
A
m
G
a

b

c

A

K
C
A
P
D
A

1

b
c
o
t
C
f
r
h
p

a
s
a
s

(

h
R

Information and Software Technology 181 (2025) 107699

A
0

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ssessing and improving syntactic adversarial robustness of pre-trained
odels for code translation

uang Yang a , Yu Zhou a,∗, Xiangyu Zhang a , Xiang Chen b , Tingting Han c, Taolue Chen c,∗

Nanjing University of Aeronautics and Astronautics, Nanjing, China
School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China
Birkbeck, University of London, United Kingdom

R T I C L E I N F O

eywords:
ode translation
dversarial robustness
re-trained models
ata augmentation
dversarial training

A B S T R A C T

Context: Pre-trained models (PTMs) have demonstrated significant potential in automatic code translation.
However, the vulnerability of these models in translation tasks, particularly in terms of syntax, has not been
extensively investigated.
Objective: To fill this gap, our study aims to propose a novel approach CoTR to assess and improve the
syntactic adversarial robustness of PTMs in code translation.
Methods: CoTR consists of two components: CoTR-A and CoTR-D. CoTR-A generates adversarial examples by
transforming programs, while CoTR-D proposes a semantic distance-based sampling data augmentation method
and adversarial training method to improve the model’s robustness and generalization capabilities. The Pass@1
metric is used by CoTR to assess the performance of PTMs, which is more suitable for code translation tasks
and offers a more precise evaluation in real-world scenarios.
Results: The effectiveness of CoTR is evaluated through experiments on real-world Java↔Python datasets.
The results demonstrate that CoTR-A can significantly reduce the performance of existing PTMs, while CoTR-D
effectively improves the robustness of PTMs.
Conclusion: Our study identifies the limitations of current PTMs, including large language models, in code
translation tasks. It highlights the potential of CoTR as an effective solution to enhance the robustness of PTMs
for code translation tasks.
. Introduction

Automated code translation is vital for seamless interoperability
etween systems and platforms during software migration [1,2]. It be-
omes particularly crucial when adopting new programming languages
r modernizing legacy systems. However, manual code translation is
ime-consuming and error-prone [3]. For example, the migration of
OBOL to Java at the Commonwealth Bank of Australia took about

ive years and $750 million to complete. To address this challenge,
esearchers have developed automated code translation tools, which
ave recently demonstrated great potential through the adoption of
re-trained models (PTMs) [4,5].

Despite the significant progress made in the field of PTMs, there
re concerns regarding their accuracy and robustness in real-world
cenarios. The previous studies [6–12] primarily focused on tasks, such
s code summarization and method name prediction. In contrast, our
tudy specifically focuses on the code translation task, which presents

∗ Corresponding authors.
E-mail addresses: yang.guang@nuaa.edu.cn (G. Yang), zhouyu@nuaa.edu.cn (Y. Zhou), zhangx1angyu@nuaa.edu.cn (X. Zhang), xchencs@ntu.edu.cn

X. Chen), t.han@bbk.ac.uk (T. Han), t.chen@bbk.ac.uk (T. Chen).

new challenges and needs dedicated research. During programming,
there exist diverse alternatives to accomplish the same functionality.
For example, one can use interchangeable for-loop or while-loop; or
some developers may prefer a<b but others may prefer b>a when
writing conditional statements. In the context of code translation, it is
crucial to ensure these syntactically distinct yet semantically equivalent
code snippets are translated into semantically equivalent target code.
That means a robust (neural) code translation model should recognize
the semantics while not overfitting the syntax of source code. However,
in reality, even the most sophisticated tools (such as Copilot [13])
have faced criticism regarding their robustness [14,15]. For example,
a minor syntactic difference can completely alter the behavior of a
program, leading to serious bugs. Our goal is to improve the robustness
of existing PTMs in code translation. This would enable software engi-
neering researchers and practitioners to understand the strengths and
weaknesses of PTM-based code translators. Furthermore, this would
ttps://doi.org/10.1016/j.infsof.2025.107699
eceived 26 October 2023; Received in revised form 11 February 2025; Accepted 1
vailable online 23 February 2025
950-5849/© 2025 Elsevier B.V. All rights are reserved, including those for text and
4 February 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
https://orcid.org/0000-0002-3374-6680
https://orcid.org/0009-0000-6271-746X
https://orcid.org/0000-0002-1180-3891
mailto:yang.guang@nuaa.edu.cn
mailto:zhouyu@nuaa.edu.cn
mailto:zhangx1angyu@nuaa.edu.cn
mailto:xchencs@ntu.edu.cn
mailto:t.han@bbk.ac.uk
mailto:t.chen@bbk.ac.uk
https://doi.org/10.1016/j.infsof.2025.107699
https://doi.org/10.1016/j.infsof.2025.107699

G. Yang et al. Information and Software Technology 181 (2025) 107699
Fig. 1. Syntactic and functional errors in translated code by CodeT5. In both examples,
the original Java code (left) is transformed using different operations (highlighted
in yellow), and then translated to Python by CodeT5 (right). (a) A while-loop is
transformed into a for-loop, leading to syntactic errors in the translated code. (b)
A condition statement is transformed by exchanging operands, resulting in functional
errors in the translated output.

provide insights and guidelines for developing more robust models.
To this end, we utilize adversarial attack techniques and generate
adversarial examples, exposing vulnerabilities and weaknesses that may
not be apparent in real-world scenarios or existing evaluation methods.

To illustrate the limitations of PTMs in code translation, we present
two examples translated by CodeT5 [16] in Fig. 1 (from Java to
Python).

In the initial example, the source code undergoes the ‘‘For/While
Exchange’’ transformation (i.e., exchanging the while-loop for a for-
loop, highlighted in yellow), leading to the detection of syntax errors in
the CodeT5-translated code. In the second example, the source code un-
dergoes ‘Condition Exchange’ transformation (highlighted in yellow),
resulting in the emergence of functional faults in the CodeT5-translated
code. These faults highlight the vulnerability of PTMs in handling sub-
tle (syntactic) changes in code. Therefore, we provide a comprehensive
investigation of the robustness of PTMs in code translation in this study.

In our study, we propose a novel approach CoTR (Code Translation
Model Robustness Detector), comprising two essential components:
CoTR-A and CoTR-D. CoTR-A imitates different programming styles
through program transformation, attempting to generate code snippets
to fail the model. In our study, this is referred to as an adversarial at-
tack. Specifically, CoTR-A first defines a set of program transformation
rules that are used to generate a collection of semantically equivalent
source code. CoTR-A then feeds these code snippets into the victim
model to identify the code that makes the model fail (i.e., does not pass
all the test cases) as an adversarial code snippet. The low robustness of
the model implies its sensitivity to the syntax of the input code, casting
doubts about whether these seemingly well-performing models have
2
truly learned essential code semantic features.
Different from AI security research, it is important to emphasize

that the objective of CoTR-A is not to attack but to enhance the PTMs’
performance. Consequently, CoTR-D adopts a dual-pronged strategy
by retraining the victim model. Firstly, CoTR-D augments the training
data using program transformation techniques. To mitigate the risk
of overfitting, CoTR-D computes the semantic distance between the
original data and the augmented data, selecting the sample with the
maximum distance for sampling. Although this approach effectively
enhances the model’s robustness, it may lead to a reduction in accuracy
for specific models. To tackle this concern, CoTR-D additionally adopts
a gradient-based adversarial training method. Through this dual strat-
egy, CoTR-D achieves noteworthy improvements in model robustness
without compromising performance.

We conducted a large-scale empirical study involving 12 state-of-
the-art PTMs on a real-world dataset. Our investigation reveals that
existing PTMs can achieve the superior performance in code translation
tasks. Regarding robustness, our study unfortunately indicates that
the existing PTMs are not sufficiently robust when it comes to code
translation. Specifically, our CoTR-A reduces the Pass@1 metric by at
least 17.97% (from 17.97% to 43.02%) in the Java-to-Python dataset
and by at least 14.29% (from 14.29% to 47.46%) in the Python-to-
Java dataset. Furthermore, we observed that the existing pre-training
techniques for model robustness (e.g., contrast learning [17] and adap-
tation learning [18]) are more adept at defending against token-based
attacks [11,12] but are less sensitive to the syntactic transformations
proposed in this study. Our findings also highlight the advantages of
utilizing both data augmentation and adversarial training to enhance
the robustness and generalization of code translation models.

We believe these findings are valuable for researchers and practi-
tioners engaged in the field of code translation. For researchers, they
provide valuable insights into the limitations and challenges faced
by PTMs in code translation. This understanding can guide future
research endeavors in developing more effective and reliable PTMs
tailored specifically for code translation tasks. For practitioners, our
study offers a practical solution to address the limitations of existing
PTMs in code translation. By adopting our proposed tool, practitioners
can enhance the accuracy of code translation, resulting in improved
software quality.

The contributions of our study are summarized as follows.

• We construct high-quality datasets and comprehensively eval-
uate the functional accuracy and robustness of PTMs in code
translation.

• We propose CoTR-A, which can effectively perform adversarial
attacks on PTMs through program transformation.

• We propose CoTR-D, a defense method that can achieve signif-
icant improvements in model robustness without sacrificing its
performance.

To facilitate the reproducibility of our study, we release source code,
benchmarks, and experimental data at https://github.com/NTDXYG/
COTR.

2. Preliminaries

2.1. Code translation

Code translation models take source code snippets as input and
generate corresponding code snippets in the target language. In gen-
eral, the model is trained on a labeled dataset 𝑡𝑟𝑎𝑖𝑛 = ( ,) ∶=
{
(

𝑥1, 𝑦1
)

,… ,
(

𝑥𝑁 , 𝑦𝑁
)

}, where each 𝑥𝑖 ∈  (resp. 𝑦𝑖 ∈ ) represents
a source (resp. target) code snippet. Most pre-trained code translation
models utilize the Transformer [19] architecture. The model , which
comprises an encoder and a decoder, accepts the source code snippet
𝑥 ∈  as input and produces a sequence of hidden states  (𝑥) =
ℎ (𝑥), ℎ (𝑥),… , ℎ (𝑥) as encoder’s output. The decoder then accepts the
1 2 𝑛

https://github.com/NTDXYG/COTR
https://github.com/NTDXYG/COTR
https://github.com/NTDXYG/COTR

G. Yang et al.

𝐬

n

d
i

d

g

w
m
t
c
s
o
t

l
e
i

t

t
m

a
w

e

t

T
e
t

1

d
p


Information and Software Technology 181 (2025) 107699
hidden states as well as the previously generated target code token
𝑦1∶𝑡−1 as input to generate the probability distribution over the next
target token 𝑦𝑡. This is achieved by passing the last decoder hidden state
𝑡 through a linear layer followed by a softmax activation function

𝑃𝛩𝑀

(

𝑦𝑡 ∣ 𝑦1∶𝑡−1, 𝑥
)

= sof t max
(

𝐖𝐬𝑡 + 𝐛
)

,

where 𝐖 and 𝐛 are the learnable parameters of the linear layer. The
egative log-likelihood is usually used as the loss function


(

𝑥, 𝑦;𝛩𝑀
)

= −
𝑇
∑

𝑡=1
log𝑃𝛩𝑀

(

𝑦𝑡 ∣ 𝑦1∶𝑡−1, 𝑥
)

,

where 𝑇 denotes the length of the target code sequence and 𝛩𝑀
enotes the set of parameters of . During the training process, 
s optimized to minimize the negative log-likelihood of the target code

sequence presented given the source code sequence over the labeled
ata sampled from 𝑡𝑟𝑎𝑖𝑛, i.e.,

min
𝛩𝑀

E(𝑥,𝑦)∼𝑡𝑟𝑎𝑖𝑛

[


(

𝑥, 𝑦;𝛩𝑀
)]

Please note that not all PTMs adopt the encoder–decoder structure.
For instance, GPT-like PTMs solely consist of decoders, making the step
where the encoder obtains hidden states optional.

2.2. Program transformation

Program transformation is a technique that modifies source code
without compromising its overall functionality [20], and it has found
extensive application in software engineering. The process of program
transformation begins by parsing the code into an abstract syntax tree.
Subsequently, depending on the transformation rule, the appropriate
node is identified, and the transformation is executed accordingly. In
general, program transformation can be formalized as a function 
that takes the source code 𝑥 and a set of transformation rules  as
inputs and produces a set 𝑇 of transformed code that satisfies the given
constraints , i.e., 𝑇 =  (𝑥,,).

To conduct a systematic review of the existing literature on pro-
ram transformation, we employed a rigorous methodology. Firstly, we

identified relevant keywords and conducted a comprehensive search
for papers. We then manually screened the titles and abstracts of the
papers to eliminate irrelevant ones. Additionally, we utilized academic
search engines to supplement our search by checking citation status
and exploring the list of published papers from relevant researchers.
Finally, we have curated a list of program transformation rules from
the literature (until March 2023), as presented in Table 1. These rules
are categorized into three groups: ‘Token Renaming’, ‘Statement Insert’,
and ‘Statement Exchange’. These rules can be analyzed from three
distinct aspects: semantics (S), informativeness (I), and readability (R).
Semantics refers to whether the transformed code preserves the same
functionality as the original code. Informativeness [21] pertains to

hether the transformed code is consistent with the intended infor-
ation expressed in the original code. Readability assesses whether

he transformed code aligns with the human readability of the original
ode. It is important to note that in the literature, the concept of
emantics can be understood from at least two different perspectives:
ne in the sense of formal semantics, capturing the functionality of
he code, while the other is often referred to as ‘‘naturalness’’ [22],

which treats the code as text in a natural language. In this study, we
use semantics and informativeness to refer to these two perspectives of
semantics, respectively.

Among these three types, we assert that only rules under the type of
‘Statement Exchange’ can maintain functional consistency, informative-
ness, and readability (refer to the 5th column of Table 1). On the other
hand, the remaining two types of program transformation are highly
ikely to impact at least one of these three aspects. As an illustrative
xample, let us consider the Method Name Renaming rule. This rule
nvolves modifying the method name in the code, but it may result
3
in a loss of information. Specifically, the method name often contains
valuable information about the functionality of the code from a natural
language perspective. Replacing it with a generic name such as ‘f’ could
lead to a loss of such essential information.

3. The cotr approach

The framework of CoTR is illustrated in Fig. 2, which consists of
wo major components, CoTR-A (the upper part of Fig. 2) and CoTR-D

(the lower part of Fig. 2).

3.1. Attack component: cotr-a

To assess the robustness of the pre-trained model, we first fine-
une it on a given dataset 𝑡𝑟𝑎𝑖𝑛, resulting in the creation of the victim
odel . This model maps each source code 𝑥 to its corresponding

target code 𝑦 = (𝑥). Subsequently, we evaluate the performance of
 on a designated test dataset 𝑡𝑒𝑠𝑡 = {(𝑥𝑖, 𝑇 𝐶𝑖)} to determine the
ccuracy of  in translating the source code correctly. To achieve this,
e examine whether the translated target code (𝑥) for each 𝑥 from
𝑡𝑒𝑠𝑡 successfully passes all the provided test cases (𝑇 𝐶) for 𝑥. This

valuation process is formulated as follows.

𝑷
(

, 𝑥𝑖, 𝑇 𝐶 𝑖
)

=

{

1, If (𝑥𝑖) passes all test cases 𝑇 𝐶 𝑖,

0, otherwise.

Intuitively, if the original output of  can successfully pass all
he test cases, then the output code, even after experiencing minor

perturbations to the input code, should also pass all the test cases.
herefore, in order to attack , we aim to generate an adversarial
xample 𝑥𝑎𝑑 𝑣 for a given input 𝑥𝑖, which should be sufficiently similar
o 𝑥𝑖 but results in 𝑷

(

, 𝑥𝑎𝑑 𝑣, 𝑇 𝐶𝑖
)

= 0.

Algorithm 1: Adversarial Attack Algorithm
Input: Fine-tuned Code Translation Model ;
Code Translation DataSet with Test Cases 𝑡𝑒𝑠𝑡;
Transformation Rules ;
Transformation Constraint ;
Output: Adversarial DataSet 𝑎𝑑 𝑣;

1 Initialize Candidate Code Snippets 𝑇 ← ∅;
2 Initialize Adversarial DataSet 𝑎𝑑 𝑣 ← ∅;
3 for each (𝑥, 𝑇 𝐶) ∈ 𝑡𝑒𝑠𝑡 do
4 if 𝑷 (, 𝑥,TC) == 0 then
5 𝑎𝑑 𝑣 ← 𝑎𝑑 𝑣 ∪ {𝑥};
6 break;
7 𝑇 ←  (𝑥,,)// Generate candidate code snippets
8 if 𝑇 𝑖𝑠 ∅ then
9 𝑎𝑑 𝑣 ← 𝑎𝑑 𝑣 ∪ {𝑥};
10 break;
11 𝑓 𝑙 𝑎𝑔 ← 0;
12 for each 𝑥𝑡 ∈ 𝑇 do
13 if 𝑷

(

, 𝑥𝑡,TC𝑥
)

== 0 then
14 𝑎𝑑 𝑣 ← 𝑎𝑑 𝑣 ∪ {𝑥𝑡};
15 𝑓 𝑙 𝑎𝑔 ← 1;
16 break;
17 if 𝑓 𝑙 𝑎𝑔 == 0 then
18 𝑎𝑑 𝑣 ← 𝑎𝑑 𝑣 ∪ {𝑥};
9 return 𝑎𝑑 𝑣;

Algorithm 1 provides the pseudo-code of CoTR-A to describe the
etailed attack process. The initial step of CoTR-A is to generate all
ossible adversarial code snippets 𝑇 =  (𝑥,,) for each sample in
𝑡𝑒𝑠𝑡 through program transformation. Subsequently, CoTR-A identifies

the best code snippet for the original source code by minimizing the
value of 𝑷 to obtain the adversarial example. Formally, for each source
code 𝑥 from 𝑡𝑒𝑠𝑡, we solve the following optimization problem

𝑥 = ar g min𝑷
(

, 𝑥̂, 𝑇 𝐶)
𝑎𝑑 𝑣
𝑥̂∈𝑇

𝑥

G. Yang et al.

e

a
e
v
o

Information and Software Technology 181 (2025) 107699
Table 1
Comparison of program transformation rules, where S standards for semantics, I stands for informativeness and R stands for readability.

Type Method Description Example S I R

Token

Renaming

API Renaming

[23,24]

rename an API by other API names np.add() → np.sinc() × × ×

Arguments Renaming

[7,10,23–26]

rename an augment by other words def f(size) → def f(a) ✓ × ×

Local Variable

Renaming

[7,8,10,23–33]

rename a local variable by other words

and recursively update all related

variables

number=1 → size=1 ✓ × ×

Method Name

Renaming

[7,10,12,23–

25,28,31,32]

rename a method by other words def count(a) →

def f(a)
✓ × ×

Statement

Insert

Arguments Adding

[23,24]

add an unused argument to function

definition.

def f(a) → def f(a, b) × × ✓

Dead Code Adding

[8,23,24,26–28,30–

32]

add an unreachable or unused code at a

randomly selected location

add:

if (1==0): print(0)
✓ × ×

Duplication Code

Adding [24,28,34]

duplicate a randomly selected assignment

and insert it to its next line

a=1; → a=1;a=1; ✓ ✓ ×

Filed Enhancement

Adding [24]

enhance the rigor of the code by checking

if the input of each argument is None

def f(a): → add: if a is
None: print(‘‘ERROR’’)

✓ × ✓

Plus Zero Adding

[24,28]

select an numerical assignment of

mathematical calculation and plus zero to

its value

a=1 → a=1+0 ✓ ✓ ×

Print Adding

[23,24,26,30,33]

add a print line at a randomly selected

location

add: print(1) ✓ × ×

Return Optimal

Adding [23,24]

change the return content to a variant

with the same effect

return 1 → return 0 if
(1==0) else 1

✓ × ×

TryCatch Adding

[26,30]

add a single

try{A}catch(B){C} statement

add: try: catch(): ✓ × ✓

UnrollWhiles Adding

[26]

add a randomly selected, while loop in

the target program has its loop body

unrolled exactly one step

while(A){B} →

while(A){B;while(A){B} break;}

✓ × ×

Statement

Exchange

Loop Exchange

[8,23,27,29–31,34]

replace a for loop with an equivalent

while loop or replace a while loop with

an equivalent for loop

For ⇔ While ✓ ✓ ✓

Expression Exchange

[27,29,34]

use the properties of expressions to

transform

a+=b → a=a+b ✓ ✓ ✓

Permute Exchange

[8,27,30]

swap two independent statements in a

basic block

if(a){A} else{B} →

if(!a){B} else{A}
✓ ✓ ✓

Condition Exchange

[8,23,27,29–31]

reorder the left and right parts of a

binary condition or transform True and

False by logical operations

if(a>b) → if(b<a) or

True → !False

✓ ✓ ✓

Switch/If Exchange

[8,30,34]

replace a switch statement with a if-else

statement

Switch ⇔ If/Else ✓ ✓ ✓
g
i
i
c

t
i
o

To obtain 𝑥𝑎𝑑 𝑣, we define 𝑎𝑑 𝑣 = {𝑥𝑎𝑑 𝑣 ∣ 𝑥 ∈ 𝑡𝑒𝑠𝑡}. If an adversarial
xample 𝑥𝑎𝑑 𝑣 that successfully fools the model cannot be found, the

original example 𝑥 is straightforwardly added to 𝑎𝑑 𝑣.
Step 1. Generation of Candidate Code Snippets. As mentioned in
Section 2.2, for a given source code 𝑥, we construct its candidate
code snippets using rule-based transformations. In the program analysis
stage, we employ the third-party toolkit tree-sitter.1 Regarding the
transformation rules, we initially establish two constraints, denoted
s : (1) The variant code should maintain functional consistency,
nsuring it passes all test cases as the original code does. (2) The
ariant code should also be consistent with the original code in terms
f informativeness and readability.

As presented in Table 1, considering informativeness and readabil-
ity, we exclusively generate candidates for the ‘Statement Exchange’

1 https://github.com/tree-sitter
4
category of transformation rules. It is worth noting that not all pro-
ramming languages support ‘switch’ statements (e.g., Python only
ntroduced ‘match’ statements as an alternative to ‘switch’ statements
n v3.10). Therefore, we consider the following four rules from the last
ategory, ‘Statement Exchange’, namely:

• Rule-L: Loop Exchange;
• Rule-E: Expression Exchange;
• Rule-P: Permutation Exchange;
• Rule-C: Condition Exchange.

These rules distinguish themselves from mutation operators in mu-
ation testing as they are designed to maintain the semantic, readabil-
ty, and informativeness consistency between the variant code and the
riginal code. Detailed functional descriptions and code examples for

these rules are available in Table 1.
To implement these transformation rules, we use tree-sitter to parse

the source code and extract the abstract syntax tree (AST) out of the
code. We then apply the transformation rules to AST to generate the

https://github.com/tree-sitter

G. Yang et al. Information and Software Technology 181 (2025) 107699
Fig. 2. The framework of CoTR.
Fig. 3. Illustration of Candidate Code Snippet Generation.

candidate code snippets. For Rule-L, considering the characteristics of
programming languages, we transform for loops to while loops
in Java code and vice versa. For Python code, we transform for loops
to while loops. For Rule-E, we implement the transformation of the
five operators += , -= , *= , /= and %= . For example, we rewrite
a += b to a = a + b . For Rule-P, we first extract the if-else

statement blocks from the code and then swap the order of if
and else . We also change the conditional expressions in the if
statement. We implement the transformation of logical operators && ,
& , || , | , and relational operators < , > , <= , >= , == , != .

For Rule-C, we first extract the expressions from the code and then
transform the expressions that satisfy the condition a operator b

to b operator a . For this rule, we only consider the transformation
of one operator between two different variables.

Note that these transformation rules are not mutually exclusive;
after applying one rule, others can still be utilized to transform the
source code. To improve the diversity of candidate code snippets, we
take into account transformation sequences over L, E, P, C. To ensure
the diversity of candidate code snippets while minimizing the search
space, we generate at most one code snippet for each rule. In instances
where multiple locations in the code can be transformed (e.g., multiple
occurrences of the += operator), we randomly select one for transfor-
mation. An illustration is provided in Fig. 3, where the four rules serve
as input parameters, each with a value of 0 or 1, indicating whether the
rule is used for transformation or not. We exhaustively enumerate all
strings over {𝐿, 𝐸 , 𝑃 , 𝐶}, which gives a search space where each string
denotes a transformation sequence. By applying these transformations,
we can generate adversarial attacks.

It is essential to emphasize that the use of exhaustive heuristics aims
to ensure the discovery of the most challenging adversarial examples.
5
While heuristic algorithms can reduce search costs to some extent [11],
their results may be influenced by prior assumptions and heuristic rules.
Consequently, they may generate adversarial samples that are not opti-
mal or most challenging. In contrast, the exhaustive approach traverses
all possible input variants, guaranteeing that no potential adversarial
examples are overlooked. Although the computational complexity of
this method is higher, it provides a more reliable assurance that the
generated adversarial examples possess a high attack success rate.

Step 2. Selection of Adversarial Example. This step is designed
to identify the most effective adversarial examples within the search
space, which can successfully deceive the victim model. As adversarial
samples are typically generated from inputs that can be accurately
processed by the victim model [32], we exclude inputs that the victim
model cannot process correctly. For a given dataset 𝑡𝑒𝑠𝑡, we initially
verify whether the code translated by the victim model  can pass all
the test cases. If it fails to do so, we add this code to 𝑎𝑑 𝑣 (Lines 4–6).

Next, CoTR-A generates all variant code snippets as candidates by
exhaustively considering all possible combinations of the four trans-
formation rules and verifying whether the generated candidates are
empty. If the candidate set turns out to be empty, we include the
original example in 𝑎𝑑 𝑣 (Lines 7–10). As we adopt a rule-based ap-
proach, not all code will be successfully transformed. Therefore, the
time cost of using the search-based approach is deemed acceptable.
For the generated candidates, we traverse through them to identify the
adversarial example that can effectively attack the victim model (Lines
11–16). Finally, in the event that no candidate can successfully attack
the victim model, we add the original example to 𝑎𝑑 𝑣 (Lines 17–18).

3.2. Defense component: cotr-d

As mentioned previously, it is crucial for adversarial code to retain
functionality while maintaining the same level of informativeness and
readability. In order to augment the training dataset, we require source-
target code snippet pairs where the program transformation rule is
applied to both the source and target code. To ensure the quality of
the augmented data samples, constructing test cases for each sample
becomes necessary. However, this process can be time-consuming,
laborious, and even error-prone. Additionally, adding all variants to
the augmentation dataset significantly increases the risk of model
overfitting.

Data Augmentation. In light of this, we adopt a distinct data
augmentation strategy in CoTR-D. Specifically, we employ a semantic

G. Yang et al.

s

d

c

t

S
r

s

t
T

b

w

m

t
M
o

t
c

d
t
t
o

d

A
s
n
i

u
a

t
m
c
A
e
o

Information and Software Technology 181 (2025) 107699
distance-based sampling method which can construct the augmented
dataset more efficiently. First, for each source-target code pair (𝑥, 𝑦) in
the training set, we apply the transformation rules to generate a variant
pair (𝑥′, 𝑦′). Then, we leverage the capabilities of CodeBERT [35] as a
emantic feature extractor to calculate the semantic distance between

the original code and its variant. This enables us to select the most
iverse variants for augmentation. This process can be formalized as

𝑎𝑢𝑔 ∼ max 𝑥′∈ (𝑥,,)
𝑦′∈ (𝑦,,)

Distance
[

𝑓 (𝑥, 𝑥′, 𝑦, 𝑦′)]

where 𝑓 (𝑥, 𝑥′, 𝑦, 𝑦′) = 𝐶 𝑜𝑑 𝑒𝐵 𝐸 𝑅𝑇 (𝑥, 𝑥′) + 𝐶 𝑜𝑑 𝑒𝐵 𝐸 𝑅𝑇 (𝑦, 𝑦′).
We proceed to dataset augmentation 𝑎𝑢𝑔 by selecting the variant

code snippet with the largest semantic distance from the 𝑡𝑟𝑎𝑖𝑛. We
alculate this distance by computing the cosine distance between the

original source code and its variants, and also between the original
arget code and its variants. The sum of the two distance values is

finally used. By adopting this approach, we effectively enhance the
diversity of the training set while mitigating the risk of overfitting.

Adversarial Training. It is observed in our empirical study (cf.
ection 5.2) that data augmentation techniques have the potential to
educe the model’s accuracy [10,12,36]. To address this issue, we

adopt a noisy-enhanced adversarial training method N-PGD based on
Projected Gradient Descent [37].

In general, the PGD algorithm operates by iteratively perturbing the
input data 𝑥 in the direction that maximizes the loss function, while en-
uring that the perturbations remain within a specified epsilon bound.

This iterative process is repeated for a fixed number of iterations, and
he model parameters are updated during training based on the results.
he general principle of PGD can be summarized by

min
𝛩𝑀

E(𝑥,𝑦)∼𝑔 𝑟𝑎
[

max
𝛥𝑥∈𝛺


(

𝑥 + 𝛥𝑥, 𝑦;𝛩𝑀
)

]

where 𝛥𝑥 represents the perturbation applied to 𝑥, which is computed
y the learning rate and the norm gradient of the 𝑥. 𝛺 denotes the

specified epsilon bound. The set 𝑔 𝑟𝑎 refers to the gradient-based
augmented dataset.

4. Experiments

To evaluate the effectiveness and benefits of our proposed approach,
e mainly investigate the following two research questions (RQs):
RQ1: How robust are existing pre-trained models under CoTR-

A?
In this RQ, we investigate the performance of existing pre-trained

odels on code translation tasks to discuss the feasibility of applying
these models to code translation tasks. We then evaluate the robustness
of existing pre-trained models using CoTR-A and other token-based
attack methods to study the robustness of these models to different
perturbations. By comparing the impact of different attack methods
on existing pre-trained models, we can evaluate the effectiveness of
CoTR-A. Finally, we conduct a human study to discuss the differences
of adversarial examples generated by CoTR-A and other token-based
attack methods.

RQ2: How effective is CoTR-D in improving the robustness of
existing PTMs for code translation?

In this RQ, we evaluate the effectiveness of CoTR-D in improving
he robustness of existing pre-trained models for code translation tasks.
eanwhile, we evaluate the impact of different components in CoTR-D

n improving the robustness of existing pre-trained models.

4.1. Datasets

To assess the effectiveness of CoTR, we employ AVATAR, a compi-
lation of the Java/Python dataset obtained from competitive program-
ming sites, online platforms, and open-source repositories [38]. In order
o construct clean and high-quality datasets, as well as to facilitate the
reation of test cases, we design four heuristic rules:
6
Table 2
Length statistics of samples in the corpus.

Language Avg. Mode. Median. <128 <256

Java 100 79 90 72.5% 100%
Python 95 62 86 76.0% 100%

H1 Extract function-level code and perform syntax compilation check.

H2 Remove code with input tokens such as ‘input()’, ‘args *’, etc.

H3 Remove duplicate code.

H4 Remove code with inconsistent method names for better readabil-
ity.

After applying these heuristic rules, we obtain a set of 3000 pairs of
ata samples, consisting of 2600 pairs in the training set, 200 pairs in
he validation set, and 200 pairs in the test set. To ensure the quality of
he test cases, we employ 10 postgraduate students, each has 3–5 years
f programming experience. Each student is tasked to construct test

cases for the samples in the test set, and each sample is evaluated using
five test cases. To enhance the coverage of test cases, we implement a
cross-checking process, wherein each student writes test cases for 20
code snippets and verifies their work with others. Additionally, stu-
ents are permitted to search for relevant information and unfamiliar

concepts on the Internet. To prevent fatigue and maintain accuracy,
we impose a limit on each student to write a maximum of 50 test cases
within a half-day. Table 2 presents the statistical details of the Java and
Python code in our dataset.

4.2. Baseline attack methods

In this study, we propose a novel adversarial attack method, CoTR-
, a syntactic transformation-based attack method that satisfies the
emantics, informativeness and readability. To evaluate the effective-
ess of CoTR-A, we compare it with two token-based attack methods,
.e., RADAR [12] and ALERT [11].

RADAR considers semantic equivalence, typos and visual similarity,
as simple typos are known to be significant in code refactoring. ALERT
tilizes CodeBERT and GraphCodeBERT to generate natural candidates
nd employs a combination of greedy search and genetic algorithm for

optimization.
It is worth mentioning that CoTR-A can be compatible with existing

oken-based methods and can be combined with them to provide a
ore comprehensive evaluation of PTMs’ robustness. Therefore, we

onsider the attack method named ‘‘Combine’’, which combines CoTR-
with these two token-based attack methods to generate adversarial

xamples for evaluating the performance impact of PTMs as the number
f rules increases.

4.3. Evaluation metrics

In this study, we consider different performance metrics to evaluate
the code translation models, including

• BLEU [39], which is widely used to measure the similarity between
the translated and the reference code based on the 𝑛-gram precision.

• Code-BLEU [40], an extension of BLEU which considers keywords,
syntax, and data flow of the translated code.

• EM, which measures the percentage of cases where the translated
code exactly matches the reference code.

• Code-Exec [41], which examines the syntax of code to guarantee
that there are no syntax errors, type errors, or other errors that could
hinder the execution of the code.

G. Yang et al.

s
o
v
t
s

c

c

a
g

C
t
C

r
t

o
s
a
‘
o
a
c

w
u
C

Information and Software Technology 181 (2025) 107699
Table 3
Hyperparameters and their value.

Hyperparameter Value

Optimizer AdamW (BAdamW)
Random Seed 1234
Learning Rate 5e−5
Batch size 16
Beam size 10
Max input length 350
Max output length 350

• P𝑠@1 (Pass@1) [42], which is the percentage of the translated code
that passes the test cases, i.e., the code which is deemed to be
functionally correct.

For the robustness of the model, we consider two specific metrics.

• RP𝑠@1 (Robust Pass𝑠@1) [31], which is the percentage of the
translated code that passes the test cases after the adversarial attack.

• RD𝑠@1 (Robust Drop𝑠@1) [31], which means the relative perfor-
mance change between P𝑠@1 and RP𝑠@1, defined as

RD𝑠@1 = 1 − Robust Pass𝑠@1
Pass@1

4.4. Victim pre-trained models

We select ten widely used pre-trained models specialized for code
translation tasks. These models can be classified into three groups
based on their architecture: Encoder-only (Enc), Decoder-only (Dec),
and Encoder-Decoder (Enc-Dec) models. In addition, we consider large
models with billions of parameters which are classified as large lan-
guage models (LLMs).

• Enc: In our study, we consider three representative Encoder-only
models, including CodeBERT [35], GraphCodeBERT [43], and Con-
traBERT [17].

• Dec: We consider three representative Decoder-only models, includ-
ing CodeGPT [18], CodeGPT-adapter [18], and CodeGen [44].

• Enc-Dec: We consider four representative Encoder-Decoder mod-
els, including NatGen [27], CodeT5 [16], PLBART [45], and UniX-
coder [46].

• LLM: We also consider the two widely-used large language models,
CodeLlama [47] and DeepSeek-Coder [48].

All pre-trained models and corresponding tokenizers are loaded
from the official repository Huggingface.2 To ensure a fair comparison,
we maintain consistent hyper-parameters for all models throughout our
tudy. In light of the computational resources, we opted for the BAdam
ptimizer [49] for two LLMs to fine tune. The BAdam optimizer is a
ariant of the Adam optimizer that can reduce the memory consump-
ion of the model. The hyper-parameters and their respective values are
ummarized in Table 3.

Our implementation is based on PyTorch 1.8, and the experiments
are conducted on a machine with an Intel(R) Xeon(R) Silver 4210 CPU
and the GeForce RTX 3090 GPU.

5. Results

5.1. RQ1: How robust are existing pre-trained models under cotr-a?

5.1.1. Performance comparison
Table 4 presents the results, including evaluation metrics and model

parameters, for comparative analysis. The best result is highlighted in

2 https://huggingface.co/models
 3

7
bold, and the second-best result is underlined. Our findings indicate
that not all PTMs can effectively translate high-quality code. Specifi-
ally, NatGen and CodeT5 demonstrate significantly better performance

compared to other models, achieving a pass@1 metric of more than 70;
in contrast, CodeBERT and ContraBERT exhibit inferior performance,
with pass@1 metrics of less than 40. Meanwhile, LLMs like CodeLlama
and DeepSeek-Coder achieve the best performance, with pass@1 met-
rics of 80.50 and 79.50, respectively. This result is consistent with the
findings of Chen et al. [42], who reported that LLMs outperform other
PTMs in code translation tasks.

Evaluation metrics. Our investigation reveals that the existing
automatic evaluation metrics may not faithfully assess the functional
correctness of translated code. For instance, the BLEU and CodeBLEU
metrics of NatGen are higher than those of CodeT5, but the Pass@1
metric of its performance is lower. This phenomenon is illustrated in
Fig. 1, where translated code may resemble the reference code but fail
ompilation or some test cases.

5.1.2. Robustness comparison
In our empirical study (Table 5), we present metrics (such as RP𝑠@1

nd RD𝑠@1). Higher RP𝑠@1 values or lower RD𝑠@1 values indicate
reater model robustness. The best results are highlighted in boldface.
Robustness degradation. We evaluate model robustness using the

RD𝑠@1 metric, where a higher RD𝑠@1 value indicates lower robust-
ness. For example, the CodeT5 model achieves a P𝑠@1 value of 76%
when translating Java to Python (cf. Table 4). However, under the
oTR-A attack, RP𝑠@1 decreases to 60%, and the RD𝑠@1 increases
o 21.05%, indicating a significant 21.05% performance reduction.
omparing Tables 4 and 5, we observe performance degradation across

all PTMs, with RD𝑠@1 values ranging from 14.29% to 47.46%. We con-
clude that these models are generally not robust for code translation.
Among the different models, LLMs like CodeLlama and DeepSeek-Coder
exhibit the best robustness performance (their RD𝑠@1 value can also
be maintained at around 11.32% to 16.13% under CoTR-A’s attack).
Conversely, the Encoder-only models show the least robustness.

Attack effectiveness. Table 5 shows that CoTR-A generally out-
performs RADAR and ALERT in terms of attack effectiveness, except
for PLBART and GraphCodeBERT. The vulnerability of the Encoder-
only model to token-based attacks is noteworthy, likely due to the
andom initialization of its decoder parameters and the lack of pre-
raining. Additionally, Shi et al. [50] suggest that lower model layers

tend to concentrate on lexical properties, while higher layers focus
n syntactic and semantic properties. This finding may explain the
uperior performance of syntax-based attacks compared to token-based
ttacks. Furthermore, it is worth highlighting that combined attacks
Combine’ can have a considerably greater impact on the performance
f PTMs. By leveraging the strengths of both CoTR-A and token-based
ttack algorithms, the combined approach poses a more significant
hallenge.
Pre-training techniques. We also evaluate the impact of different

pre-training techniques on model robustness. NatGen incorporates a
de-naturalizing pre-training task, focusing on the naturalness of code,
which leads to performance that outperforms CodeT5. ContraBERT
incorporates contrast learning, leading to better RD@1 results but

orse RP𝑠@1 results compared to GraphCodeBERT. CodeGPT-adapter
tilizes adapter learning and demonstrates improved performance over
odeGPT. From Table 5, we observe that these pre-training techniques

may be effective in defending against token-based attacks but are less
effective against syntax-based attacks like CoTR-A.

5.1.3. Human study
To evaluate the quality of adversarial code, we further conduct a

human evaluation study. We collect code snippets that can be attacked
by RADAR, ALERT, and CoTR-A in the above experiments, resulting
in a total of 159 pairs. We invite five graduated students who have
∼5 years of experience in Java and Python to participate in the

https://huggingface.co/models

G. Yang et al.

o
o
i
q

Information and Software Technology 181 (2025) 107699
Table 4
Comparison results between different PTMs.

Type Model Parameters Java-to-Python Python-to-Java

𝐵 𝐿𝐸 𝑈 𝐶 𝑜𝑑 𝑒-𝐵 𝐿𝐸 𝑈 𝐸 𝑀 𝐶 𝑜𝑑 𝑒-𝐸 𝑥𝑒𝑐 𝑃𝑠@1 𝐵 𝐿𝐸 𝑈 𝐶 𝑜𝑑 𝑒-𝐵 𝐿𝐸 𝑈 𝐸 𝑀 𝐶 𝑜𝑑 𝑒-𝐸 𝑥𝑒𝑐 𝑃𝑠@1

Enc-Dec

NatGen 223M 84.36 80.57 27.00 97.50 73.50 82.82 82.08 18.00 84.50 71.00
CodeT5 223M 83.30 79.52 27.00 97.50 76.00 83.11 81.81 13.00 84.00 70.00
PLBART 139M 83.14 79.07 23.50 89.00 70.00 60.38 67.69 6.00 37.00 22.50
UniXcoder 127M 81.63 78.58 24.00 90.50 64.00 81.38 80.59 9.50 74.50 58.00

Enc
CodeBERT 173M 75.12 71.99 10.50 66.00 40.50 76.03 74.87 5.00 45.00 29.50
GraphCodeBERT 173M 76.33 73.63 12.00 73.50 43.00 77.45 75.70 10.00 50.00 36.50
ContraBERT 173M 75.47 72.70 9.50 72.50 38.00 75.87 74.35 9.00 38.50 29.50

Dec
CodeGPT 124M 80.89 76.72 19.50 85.00 57.50 76.91 76.04 17.00 67.00 49.50
CodeGPT-adapter 124M 82.18 78.20 27.50 92.00 67.00 79.07 77.98 16.50 72.50 57.00
CodeGen 355M 81.35 78.09 17.00 90.50 59.50 79.50 79.03 15.00 68.50 51.50

LLM CodeLlama 7B 88.24 85.13 33.00 99.00 80.50 85.74 84.97 25.00 90.00 78.50
DeepSeek-Coder 6.7B 87.12 83.98 31.50 98.50 79.50 84.50 83.87 24.50 89.50 77.50
Table 5
Comparison results between different attack methods.

Model Attack Java-to-Python Python-to-Java Model Attack Java-to-Python Python-to-Java

𝑅𝑃 𝑠@1 𝑅𝐷𝑠@1 𝑅𝑃 𝑠@1 𝑅𝐷𝑠@1 𝑅𝑃 𝑠@1 𝑅𝐷𝑠@1 𝑅𝑃 𝑠@1 𝑅𝐷𝑠@1

NatGen

RADAR 70.50 4.08 68.50 3.52

CodeBERT

RADAR 28.00 30.86 18.50 37.29
ALERT 68.50 6.80 67.00 5.63 ALERT 29.50 27.16 22.00 25.42
CoTR-A 59.50 19.05 60.00 15.49 CoTR-A 24.50 39.51 14.50 47.46
Combine 57.00 22.45 59.00 16.90 Combine 21.00 48.15 12.00 59.32

CodeT5

RADAR 71.00 6.58 62.50 9.29

GraphCodeBERT

RADAR 22.00 48.84 24.50 32.88
ALERT 68.50 9.87 61.50 12.14 ALERT 27.50 36.05 26.00 28.77
CoTR-A 60.00 21.05 60.00 14.29 CoTR-A 24.50 43.02 26.00 28.77
Combine 55.50 26.97 56.00 20.00 Combine 15.00 65.12 17.00 53.42

PLBART

RADAR 56.00 20.00 11.50 48.89

ContraBERT

RADAR 24.00 36.84 20.50 30.44
ALERT 55.50 20.71 12.00 46.67 ALERT 30.50 19.74 19.50 33.90
CoTR-A 47.00 32.86 17.00 24.44 CoTR-A 22.50 40.79 18.50 37.29
Combine 42.00 40.00 11.00 51.11 Combine 18.50 51.32 13.50 54.24

UniXcoder

RADAR 56.00 12.50 46.50 19.83

CodeGPT

RADAR 44.50 22.61 39.50 20.20
ALERT 56.50 11.72 49.00 15.52 ALERT 44.50 22.61 38.00 23.23
CoTR-A 52.50 17.97 40.50 30.17 CoTR-A 36.00 37.39 36.50 26.26
Combine 46.50 27.34 34.50 40.52 Combine 30.50 46.96 33.00 33.33

CodeLlama

RADAR 75.00 6.83 71.00 9.55

CodeGPT-adapter

RADAR 62.50 6.72 51.50 9.65
ALERT 75.00 6.83 72.00 8.28 ALERT 60.50 9.70 52.50 7.89
CoTR-A 71.00 11.80 68.00 13.38 CoTR-A 45.50 32.09 40.00 29.82
Combine 67.00 16.77 65.50 16.56 Combine 40.50 39.55 34.00 40.35

DeepSeek-Coder

RADAR 75.00 5.66 70.50 9.03

CodeGen

RADAR 54.50 8.40 47.50 7.77
ALERT 72.00 9.43 71.00 8.39 ALERT 55.50 6.72 48.50 5.83
CoTR-A 70.50 11.32 65.00 16.13 CoTR-A 45.00 24.37 37.50 27.18
Combine 65.00 18.24 62.00 20.00 Combine 41.50 30.25 32.00 37.86
a
W
p
t
r
t

Table 6
Results of our human study.

Approach Informativeness Readability

RADAR 3.25 3.47
ALERT 3.45 3.50
CoTR-A 3.64 3.55

evaluation.
To conduct the evaluation, we generate a questionnaire (shown in

Fig. 4) for each code snippet and ask each participant to score the infor-
mativeness and readability of three adversarial examples generated by
RADAR, ALERT, and CoTR-A. The scores range from 0 to 4, with higher
scores indicating better quality. To ensure a fair comparison, the source
f the adversarial code is hidden from the participants, and the order
f the questionnaires is randomized. The workload of each participant
s restricted, not exceeding 50 code snippets in half a day, to ensure the
uality of evaluation.
8
The results of the human evaluation study are presented in Table 6,
which shows the average scores given by the participants for each
dversarial code snippet in terms of informativeness and readability.
e observe that CoTR-A outperforms RADAR and ALERT on both as-

ects, with an improvement of 0.39 and 0.08 respectively. This suggests
hat CoTR-A generates adversarial code that is more informative and
eadable than those generated by RADAR and ALERT, further verifying
he superiority of our approach.

Summary of RQ1

(1) The empirical study reveals that the existing PTMs are gen-
erally not robust for code translation tasks. (2) The syntactic
transformation-based attack method CoTR-A can outperform
token-based attacking methods on most models.

G. Yang et al. Information and Software Technology 181 (2025) 107699
Fig. 4. Sample questionnaire used in the human evaluation.
Table 7
Comparison results between different defense methods in the Java-to-Python dataset.

Type Model 𝑃𝑠@1 𝑅𝑃 𝑠@1 𝑅𝐷𝑠@1

Original DA AT CoTR-D Original DA AT CoTR-D Original DA AT CoTR-D

Enc-Dec

NatGen 73.50 74.00 80.50 79.50 59.50 70.50 69.50 75.00 19.50 4.73 14.29 5.66
CodeT5 76.00 69.50 77.50 74.50 60.00 69.00 66.50 74.00 21.05 0.72 14.19 0.67
PLBART 70.00 51.50 69.50 68.00 47.00 50.00 56.00 65.50 32.86 2.91 19.42 3.68
UniXocder 64.00 69.00 71.50 69.00 52.50 67.50 66.00 68.50 17.97 2.17 7.69 0.72

Enc
CodeBERT 40.50 43.00 47.50 43.50 24.50 39.00 40.00 40.00 39.51 9.30 15.79 8.75
GraphCodeBERT 43.00 41.50 48.50 44.50 24.50 36.50 39.00 40.50 43.02 12.05 19.59 8.99
ContraBERT 38.00 42.50 46.00 48.50 22.50 40.00 35.00 42.00 40.79 5.88 23.91 15.48

Dec
CodeGPT 57.50 58.00 53.50 61.50 36.00 53.50 41.50 55.50 37.39 7.76 22.43 9.76
CodeGPT-adapter 67.00 63.50 61.50 67.50 45.50 61.00 46.00 64.00 32.09 3.94 25.20 5.19
CodeGen 59.50 67.00 61.00 67.00 45.00 66.00 57.00 66.00 24.37 1.49 6.56 1.49

LLM CodeLlama 80.50 82.00 83.50 85.50 71.00 78.50 75.00 84.50 11.80 5.49 10.18 1.17
DeepSeek-Coder 79.50 83.50 83.00 86.00 70.50 82.50 81.00 84.00 11.32 1.20 2.41 2.33
Table 8
Comparison results between different defense methods in the Python-to-Java dataset.

Type Model 𝑃𝑠@1 𝑅𝑃 𝑠@1 𝑅𝐷𝑠@1

Original DA AT CoTR-D Original DA AT CoTR-D Original DA AT CoTR-D

Enc-Dec

NatGen 71.00 73.00 72.00 73.00 60.00 66.50 68.00 67.50 15.49 8.90 5.56 7.53
CodeT5 70.00 61.50 72.50 71.00 60.00 58.00 67.00 66.50 14.29 5.69 7.59 6.34
PLBART 22.50 44.00 16.50 56.50 17.00 41.50 15.50 55.00 24.44 5.68 6.06 2.65
UniXocder 58.00 63.50 55.00 66.50 40.50 56.50 47.50 58.00 30.17 11.02 13.64 12.78

Enc
CodeBERT 29.50 32.00 32.00 36.00 15.50 31.00 27.00 33.00 47.46 3.13 15.63 8.33
GraphCodeBERT 36.50 43.50 33.00 41.00 26.00 39.50 29.00 40.00 28.77 9.20 12.12 2.44
ContraBERT 29.50 38.50 36.00 36.50 18.50 38.50 33.50 36.00 37.29 0.00 6.94 1.37

Dec
CodeGPT 49.50 47.50 49.50 50.00 36.50 43.00 44.50 45.00 26.26 9.47 10.10 10.00
CodeGPT-adapter 57.00 51.50 55.00 57.00 40.00 47.50 50.50 51.00 29.82 7.77 8.18 10.53
CodeGen 51.50 54.00 56.50 60.50 37.50 50.50 49.00 57.00 27.18 6.48 13.27 5.79

LLM CodeLlama 78.50 80.00 81.00 82.00 68.00 75.50 78.00 79.50 13.38 5.63 3.70 3.05
DeepSeek-Coder 77.50 79.00 80.00 81.50 65.00 76.00 79.00 80.00 16.13 3.80 1.25 1.84
5.2. RQ2: How effective is cotr-d in improving the robustness of existing
PTMs for code translation?

To assess the impact of CoTR-D on enhancing the robustness of
PTMs for code translation, we conducted a comparison for different

models in terms of the Pass@1, RP𝑠@1, and RD𝑠@1 metrics. These

9
models include the original model without any defense mechanism, the
model with data augmentation, the model with adversarial training,
and the model with our proposed CoTR-D method. The experimental
results for the Python to Java translation task can be found in Table 7,
while the results for the Java to Python translation task are presented

in Table 8.

G. Yang et al.

o

o
v

i

f
t

o
m
p
n
t

g
e
w

s
m

t

l

s

Information and Software Technology 181 (2025) 107699
Fig. 5. Dimensional distribution of original and augmentation data.

Data augmentation (DA). DA has demonstrated effectiveness in
enhancing model robustness; however, it may not be adequate to guar-
antee optimal performance. As observed in the results, DA can provide
an advantage in terms of the RD𝑠@1 metric, indicating improved
robustness. However, there could be a potential degradation in the
P𝑠@1 metric, signifying reduced performance. This phenomenon can
be attributed to certain models excessively emphasizing the augmented
data during the fine-tuning process, which can be understood from the
perspective of data distribution.

DA is effective in improving model robustness, but it may not
be sufficient to ensure its performance. As seen in the results, DA is
able to show an advantage in the RD𝑠@1 metric, but there may be a
performance degradation in the P𝑠@1 metric. The reason is that some
f the models are overly about the augmented data part in the fine-

tuning process, which can be explained from the perspective of data
distribution. Indeed we analyze the distribution relationship between
the original and augmented data by visualizing the semantic feature
representations using CodeBERT. We apply PCA [51] to obtain graphs
f the different datasets. We map each sample into a 512-dimension
ector through CodeBERT and the mean-pooling operation, and then

project the vector into a two-dimensional plane using PCA, as shown
n Fig. 5.

The results of the data distribution analysis are shown in Fig. 5.
From the distributions of the original and augmented datasets, We can
see that they are very similar. The slight difference lies in, for instance,
or the distribution of the python dataset, the original data is skew
oward the upper part of the semantic space, while the enhanced data

is skew toward the lower part. This indicates that the data enhance-
ment method successfully maintains the original data distribution and
expands it accordingly.

Adversarial training (AT). AT has demonstrated effectiveness in
enhancing model performance; however, it is often less robust than
data augmentation (DA) in terms of improving model robustness. As
bserved in the results, AT can provide an advantage in the P𝑠@1
etric, indicating improved performance. However, there could be a
otential degradation in the RD𝑠@1 metric, signifying reduced robust-
ess. This finding suggests that gradient-based AT is useful in improving
he model’s performance, but it may not be sufficient on its own.

Our proposed CoTR-D approach combines the strengths of both DA
and AT techniques to improve the robustness and performance of pre-
trained models (PTMs) in code translation tasks. By leveraging DA to
enerate diverse training data and AT to train models on adversarial
xamples, CoTR-D ensures that the model’s performance remains stable
hile significantly enhancing its robustness against various types of

attacks. For instance, the RD𝑠@1 values for most of the models are kept
within 10%, while their P𝑠@1 and RP𝑠@1 values are better than the
original models.
10
Table 9
Assessing the Robustness of LLMs for Code Translation.

Task Model Pass@1 RP𝑠@1 RD𝑠@1

Java-to-Python GPT-3.5-turbo 87.50 80.50 8.00
GPT-4o 90.50 83.00 8.29

Python-to-Java GPT-3.5-turbo 79.50 56.00 29.56
GPT-4o 85.50 70.00 18.13

Summary of RQ2

Employing data augmentation or adversarial training tech-
niques alone may damage the model’s performance or ro-
bustness. However, our proposed CoTR-D approach effectively
combines these two techniques, resulting in improved model
robustness without sacrificing the translation accuracy.

6. Discussion

6.1. Robustness of larger models

Although we have incorporated two open-source large models in
our experiments, the validation of CoTR-D on larger models is limited
by hardware resource constraints and the closed-source nature of some
models. However, we aim to explore the robustness of CoTR-A by
validating it on larger models.

We note that in recent years, the size of PTMs is exploding. As the
ize of language models and training data continue to increase, larger
odels demonstrate various emergent abilities [52]. One such ability

is zero-shot learning, which allows models to answer within a specific
instruction or prompt [53]. In particular, LLMs have achieved excellent
performance and demonstrated promising potential on code translation
tasks [42]. To further verify the robustness of LLMs and the effective-
ness of our attack method, we discuss the zero-shot performance of
GPT-3.5-turbo.3 and GPT-4o4

The final results can be found in Table 9. We find that GPT’s perfor-
mance is strong in zero-shot scenarios and outperforms both CodeLlama
and DeepSeek-Coder with supervised learning, but the robustness issue
still exists for both GPT-3.5-turbo and GPT-4o. The results show that
he robustness of LLMs is still a challenge in code translation tasks. We

believe that our proposed CoTR-A can be applied to larger models to
enhance their robustness in code translation tasks.

6.2. Threats to validity

Threats to internal validity. Firstly, we mitigate implementation
errors by conducting thorough checks on our implementation and uti-
izing mature libraries. Additionally, we have ensured the functionality

of the variant code generated by CoTR-A by test cases. Secondly, to
ensure a comprehensive evaluation of different model types, we have
chosen ten state-of-the-art models by covering three diverse types of
models.

While our experiments included local versions of CodeLlama and
DeepSeek-Coder, they represent smaller variants of currently available
models. The rapid advancement in language models means that signif-
icantly larger models, such as Llama3 (70B, 405B) [54] and DeepSeek
R1 [55], could potentially yield different results. Furthermore, many
tate-of-the-art LLMs (including GPT-3.5-turbo and GPT-4) are closed-

source commercial models, making fine-tuning experiments impossible.
This limitation is particularly noticeable given the trend towards using
these proprietary models in industry.

3 https://platform.openai.com/docs/models/#gpt-3-5-turbo
4 https://platform.openai.com/docs/models/#gpt-4o

https://platform.openai.com/docs/models/#gpt-3-5-turbo
https://platform.openai.com/docs/models/#gpt-4o

G. Yang et al.

c
w
c
l
c

i
f

d
p

p
A
a
f
F
o

s
C
A

c

a
R

s

s
s
p
s
f

(

a

w

m

Y
s

c
s
f
f
g
n
t

m
p
m

c
d

r
C
n
P

w

f
s

t

Information and Software Technology 181 (2025) 107699
Future research directions include evaluating our approach on these
larger, more resource-intensive models to provide a more comprehen-
sive understanding of robustness across different model scales.

Threats to external validity. Our dataset is derived from code
ompetitions, and thus may not fully reflect the complexity of real-
orld scenarios. However, it provides valuable initial insights into the

hallenges of robust code translation. Importantly, our approach is
anguage-independent, and the proposed enhancements can be appli-
able to different programming languages.

Additionally, our study is limited to method-level code translation,
which, according to the survey [56], is consistent with most existing
datasets in literature. However, it excludes important object-oriented
programming concepts such as inheritance hierarchies, external library
nteractions and encapsulation patterns. This constraint may impact our
indings’ generalizability, particularly when considering more complex

software architectures and systems.
In future research, we plan to expand our study to include more

iverse and complex programs to validate the effectiveness of the
roposed enhancements on a larger scale.
Threats to construct validity. Performance measure selection is

the main construct threat. To mitigate this, we selected five widely used
erformance measures to evaluate the translation quality of our models.
dditionally, to assess the robustness of our models against adversarial
ttacks, we introduce two specific metrics, RP𝑠@1 and RD𝑠@1, which
ocus on the success rate and diversity of the attacks, respectively.
urthermore, we conducted a human study to analyze the quality of
ur generated adversarial code.

7. Related work

7.1. Code translation

Early studies utilized rule templates or statistical methods to per-
form translations between different programming languages. For in-
tance, phrase-based models were employed to translate code from
to Java or from Python2 to Python3 [57,58]. In a later study,
n et al. [59] proposed a rule-based approach that inferred syntactic

transformation rules and API mappings to automatically translate Java
ode to Swift. Zhong et al. [60] explored the use of Application Pro-

gramming Interfaces (APIs) in the context of code translation. However,
these approaches are typically limited to a few specific language pairs
and often require the creation of parallel datasets either manually or
through rule-based tools.

In recent years, attention has shifted towards neural network based
pproaches (in particular, pre-trained models) for code translation.
oziere et al. [3] proposed TransCoder, an unsupervised pre-trained

model based on unsupervised machine translation. Roziere et al. [61]
howed that augmenting TransCoder with de-obfuscated targets can

significantly improve performance. Liu et al. [5] proposed SDA-Trans, a
yntax and domain-aware model for program translation. Meanwhile,
upervised approaches have also proven successful, and the ten code
re-training models mentioned in this paper have all achieved impres-
ive results when used for code translation as a downstream task after
ine-tuning.

7.2. Adversarial attack and defense on code-related models

The robustness of neural network models has been extensively
studied, particularly in image classification tasks. However, there is
also a growing body of research focusing on code-related tasks, such
as source code classification (Code↦Label) [34], code summarization
Code↦NL) [10], and code generation task (NL↦Code) [12,31].

Adversarial attacks on code can manifest in two forms: token-based
ttacks and syntax-based attacks. Token-based attacks predominantly

focus on code identifiers and manipulate the model by replacing tokens
ith equivalent semantics. For instance, Zhang et al. [7] proposed
11
MHM, which utilizes Metropolis–Hastings sampling-based identifier
renaming. Zeng et al. [9] employed a wide range of NLP-based adver-
sarial attack methods to evaluate pre-trained models and discovered
that random attack methods can outperform carefully designed adver-
sarial attack methods in most cases. Recent research has increasingly
emphasized addressing the naturalness aspect of adversarial examples.
Yang et al. [11] proposed a naturalness-aware attack called ALERT,
which generates multiple natural candidates using GraphCodeBERT
and CodeBERT. Zhou et al. [10] proposed ACCENT, which generates

ultiple natural candidates using the word2vec. Zhang et al. [32]
introduced CARROT, an optimization-based attack technique that as-
sesses and improves the robustness of deep program processing models.

ang et al. [12] proposed RADAR, which generates semantic and visual
imilar adversarial examples for code generation. Jha and Reddy [25]

proposed CodeAttack, which finds the most vulnerable tokens and then
substitutes these vulnerable tokens to generate adversarial examples.

Syntax-based attacks are primarily concerned with the syntax of the
ode and manipulate the model through transformations that preserve
yntactic equivalence. Pour et al. [23] introduced a search-based testing
ramework for deep neural networks of source code embedding. Their
ramework focused on ‘‘for-loop enhance’’ and ‘‘if-loop enhance’’ to tar-
et code syntax. They applied this framework to tasks such as method
ame prediction, code captioning, code search, and code documenta-
ion generation. Rabin et al. [8] conducted an evaluation of multiple

syntactic transformations on code search, code summarization, and
code analogies. However, their study did not consider combinations of
these transformations.

Adversarial defense on code models can be categorized as either
active or passive. Active defense approaches involve re-training models
with adversarial examples to enhance their robustness. For instance,
Zhang et al. [7] proposed adversarial training as an active defense

ethod for code translation tasks. In contrast, passive defense ap-
roaches aim to restore model performance without re-training or
odifying the model. Zhou et al. [10] introduced a lightweight ad-

versarial training method called the mask training algorithm. Yang
et al. [12] also proposed a passive defense approach for code generation
tasks through method name generation.

In contrast to previous work, we focus on program transforma-
tion based attacks instead of token-based attacks. Additionally, we
investigate the impact of combining different program transformation
methods, providing insights into the factors that contribute to the non-
robustness of existing pre-trained models. Furthermore, we explore and
employ a variety of defensive approaches to enhance model robustness
and generalization in the face of adversarial attacks. Our study aims to
ontribute to a comprehensive understanding of the vulnerabilities and
efenses in the context of code translation tasks.

8. Conclusion

In this study, we have conducted a thorough investigation of the
obustness of pre-trained models in code translation tasks. We present
oTR, a novel approach that aims to assess and enhance the robust-
ess of these models. Our research exposes the limitations of existing
TMs, including larger models such as GPT-3.5-turbo and GPT-4o, in

effectively handling code translation tasks. To address these limitations,
e propose CoTR-D, a defense mechanism that demonstrates promising

results in improving the robustness and generalization of PTMs. Our
indings provide valuable insights into the challenges and potential
olutions for building more robust code translation models.

In future work, we plan to develop a more robust pre-trained model
hat can handle different programming styles and syntax conventions.

We also plan to explore the use of other techniques, such as program
repair or LLMs, to improve the effectiveness and robustness of pre-
trained models in handling code translation tasks. Finally, we aim to
construct a more comprehensive dataset that includes more diverse
and complex programs to validate the generalizability of our proposed
approach.

G. Yang et al.

&

c
i

Information and Software Technology 181 (2025) 107699
CRediT authorship contribution statement

Guang Yang: Writing – original draft, Software, Data curation. Yu
Zhou: Writing – review & editing, Supervision, Methodology, Con-
ceptualization. Xiangyu Zhang: Validation, Software, Data curation.
Xiang Chen: Writing – review & editing, Validation. Tingting Han:
Writing – review & editing, Validation. Taolue Chen: Writing – review
 editing, Validation, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

This work was partially supported by the National Natural Sci-
ence Foundation of China (NSFC, No. 62372232), the Postgraduate
Research & Practice Innovation Program of Jiangsu Province, China
(No. KYCX23_0396), and the Collaborative Innovation Center of Novel
Software Technology and Industrialization, China. T. Chen is partially
supported by an oversea grant from the State Key Laboratory of Novel
Software Technology, Nanjing University, China (KFKT2023A04).

Data availability

Data will be made available on request.

References

[1] J.D. Weisz, M. Muller, S. Houde, J. Richards, S.I. Ross, F. Martinez, M.
Agarwal, K. Talamadupula, Perfection not required? human-ai partnerships in
code translation, in: 26th International Conference on Intelligent User Interfaces,
2021, pp. 402–412.

[2] J.D. Weisz, M. Muller, S.I. Ross, F. Martinez, S. Houde, M. Agarwal, K.
Talamadupula, J.T. Richards, Better together? an evaluation of ai-supported code
translation, in: 27th International Conference on Intelligent User Interfaces, 2022,
pp. 369–391.

[3] B. Roziere, M.-A. Lachaux, L. Chanussot, G. Lample, Unsupervised translation of
programming languages, Adv. Neural Inf. Process. Syst. 33 (2020) 20601–20611.

[4] B. Roziere, J. Zhang, F. Charton, M. Harman, G. Synnaeve, G. Lample, Lever-
aging automated unit tests for unsupervised code translation, in: International
Conference on Learning Representations.

[5] F. Liu, J. Li, L. Zhang, Syntax and domain aware model for unsupervised program
translation, 2023, arXiv preprint arXiv:2302.03908.

[6] W.E. Zhang, Q.Z. Sheng, A. Alhazmi, C. Li, Adversarial attacks on deep-learning
models in natural language processing: A survey, ACM Trans. Intell. Syst.
Technol. (TIST) 11 (3) (2020) 1–41.

[7] H. Zhang, Z. Li, G. Li, L. Ma, Y. Liu, Z. Jin, Generating adversarial examples
for holding robustness of source code processing models, in: Proceedings of the
AAAI Conference on Artificial Intelligence, 34, (01) 2020, pp. 1169–1176.

[8] M.R.I. Rabin, N.D. Bui, K. Wang, Y. Yu, L. Jiang, M.A. Alipour, On the
generalizability of Neural Program Models with respect to semantic-preserving
program transformations, Inf. Softw. Technol. 135 (2021) 106552.

[9] Z. Zeng, H. Tan, H. Zhang, J. Li, Y. Zhang, L. Zhang, An extensive study on
pre-trained models for program understanding and generation, in: Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2022, pp. 39–51.

[10] Y. Zhou, X. Zhang, J. Shen, T. Han, T. Chen, H. Gall, Adversarial robustness of
deep code comment generation, ACM Trans. Softw. Eng. Methodol. (TOSEM)
31 (4) (2022) 1–30.

[11] Z. Yang, J. Shi, J. He, D. Lo, Natural attack for pre-trained models of code, in:
Proceedings of the 44th International Conference on Software Engineering, 2022,
pp. 1482–1493.

[12] G. Yang, Y. Zhou, W. Yang, T. Yue, X. Chen, T. Chen, How important are good
method names in neural code generation? A model robustness perspective, ACM
Trans. Softw. Eng. Methodol. (2023) http://dx.doi.org/10.1145/3630010, Just
Accepted.

[13] Github, GitHub copilot ⋅ your AI pair programmer, 2023, https://github.com/
features/copilot. 2023-04-19.
12
[14] P. Vaithilingam, T. Zhang, E.L. Glassman, Expectation vs. experience: Evaluating
the usability of code generation tools powered by large language models, in: Chi
Conference on Human Factors in Computing Systems Extended Abstracts, 2022,
pp. 1–7.

[15] N. Grover, The ultimate review of GitHub copilot for language trans-
lation, 2023, https://medium.datadriveninvestor.com/the-ultimate-review-of-
github-copilot-for-language-translation-5a32093eedfd. 2023-02-26.

[16] Y. Wang, W. Wang, S. Joty, S.C. Hoi, CodeT5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation, in: Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing,
2021, pp. 8696–8708.

[17] S. Liu, B. Wu, X. Xie, G. Meng, Y. Liu, ContraBERT: Enhancing code pre-trained
models via contrastive learning, 2023, arXiv preprint arXiv:2301.09072.

[18] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D.
Drain, D. Jiang, D. Tang, et al., CodeXGLUE: A machine learning benchmark
dataset for code understanding and generation, in: Thirty-Fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round
1).

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[20] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Trans. Softw. Eng.
30 (2) (2004) 126–139.

[21] W. Yuan, G. Neubig, P. Liu, Bartscore: Evaluating generated text as text
generation, Adv. Neural Inf. Process. Syst. 34 (2021) 27263–27277.

[22] A. Hindle, E.T. Barr, Z. Su, M. Gabel, P. Devanbu, On the naturalness of software,
in: 2012 34th International Conference on Software Engineering, ICSE, IEEE,
2012, pp. 837–847.

[23] M.V. Pour, Z. Li, L. Ma, H. Hemmati, A search-based testing framework for deep
neural networks of source code embedding, in: 2021 14th IEEE Conference on
Software Testing, Verification and Validation, ICST, IEEE, 2021, pp. 36–46.

[24] Z. Dong, Q. Hu, Y. Guo, M. Cordy, M. Papadakis, Z. Zhang, Y. Le Traon, J. Zhao,
MIXCODE: Enhancing Code Classification by Mixup-Based Data Augmentation.

[25] A. Jha, C.K. Reddy, Codeattack: Code-based adversarial attacks for pre-trained
programming language models, in: Proceedings of the AAAI Conference on
Artificial Intelligence, 37, (12) 2023, pp. 14892–14900.

[26] J. Henke, G. Ramakrishnan, Z. Wang, A. Albarghouth, S. Jha, T. Reps, Semantic
robustness of models of source code, in: 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering, SANER, IEEE, 2022, pp.
526–537.

[27] S. Chakraborty, T. Ahmed, Y. Ding, P.T. Devanbu, B. Ray, NatGen: generative
pre-training by ‘‘naturalizing’’ source code, in: Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2022, pp. 18–30.

[28] M. Wei, Y. Huang, J. Yang, J. Wang, S. Wang, Cocofuzzing: Testing neural code
models with coverage-guided fuzzing, IEEE Trans. Reliab. (2022).

[29] P. Chen, Z. Li, Y. Wen, L. Liu, Generating adversarial source programs using
important tokens-based structural transformations, in: 2022 26th International
Conference on Engineering of Complex Computer Systems, ICECCS, IEEE, 2022,
pp. 173–182.

[30] M.R.I. Rabin, M.A. Alipour, ProgramTransformer: A tool for generating
semantically equivalent transformed programs, Softw. Impacts 14 (2022) 100429.

[31] S. Wang, Z. Li, H. Qian, C. Yang, Z. Wang, M. Shang, V. Kumar, S. Tan, B.
Ray, P. Bhatia, et al., ReCode: Robustness evaluation of code generation models,
2022, arXiv preprint arXiv:2212.10264.

[32] H. Zhang, Z. Fu, G. Li, L. Ma, Z. Zhao, H. Yang, Y. Sun, Y. Liu, Z. Jin,
Towards robustness of deep program processing models—detection, estimation,
and enhancement, ACM Trans. Softw. Eng. Methodol. (TOSEM) 31 (3) (2022)
1–40.

[33] J. Jia, S. Srikant, T. Mitrovska, C. Gan, S. Chang, S. Liu, U.-M. O’Reilly,
CLAWSAT: Towards both robust and accurate code models, in: 2023 IEEE
International Conference on Software Analysis, Evolution and Reengineering,
SANER, IEEE, 2023, pp. 212–223.

[34] J. Tian, C. Wang, Z. Li, Y. Wen, Generating adversarial examples of source code
classification models via Q-learning-based Markov decision process, in: 2021
IEEE 21st International Conference on Software Quality, Reliability and Security,
QRS, IEEE, 2021, pp. 807–818.

[35] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, et al., CodeBERT: A pre-trained model for programming and natural
languages, in: Findings of the Association for Computational Linguistics: EMNLP
2020, 2020, pp. 1536–1547.

[36] P. Bielik, M. Vechev, Adversarial robustness for code, in: International
Conference on Machine Learning, PMLR, 2020, pp. 896–907.

[37] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning
models resistant to adversarial attacks, in: International Conference on Learning
Representations.

[38] W.U. Ahmad, M.G.R. Tushar, S. Chakraborty, K.-W. Chang, Avatar: A parallel
corpus for java-python program translation, 2021, arXiv preprint arXiv:2108.
11590.

[39] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, Bleu: a method for automatic
evaluation of machine translation, in: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, 2002, pp. 311–318.

http://refhub.elsevier.com/S0950-5849(25)00038-2/sb1
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb1
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb1
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb1
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb1
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb1
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb1
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb2
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb2
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb2
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb2
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb2
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb2
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb2
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb3
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb3
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb3
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb4
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb4
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb4
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb4
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb4
http://arxiv.org/abs/2302.03908
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb6
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb6
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb6
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb6
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb6
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb7
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb7
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb7
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb7
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb7
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb8
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb8
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb8
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb8
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb8
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb9
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb9
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb9
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb9
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb9
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb9
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb9
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb10
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb10
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb10
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb10
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb10
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb11
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb11
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb11
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb11
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb11
http://dx.doi.org/10.1145/3630010
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb14
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb14
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb14
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb14
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb14
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb14
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb14
https://medium.datadriveninvestor.com/the-ultimate-review-of-github-copilot-for-language-translation-5a32093eedfd
https://medium.datadriveninvestor.com/the-ultimate-review-of-github-copilot-for-language-translation-5a32093eedfd
https://medium.datadriveninvestor.com/the-ultimate-review-of-github-copilot-for-language-translation-5a32093eedfd
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb16
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb16
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb16
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb16
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb16
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb16
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb16
http://arxiv.org/abs/2301.09072
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb18
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb19
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb19
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb19
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb20
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb20
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb20
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb21
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb21
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb21
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb22
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb22
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb22
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb22
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb22
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb23
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb23
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb23
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb23
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb23
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb25
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb25
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb25
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb25
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb25
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb26
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb26
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb26
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb26
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb26
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb26
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb26
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb27
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb27
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb27
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb27
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb27
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb27
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb27
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb28
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb28
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb28
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb29
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb29
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb29
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb29
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb29
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb29
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb29
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb30
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb30
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb30
http://arxiv.org/abs/2212.10264
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb32
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb32
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb32
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb32
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb32
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb32
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb32
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb33
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb33
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb33
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb33
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb33
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb33
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb33
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb34
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb34
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb34
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb34
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb34
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb34
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb34
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb35
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb35
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb35
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb35
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb35
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb35
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb35
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb36
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb36
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb36
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb37
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb37
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb37
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb37
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb37
http://arxiv.org/abs/2108.11590
http://arxiv.org/abs/2108.11590
http://arxiv.org/abs/2108.11590
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb39
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb39
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb39
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb39
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb39

G. Yang et al.

S
S
(

N

U
s
S
c
e
s
c

S

U
s
H
T
t
S
E
S
E
o
C
I
e
P
E
n
a
p
I

Information and Software Technology 181 (2025) 107699
[40] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A.
Blanco, S. Ma, Codebleu: a method for automatic evaluation of code synthesis,
2020, arXiv preprint arXiv:2009.10297.

[41] Q. Liang, Z. Sun, Q. Zhu, W. Zhang, L. Yu, Y. Xiong, L. Zhang, Lyra: A benchmark
for turducken-style code generation, 2021, arXiv preprint arXiv:2108.12144.

[42] M. Chen, J. Tworek, H. Jun, Q. Yuan, H.P.d. Pinto, J. Kaplan, H. Edwards, Y.
Burda, N. Joseph, G. Brockman, et al., Evaluating large language models trained
on code, 2021, arXiv preprint arXiv:2107.03374.

[43] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou, N. Duan, A.
Svyatkovskiy, S. Fu, et al., GraphCodeBERT: Pre-training code representations
with data flow, in: International Conference on Learning Representations.

[44] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, C.
Xiong, CodeGen: An open large language model for code with multi-turn program
synthesis, in: The Eleventh International Conference on Learning Representations,
2022.

[45] W. Ahmad, S. Chakraborty, B. Ray, K.-W. Chang, Unified pre-training for program
understanding and generation, in: Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2021, pp. 2655–2668.

[46] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, J. Yin, UniXcoder: Unified cross-modal
pre-training for code representation, in: Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), 2022,
pp. 7212–7225.

[47] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X.E. Tan, Y. Adi, J. Liu,
R. Sauvestre, T. Remez, et al., Code llama: Open foundation models for code,
2023, arXiv preprint arXiv:2308.12950.

[48] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, Y. Li,
et al., DeepSeek-coder: When the large language model meets programming–the
rise of code intelligence, 2024, arXiv preprint arXiv:2401.14196.

[49] Q. Luo, H. Yu, X. Li, BAdam: A memory efficient full parameter training method
for large language models, 2024, arXiv preprint arXiv:2404.02827.

[50] E. Shi, Y. Wang, H. Zhang, L. Du, S. Han, D. Zhang, H. Sun, Towards efficient
fine-tuning of pre-trained code models: An experimental study and beyond, 2023,
arXiv preprint arXiv:2304.05216.

[51] A. Maćkiewicz, W. Ratajczak, Principal components analysis (PCA), Comput.
Geosci. 19 (3) (1993) 303–342.

[52] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M.
Bosma, D. Zhou, D. Metzler, et al., Emergent abilities of large language models,
Trans. Mach. Learn. Res..

[53] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S.
Agarwal, K. Slama, A. Ray, et al., Training language models to follow instructions
with human feedback, Adv. Neural Inf. Process. Syst. 35 (2022) 27730–27744.

[54] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Yang, A. Fan, et al., The llama 3 herd of models, 2024, arXiv
preprint arXiv:2407.21783.

[55] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P.
Wang, X. Bi, et al., Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning, 2025, arXiv preprint arXiv:2501.12948.

[56] P. Xue, L. Wu, C. Wang, X. Li, Z. Yang, R. Jin, Y. Zhang, J. Li, Y. Pei, Z. Shen,
et al., Escalating LLM-based code translation benchmarking into the class-level
era, 2024, arXiv preprint arXiv:2411.06145.

[57] A.T. Nguyen, T.T. Nguyen, T.N. Nguyen, Lexical statistical machine translation
for language migration, in: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, 2013, pp. 651–654.

[58] S. Karaivanov, V. Raychev, M. Vechev, Phrase-based statistical translation of pro-
gramming languages, in: Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software,
2014, pp. 173–184.

[59] K. An, N. Meng, E. Tilevich, Automatic inference of java-to-swift translation
rules for porting mobile applications, in: Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems, 2018, pp. 180–190.

[60] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, Q. Wang, Mining API mapping
for language migration, in: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, 2010, pp. 195–204.

[61] M.-A. Lachaux, B. Roziere, M. Szafraniec, G. Lample, Dobf: A deobfuscation pre-
training objective for programming languages, Adv. Neural Inf. Process. Syst. 34
(2021) 14967–14979.
13
Guang Yang received the M.D. degree in computer technology from Nantong Uni-
versity, Nantong, in 2022. Then he is currently pursuing the Ph.D. degree at Nanjing
University of Aeronautics and Astronautics, Nanjing. His research interest is AI4SE
and he has authored or co-authored more than 30 papers in refereed journals or
conferences, such as Transactions on Software Engineering, ACM Transactions on
oftware Engineering and Methodology, Empirical Software Engineering, Journal of
ystems and Software, International Conference on Software Maintenance and Evolution
ICSME), and International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER). More information about him can be found at: https://ntdxyg.github.io/.

Yu Zhou is a full professor in the College of Computer Science and Technology at
anjing University of Aeronautics and Astronautics (NUAA). He received his B.Sc.

degree in 2004 and Ph.D. degree in 2009, both in Computer Science from Nanjing
niversity China. Before joining NUAA in 2011, he conducted PostDoc research on

oftware engineering at Politechnico di Milano, Italy. From 2015–2016, he visited the
EAL lab at University of Zurich Switzerland, where he is also an adjunct researcher. His
urrent research interests mainly generative models for software engineering, software
volution analysis, mining software repositories, and reliability analysis. He has been
upported by several national research programs in China. More information about him
an be found at: https://csyuzhou.github.io/.

Xiangyu Zhang is currently pursuing a Master’s degree at the College of Computer
cience and Technology of Nanjing University of Aeronautics and Astronautics. His

research interests include code generation and model interpretability.

Xiang Chen received the B.Sc. degree in the school of management from Xi’an Jiaotong
niversity, China in 2002. Then he received his M.Sc., and Ph.D. degrees in computer

oftware and theory from Nanjing University, China in 2008 and 2011 respectively.
e is currently an Associate Professor at the Department of Information Science and
echnology, Nantong University, Nantong, China. He has authored or co-authored more
han 120 papers in refereed journals or conferences, such as IEEE Transactions on
oftware Engineering, ACM Transactions on Software Engineering and Methodology,
mpirical Software Engineering, Information and Software Technology, Journal of
ystems and Software, Journal of Software: Evolution and Process, Automated Software
ngineering, Journal of Computer Science and Technology, International Conference
n Software Engineering (ICSE), The ACM Joint European Software Engineering
onference and Symposium on the Foundations of Software Engineering (ESEC/FSE),

nternational Conference Automated Software Engineering (ASE), International Confer-
nce on Software Maintenance and Evolution (ICSME), International Conference on
rogram Comprehension (ICPC), and International Conference on Software Analysis,
volution and Reengineering (SANER). His research interests include software engi-
eering, in particular software testing and maintenance, software repository mining,
nd empirical software engineering. He received two ACM SIGSOFT distinguished
aper awards in ICSE 2021 and ICPC 2023. He is the editorial board member of
nformation and Software Technology. More information about him can be found at:

https://smartse.github.io/index.html.

Taolue Chen received the Bachelor and Master degrees from Nanjing University, China,
both in computer science. He was a junior researcher (OiO) at the Centrum Wiskunde
& Informatica (CWI) and acquired the Ph.D. degree from the Vrije Universiteit
Amsterdam, The Netherlands. He is currently a senior lecturer at the School of
Computing and Mathematical Sciences, Birkbeck, University of London. He had been a
postdoctoral researcher at University of Oxford (UK) and University of Twente (NL). His
research area includes Software Engineering, Programming Language and Verification.
His present research focus is on the border of software engineering and machine
learning. He has published about 150 papers in journals and conferences such as POPL,
LICS, CAV, ICSE, FSE, ASE, ISSTA, ETAPS (TACAS, FoSSaCS, ESOP, FASE), OOPSLA,
NeurIPS, ICLR, EMNLP and IEEE TSE, ACM TOSEM, ACM TOCL. He won the Best
Paper Award of SETTA’20, ACM SIGSOFT Distinguished Paper Award at ASE’24, the
1st Prize in the CCF Software Prototype Competition 2022 and the QF Strings (Single
Query Track) at the International Satisfiability Modulo Theories Competition 2023. He
has served editorial board or program committee for various international journals and
conferences. More information about him can be found at https://chentaolue.github.io/.

http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2108.12144
http://arxiv.org/abs/2107.03374
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb43
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb43
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb43
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb43
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb43
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb44
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb44
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb44
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb44
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb44
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb44
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb44
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb45
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb45
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb45
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb45
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb45
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb45
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb45
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb46
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb46
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb46
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb46
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb46
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb46
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb46
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2404.02827
http://arxiv.org/abs/2304.05216
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb51
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb51
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb51
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb52
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb52
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb52
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb52
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb52
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb53
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb53
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb53
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb53
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb53
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2411.06145
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb57
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb57
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb57
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb57
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb57
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb58
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb58
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb58
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb58
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb58
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb58
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb58
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb59
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb59
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb59
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb59
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb59
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb60
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb60
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb60
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb60
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb60
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb61
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb61
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb61
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb61
http://refhub.elsevier.com/S0950-5849(25)00038-2/sb61
https://ntdxyg.github.io/
https://csyuzhou.github.io/
https://smartse.github.io/index.html
https://chentaolue.github.io/

	Assessing and improving syntactic adversarial robustness of pre-trained models for code translation
	Introduction
	Preliminaries
	Code Translation
	Program Transformation

	The CoTR approach
	Attack Component: CoTR-A
	Defense Component: CoTR-D

	Experiments
	Datasets
	Baseline Attack Methods
	Evaluation Metrics
	Victim Pre-Trained Models

	Results
	RQ1: How robust are existing pre-trained models under CoTR-A?
	Performance Comparison
	Robustness Comparison
	Human Study

	RQ2: How effective is CoTR-D in improving the robustness of existing PTMs for code translation?

	Discussion
	Robustness of larger models
	Threats to validity

	Related Work
	Code Translation
	Adversarial Attack and Defense on Code-related Models

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

