
Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/ipm

Less is more: Towards green code large language models via 

unified structural pruning

Guang Yang a, Yu Zhou a,∗, Xiangyu Zhang a, Wei Cheng a, Ke Liu b, 
Xiang Chen c, Terry Yue Zhuo d, Taolue Chen e,∗

aNanjing University of Aeronautics and Astronautics, Nanjing City, Jiangsu province, China
bNational University of Defense Technology, Changsha City, Hunan Province, China
cNantong University, Nantong City, Jiangsu Province, China
dMonash University and CSIRO’s Data61, Melbourne, Australia
e Birkbeck, University of London, London, England

a r t i c l e  i n f o

Keywords:
Large language models
Code intelligence
Structural pruning
Post-training
Code instruction tuning

 a b s t r a c t

The extensive application of Large Language Models (LLMs) in generative coding tasks has raised 
concerns due to their high computational demands and energy consumption. Unlike previous 
structural pruning methods designed for classification models that deal with low-dimensional 
classification logits, generative Code LLMs produce high-dimensional token logit sequences, mak-
ing traditional pruning objectives inherently limited. Moreover, existing single-component prun-
ing approaches further constrain the effectiveness when applied to generative Code LLMs. In re-
sponse, we propose Flab-Pruner, an innovative unified structural pruning method that combines 
vocabulary, layer, and Feed-Forward Network (FFN) pruning. This approach effectively reduces 
model parameters while maintaining performance. Additionally, we introduce a customized code 
instruction data strategy for coding tasks to enhance the performance recovery efficiency of the 
pruned model. Through extensive evaluations on three state-of-the-art Code LLMs across multiple 
generative coding tasks, the results demonstrate that Flab-Pruner retains 97% of the original code 
generation performance on average after pruning 22% of the parameters, and achieves the same or 
even better performance after post-training. The pruned models exhibit significant improvements 
in storage, GPU usage, computational efficiency, and environmental impact, while maintaining 
well robustness. Our research provides a sustainable solution for green software engineering and 
promotes the efficient deployment of LLMs in real-world generative coding intelligence applica-
tions.

1.  Introduction

Large Language Models (LLMs) have demonstrated outstanding performance and been deployed across numerous domains (Huang 
et al., 2023; Yao et al., 2024; Yuan et al., 2023). Software engineering is no exception (Fan et al., 2023; Hou et al., 2023; Kirova 
et al., 2024; Sallou et al., 2024), with LLMs excelling in tasks like code generation (Gu, 2023), summarization (Nam et al., 2024), and 
vulnerability detection (Lu et al., 2024). However, the substantial scale and intensive computational requirements of these models 
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$X = (x_1, x_2, \ldots , x_n)$


\begin {align}E = (e_1, e_2, \ldots , e_n) \quad \text {, where} \quad e_i = W_e[x_i] \label {Xeqn1-1}\end {align}
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\begin {align}H^{(l)} = \text {FFN}(\text {SelfAttention}(H^{(l-1)})) + H^{(l-1)} \label {Xeqn2-2}\end {align}
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\begin {align}P(y) = \text {softmax}(\mathbf {z}) = \frac {\exp (\mathbf {z}_y)}{\sum _{j=1}^{|\mathcal {W}|} \exp (\mathbf {z}_j)} \label {Xeqn3-3}\end {align}
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\begin {align}\label {eq:pruning_objective} \mathcal {L}_{\text {prune}} = \min _{\theta _p} D_{\text {KL}}(P(y|X;\theta _o) \| P(y|X;\theta _p))\end {align}
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\begin {align}\label {eq:kl_divergence} D_{\text {KL}}(P(y|X;\theta _o) \| P(y|X;\theta _p)) = \sum _{y \in \mathcal {V}} P(y|X;\theta _o) \log \frac {P(y|X;\theta _o)}{P(y|X;\theta _p)}\end {align}
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\begin {align}V' = \{v \in V \mid U(v) > \tau \} \label {Xeqn7-7}\end {align}
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$6 \times 3600 \times 7.04 = 152,064$


\begin {align}\text {Break-even Point} = \frac {\text {One-time Cost (FLOPs)}}{\text {Per-inference Savings (FLOPs)}} = \frac {152,064T}{1.4T} \approx 108,617 \text { inference runs} \label {Xeqn8-8}\end {align}

https://orcid.org/0000-0002-3723-7584
https://orcid.org/0009-0000-6271-746X
https://orcid.org/0009-0007-9418-5753
https://orcid.org/0000-0002-5224-1485
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0000-0002-5760-5188
https://orcid.org/0000-0002-5993-1665
mailto:yang.guang@nuaa.edu.cn
mailto:zhouyu@nuaa.edu.cn
mailto:zhangx1angyu@nuaa.edu.cn
mailto:chengweii@nuaa.edu.cn
mailto:liuke23@nudt.edu.cn
mailto:xchencs@ntu.edu.cn
mailto:terry.zhuo@monash.edu
mailto:taolue.chen@gmail.com
https://doi.org/10.1016/j.ipm.2025.104580
https://doi.org/10.1016/j.ipm.2025.104580


G. Yang et al.

pose challenges, particularly in resource-constrained environments (Chen et al., 2020; Hort et al., 2023; Liu et al., 2013). Moreover, 
the energy consumption associated with training and inference leads to high carbon emissions, raising concerns about environmental 
sustainability (Shi et al., 2024a,b).

To enhance energy efficiency and sustainability, green software engineering has spurred exploration of model pruning, quanti-
zation, and knowledge distillation (Liu et al., 2023a; Wang et al., 2024; Wei et al., 2023; Zhu et al., 2023), aimed at reducing the 
computational and environmental impact of LLMs. Quantization speeds up inference by converting high-precision weights to lower 
precision. Knowledge distillation transfers knowledge from larger to smaller models, requiring additional computational resources. 
Among these, model pruning has emerged as a promising strategy, with two main approaches: unstructured pruning that merely zeros 
out specific weights while maintaining the original parameter count, and structured pruning (Wang et al., 2020b) that effectively re-
duces model size by removing entire structural components (e.g., neurons, layers) while preserving model integrity and functionality. 
For instance, unstructured pruning, such as SparseGPT (Frantar and Alistarh, 2023), targets individual weights, achieving sparsity 
but not significantly reducing hardware demands, thus limiting their use in constrained settings. In contrast, structured pruning, 
such as ShortGPT (Men et al., 2024), reduces parameter counts and hardware dependencies, enhancing operational efficiency while 
maintaining model integrity.

Although these pruning methods can be theoretically applied to code generation models, our extensive experiments (cf. RQ1 in 
Section 5.1) reveal their significant limitations when applied to generative coding tasks. For example, when applying ShortGPT (Men 
et al., 2024) to the LLAMA model, we observe a complete performance collapse on the HumanEval code generation benchmark. 
Through careful analysis, we identify two fundamental limitations in existing approaches:
1. Misaligned Pruning Objective: Current pruning methods (Kim et al., 2024; Men et al., 2024; Yang et al., 2024b) primarily focus 
on layer-wise similarity metrics (e.g., angle distance, cosine similarity, and Taylor score between layers), which aim to preserve 
the model’s general language modeling capabilities while overlooking the specific requirements of downstream tasks.

2. Limited Pruning Scope: Existing approaches typically adopt single-component pruning strategies (e.g., solely focusing on layer 
redundancy reduction), failing to leverage the potential synergies that could be achieved through an integrated, multi-granular 
pruning approach across different model components.

3. Insufficient Code-specific Post-tuning Method: Existing pruning methods rely on generic supervised fine-tuning on downstream 
datasets for performance recovery, without considering domain-specific adaptations for code-related tasks. This generic approach 
fails to leverage the unique characteristics and requirements of code generation tasks, potentially limiting the effectiveness of the 
post-pruning recovery process.

We provide a detailed analysis of these limitations and their implications in Section 5.1.
Beyond performance considerations, the reliability and robustness of pruned models in coding tasks raise critical concerns for 

real-world deployment. These concerns encompass several key aspects: How well do pruned models maintain their robustness against 
adversarial inputs? Despite the crucial nature of these questions for practical applications, existing research has largely focused on 
performance metrics while leaving these reliability aspects unexplored. We present a comprehensive analysis of these critical concerns 
in Section 5.3.

Method. To minimize model parameters while ensuring that pruned models maintain high standards in performance and robust-
ness, First, we define the pruning objectives: since the model generates code through probability distributions over the vocabulary, 
we use KL divergence to ensure that the pruned model maintains similar token generation probabilities as the original model, di-
rectly optimizing for code generation behavior. Then we introduce Flab-Pruner, a unified structural pruning method designed for the 
combination of three components, i.e., FFN Pruning, Layer Pruning and Vocabulary Pruning. In particular, the vocabulary pruning 
component reduces the model’s embedding size by eliminating tokens that are absent in the given programming corpus. The FFN 
pruning component targets specific neurons within the FFN block, reducing the model’s size by eliminating certain neurons. The layer 
pruning component reduces the number of layers in the model by assessing the redundancy between layers. To consider the consis-
tency between pruning objectives and downstream task performance, the above pruning components are all designed to minimize 
the KL divergence between the pruned model and the original model.

Additionally, we introduce a customized code instruction tuning strategy specifically designed for generative coding tasks. In 
contrast to directly train the pruned model on the original dataset, we purposefully replace the code generated by the original model 
into the training dataset by evaluating the performance of the original and pruned models on the training set. Compared to using the 
original dataset for performance recovery, our approach enhances efficiency by achieving better performance recovery.

Evaluation. We undertake a comprehensive evaluation of Flab-Pruner spanning three widely studied code intelligence tasks, 
i.e., code generation, CoT generation and code output prediction. The goal of code generation is to convert requirement in natural 
language into code, bridging the gap between description and execution. CoT generation is about creating thought sequences from 
prompts, showcasing advanced reasoning. Code output prediction assesses the model’s understanding of code and its ability to predict 
outcomes. By considering these diverse tasks, our evaluation aims to provide a holistic evaluation of Flab-Pruner’s capabilities in 
various code intelligence domains. Our evaluation targets CodeQwen-1.51 and its two variants (NxCode2 and CodeSlerp3), which are 
top-performing 7B-10B models on the BigCode benchmark4.

1 https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
2 https://huggingface.co/NTQAI/Nxcode-CQ-7B-orpo
3 https://huggingface.co/dohrisalim/Code-7B-slerp
4 https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
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Besides performance, we conduct efficiency and robustness analyses to provide a comprehensive evaluation. An ablation study is 
also performed to evaluate the contribution of each component to our pruning methodology, highlighting their synergistic effects.

Findings. By applying Flab-Pruner, we demonstrate the feasibility of pruning Code LLMs while preserving their core capabil-
ities. Our empirical findings indicate that by pruning about 22% of the parameters, the pruned model retains around 97% of the 
original model’s code generation performance on average. After performance recovery, the pruned model achieves comparable or 
even superior performance to the original model. Significant improvements are observed across various efficiency metrics, including 
reduced storage requirements, optimized GPU utilization, decreased FLOPs, lower CO2 emissions, and increased tokens processed per 
second. Moreover, our structured pruning technique is orthogonal to existing quantization methods, enabling further efficiency gains 
through their combination. Furthermore, we demonstrate that the pruned model maintains its robustness across different perturbation 
scenarios, affirming the effectiveness of our pruning methodology.

The main contributions can be summarized as follows.
• We introduce Flab-Pruner, a novel unified structural pruning approach that integrates FFN pruning, layer pruning, and vocabulary 
pruning to effectively minimize model size while maintaining performance for generative coding tasks.

• We propose a customized training data instruction strategy specifically designed for coding tasks, ensuring that pruned models 
continue to perform effectively.

• We conduct an extensive evaluation of Flab-Pruner across multiple generative coding tasks in terms of the performance, efficiency, 
and robustness, demonstrating the practical applicability of our approach in real-world software engineering scenarios.

To our best knowledge, this is one of the first attempts to comprehensively assess the impact of pruning techniques on the 
performance of LLMs in generative coding tasks. To facilitate the replication, the pruned models5 and datasets6 are all made publicly 
available.

Organization. The rest of the paper is structured as follows. Section 2 provides the background. In Section 3, we detail our 
proposed method for vocabulary pruning, layer pruning and FFN pruning. Section 4 describes the experiment settings. Section 5 
presents the experimental results. Section 6 analyzes threats to validity and Section 7 discusses relevant studies. Finally, we conclude 
our paper and present directions of future work in Section 8.

2.  Background

2.1.  Transformer

A standard LLM, such as the Transformer (Vaswani et al., 2017), processes input sequences through several key components, 
including an embedding layer, multiple self-attention layers, feed-forward networks, and an output layer.

Given an input sequence of token indices 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑛), the LLM first maps these discrete indices into continuous vectors 
using an embedding layer: 

𝐸 = (𝑒1, 𝑒2,… , 𝑒𝑛) , where 𝑒𝑖 = 𝑊𝑒[𝑥𝑖] (1)

Here, 𝑊𝑒 ∈ ℝ|𝑉 |×𝑑 is the embedding matrix, |𝑉 | is the vocabulary size, and 𝑑 is the dimension of the embeddings. Each token 𝑥𝑖
is mapped to its corresponding embedding vector 𝑒𝑖. The embedded sequence 𝐸 is then processed through a series of self-attention 
layers and feed-forward networks. For each layer 𝑙, the transformation from input 𝐻 (𝑙−1) to output 𝐻 (𝑙) is given by: 

𝐻 (𝑙) = FFN(SelfAttention(𝐻 (𝑙−1))) +𝐻 (𝑙−1) (2)

where 𝐻 (0) = 𝐸. The SelfAttention(⋅) function computes contextual representations by attending to various parts of 𝐻 (𝑙−1), while 
FFN(⋅) is a position-wise feed-forward network.

The final hidden state vector 𝐇𝐿 of the last layer is mapped to a vocabulary space using a linear transformation, followed by 
a softmax function to obtain a probability distribution over the vocabulary: 𝐳 = 𝐖𝐨𝐇𝐿 + 𝐛, where 𝑊𝑜 ∈ ℝ𝑑×|𝑉 | is the output layer 
weights and 𝐛 is the bias vector. This maps the 𝑑-dimensional outputs back to the vocabulary space |𝑉 |, resulting in a probability 
distribution over potential output tokens.

The probability of generating the next code token 𝑦 is computed using the softmax function: 

𝑃 (𝑦) = softmax(𝐳) =
exp(𝐳𝑦)

∑

||

𝑗=1 exp(𝐳𝑗 )
(3)

where 𝐳𝑦 is the score for the word 𝑦 in the vocabulary, and || is the size of the vocabulary. 

𝑃 (𝑌 |𝑋) =
𝑚
∏

𝑖=1
𝑃 (𝑦𝑖|𝑋, 𝑦1, 𝑦2,⋯ , 𝑦𝑖−1) (4)

The model generates a sequence of code tokens 𝑦1, 𝑦2,… , 𝑦𝑚 by sampling from the probability distributions 
𝑃 (𝑦1|𝑋), 𝑃 (𝑦2|𝑋, 𝑦1),… , 𝑃 (𝑦𝑚|𝑋, 𝑦1,… , 𝑦𝑚−1), where each token is conditioned on the previous tokens in the sequence.

5 https://www.modelscope.cn/profile/FlabPruner
6 https://huggingface.co/datasets/Flab-Pruner/CodeHarmony
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Fig. 1. The framework of Flab-Pruner.

2.2.  Model pruning

Model pruning (Liu et al., 2019) is a well-established and efficient technique used for compressing models by reducing redundancy. 
Pruning methods are typically categorized as unstructured (Mason-Williams and Dahlqvist, 2024; Sun et al., 2023) and structured 
(Ma et al., 2023). In unstructured pruning, specific parameters, often individual weights or connections, are selectively removed 
without considering the model’s internal structure. Unstructured pruning can be defined as 𝑾 pruned = 𝑾 ⊙𝑀 , where 𝑊  represents 
the original weight matrix, 𝑀 is a binary mask indicating which weights to prune (0 for the pruned weights and 1 for the remaining 
weights), and ⊙ denotes element-wise multiplication.

On the other hand, structured pruning offers a more systematic approach that preserves the overall architecture of the model. 
This method involves eliminating entire neurons, channels, or layers based on predefined criteria, such as the weight magnitudes or 
the importance of a neuron’s contribution to the model’s output.

3.  Our method

The workflow of Flab-Pruner is shown in Fig. 1. There are three major pruning steps, i.e., vocab pruning, layer pruning and FFN 
pruning. For a given dense model, we first perform vocab pruning, then layer pruning, and finally FFN pruning.

3.1.  Pruning objective

To maintain the pruned model’s performance, defining an appropriate pruning objective is crucial. In natural language processing, 
existing pruning methods typically focus on layer-level similarity. For instance, ShortGPT (Men et al., 2024) employs angle distance 
between layers, while Laco (Yang et al., 2024b) utilizes cosine similarity to identify and remove redundant layers.

However, for generative coding tasks, we argue that layer-level similarity alone is insufficient. The key challenge lies in ensuring 
that the pruned model generates code 𝑌 ′ that remains consistent with the original model’s output 𝑌 . Note that the model generates 
code through a probability distribution over the vocabulary, obtained by applying a linear transformation followed by a softmax 
function to the hidden representations 𝐻 (𝐿) from the last layer. Therefore, preserving the output probability distribution is critical 
for maintaining generation quality.

Based on this insight, we propose a pruning objective that minimizes the KL divergence between the output probability distribu-
tions of the pruned model (𝑃pruned) and the original model (𝑃original). Formally, our objective can be expressed as: 

prune = min
𝜃𝑝

𝐷KL(𝑃 (𝑦|𝑋; 𝜃𝑜)‖𝑃 (𝑦|𝑋; 𝜃𝑝)) (5)

where 𝜃𝑜 and 𝜃𝑝 represent the parameters of the original and pruned models respectively, and 𝐷KL denotes the Kullback-Leibler 
divergence between their output probability distributions: 

𝐷KL(𝑃 (𝑦|𝑋; 𝜃𝑜)‖𝑃 (𝑦|𝑋; 𝜃𝑝)) =
∑

𝑦∈
𝑃 (𝑦|𝑋; 𝜃𝑜) log

𝑃 (𝑦|𝑋; 𝜃𝑜)
𝑃 (𝑦|𝑋; 𝜃𝑝)

(6)

This objective ensures that the pruned model preserves the token generation probabilities of the original model, directly optimizing 
for the model’s code generation behavior. By focusing on the output probability distributions that determine code generation, our 
approach better aligns with the goal of maintaining task-specific performance in generative coding tasks.
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3.2.  Vocabulary pruning

Algorithm 1 Vocabulary pruning algorithm.
Input:
Original LLM ori;
Original Tokenizer ori;
Code DataSet ;
Output:
Pruned LLM pru;
Pruned Tokenizer pru;
1:  ← CollectTokens(, ori)
2:  ←  ∪ ori[“special tokens”]
3: pru ← PruneTokenizer(ori,) pru ← PruneModel(ori, ori, pru,)
4: return pru, pru
5: Function CollectTokens , ori
6:  ← ∅
7: for 𝑐𝑜𝑑𝑒 ∈  do 
8: for 𝑡𝑜𝑘𝑒𝑛 ∈ ori.𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑐𝑜𝑑𝑒) do 
9:  ←  ∪ {𝑡𝑜𝑘𝑒𝑛}
10: return 
11: Function PruneTokenizer ori,
12: Vocab ← ∅
13: Merges ← ∅
14: 𝑖𝑑 ← 0
15: for 𝑡𝑜𝑘𝑒𝑛 ∈  do 
16: Vocab[𝑡𝑜𝑘𝑒𝑛] ← 𝑖𝑑
17: 𝑖𝑑 ← 𝑖𝑑 + 1
18: for each 𝑚 ∈ ori[“merges”] do 
19: if ∀𝑚[0], 𝑚[1], 𝑚[0] + 𝑚[1] ∈  then 
20: Merges ← Merges ∪ {𝑚}
21: pru[“vocab”] ← Vocab
22: pru[“merges”] ← Merges
23: return pru
24: Function PruneModel ori, ori, pru,
25: Embed ← ∅
26: LM← ∅  for 𝑡𝑜𝑘𝑒𝑛 ∈ 
27: Embed[pru[“vocab”][𝑡𝑜𝑘𝑒𝑛]] ← ori[“embed tokens”][ori[“vocab”][𝑡𝑜𝑘𝑒𝑛]]
28: LM[pru[“vocab”][𝑡𝑜𝑘𝑒𝑛]] ← ori[“lm head”][ori[“vocab”][𝑡𝑜𝑘𝑒𝑛]]
29:pru[“embed tokens”] ← Embed
30:pru[“lm head”] ← LM
31: return pru

Vocabulary pruning, typically applied in tasks like text classification (Chen et al., 2019) and machine translation (Nair et al., 2023), 
involves removing these seldom-used tokens, thus reducing the overall model size without significantly affecting its capabilities.

In the context of Code LLMs, many models have expanded their vocabularies to accommodate a wide range of programming 
languages. This expansion often leads to a large vocabulary size as the models strive to cover various syntaxes and language-specific 
terminologies. However, in practice, developers usually work with a limited set of programming languages, which means that a 
significant portion of the vocabulary is rarely used. This observation leads to the hypothesis that the absence of these infrequent 
tokens might not substantially impact the model’s ability to capture the nuances of any particular language effectively (Yang et al., 
2022).

Formalization. Formally, given a vocabulary 𝑉  and a usage statistic 𝑈 , the pruned vocabulary 𝑉 ′ is defined as: 

𝑉 ′ = {𝑣 ∈ 𝑉 ∣ 𝑈 (𝑣) > 𝜏} (7)

where 𝜏 is a threshold value representing the minimum frequency a token must have to remain in the vocabulary. Consequently, the 
embedding matrix 𝑊𝑒 ∈ ℝ|𝑉 |×𝑑 is reduced to 𝑊 ′

𝑒 ∈ ℝ|𝑉 ′
|×𝑑 , removing unnecessary token embeddings and reducing model complexity. 

Meanwhile, the output layer weights 𝑊𝑜 ∈ ℝ𝑑×|𝑉 | is also reduced to 𝑊 ′
𝑜 ∈ ℝ𝑑×

|𝑉 ′
|.

Algorithms. In the realm of LLMs, the byte-level BPE algorithm (Wang et al., 2020a) is widely adopted for tokenization, as seen 
in models such as LLAMA (Touvron et al., 2023) and QWen (Bai et al., 2023). The BPE consists of two key elements: the vocabulary, 
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which is a set of tokens that the model identifies to interpret data, and merge rules, which guide the combination of token pairs into 
complex structures.

Algorithm 1 provides a detailed pseudo-code description of the vocabulary pruning process, structured into modular steps for 
enhanced clarity and maintainability. The process begins with the collection of all unique tokens from a given code dataset using 
the original tokenizer, as implemented in the ‘CollectTokens’ function (Lines 6–11). This set of tokens, , also includes essential 
special tokens (Line 3). The algorithm then moves to prune the tokenizer via the ‘PruneTokenizer’ function, where a streamlined 
vocabulary and updated merge rules are created based only on the tokens present in the collected set (Lines 12–24). Subsequently, 
the ‘PruneModel’ function handles the pruning of the language model itself, retaining only the embeddings and language model 
output layers corresponding to the preserved tokens (Lines 25–33). The final output, consisting of a reduced and optimized version 
of the original model and tokenizer, ensures the preservation of core functional capabilities while eliminating redundant elements 
(Lines 4–5).

Analysis. The computational expense associated with vocabulary pruning is primarily attributed to the tokenization process, 
which can vary from a few seconds to several minutes contingent upon the size of the corpus.

3.3.  Layer pruning

Layer pruning involves the removal of entire layers to reduce its depth and computation, which is theoretically justified by the 
observed redundancy (Dalvi et al., 2020) within deep neural networks and the notable similarity (Gromov et al., 2024) across layers. 
In NLP, studies (Chen et al., 2024; Kim et al., 2024; Men et al., 2024; Song et al., 2024) reveal that the performance of LLMs remains 
largely intact even after the removal of many layers, indicating an underlying redundancy that pruning can exploit.

Algorithm 2 Layer pruning algorithm.
Input:
Original LLM ori;
Code Generation Datasets ;
Number of layers to prune 𝑘;
Output:
Pruned LLM pru;
1: correct ← FilterCorrectSamples(,ori)
2: 𝑃original ← ori(correct)
3: pru ← ori
4: While number of layers removed < 𝑘 do 
5: 𝑏𝑒𝑠𝑡_𝑙𝑎𝑦𝑒𝑟, 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← FindBestLayerToPrune(pru,𝐻

(𝐿)
original)

6: pru ← RemoveLayer(pru, 𝑏𝑒𝑠𝑡_𝑙𝑎𝑦𝑒𝑟)
7: return pru
8: Function FilterCorrectSamples ,ori
9: correct ← ∅
10: for 𝑠𝑎𝑚𝑝𝑙𝑒 ∈  do 
11: if isCorrectlyGenerated(𝑠𝑎𝑚𝑝𝑙𝑒,ori) then 
12: correct ← correct ∪ {𝑠𝑎𝑚𝑝𝑙𝑒}
13: return correct
14: Function FindBestLayerToPrune pru, 𝑃original
15: 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← ∞
16: 𝑏𝑒𝑠𝑡_𝑙𝑎𝑦𝑒𝑟 ← None
17: for each layer 𝑙 in pru do 
18:temp ← RemoveLayer(pru, 𝑙)
19: 𝑃pruned ← temp(correct)
20: 𝑠𝑐𝑜𝑟𝑒 ← kl_divergence(𝑃pruned, 𝑃original)
21: if score < best_score then 
22: 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒
23: 𝑏𝑒𝑠𝑡_𝑙𝑎𝑦𝑒𝑟 ← 𝑙
24: return 𝑏𝑒𝑠𝑡_𝑙𝑎𝑦𝑒𝑟, 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

Algorithms. Our layer pruning approach diverges from existing methods that typically rely on layer similarity or language mod-
eling capabilities as the primary criterion for pruning. We assert that the primary purpose of pruning should be to ensure that the 
model continues to deliver satisfactory performance, which we discussed in Section 3.1.

Furthermore, existing methods (Gromov et al., 2024; Ma et al., 2023; Men et al., 2024; Razzhigaev et al., 2024; Song et al., 2024) 
primarily focus on one-shot removal strategies, which determine the redundancy of each layer in a single computation pass and select 
the top_𝑘 layers or a contiguous block of 𝑘 layers for removal. These methods are straightforward but may not account for the dynamic 
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changes in the model’s state following the removal of layers. Beyond one-shot removal used in existing studies, our approach deploys 
an iterative process to meticulously evaluate each layer’s contribution to the semantic representation of the final model output.

Algorithm 2 provides the pseudo-code to describe the detailed layer pruning process. The algorithm is designed to iteratively 
prune the layers of a LLM to reduce its complexity while maintaining performance. It starts by filtering the code generation dataset 
to identify samples for which the model correctly generates code, as detailed in the ‘FilterCorrectSamples’ function (Lines 8–13). The 
main pruning loop (Lines 4–6) continues until the specified number of layers, 𝑘, have been pruned. In each iteration, the ‘FindBest-
LayerToPrune’ function is used to determine the most dispensable layer by calculating the KL divergence between the probability 
distribution of the original and pruned models(Lines 14–24). Once identified, this layer is permanently removed from the model using 
‘RemoveLayer’. The process returns a pruned version of the original model, pru.

Analysis. The computational cost associated with our layer pruning algorithm primarily stems from the iterative evaluation of 
layer removal and the subsequent similarity calculations between the pruned and original models’ final layer representations.

3.4.  FFN Pruning

FFN pruning is based on the observation that not all neurons in transformer models are equally vital (Zhu et al., 2023). Each 
layer in Transformer is composed of a GQA module and an FFN module, the GQA’s inherent characteristics necessitate a specific 
ratio between 𝑘𝑒𝑦_𝑣𝑎𝑙𝑢𝑒_ℎ𝑒𝑎𝑑𝑠 and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_ℎ𝑒𝑎𝑑𝑠. Pruning any can lead to a significant degradation in model performance. Given 
this constraint, our focus shifts to the intermediate size of the FFN, which represents the expansion of the model’s representational 
capacity and presents a more flexible target for pruning.

Algorithm. To streamline the FFN pruning process and minimize its computational overhead, we have devised a set of four 
heuristic rules to determine which neurons within the FFN to eliminate:

• Top-K Neurons. Retain the first K neurons, which are hypothesized to be the most influential.
• Bottom-K Neurons. Retain the last K neurons, assuming they may carry critical information not present in the initial neurons.
• Middle-K Neurons. Retain the middle K neurons, which might be less prone to noise and more stable in their contribution.
• Random Sampling. Randomly select K neurons to be retained, introducing an element of stochasticity to the pruning process.

Following these heuristics, we generate a structured pruning mask that guides the pruning process. Finally, we still choose the 
best rule through computing the similarity.

Analysis. Our approach to FFN pruning leverages heuristic rules, which significantly reduces the computational cost. The time 
required for this process is merely a matter of minutes, making it a highly efficient method for model optimization.

3.5.  Performance recovery

After pruning some model parameters, it is crucial to implement effective strategies to recover the model’s performance. For 
performance recovery, we fine-tune the pruned model on the training split of our CodeHarmony dataset (detailed in Section 4.3), 
which contains 15,800 samples for code generation and CoT tasks and 100,706 samples for output prediction tasks. The following 
pseudocode describes our proposed Performance Recovery Algorithm.

Algorithm 3 Performance recovery algorithm.
Input:
Original LLM ori;
Pruned LLM pru;
Training Dataset with Test Case Set  = [𝑥, 𝑦, 𝑇 ];
Output:
Recovered LLM rec;
1: for sample 𝑠 ∈  do 
2: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑐𝑜𝑑𝑒 ← ori.generate(𝑠.𝑥)
3: if TestPass(original_code, 𝑠.𝑇 ) then 
4: 𝑠.𝑦 ← 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑐𝑜𝑑𝑒
5: .updates(𝑠)
6: rec ← Train(pru,)
7: return rec
8: Function TestPass 𝑐𝑜𝑑𝑒, 𝑇
9: for test case 𝑡 ∈ 𝑇  do 
10: if not isPass(code, 𝑡) then 
11: return False
12: return True

Algorithm 3 presents the pseudocode for the Performance Recovery process. The algorithm aims to improve the performance of 
the pruned model by leveraging the code generation capabilities of the original model. The process begins by iterating through the 
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provided training dataset , which consists of samples including input data, expected outputs, and associated test cases (Lines 2–5). 
For each sample, the algorithm uses the original model ori to generate code based on the input data. If the generated code passes 
the corresponding test cases, the expected output in the dataset is replaced with this generated code.

By replacing outputs with semantically correct code generated by the original model, the overall quality of the dataset is con-
sistently high, ensuring the training data is always reliable. Furthermore, the pruned model is able to fit the training data more 
efficiently, reducing loss more quickly and effectively during training. This enhances the convergence speed and helps the pruned 
model achieve better performance faster.

Finally, the pruned model pru is retrained on the updated dataset. This training aims to equip the pruned model with the 
necessary knowledge to handle previously challenging scenarios. The outcome is a recovered version of the pruned model, denoted 
as rec.

Specifically, we refer to our proposed performance recovery method as PT. For comparison, the standard fine-tuning (FT) method 
involves fine-tuning the pruned model on the original CodeHarmony dataset (detailed in Section 4.3), which contains 15,800 samples 
for code generation and CoT tasks and 100,706 samples for output prediction tasks.

We employ the LoRA technique (Hu et al., 2021) for refined and efficient post-training of the pruned model. This method is the 
most efficient alternative to full-parameter fine-tuning (Liu et al., 2023b; Weyssow et al., 2023; Zhuo et al., 2024b), as it updates less 
than 5% of the model parameters and notably does not increase the total number of parameters. Post-training typically takes a few 
hours, contingent upon the size of the dataset.

4.  Experiment setup

To assess the effectiveness of Flab-Pruner, we design the following three research questions (RQs):

RQ1 (Performance Comparison) This RQ is designed to evaluate the performance of Flab-Pruner compared to dense models and 
other structured pruning methods. Furthermore, we investigate the impact of three components proposed in Flab-Pruner and 
conducts a hyperparameter analysis.

RQ2 (Efficiency Comparison) This RQ is designed to examine the resource deployment efficiency of Flab-Pruner compared to dense 
models.

RQ3 (Robustness Analysis) This RQ is designed to assess the robustness of pruned models compared to dense models, particularly 
under various prompt perturbations.

4.1.  Subject models

In our research, we select three state-of-the-art CodeLLMs, i.e., CodeQwen-1.5 and its two variants (NxCode and CodeSlerp), which 
are top-performing 7B-parameter models on the HumanEval leaderboard. These models are chosen for their strong performance and 
all three models share the same transformer-based architecture, making them ideal candidates for our comparative study of pruning 
techniques.

4.2.  Downstream tasks

In our research, we focus on the generation tasks in code intelligence. We delve into the following three key tasks, each with its 
unique set of challenges and methodologies:

• Code Generation. This task (Chen et al., 2021) involves the generation of code snippets from a given natural language description 
and signature, utilizing a zero-shot learning strategy.

• CoT Generation. This task (Yang et al., 2024a) involves the generation of a chain of thought leading to the solution, given a 
natural language description and signature. It is executed through a one-shot learning approach, where the model learns from a 
single example.

• Output Prediction. This task (Gu et al., 2024a) focuses on predicting the output of a code snippet without execution, employing 
a two-shot learning approach. The model must deduce the expected output based on the code’s logic, given the code and its 
corresponding input.

4.3.  Datasets

For the code generation task, we focus on function-level code generation, primarily using the widely-used HumanEval7 and 
OpenEval8 for broader evaluation. For the CoT generation task, we employ the HumanEval-CoT and OpenEval-CoT datasets, developed 
by Yang et al. (2024a). For the output prediction task, we select the CRUX dataset9, introduced by Meta (Gu et al., 2024b).

7 https://huggingface.co/datasets/openai/openai_humaneval
8 https://huggingface.co/datasets/NTUYG/openeval
9 https://huggingface.co/datasets/cruxeval-org/cruxeval
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Table 1 
Statistical information of our selected tasks and corresponding 
datasets, existing datasets are limited in number of samples and 
have no training data.
 Task  Dataset  Train  Valid  Test
 Code Genaration  HumanEval  -  -  164
 (Zero-Shot)  OpenEval  -  -  178

 CodeHarmony  15,800  200  153
 CoT Genaration  HumanEval  -  -  164
 (One-Shot)  OpenEval  -  -  178

 CodeHarmony  15,800  200  153
 Output Prediciton  Crux-O  -  -  800
 (Two-Shot)  CodeHarmony  100,706  -  452

Moreover, to address the limitations of existing datasets in terms of scale, we introduce CodeHarmony, a comprehensive benchmark 
dataset for code intelligence evaluation. The construction of CodeHarmony follows a systematic three-step process:

1. Data Collection: We aggregate function-level Python code from well-established open-source repositories, primarily the Evol 
dataset (Luo et al., 2024) and the OSS dataset (Wei et al., 2024). Using carefully designed regular expressions, we extract syntac-
tically valid and self-contained functions to ensure code quality.

2. Test Case Generation: To validate the semantic correctness of the collected code, we implement a hybrid verification approach. 
We leverage state-of-the-art language models (GPT-4o and Gemini) to automatically generate diverse test cases. Specifically, we 
follow Beau and Crabbé (2024) to construct three test cases for each function to ensure the code’s correctness.

3. Chain-of-Thought Integration: Inspired by recent advances in multi-agent alignment techniques (Yang et al., 2024a), we augment 
the dataset with CoT, which provides intermediate reasoning steps, enhancing the dataset’s utility for evaluating models’ reasoning 
capabilities in code understanding and generation tasks.

The resulting dataset comprises a diverse collection of code samples with corresponding test cases and CoT. Table 1 presents 
detailed statistics of CodeHarmony, demonstrating its comprehensive coverage and suitability for evaluating various aspects of code 
intelligence models.

4.4.  Evaluation metrics

To assess the efficacy of the models in these tasks, we have adopted the following evaluation metrics.

• Pass@1 quantifies the percentage of generated code snippets that successfully pass the associated test cases (Chen et al., 2021).
• BLEU evaluates lexical similarity overlap between texts using n-gram comparison (Papineni et al., 2002). We use BLEU-4 to assess 
the quality of the generated CoTs.

• Exact Match (EM) metric evaluates the precision by determining if the generated output exactly matches the expected output.

4.5.  Implementation details.

For FFN pruning, we remove the 256 neurons of each layer. For layer pruning, we remove the 4 layers of the model. For vocabulary 
pruning, we reduce the vocabulary size from 92,416 to 17,176. Based on the above settings, we reduce the model’s parameter size 
from 7.3 billion to 5.7 billion, a reduction of 22%.

For the model inference, we use greedy decoding method to calculate the Pass@1, BLEU and EM scores. For the remaining 
hyperparameters, we have meticulously tuned the following settings: a learning rate of 5e-4, a LoRA rank of 64, and a LoRA alpha 
of 32. Our experiments, using PyTorch and Transformers, were run on a system with an Intel Xeon Silver 4210 CPU and a GeForce 
RTX 3090 GPU. The model pruning and post-training took approximately 6 hours to complete.

5.  Experiment result

5.1.  RQ1: Performance comparison

One of the primary objectives of this study is to evaluate the effectiveness of Flab-Pruner in reducing model size while preserving 
the performance. To this end, we design a series of experiments to compare the performance of Flab-Pruner against other structured 
pruning methods as well as the original dense models. We consider five representative pruning methods, including ShortGPT, UIDL, 
Linearity, SLEB and LLM-pruner as the baselines. Each of these methods has a unique focus and explores different aspects of model 
pruning. For each baseline, we control the pruning ratio to be 20% (slightly lower than our method’s 22%) to ensure a fair comparison 
across all methods.
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Table 2 
Performance comparison of Flab-Pruner and other baselines, where HE represents HumanEval, OE represents OpenEval, and CH represents 
CodeHarmony. The best results (compared with other pruning methods) are highlighted in bold. The best results (compared with the dense 
model) are highlighted in gray. FT means traditional fine-tuning, and PT means post-training we proposed.
 Model  Method  Code Generation(Pass@1)  CoT Generation(BLEU-4)  Output Prediciton(EM)

 HE  OE  CH  Avg.  HE-CoT  OE-CoT  CH-CoT  Avg.  Crux-O  CH-O  Avg.
 CodeQwen  Dense  77.44  42.13  60.78  60.12  33.95  41.14  23.81  32.97  37.13  77.43  57.28

 ShortGPT  42.68  20.79  41.83  35.10  15.92  19.02  11.41  15.45  27.63  59.29  43.46
 UIDL  0  0  0  0  0  0  0  0  0  0  0
 Linearity  0  0  0.65  0.22  0  0  0  0  0  0  0
 SLEB  20.73  17.42  49.67  29.27  1.72  5.58  2.92  3.41  18.75  42.70  30.73
 LLM-pruner  15.85  10.67  37.25  21.25  3.88  8.33  3.99  5.40  16.50  25.44  20.97
 Flab-Pruner  75.00  37.64  64.05  58.90  31.42  35.88  20.80  29.37  31.75  70.58  51.17
 Flab-Pruner w FT  76.22  36.52  66.63  59.79  32.17  34.65  25.80  30.87  40.38  77.10  58.74
 Flab-Pruner w PT  78.05  39.89  67.97  61.97  34.37  34.67  26.60  31.88  40.63  77.43  59.03

 NxCode  Dense  77.44  41.57  62.09  60.37  32.87  39.90  24.15  32.31  37.00  77.43  57.22
 ShortGPT  40.85  22.47  38.56  33.96  19.03  20.00  12.53  17.19  28.75  59.51  44.13
 UIDL  0  0  0  0  0  0  0  0  0  0  0
 Linearity  0  0  0.65  0.22  0  0  0  0  0  0  0
 SLEB  20.12  17.98  47.71  28.60  2.42  5.88  3.37  3.89  18.38  41.15  29.77
 LLM-pruner  17.07  9.55  36.60  21.07  3.31  8.96  4.13  5.47  15.00  23.23  19.12
 Flab-Pruner  74.39  35.96  64.05  58.13  31.03  35.31  21.76  29.37  32.63  70.58  51.61
 Flab-Pruner w FT  75.51  38.20  62.36  58.69  30.86  34.88  24.14  29.96  40.13  77.10  58.62
 Flab-Pruner w PT  81.71  39.33  64.05  61.70  32.96  37.40  24.71  31.69  40.63  77.21  58.92

 CodeSlerp  Dense  77.44  43.26  61.44  60.71  32.18  40.49  24.51  32.39  37.25  76.77  57.01
 ShortGPT  41.46  21.35  39.61  34.14  18.03  20.00  12.53  16.85  29.38  60.00  44.69
 UIDL  0  0  0  0  0  0  0  0  0  0  0
 Linearity  0  0  0.65  0.22  0  0  0  0  0  0  0
 SLEB  21.34  18.54  48.37  29.42  2.12  5.22  3.12  3.49  18.44  41.25  29.85
 LLM-pruner  16.89  11.35  38.60  22.28  3.65  9.25  5.11  6.00  15.25  24.25  19.75
 Flab-Pruner  75.00  35.96  64.05  58.34  31.48  35.96  21.83  29.76  32.25  70.35  51.30
 Flab-Pruner w FT  73.17  37.20  65.36  58.58  31.66  34.03  25.81  30.50  37.50  75.60  56.55
 Flab-Pruner w PT  78.66  37.64  66.01  60.77  32.27  37.17  25.96  31.80  37.63  75.66  56.65

• ShortGPT (Men et al., 2024) prunes layers guided by the cosine similarity between layer representations.
• UIDL (Gromov et al., 2024) prunes layers by evaluating the angular distance between layer representations.
• Linearity (Razzhigaev et al., 2024) prunes layers by evaluating the linear relationship of layer representations.
• SLEB (Song et al., 2024) prunes layers that have the least impact on the model by calculating the perplexity metric.
• LLM-pruner (Ma et al., 2023) prunes layers that have the least impact on the model by utilizing gradients derived from Taylor’s 
formula.

(1) Compared with single component pruning methods: Our empirical results, shown in Table 2, demonstrate the performance 
of Flab-Pruner across various tasks. Without post-training, Flab-Pruner achieves the highest performance in the code generation task. 
Taking HumanEval as an example, the Pass@1 of Flab-Pruner on the CodeQwen model is 75.00%, while the best Pass@1 of other 
baseline methods is 42.68%, compared to the relative performance improvement of 75.73%. In the CoT generation task, Flab-Pruner
also performs better, with a BLEU-4 of 31.42% on the CodeQwen model, while the best BLEU-4 of other baseline methods is 15.92%, 
compared to the relative performance improvement of 97.98%. For the code output prediction task, Flab-Pruner also outperforms 
other methods. Taking Crux-O as an example, the EM of Flab-Pruner on the CodeQwen model is 31.75%, while the best EM of other 
baseline methods is 27.63%, compared to the relative performance improvement of 14.93%.

(2) Compared with other pruning objectives: As shown in Fig. 2, we compare the effect of pruning different number of layers on 
the model performance and find that the more layers are pruned, the more the model performance decreases. Furthermore, we conduct 
an in-depth analysis of our proposed pruning objectives in Layer Pruning. We conduct comprehensive comparisons between our KL 
divergence-based approach and several alternative pruning objectives. When examining the impact of the progressively increasing 
number of pruned layers, we observe that with minimal pruning (1-2 layers), all methods maintain performance comparable to 
the original model. However, as more layers are removed, significant differences emerge between pruning objectives. The angular 
distance-based method (UIDL) deteriorates most dramatically, with pass@1 metrics dropping from above 60% to 0% when pruning 
beyond a certain threshold. Both Taylor formula-based gradients (LLM-Pruner) and cosine similarity-based methods (ShortGPT) show 
substantial performance degradation as pruning increases, while our KL divergence approach maintains higher performance with a 
more gradual decline. When pruning ratios become extremely high, all methods eventually experience severe performance drops, 
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Fig. 2. Performance comparison of different layer pruning models with different number of layers pruned..

Table 3 
Ablation Comparison of Flab-Pruner with different pruning components.
 Model  Method  Code Generation(Pass@1)  CoT Generation(BLEU-4)  Output Prediciton(EM)

 HE  OE  CH  HE-CoT  OE-CoT  CH-CoT  Crux-O  CH-O
 CodeQwen  Dense  77.44  42.13  60.78  33.95  41.14  23.81  37.13  77.43

 + Vocab Pruning  77.44  42.70  62.09  33.85  41.44  22.21  36.50  75.66
 + FFN (Top-K)  74.39  37.64  64.05  31.42  35.88  20.80  31.75  70.58
 Bottom-K  71.34  35.39  62.09  31.51  37.13  21.54  31.37  70.35
 Middle-K  67.68  35.96  62.09  30.16  37.06  21.23  31.00  71.02
 FIM  75.00  35.96  64.05  31.10  36.96  21.83  31.87  71.90
 Random  67.68  34.83  62.09  31.96  35.66  22.51  32.50  70.35

 NxCode  Dense  77.44  41.57  62.09  32.87  39.90  24.15  37.00  77.43
 + Vocab Pruning  76.22  44.38  62.09  34.16  40.27  24.00  36.38  75.44
 + FFN (Top-K)  74.39  35.96  64.05  31.03  35.31  21.76  32.63  70.58
 Bottom-K  71.34  34.83  62.09  31.03  35.99  22.33  31.87  72.35
 Middle-K  66.46  37.08  60.78  29.93  34.29  22.19  31.75  70.58
 FIM  74.39  36.52  64.71  31.22  35.67  22.05  32.75  71.02
 Random  62.80  35.96  58.17  32.44  35.73  21.47  33.00  71.90

 CodeSlerp  Dense  77.44  43.26  61.44  32.18  40.49  24.51  37.25  76.77
 + Vocab Pruning  74.39  41.57  61.44  34.42  40.31  24.76  36.88  75.00
 + FFN (Top-K)  75.00  35.96  64.05  31.48  35.96  21.83  32.25  70.35
 Bottom-K  71.34  35.96  61.44  31.43  36.32  22.58  32.13  71.24
 Middle-K  67.07  37.64  62.09  31.10  36.05  22.71  31.37  71.24
 FIM  75.61  36.52  64.71  31.65  36.22  22.10  32.50  70.80
 Random  70.73  35.96  61.44  30.48  36.47  22.45  32.38  70.35

though our approach consistently degrades more gracefully. These results demonstrate that KL divergence captures layer importance 
for code intelligence tasks more effectively than both gradient-based and representation similarity-based methods.

These performance differences are primarily attributed to the inherent limitations in the layer selection and importance assessment 
strategies of other methods. SLEB’s reliance on perplexity metrics may not fully correspond to code functionality accuracy. ShortGPT, 
UIDL and Linearity’s isolated layer evaluations fail to capture the collective impact of layers on overall model performance. Addition-
ally, LLM-Pruner’s dependence on back propagation for gradient computation introduces unnecessary computational overhead for 
code intelligence tasks. This suggests that our proposed layer pruning strategy can better capture the importance of the each layer, 
thus alleviating the problem of inconsistent pruning objectives mentioned in Section 1 and better guiding model pruning.

(3) Strengths in our proposed performance recovery strategy: Compared to traditional fine-tuning method, our proposed 
strategy achieves better performance recovery. As shown in Table 2, after post-training, Flab-Pruner achieves the best performance 
across all tasks in three models. Taking HumanEval as an example, the Pass@1 of Flab-Pruner on the CodeQwen model is 78.05%, 
while the best Pass@1 of traditional fine-tuning method is 76.22%, compared to the relative performance improvement of 2.40%.

(4) Ablation Study: To further understand the individual contributions of different components within our approach, we conduct 
an ablation study to evaluate the impact of each component on the overall performance of the pruned models. Table 3 demonstrates 
that vocabulary pruning contributes minimally to performance changes in the pruned models, as evidenced by our ablation analysis. 
The FFN pruning strategy, on the other hand, shows a slight decrease in performance compared to the dense model.

Furthermore, we conduct a comparative analysis between our heuristic rule-based methods and a neuron importance evaluation 
approach using Fisher Information Matrix (FIM Ma et al. (2023)), which is shown in Table 3. The FIM-based approach achieves 
similar performance compared to our Top-K method but with a much higher computational cost. Our proposed method requires 
approximately one minute while the FIM-based approach requires approximately 30 minutes. In addition, the FIM-based approach 
requires additional forward and backward passes through the network for each batch of data.
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Table 4 
Efficiency analysis of Flab-Pruner.
 Value  BF16  FP8  INT4

 Dense  Flab-Pruner  w PT  Dense  Flab-Pruner  w PT  Dense  Flab-Pruner  w PT
 GPU  13.55  10.72  10.72  7.51  5.52  5.52  4.57  3.02  3.02
 Token/s  30  38  38  34  44  44  37  47  47
 CO2  2.14  1.84  1.84  2.02  1.67  1.67  1.94  1.57  1.57
 FLOPs  7.04T  5.64T  5.64T  3.52T  2.82T  2.82T  1.76T  1.41T  1.41T

Based on these results, we validate our design choice and demonstrate that, while contribution-based method may offer theoretical 
advantages, our heuristic rule-based approach provides comparable performance with significantly less computational requirements.

Summary of RQ1 A comprehensive evaluation of Flab-Pruner’s performance across three code intelligence tasks indicate that
Flab-Pruner can retain 97% of the original code generation performance on average after pruning 22% of parameters and achieves 
the same or even better performance after post-training.

5.2.  RQ2: Efficiency analysis

In this RQ, we first compare the efficiency of the pruned model to the original model, focusing on key metrics such as GPU usage, 
speed, CO2 emissions, and FLOPs. These metrics are crucial for practical deployment considerations in software engineering (Shi 
et al., 2024a; Wei et al., 2023), where GPU utilization and token processing speed are calculated by gpu_poor10, CO2 emissions are 
calculated using codecarbon11, and FLOPs are calculated using the Calflops12.

Considering that our pruning method can be combined with state-of-the-art quantization methods to further improve efficiency, we 
evaluate the efficiency of Flab-Pruner with different precision, including BF16, FP8, and INT4 (we implement INT4 by AutoAWQ13) 
in Table 4.

The “GPU Usage” column reflects GPU memory consumption during model inference, with the dense model requiring 13.55 G 
and Flab-Pruner, both with and without post-training, operating within a margin of 10.72G. This suggests that the original model, 
operating at FP16 precision, can only be deployed on GPUs with more than 12G of memory, while the pruned model can run on GPUs 
with less than 12G of memory. Furthermore, the GPU usage of Flab-Pruner at INT4 precision is only 3.02G, indicating that it can run 
on GPUs with 4G of memory. The “Token/s” metric indicates the throughput of the models, i.e., the number of tokens processed per 
second, directly related to the speed of inference. Here, the dense model processes 30 tokens per second, whereas Flab-Pruner manages 
a throughput of 38 tokens per second, suggesting a more efficient use of computational resources. The ”Emissions” column provides 
insight into the environmental impact of the models, with the dense model emitting 2.14 g of evaluating the HumanEval, while Flab-
Pruner emits 1.84 g of CO2. The ”FLOPs” (Floating Point Operations per Second) column provides insight into the computational 
intensity of the models. The dense model demands a significant 7.04 trillion FLOPs for inference, whereas Flab-Pruner operates at a 
reduced computational intensity of 5.64 trillion FLOPs.

In addition to model efficiency, we also compare the performance of the models at different precisions in Table 5. Flab-Pruner
strikes a balance between lowered resource use and sustained performance. The results show that the performance of the models at 
the INT4 precision is slightly lower than that at the BF16 precision, with minimal impact on the model’s performance.

End-to-End Efficiency Analysis: To provide a comprehensive view of the efficiency gains across the entire model lifecycle, 
we analyze the one-off computational cost of pruning and fine-tuning versus the recurring benefits during inference. This analysis 
addresses the complete efficiency landscape from model compression to deployment.

As shown in Table 6, the entire pruning and recovery process takes approximately 6 hours on RTX 3090. While this represents a 
high initial investment, our analysis shows that these costs are quickly amortized through inference efficiency gains.

For the computational efficiency analysis, we need to consider the one-off cost of pruning versus the recurring savings during 
inference. In terms of FLOPs, each inference with the dense model requires 7.04T FLOPs, while the pruned model requires only 5.64T 
FLOPs, saving 1.4T FLOPs (19.9%) per inference. Considering the dense model’s approximate throughput of 7.04T FLOPs during our 
experiments, the 6-hour pruning and fine-tuning process consumes approximately 6 × 3600 × 7.04 = 152, 064T FLOPs (we assume that 
the frequency of calculation is 1 time/second). To determine the break-even point, we calculate: 

Break-even Point = One-time Cost (FLOPs)
Per-inference Savings (FLOPs) = 152, 064𝑇

1.4𝑇
≈ 108, 617 inference runs (8)

Namely, the computational investment is redeemed after approximately 108,617 inference runs.
For real-world deployments where models are typically invoked millions of times especially in production environments or as 

part of developer tools and code assistants, this initial cost is readily justified. For example, a deployment serving 10,000 inference 

10 https://rahulschand.github.io/gpu_poor/
11 https://github.com/mlco2/codecarbon
12 https://pypi.org/project/calflops/
13 https://github.com/casper-hansen/AutoAWQ
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Table 5 
Performance analysis of Flab-Pruner in different precision.
 Model  Precision  Code Generation(Pass@1)  CoT Generation(BLEU-4)  Output Prediciton(EM)

 HE  OE  CH  HE-CoT  OE-CoT  CH-CoT  Crux-O  CH-O
 CodeQwen  FP8 Dense  76.83  41.57  61.44  33.51  40.40  23.78  37.25  78.10

 FP8 Flab-Pruner  75.61  38.76  63.40  30.35  36.11  21.15  31.00  70.80
 FP8 w PT  79.27  39.33  66.01  34.20  36.21  26.01  41.38  77.43
 INT4 Dense  75.00  42.13  60.78  23.88  23.12  14.78  36.88  76.33
 INT4 Flab-Pruner  71.95  38.20  60.78  27.87  31.60  19.12  31.25  69.25
 INT4 w PT  77.44  38.08  66.67  32.80  34.02  24.94  40.50  75.22

 NxCode  FP8 Dense  76.22  41.01  61.44  33.01  39.60  24.48  37.50  78.10
 FP8 Flab-Pruner  75.61  40.45  61.44  30.06  35.8  20.77  31.75  70.80
 FP8 w PT  80.49  38.20  63.40  33.78  36.95  25.46  40.63  77.21
 INT4 Dense  75.00  42.70  61.44  30.67  37.02  23.26  36.63  76.11
 INT4 Flab-Pruner  69.51  38.76  62.09  29.68  34.75  19.73  31.50  69.69
 INT4 w PT  74.39  38.20  62.75  31.88  34.94  24.10  40.63  75.22

 CodeSlerp  FP8 Dense  77.44  41.57  61.44  33.14  39.16  24.32  36.88  77.88
 FP8 Flab-Pruner  75.61  38.76  63.40  30.93  36.35  21.50  31.25  70.58
 FP8 w PT  81.71  41.01  64.05  32.87  35.92  25.46  37.75  76.33
 INT4 Dense  76.83  43.82  60.78  28.24  34.37  18.52  37.3  76.11
 INT4 Flab-Pruner  67.07  37.08  60.13  26.88  32.23  19.67  30.25  69.25
 INT4 w PT  78.66  39.89  67.97  32.91  36.90  25.91  38.13  75.00

Table 6 
Comprehensive efficiency analysis across different stages of Flab-Pruner
deployment in One-time Cost and Inference Efficiency.
 Stage  Time (hours)  GPU Memory (GB)  FLOPs (T)
 Dense  -  13.55  7.04
 + Vocabulary Pruning  0.02  12.15  6.80
 + Layer Pruning  0.3  11.10  5.98
 + FFN Pruning  0.04  10.72  5.64
 + Performance Recovery  5.5  10.72  5.64
 Flab-Pruner  5.86  10.72  5.64

Table 7 
Robustness Comparison of Flab-Pruner and dense model in the presence of RECODE and EvoEval perturbations.
 Perturbed  Method  CodeQwen  NxCode  CodeSlerp

 Dense  Flab-Pruner  w PT  Dense  Flab-Pruner  w PT  Dense  Flab-Pruner  w PT
 ReCode  Format  85.98  78.66  82.32  82.32  76.83  80.49  85.37  75.61  81.10

 Func_Name  75.61  75.00  77.44  75.00  71.95  76.83  76.22  74.39  79.88
 NatGen  86.59  77.44  81.10  85.98  76.83  79.88  85.37  77.44  79.27
 NlaugEnter  64.63  60.98  65.85  64.02  59.76  66.46  64.02  59.76  64.63

 EvoEval  Tool_Use  54.00  54.00  56.00  54.00  53.00  58.00  55.00  53.00  56.00
 Combine  27.00  23.00  18.00  25.00  24.00  19.00  27.00  23.00  23.00
 Subtle  62.00  61.00  62.00  60.00  62.00  64.00  60.00  59.00  65.00
 Creative  35.00  25.00  33.00  34.00  24.00  36.00  36.00  24.00  35.00
 Difficult  37.00  31.00  30.00  35.00  28.00  30.00  35.00  27.00  31.00

requests daily would redeem the initial pruning investment in approximately 11 days, after which all efficiency gains represent net 
computational savings.

Summary of RQ2 The efficiency comparison underscores the practical advantages of Flab-Pruner in resource-constrained settings, 
providing a sustainable solution for deploying powerful code intelligence models with reduced computational overhead. When con-
sidering the full model lifecycle, the initial pruning costs are quickly amortized, resulting in significant efficiency gains for real-world 
deployments.

5.3.  RQ3: Robustness analysis

To thoroughly evaluate the robustness of the pruned models, we design a comprehensive experimental framework that builds 
upon the pioneering ReCode work of Wang et al. (2023). Leveraging the code generation task as a critical benchmark, we aim to 
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Table 8 
Performance comparison on BigCodeBench (Pass@11%).

 Model  Dense  Flab-Pruner
 w/o PT  w/ PT

 CodeQwen  39.60  36.20  39.80
 NxCode  39.60  36.10  40.00
 CodeSlerp  39.80  37.10  39.50

assess model performance under various perturbed conditions. Four token-level perturbation methods are constructed in HumanEval: 
format, func_name, natgen, and nlaugenter. Each of these perturbation methods is specifically tailored to probe the model’s resilience 
to specific types of noise, offering a comprehensive perspective on the models’ ability to withstand real-world disturbances.

• Format. This perturbation method introduces noise in the code format, such as insert the newline or replace space indent with 
tab.

• Func_name. This perturbation method alters function names in the code, including applying character-level or word-level natural 
text transformations on component words.

• Natgen. This perturbation method introduces code syntax noise, such as inserting the deadcode or swaping operand.
• Nlaugenter. This perturbation method introduces natural language noise in the docstrings, such as applying SynonymSubstitution 
or BackTranslation.
The empirical results, as shown in Table 7, indicate that the pruned models exhibit a slight decrease in performance under 

partially token-level perturbed conditions compared to the dense model. The performance of the three pruned models under the four 
perturbation methods is slightly lower than that of the dense model, with a maximum decrease of less than 10%. However, after 
post-training, the performance of the pruned models is even better than the dense model under certain perturbations. Taking the 
CodeQwen model as an example, after post-training, the performance of Flab-Pruner under the Func_Name perturbation is 77.44%, 
while the performance of the dense model is 75.61%. This indicates that our post-training strategy can enhance the robustness of the 
model.

Furthermore, we also conduct experiments using the EvoEval dataset (Xia et al., 2024a). This dataset includes a variety of semantic-
altering operations:

• Tool_use. This perturbation method introduces a new problem with a main issue and additional helper functions that can assist 
in solving it.

• Combine. This perturbation method merges two distinct problems by integrating concepts from both.
• Subtle. This perturbation method makes minor adjustments to the original problem, such as inverting or substituting a require-
ment.

• Creative. This perturbation method develops a more imaginative problem by incorporating stories or unique narratives.
• Difficult. This perturbation method increases complexity by adding extra constraints, replacing common requirements with less 
common ones, or adding more reasoning steps.
We find that the Flab-Pruner performs similarly in Tool_Use and Subtle. After post-training, the performance of the pruned models 

is even better than the dense model under Tool_Use and Subtle. However, in Combine and Difficult, Flab-Pruner shows slightly lower 
performance than the dense model. Overall, our experimental results indicate that Flab-Pruner performs well in terms of robustness, 
maintaining or even enhancing model performance under certain disturbances. We attribute this primarily to the post-training phase.

Summary of RQ3 The results reveal that the pruned models show a slight decrease in robustness compared to the dense model 
in some cases. This suggests that future research needs to focus on robustness in addition to maintaining model performance.

6.  Discussion

6.1.  Evaluation on bigcodebench

To ensure a thorough evaluation, we conduct additional experiments on BigCodeBench (Zhuo et al., 2024a), a more diverse and 
challenging benchmark designed to evaluate code models across various dimensions of programming tasks.

BigCodeBench consists of 1140 function-level tasks specifically designed to challenge language models in following instructions 
and composing multiple function calls from 139 different libraries as tools. Unlike HumanEval and OpenEval, BigCodeBench provides 
a more rigorous evaluation framework with comprehensive test coverage, complex user-oriented instructions, open-ended problem 
solving and tool composition.

As shown in Table 8, our findings on BigCodeBench align with our main results:
• Without PT, the pruned models maintain approximately 91-93% of the dense models’ performance, demonstrating reasonable 
retention of capabilities despite parameter reduction.

• With PT, the pruned models achieve performance comparable to or slightly better than the dense models, with CodeQwen and 
NxCode showing small improvements of 0.2-0.4% in Pass@1 scores, while CodeSlerp experiences a negligible decrease of 0.3%.
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Table 9 
Generalizability of Flab-Pruner on other programming languages in HumanEval-XL.
 Language  CodeQwen  NxCode  CodeSlerp

 Dense  Flab-Pruner  w PT  Dense  Flab-Pruner  w PT  Dense  Flab-Pruner  w PT
 Kotlin  56.25  28.75  42.50  53.75  32.50  40.00  53.75  27.50  40.00
 Ruby  46.25  22.50  33.75  46.25  23.75  36.25  46.25  22.50  36.25
 Swift  48.75  31.25  35.00  48.75  32.50  35.00  45.00  27.50  35.00

Table 10 
Impact of Pass@1 on different pruning strategy combinations on the CodeQwen model 
(w/o PT).
 Pruning Strategy  Model Parameters  HumanEval  OpenEval  CodeHarmony
 None (Dense)  7.25B  77.44  42.13  60.78
 Vocab only  6.63B  77.44  42.70  62.09
 Layer only  6.44B  75.00  37.64  64.05
 FFN only  7.16B  76.54  39.80  66.00
 Vocab + Layer  5.82B  77.20  42.13  64.92
 Vocab + FFN  6.54B  74.39  37.64  64.05
 Layer + FFN  6.35B  76.24  36.52  66.83
 All three (Flab-Pruner)  5.73B  76.22  36.52  66.63

• The models’ ability to compose function calls from different libraries remains intact after pruning, indicating that Flab-Pruner
preserves the models’ semantic understanding and tool utilization capabilities.

The consistent performance patterns across this more challenging benchmark corroborate our findings from HumanEval and 
OpenEval, demonstrating that Flab-Pruner maintains its effectiveness even on tasks requiring complex reasoning and tool composi-
tion. It also demonstrates the generalizability of our approach across different task complexities and problem-solving scenarios.

6.2.  Evaluation on other programming languages

To assess the generalizability of Flab-Pruner beyond Python, we extend our evaluation to include other popular programming 
languages: Kotlin, Ruby, and Swift. These languages represent diverse paradigms and syntactical structures, providing a robust test 
for Flab-Pruner. We conduct experiments using the HumanEval-XL (Peng et al., 2024) benchmark, which offers code generation 
tasks across multiple languages, similar to the primary evaluation setup for Python. Table 9 presents the performance of the dense 
(original) models, the pruned models without performance recovery (Flab-Pruner), and the pruned models with performance recovery 
(Flab-Pruner w PT) across CodeQwen, NxCode and CodeSlerp on Kotlin, Ruby and Swift.

Due to the fact that Flab-Pruner utilizes the CodeHarmony dataset as the basis for evaluating model component importance 
during the pruning phase, the performance of the models pruned by Flab-Pruner without post-training (columns labeled ‘Flab-
Pruner’) could only maintain between 50–65% of their original performance on these new languages. This consistent drop across 
Kotlin, Ruby, and Swift highlights that the initial pruning, guided by a Python-centric dataset, indeed affects performance on unseen 
language distributions.

In contrast, the models subject to post-training (columns labeled ‘w PT’), despite being trained solely on the Python dataset, 
demonstrate remarkable abilities to generalize and recover performance on other programming languages. They consistently restore 
the pruned model’s performance to 75–80% of the original dense model’s capability. While this recovery does not reach the same 
level as observed on Python, we posit that expanding the training dataset to include samples from these programming languages 
would further enhance the performance of the pruned models. This demonstrates the broad applicability of Flab-Pruner’s pruning 
and recovery mechanisms across diverse code generation tasks, even with limited cross-language fine-tuning.

6.3.  Impact between strategies

To address the question of how our three pruning strategies (vocabulary pruning, layer pruning and FFN pruning) interact with 
each other, we conduct a detailed ablation analysis of their individual and combined effects, which

is performed on the CodeQwen model. Table 10 presents the results on the HumanEval benchmark and the parameter reduction 
achieved in each configuration. Furthermore, we also report the model parameters of the dense model and the pruned model in each 
configuration.

Our findings reveal several key insights:

• Individual Impact: Vocabulary pruning demonstrates the least performance degradation, maintaining full performance on Hu-
manEval (77.44%) and even slightly improving on OpenEval (42.70% vs. 42.13%). In contrast, layer pruning shows the most 
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Fig. 3. Comparison between Top-K (index-based) and FIM (importance-based) pruning methods across different layers of the CodeQwen model. 
Red circles indicate neurons retained by the Top-K method, while green crosses show neurons retained by the FIM method. The heatmap represents 
neuron importance values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

significant impact on HumanEval (dropping to 75.00%) and OpenEval (dropping to 37.64%). Interestingly, all three individual 
strategies actually improve performance on CodeHarmony, with FFN pruning providing the largest gain (66.00% vs. 60.78%).

• Pairwise Combinations: The combination of vocabulary and layer pruning shows a synergistic effect, with minimal impact on 
HumanEval (77.20%) and no degradation on OpenEval (42.13%). However, when FFN pruning is combined with either vocabulary 
or layer pruning, we observe more significant performance drops on HumanEval and OpenEval. For CodeHarmony, all pairwise 
combinations yield substantial improvements, with layer+FFN pruning showing the highest gain (66.83%).

• Complementary Effects: When all three strategies are combined (Flab-Pruner), we observe a balanced trade-off. The perfor-
mance on HumanEval (76.22%) and OpenEval (36.52%) shows moderate decreases, while CodeHarmony performance improves 
substantially (66.63%). This suggests that the strategies have task-dependent interactions, with some benchmark tasks being more 
sensitive to specific types of pruning than others.

These findings indicate that the three pruning strategies target different aspects of the model’s parameter space and have comple-
mentary effects. While each strategy contributes to parameter reduction, their careful combination, followed by effective performance 
recovery, is essential for maintaining or even enhancing model capabilities across diverse coding tasks.

6.4.  FFN Pruning heuristics

In Section 3.4, we introduce heuristic rules for FFN pruning (Top-K, Bottom-K, Middle-K, and Random Sampling) which are 
primarily based on neuron index order. To provide a clearer justification for these index-based pruning strategies, we conduct a 
comparative analysis between our heuristic approach and a neuron importance evaluation approach using Fisher Information Matrix 
(FIM).

Fig. 3 illustrates the relationship between neuron importance (measured by FIM) and neuron index position across five represen-
tative layers (layers 1, 7, 14, 21 and 28) of the CodeQwen model. Our analysis reveals several key insights:

First, we observe a moderate overlap between neurons selected by our index-based Top-K method and those selected by the FIM-
based importance method. Specifically, the overlap percentages are 41.4% for layer 1, 50.8% for layer 7, 42.6% for layer 14, 43.0% 
for layer 21, and 46.1% for layer 28. This suggests that while neuron index position does not perfectly correlate with functional 
importance as determined by FIM, there exists a substantial relationship across different layers of the model. The visualization shows 
that important neurons (identified by FIM) are not randomly distributed but tend to cluster in certain regions, with many appearing 
in the initial portion of the index range. This pattern helps explain why our Top-K heuristic, which retains neurons from the beginning 
of the index range, achieves competitive performance despite its simplicity.

Furthermore, as shown in Table 3, the performance difference between our Top-K method and the FIM-based approach is minimal 
across all three models, with differences typically less than 1% on evaluation metrics. However, the computational cost differs 
dramatically, where our Top-K method requires only about one minute of processing time compared to approximately 30 minutes 
for the FIM approach, representing a 30x reduction in computational overhead.

These findings validate our design choice of using simple heuristic rules for FFN pruning. While contribution-based methods such 
as FIM may offer theoretical advantages in identifying the most important neurons with greater precision, our rule-based approach 
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provides comparable performance with significantly reduced computational requirements. This efficiency is particularly valuable in 
the context of large language models, where computational resources are often limited.

6.5.  Threats to validity

Threats to Internal Validity. The first internal threat involves the potential for implementation errors in Flab-Pruner. We coun-
teract the possibility of errors in Flab-Pruner with comprehensive code reviews and trusted libraries like PyTorch and Transformers. 
The second internal threat pertains to the accuracy of the implemented baselines. To mitigate this risk, we reproduced all baselines 
using their shared scripts. Furthermore, to ensure a fair evaluation and uphold the integrity of the model architectures, we only 
focused on structured pruning methods in our comparative analysis.

Threats to External Validity. Our primary external validity concern is the representativeness of the datasets used. We selected 
high-quality datasets to reflect the domain accurately, focusing on Python due to its widespread support in code LLMs. We plan to 
expand to other languages and levels in future work to improve the generalizability of our results. Furthermore, we considered three 
state-of-the-art Code LLMs in our study, which may limit the generalizability of our findings to other models. We will expand the 
assessment to include additional models to improve the external validity of the results.

Threats to Construct Validity. The main challenge in construct validity is the choice of metrics for automated evaluation. We in-
cluded diverse metrics such as Pass@1, BLEU and EM to comprehensively assess model performance, providing different perspectives 
on their capabilities.

7.  Related work

7.1.  Code intelligence

The success of models like BERT (Devlin et al., 2019) in NLP has inspired the creation of pre-trained models for code processing. 
Models such as CodeBERT (Feng et al., 2020), GraphCodeBERT (Guo et al., 2021), and CuBERT (Kanade et al., 2020) are designed for 
generating informative code embeddings vital for tasks like software defect detection (Yang et al., 2021). Building on the success of 
GPT (Floridi and Chiriatti, 2020) in NLP, models like CodeGPT (Lu et al., 2021), trained on datasets like CodeSearchNet (Husain et al., 
2019), have shown promise in coding tasks. Recent advancements in deep learning have led to models like CodeGeeX (Zheng et al., 
2023) and CodeLlama (Roziere et al., 2023), excelling in complex programming challenges and demonstrating superior performance.

Code Generation. The code generation task, where code is produced from natural language, is a hot topic (Li et al., 2022; 
Svyatkovskiy et al., 2020; Yang et al., 2023; Zhang et al., 2024), with models trained for specific goals like next-token prediction or 
the “filling in the middle” technique for contextual code completion, as seen in InCoder (Fried et al., 2023) and StarCoder (Li et al., 
2023b; Lozhkov et al., 2024).

The field has seen the rise of diverse models, each with unique training approaches and strengths. Notable examples include 
WizardCoder (Luo et al., 2024), OpencodeInterpreter (Zheng et al., 2024), and Magicoder (Wei et al., 2024), all aimed at improving 
precision and efficiency in code generation challenges.

CoT Generation. CoT generation is about crafting logical steps in natural language to reach a code solution, improving output 
reliability through clear reasoning. Researchers (Zhuo, 2024) have adapted this for code intelligence, with approaches like Jiang’s 
self-planning (Jiang et al., 2023) and Li’s structured CoT (Li et al., 2023a) to tackle complex coding challenges.

Code Output Prediciton. Predicting code output from inputs is a tough test of a language model’s comprehension skills (Jain 
et al., 2024). Gu et al. (2024a) found top models did well in HumanEval but not in output prediction using CRUXEval.

7.2.  Model compression

Model compression reduces model size, boosts transformer efficiency, and maintains performance through techniques like knowl-
edge refinement, quantization, and pruning.

Knowledge distillation. Knowledge distillation trains a compact student model to emulate a larger teacher model. In software 
engineering, Compressor (Shi et al., 2022) employs task-specific distillation to enhance transformer efficiency with neural architecture 
search. Yang et al. (2024a) introduced COTTON to boost lightweight models by transferring reasoning skills from larger models using 
rules and agent alignment.

Quantization. Quantization trims neural network precision to optimize memory and efficiency. Wei et al. (2023) examined 
quantized models in code generation, noting performance trade-offs. Xiao et al. (2023) introduced SmoothQuant for weight and 
activation quantization. Gptq (Frantar et al., 2022) utilizes second-order info for quantization, and Qlora (Dettmers et al., 2024) 
backpropagates through a 4-bit model into Low Rank Adapters. Quantization can enhance efficiency but may affect accuracy.

Pruning. Pruning boosts model efficiency by creating sparser or smaller models. Unstructured pruning zeros parameters for 
sparsity, like SparseGPT (Frantar and Alistarh, 2023), treating it as a sparse regression issue, but risking irregular structures. Structured 
pruning removes components based on criteria, with tools like LLM-Pruner (Ma et al., 2023) using gradients to cut less critical parts, 
ShearedLLaMA (Xia et al., 2024b) applying targeted pruning and dynamic loading, and ShortGPT (Men et al., 2024) removing whole 
layers.

Considering that existing pruning methods may compromise model performance, we propose Flab-Pruner, a comprehensive 
pruning approach that maintains model efficiency and performance in code intelligence tasks. Moreover, Flab-Pruner utilizes the 

Information Processing and Management 63 (2026) 104580 

17 



G. Yang et al.

LoRA technique for effective post-training, guaranteeing that the pruned models attain performance levels akin to the original dense 
models.

8.  Conclusion and future work

The development and evaluation of Flab-Pruner underscore the viability of structural pruning for LLMs in the generative coding 
tasks. Our approach has demonstrated that it is possible to significantly reduce the computational footprint of LLMs without compro-
mising their core capabilities. By pruning 22% of parameters, Flab-Pruner retains 97% of the original code generation performance 
on average, which further achieves the same or even better performance after post-training. The pruned models also exhibit enhanced 
efficiency in GPU usage, Flops, CO2 emissions, and token processing speed, aligning with the goals of green software engineering. 
Moreover, the comprehensive evaluation, including robustness analysis, assures that the pruned models maintain a high standard of 
performance.

In future work, we shall develop more efficient model pruning methods to reduce the computational overhead of our current 
approaches. Potential directions include cherry data selection techniques (Li et al., 2024) to select a smaller dataset for evaluation 
and transfer-based methods that leverage importance patterns from previously pruned models to new architectures.

Additionally, we plan to explore more Code LLMs and evaluate the effectiveness of Flab-Pruner on a broader range of generative 
coding tasks. We will release more pruned models on the open source platform to facilitate the deployment of pruned models in 
real-world software engineering scenarios. Moreover, we plan to expand Flab-Pruner to support a broader range of other fields, such 
as natural language processing, computer vision, and audio processing.
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