. The minibatch size is set to 100 and the dimension-

lity of the LSTM hidden states and word embedding is set to be

12. The learning rate is set to 0.99 initially and is decreased by a

actor of 0.8. The parameter gradient is capped at 5. To avoid over-

tting, we use a dropout rate of 0.3.

We train the models on GPUs. The training runs for about 50

pochs. We compute BLEU score on the validation set to select the

336 Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340

Table 6

Precision, Recall, and F1-score of different approaches.

Approaches Precision Recall F1-score

Seq2Seq 57.19% 41.42% 48.04%

Seq2Seq with Attention 60.17% 45.39% 51.74%

DeepCom 60.12% 48.19% 53.49%

ContextCC 62.03% 50.54% 55.70%

Table 7

Performance on the testing set.

Model BLEU-4 (%) METEOR (%)

Seq2Seq 31.21 23.40

Seq2Seq with Attention 35.25 25.95

DeepCom 38.08 26.83

ContextCC 40.52 28.51

e

o

S

a

s

a

m

t

c

t

B

t

C

a

a

t

t

H

d

p

t

n

w

4

c

p

t

f

r

g

4

m

o

t

p

t

4

w

3

k

T

j

i

i

d

c

best model. During decoding, we set the beam size to 5, and the

maximum comment length to 30 tokens.

4.1.2. Evaluation metrics

We first employ IR metrics to evaluate our proposed approach.

Specifically, we calculate the precision, recall and F1-score of our

approach. Precision represents the fraction of generated comments

tokens that are relevant, while recall represents the fraction of rel-

evant tokens that are generated. F1-score is the comprehensive

measure combining both precision and recall. Let t be the total

number of unigrams in the translation, r be the total number of

unigrams in the reference, and m be the number of mapped un-

igrams between translation and reference. The unigram precision

and the unigram recall are then P = m/t and R = m/r respectively.

We also evaluate the code comment generation model using

two kinds of automatic machine translation metrics, i.e., BLEU-4

(Papineni et al., 2002) and METEOR (Denkowski and Lavie, 2014).

BLEU-4 has been widely used for accuracy measure in multiple

machine translation tasks. Given a set of reference sentences,

BLEU-4 score depends on the geometric average of modified

n-gram precision multiplying an exponential brevity penalty factor

which is related to the lengths of translation and reference sen-

tences. METEOR emphasizes the importance of recall to improve

the correlation with human judgments. It extracts all uni-gram

matches between translations and references. Based on these

matches, METEOR is calculated by uni-gram recall, uni-gram pre-

cision and a fragmentation penalty which measures how well the

matches correlate with each other. The higher BLEU-4 or METEOR

score is, the closer the generated comment is to the reference one

(ground truth), which suggests a better quality of the generated

comment. The two metrics have also been used in other code

comment generation tasks to measure accuracy (Erk and Smith,

2016; Hu et al., 2018).

4.2. Experimental results

4.2.1. Baseline

We compare ContextCC with DeepCom (Hu et al., 2018) which

represents a state-of-the-art code comment generation approach.

DeepCom introduces an algorithm called SBT to represent the code

sequence and adopts the advantages of Seq2Seq model with atten-

tion mechanisms to generate comments for Java methods. Deep-

Com turns to outperform IR-based approaches and the model

CODE-NN (Iyer et al., 2016), so they are not part of our baselines.

We also compare ContextCC with a basic Seq2Seq model and a

Seq2Seq model with attention mechanism.

4.2.2. Results

Table 6 presents the experimental results on the IR metrics for

different approaches mentioned above. Precision denotes the pro-

portion of matching words in the generated comments for Java

methods. Results show that ContextCC outperforms other ap-

proaches.

We also evaluate the gap among different approaches on the

two neural machine translation metrics, BLEU-4 and METEOR.

Table 7 illustrates corpus level BLEU-4 scores and METEOR scores

of different approaches to Java methods summarization. We show
mpirically that ContextCC outperforms the other approaches

n both metrics of corpus level BLEU-4 and METEOR. The basic

eq2Seq model and the Seq2Seq model with attention adopt the

dvantages of LSTMs to explore and learn the semantics of Java

ource code with acceptable results. DeepCom attempts to use SBT

lgorithm to advance the representation of code sequences for Java

ethods, which performs better than the basic Seq2Seq model and

he Seq2Seq model with attention. Compared with DeepCom, the

orpus level BLEU-4 and METEOR scores of our approach, Con-

extCC , are both higher than those of DeepCom. Specifically, the

LEU-4 score of ContextCC is 40.52%, increasing by 6.41% by con-

rast with that of DeepCom, 38.08%, while the METEOR score of

ontextCC improves by about 6.26%. We also compare the aver-

ge BLEU-4 scores for ContextCC and DeepCom of different code

nd comment lengths. Figs. 5 and 6 show the comparison respec-

ively. As illustrated in Fig. 5 , the average BLEU-4 scores of Con-

extCC and DeepCom tend to decrease as code length increases.

owever, ContextCC is always superior to DeepCom despite of

ifferent code lengths. As shown in Fig. 6 , ContextCC is also su-

erior to DeepCom despite of different comment lengths. Through

he experiments and evaluation, we can demonstrate the effective-

ess of ContextCC , as well as the superiority over other baseline

orks.

.2.3. Qualitative analysis

We focus the qualitative analysis on the ground truths and

omments generated by ContextCC for Java methods. Table 8

resents examples of the generated comments by ContextCC in

he testing set. Most generated comments are brief, natural and in-

ormative. For further analysis and research, we mainly clarify the

elationship between ground truths and Java method summaries

enerated by ContextCC as follows:

.3. Absolutely matched comments.

ContextCC can generate absolutely matched comments for Java

ethods regardless of the lengths of token sequences of Java meth-

ds (Example 1, Example 2 and Example 3 in Table 8). According

o our statistics, many generated comments in the testing set are

erfectly matched comments, which verifies the capability of Con-

extCC .

.4. Unknown tokens

We take 30,0 0 0 as the size of the vocabulary for comments,

hile the unique tokens occurring in comments are far more than

0,0 0 0. Therefore, it is unavoidable that there exist unknown to-

ens in generated comments. As the fourth example shown in

able 8 , ContextCC predicts the special token < unk > instead of

avax.sip.TimeoutEvent which is the actually correct token. Arguably

t is acceptable for ContextCC to fail to predict some identifiers;

n this case, javax.sip.TimeoutEvent is an identifier defined by the

eveloper which rarely occurs and identifier prediction is generally

hallenging.

Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340 337

Fig. 5. The average BLEU-4 scores of different code lengths for ContextCC and DeepCom.

Fig. 6. The average BLEU-4 scores of different comment lengths for ContextCC and DeepCom.

4

o

t

l

b

w

5

5

d

o

J

t

t

H

t

g

i

w

n

m

M

e

k

t

.5. Replaced tokens

Some tokens may be replaced by their corresponding syn-

nyms, antonyms or some other tokens in the same domain in

he generated comments by ContextCC . For the fifth example il-

ustrated in Table 8 , ContextCC fails to predict the token “Stops”,

ut to predict the token ”starts”, an antonym of the token ”Stops”,

hich results in the opposite of the ground truth.

. Threats to validity

.1. Internal validity

We extract the first sentence of Javadoc comments as the stan-

ard comment of the method which is also adopted by previ-
us work (Hu et al., 2018). As discussed earlier, the quality of

avadoc comments varies and low-quality comments could poten-

ially hamper the performance of the trained model. To mitigate

he threat, we design rules and patterns to filter the comments.

owever, noise may still exist in the final dataset. We also set

he length constraints to further improve the comments quality. In

eneral, comments with too few tokens are difficult to clarify the

ntention of the methods clearly. For example, methods’ comments

hich are simply “return false”, “return true” or “return this” are

ot informative. To improve comments’ quality, we set 3 as the

inimum length of comments and filter those less than 3 out.

oreover, we analyzed the distribution of such kinds of comments

mpirically: the percentages of the comments with less than 3 to-

ens or more than 30 tokens are around 0.97% and 0.72% respec-

ively.

338 Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340

Table 8

Examples of comments generated by models for Java methods in testing set.

Number Java Method Comments

1 public static String UTF8toUTF16 (byte [] utf8, int offset, int len) { Gold : Convert UTF8 bytes into a String ContextCC : convert

UTF8 bytes into a String

char [] out = new char [len] ;

int n = UTF8toUTF16 (utf8, offset, len, out, 0) ;

return new String (out, 0, n) ;

}

2 public void addChangingListener (OnWheelChangedListener listener) { Gold : Adds wheel changing listener ContextCC : adds wheel

changing listener

changingListeners. add (listener) ;

}

3 public void removeConnection (Connection connection) { Gold : Removes a connection from the map of connections

ContextCC : removes a connection from the map of

connections

connections. remove (connection. handle ()) ;

persistence. deleteConnection (connection) ;

}

4 public ServerHeader createServerHeader (List product) throws

ParseException {

Gold : Returns the collected javax.sip.TimeoutEvent or null if

no event has been collected ContextCC : returns the collected

< unk > or null if no event has been collected

if (product == null)

throw new NullPointerException (”null productList arg”) ;

Server server = new Server () ;

server. setProduct (product) ;

return server ;

}

5 private void stopPolling () { Gold : Stops server polling task ContextCC : starts server

polling task

String notifier = Preference. getString (

context, Constants. PreferenceFlag. NOTIFIER_TYPE) ;

if (Constants. NOTIFIER_LOCAL. equals (notifier)) {

LocalNotification. stopPolling (context) ; }

}

6

t

a

I

c

a

fi

c

a

o

i

t

A

P

s

N

t

i

b

(

g

D

R

A

Another threat originates from the source codes of the selected

projects. To prepare the training data, we extract the code related

context information from Java projects. However, this depends on

the completeness and correctness of the analyzed Java projects. (If

some Java or Jar files are missing, the extracted context informa-

tion may be incomplete.) To address this concern, we scale up the

studied projects and extract context information from 6705 Java

projects. Moreover, we only consider those projects from Github

with high stars. We only consider the methods whose lengths are

within a certain range, and omit those which are either too long

or too short. Empirically, we found that these eliminated meth-

ods only account for a quite small proportion of the whole dataset.

Concretely, there are 7018 methods with less than 10 tokens, tak-

ing up 0.64%, most of which are empty methods (some are with

a single return statement). There are 24,115 methods with more

than 400 tokens, taking up 2.20%. Our findings are consistent with

those reported in the baseline work (Hu et al., 2018) and we set

the same threshold in our experiment.

5.2. External validity

External validity is concerned with the generalizability of re-

sults on the datasets other than the ones used in the experi-

ments (Feldt and Magazinius, 2010). Indeed, in our approach, we

only focus on the comments generation for Java methods. However,

we believe that the approach is essentially independent of specific

(object-oriented) programming languages, since the context infor-

mation harnessed in our approach generally exists and could be

extracted from the projects developed by other general-purpose

object-oriented programming languages. However, for some DSLs,

they are usually declarative, and offering only a restricted suite

of notations and abstractions for a particular application do-

main (Deursen et al., 20 0 0). Their grammar usually differs widely

with GPLs, and thus our approach could not be directly applied.
. Conclusion

In this paper, we presented ContextCC , an automated approach

o generate comments for Java methods. ContextCC harnesses

 Seq2Seq Neural Network model with an attention mechanism.

t takes code sequences of Java methods and the corresponding

omments as inputs. The code sequences are obtained by lever-

ging context information extraction in conjunction with method

ltering and reconstruction operations. Complemented by the

ontext information, the code sequences contain more complete

nd richer information. Experiments confirm that ContextCC

utperforms most state-of-the-art approaches.

For future work, we plan to further generalize our approach,

ntegrate more structural information and provide better usability

o ender users for comment generation related tasks.

cknowledgements

This work was partially supported by the National Key R&D

rogram of China (No. 2018YFB10 0390 0), the Fundamental Re-

earch Funds for the Central Universities (No. NS2019055), the

ational Natural Science Foundation of China (No. 61802179),

he Collaborative Innovation Center of Novel Software Technology

n China, and Qing Lan Project. T. Chen is partially supported

y UK Engineering and Physical Sciences Research Council grant

 EP/P00430X/1), National Natural Science Foundation of China

rant (No. 61662035), and Guangdong Science and Technology

epartment Grant (No. 2018B010107004).

eferences

bid, N.J. , Dragan, N. , Collard, M.L. , Maletic, J.I. , 2015. Using stereotypes in the au-

tomatic generation of natural language summaries for C++ methods. In: Soft-
ware Maintenance and Evolution (ICSME), 2015 IEEE International Conference

on. IEEE, pp. 561–565 .

https://doi.org/10.13039/501100012226
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100000266
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100007162
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0001

Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340 339

A

A

B

B

B

B

C

D

D

E

F

F

F

H

H

H

I

K

L

M

P

R

S

S

S

S

T

T

T

W

X

Y

Z

Z

Z

llamanis, M. , Barr, E.T. , Bird, C. , Sutton, C. , 2015. Suggesting accurate method and
class names. In: Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. ACM, pp. 38–49 .
llamanis, M. , Tarlow, D. , Gordon, A. , Wei, Y. , 2015. Bimodal modelling of source

code and natural language. In: International Conference on Machine Learning,
pp. 2123–2132 .

ahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learn-
ing to align and translate. CoRR, 2014, arXiv: 1409.0473 .

inkley, D. , Hearn, M. , Lawrie, D. , 2011. Improving identifier informativeness using

part of speech information. In: Working Conference on Mining Software Repos-
itories, pp. 203–206 .

use, R.P. , Weimer, W.R. , 2008. Automatic documentation inference for exceptions.
In: Proceedings of the 2008 International Symposium on Software Testing and

Analysis. ACM, pp. 273–282 .
use, R.P. , Weimer, W.R. , 2010. Automatically documenting program changes. In:

Proceedings of the IEEE/ACM International Conference on Automated Software

Engineering. ACM, pp. 33–42 .
ortés-Coy, L.F. , Linares-Vásquez, M. , Aponte, J. , Poshyvanyk, D. , 2014. On automati-

cally generating commit messages via summarization of source code changes.
In: Source Code Analysis and Manipulation (SCAM), 2014 IEEE 14th Interna-

tional Working Conference on. IEEE, pp. 275–284 .
enkowski, M. , Lavie, A. , 2014. Meteor universal: language specific translation eval-

uation for any target language. In: Proceedings of the Ninth Workshop on Sta-

tistical Machine Translation, pp. 376–380 .
eursen, A.V. , Klint, P. , Visser, J. , 20 0 0. Domain-specific languages: an annotated

bibliography. ACM Sigplan Not. 35 (6), 26–36 .
rk, K. , Smith, N.A. , 2016. Proceedings of the 54th annual meeting of the association

for computational linguistics (volume 1: Long papers). In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), Vol. 1 .

eldt, R. , Magazinius, A. , 2010. Validity threats in empirical software engineering
research-an initial survey. In: Proceedings of the 22nd International Conference

on Software Engineering and Knowledge Engineering, pp. 374–379 .
orward, A. , Lethbridge, T. , 2002. The relevance of software documentation, tools

and technologies: a survey. In: ACM Symposium on Document Engineering,
pp. 26–33 .

uhrer, R. , Keller, M. , Kiezun, A. , 2007. Advanced refactoring in the eclipse jdt: past,

present, and future. In: Proc. ECOOP Workshop on Refactoring Tools (WRT),
pp. 31–32 .

aiduc, S. , Aponte, J. , Marcus, A. , 2010. Supporting program comprehension with
source code summarization. In: Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering-Volume 2. ACM, pp. 223–226 .
ill, E. , Pollock, L. , Vijay-Shanker, K. , 2009. Automatically capturing source code con-

text of NL-queries for software maintenance and reuse. In: Proceedings of the

31st International Conference on Software Engineering. IEEE Computer Society,
pp. 232–242 .

u, X. , Li, G. , Xia, X. , Lo, D. , Jin, Z. , 2018. Deep code comment generation.
In: Proceedings of the 26th Conference on Program Comprehension. ACM,

pp. 200–210 .
yer, S. , Konstas, I. , Cheung, A. , Zettlemoyer, L. , 2016. Summarizing source code us-

ing a neural attention model. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1,

pp. 2073–2083 .

amimura, M. , Murphy, G.C. , 2013. Towards generating human-oriented summaries
of unit test cases. In: 2013 IEEE 21st International Conference on Program Com-

prehension (ICPC). IEEE, pp. 215–218 .
iang, Y., Zhu, K. Q., 2018. Automatic generation of text descriptive comments for

code blocks. CoRR, 2018, arXiv: 1808.06880 .
oreno, L. , Aponte, J. , Sridhara, G. , Marcus, A. , Pollock, L. , Vijay-Shanker, K. ,

2013. Automatic generation of natural language summaries for java classes.

In: 2013 IEEE 21st International Conference on Program Comprehension (ICPC).
IEEE, pp. 23–32 .

apineni, K. , Roukos, S. , Ward, T. , Zhu, W.J. , 2002. Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th annual meeting

on association for computational linguistics. Association for Computational Lin-
guistics, pp. 311–318 .

ush, A. M., Chopra, S., Weston, J., 2015. A neural attention model for abstractive

sentence summarization. CoRR, 2015, arXiv: 1509.00685 .
ridhara, G. , Hill, E. , Muppaneni, D. , Pollock, L.L. , Vijay-Shanker, K. , 2010. Towards

automatically generating summary comments for java methods. In: 2010 25th
IEEE/ACM International Conference on Automated Software Engineering (ASE),

pp. 43–52 .
ridhara, G. , Pollock, L. , Vijay-Shanker, K. , 2011. Generating parameter comments

and integrating with method summaries. In: 2011 IEEE 19th International Con-

ference on Program Comprehension (ICPC), pp. 71–80 .
ridhara, G. , Pollock, L.L. , Vijay-Shanker, K. , 2011. Automatically detecting
and describing high level actions within methods. In: Proceedings of

the 33rd International Conference on Software Engineering, pp. 101–
110 .

utskever, I., Vinyals, O., Le, Q. V., 2014. Sequence to sequence learning with neural
networksAdvances in Neural Information Processing Systems, 3104–3112.

akang, A .A . , Grubb, P.A . , Macredie, R.D. , 1996. The effects of comments and iden-
tifier names on program comprehensibility: an experimental investigation. J.

Prog. Lang. 4 (3), 143–167 .

enny, T. , 1988. Program readability: procedures versus comments. IEEE Trans.
Softw. Eng. 14 (9), 1271–1279 .

ian, Y. , Lo, D. , 2014. A comparative study on the effectiveness of part-of-speech
tagging techniques on bug reports. In: IEEE International Confer-

ence on Software Analysis, Evolution and Reengineering, pp. 570–
574 .

ong, E. , Yang, J. , Tan, L. , 2013. Autocomment: mining question and answer

sites for automatic comment generation. In: 2013 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, pp. 562–

567 .
ia, X. , Bao, L. , Lo, D. , Xing, Z. , Hassan, A.E. , Li, S. , 2018. Measuring program com-

prehension: a large-scale field study with professionals. IEEE Trans. Softw. Eng.
44 (10), 951–976 .

ao, Z., Peddamail, J.R., Sun, H., 2019. Coacor: code annotation for code retrieval

with reinforcement learning. CoRR . arXiv: 1904.00720 .
hang, S. , Zhang, C. , Ernst, M.D. , 2011. Automated documentation infer-

ence to explain failed tests. In: 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, pp. 63–

72 .
hou, Y. , Gu, R. , Chen, T. , Huang, Z. , Panichella, S. , Gall, H. , 2017. Analyzing apis doc-

umentation and code to detect directive defects. In: Proceedings of the 39th

International Conference on Software Engineering. IEEE Press, pp. 27–37 .
hou, Y. , Wang, C. , Yan, X. , Chen, T. , Panichella, S. , Gall, H.C. , 2018. Automatic detec-

tion and repair recommendation of directive defects in java api documentation.
IEEE Trans. Softw. Eng .

Yu Zhou is a full professor in the College of Computer
Science and Technology at Nanjing University of Aeronau-

tics and Astronautics (NUAA). He received his BSc degree
in 2004 and PhD degree in 2009, both in computer sci-

ence from Nanjing University China. Before joining NUAA
in 2011, he conducted PostDoc research on software engi-

neering at Politechnico di Milano, Italy. From 2015–2016,

he visited the SEAL lab at University of Zurich Switzer-
land, where he is also an adjunct researcher. His research

interests mainly include software evolution analysis, min-
ing software repositories, software architecture, and reli-

ability analysis. He has been supported by several nation-
alresearch programs in China.

Xin Yan received his BSc degree in software engineering,
from Jiangsu University, China, in 2017. He is currently

a MSc student in the College of Computer Science and
Technology at Nanjing University of Aeronautics and As-

tronautics. His research interests include software evolu-

tion analysis, artificial intelligence, and mining software
repositories.

Wenhua Yang is an assistant professor in the College of

Computer Science and Technology of Nanjing University
of Aeronautics and Astronautics. He received his Ph.D de-

gree in the computer science and technology in Nanjing

University. His research interests include software engi-
neering, self-adaptive software systems and IoT systems.

http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0003
http://arxiv.org/abs/1409.0473
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0018
http://arxiv.org/abs/1808.06880
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0020
http://arxiv.org/abs/1509.00685
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0028
http://arxiv.org/abs/1904.00720
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30152-9/sbref0032

340 Y. Zhou, X. Yan and W. Yang et al. / The Journal of Systems and Software 156 (2019) 328–340

Taolue Chen received the Bachelor’s and Master’s degrees

from the Nanjing University, China, both in computer sci-
ence. He was a junior researcher (OiO) at the CWI and

acquired the PhD degree from the Free University Ams-

terdam, The Netherlands. He is currently a lecturer at the
Department of Computer Science and Information Sys-

tems, Birkbeck, University of London. Prior to this post,
he was a (senior) lecturer at Middlesex University Lon-

don, a research assistant at the University of Oxford, and
a postdoctoral researcher at the University of Twente, The

Netherlands. His research interests include formal verifi-

cation and synthesis, program analysis, logic in computer
science, and software engineering.
Zhiqiu Huang is a full professor of Nanjing University of

Aeronautics and Astronautics. He received his BSc. and
MSc degrees in computer science from National Univer-

sity of Defense Technology of China. He received his Ph.D

degree in computer science from Nanjing University of
Aeronautics and Astronautics of China. His research inter-

ests include big data analysis, cloud computing, and web
services.

	Augmenting Java method comments generation with context information based on neural networks
	1 Introduction
	2 Related work
	3 The ContextCC approach
	3.1 Data preparation
	3.2 Context information extraction
	3.2.1 Information from Java methods
	3.2.2 Dependency information

	3.3 Code filtering and reconstruction
	3.3.1 Field Replacement
	3.3.2 Field Declaration Supplement
	3.3.3 Qualified name replacement
	3.3.4 Method invocation reconstruction

	3.3.5 Try-catch filter
	3.3.6 Loop and condition reconstruction
	3.3.7 Identifier replacement
	3.3.8 Method elimination

	3.4 Comment filtering
	3.4.1 Filter by templates
	3.4.2 Filter by POS tagging
	3.4.3 Identifier replacement

	3.5 Seq2Seq model

	4 Evaluation
	4.1 Experimental setup
	4.1.1 Training
	4.1.2 Evaluation metrics

	4.2 Experimental results
	4.2.1 Baseline
	4.2.2 Results
	4.2.3 Qualitative analysis

	4.3 Absolutely matched comments.
	4.4 Unknown tokens
	4.5 Replaced tokens

	5 Threats to validity
	5.1 Internal validity
	5.2 External validity

	6 Conclusion
	Acknowledgements
	References

