
Verifying Pushdown Multi-Agent Systems against Strategy Logics

⇤

Taolue Chen

Department of Computer Science
Middlesex University London, UK

Fu Song

Shanghai Key Laboratory
of Trustworthy Computing

East China Normal University, China

Zhilin Wu

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, China

Abstract

In this paper, we investigate model checking algo-
rithms for variants of strategy logic over pushdown
multi-agent systems, modeled by pushdown game
structures (PGSs). We consider various fragments
of strategy logic, i.e., SL[CG], SL[DG], SL[1G]
and BSIL. We show that the model checking prob-
lems on PGSs for SL[CG], SL[DG] and SL[1G]
are 3EXTIME-complete, which are not harder than
the problem for the subsumed logic ATL⇤. When
BSIL is concerned, the model checking problem
becomes 2EXPTIME-complete. Our algorithms
are automata-theoretic and based on the saturation
technique, which are amenable to implementations.

1 Introduction

A multi-agent system (MAS), in a nutshell, is a complex de-
centralized computing system composed of multiple interact-
ing intelligent agents within an environment, in which the
behavior of each agent is determined by its observed infor-
mation of the system. One of the most important models for
multi-agent systems is (finite-state) concurrent game struc-
tures. Very recently (at IJCAI’15), a class of infinite-state
multi-agent systems, i.e., pushdown multi-agent systems, was
also studied [Murano and Perelli, 2015]. These infinite MASs
are modeled naturally by pushdown game structures (PGSs),
which are the main focus of the current paper.

To specify the behavior of MASs, a well-known logical
formalism is Alternating-Time Logic (ATL), or its extension
ATL⇤ where more complex temporal properties can be ex-
pressed [Alur et al., 2002]. In contrast to traditional reac-
tive systems, for MASs, properties expressing cooperation
and enforcement of agents must be taken into account. When
these properties are concerned, ATL-like logics suffer, un-
fortunately, from significant limitations, which has been ob-
served in a number of recent papers (e.g., [Chatterjee et al.,
2010; Mogavero et al., 2012; 2014]). In particular, in these
logics one is unable to refer explicitly to specific strategies a
group of agents might take, which handicap the specification

⇤Equal contribution.

of many important MAS-specific properties, typically involv-
ing game-theoretic notions of agents in a cooperative and/or
adversarial setting.

To remedy these shortcomings, strategy logic (SL, [Mo-
gavero et al., 2014]) has recently been put forward. In SL,
strategies are explicitly referred to by using first-order quan-
tifiers and bindings to agents. As a result, sophisticated con-
cepts such as Nash equilibria, which cannot be expressed in
ATL⇤, can naturally be encoded in SL. On the other hand, it is
probably not surprising that the expressiveness of SL comes
with a price of high computational complexity. For instance,
its satisfiability problem is at least NON-ELEMENTARY
hard. In light of this, several fragments of SL have been stud-
ied, for instance, Nested-Goal, Boolean-Goal, Conjunctive-
goal, Disjunctive-goal, and One-Goal Strategy Logic, re-
spectively denoted by SL[NG], SL[BG], SL[CG], SL[DG],
SL[1G] [Mogavero et al., 2013; 2014; Cermák et al., 2015].
Independently, Wang et al [Wang et al., 2015] put forward ba-
sic strategy-interaction logic (BSIL), which is a proper exten-
sion of ATL (but incomparable to ATL⇤). The main technical
ingredient of BSIL is a new modal operator, viz, strategy in-
teraction quantifier. As a specification language, BSIL bears
an appropriate and natural balance between the expressive-
ness and the verification complexity.

For verification, we are mostly interested in model check-
ing, a well-established formal method that allows to au-
tomatically verify correctness of systems. Model check-
ing finite-state concurrent game structures is well-understood
now. In particular, it is known that model checking SL[NG]
or SL[BG] is already NON-ELEMENTARY hard [Mogavero
et al., 2014; Bouyer et al., 2015], SL[CG], SL[DG] or SL[1G]
is 2EXPTIME-complete, and BSIL is PSPACE-complete. In
contrast, much less is known for PGSs. Only very recently,
model checking ATL⇤ and alternating-time µ-calculus is
shown to be 3EXPTIME-complete and EXPTIME-complete
respectively [Murano and Perelli, 2015; Chen et al., 2016].
An obvious question is, how to model check PGSs against
strategy logic? The current paper aims to fill in this gap.

It is known that SL[NG]/SL[BG] semantics might admit
non-behavioral strategies, meaning that a choice of an agent
at a given point of a play may depend on choices other agents
can make in the future or in counter-factual plays [Mogavero

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

180

et al., 2013; Wang et al., 2015]. This is not interesting
from an MAS perspective. For this reason, we only con-
sider the following subclasses: SL[CG], SL[DG], SL[1G]
and BSIL. We show that the model checking problems
on PGSs for SL[CG], SL[DG] and SL[1G] are 3EXTIME-
complete, which is not harder than the problem for the sub-
sumed logic ATL⇤, while the problem becomes 2EXPTIME-
complete when considering BSIL. These results confirm the
observation that SL[CG], SL[DG], SL[1G] do not increase
the verification complexity in the asymptotic sense, compar-
ing to ATL⇤, and that BSIL indeed is “simpler” in terms of
verification complexity.

Our model checking algorithms are automata-theoretic and
evidently are also applicable to concurrent (finite) game struc-
tures. One of the distinguished features is that they are able
to perform global model checking, i.e., to compute (a finite
representation of) the set of states that satisfy a given prop-
erty. The importance of global model checking has been dis-
cussed in, e.g., [Piterman and Vardi, 2004]. It is crucial when
repeated checks are required, or where the model checking
is only a component of the verification process. It is also
very useful when studying coverage metrics [Chockler et al.,
2006] for model checking, which could be used when an
MAS practitioner cannot guarantee the correctness of spec-
ifications or system models. Specifically for the pushdown
structures, our model checking algorithms are also saturation-
based, which are amenable to implementations. Moreover,
they can deal with regular valuations rather than simple val-
uations of atomic propositions. By regular valuations one
atomic proposition can denote an infinite (but regular) set of
configurations. For two reasons we consider regular valu-
ations of atomic propositions: (1) the algorithm iteratively
computes, for a (sub-)formula, a possibly infinite, but reg-
ular set of configurations. This (sub-)formula will then be
replaced by a fresh atomic proposition with the regular set as
the valuation, (2) Regular valuations do not bring extra cost
to our algorithm, but may make the specification more conve-
nient, see e.g. [Esparza et al., 2003].

As another contribution, we also clarify the expressiveness
of BSIL and SL. While it seems that BSIL is incomparable
with SL[1G], we show that it is strictly less expressive than
SL[CG] and SL[DG]. This was not known before to the best
of our knowledge.
Related Work. LTL/CTL model checking on pushdown
systems were well studied in the literature which can be
used to verify infinite-state closed systems (see [Carayol and
Hague, 2014] for a survey). Two-player games or module
checking on pushdown systems were also extensively stud-
ied; see, e.g., [Walukiewicz, 2001; Hague and Ong, 2009;
Löding et al., 2004; Serre, 2003; Aminof et al., 2013;
Bozzelli et al., 2010] which can be used to verify infinite-
state open systems. However, as discussed in [Jamroga and
Murano, 2014], module checking (model checking open sys-
tems) is incomparable to model checking MAS.

Model checking techniques were extended to verify finite-
state MASs against variants of temporal logics, typically
based on ATL. For instance, [Bourahla and Benmohamed,
2005; Bulling and Jamroga, 2011; Jamroga and Murano,
2015]; see [Chen et al., 2016] for further references. The

most closely related work is [Cermák et al., 2015]. The
authors provided symbolic model checking algorithms for
SL[1G], but restricted to finite MASs. In contrast, we con-
sider infinite MASs and much more expressive fragments of
SL. We note that [Wang et al., 2015] also presented automata-
based model checking algorithms for BSIL. However, their
method was based on tree automata, which is considerably
different from ours.

2 Pushdown Game Structures

We write [n] = {1, 2, . . . , n}. Let AP be a finite set of atomic
propositions, Ag be a finite set of agents, Ac be a finite set of
actions that can be made by agents, Dc = Ac

Ag be the set
of decisions of the agents in Ag. For each agent a 2 Ag and
decision d 2 Dc, let d(a) denote the action chosen by a in d.
Definition 1 (Pushdown Game Structures, [Murano and
Perelli, 2015]). A Pushdown Game Structure (PGS) is a tuple
P = (P,�,�,�), where P is a finite set of control states, �
is a finite stack alphabet, � : P ⇥ � ⇥ Dc ! P ⇥ �

⇤ is a
transition function, � : P ⇥ �

⇤ ! 2

AP is a labeling function
that assigns to each hp,!i 2 P ⇥ �

⇤ a set of atomic propo-
sitions. W.l.o.g., we assume that ? 2 � is a special bottom
stack symbol never popped up from the stack.

A configuration hp,!i of the PGS P consists of a state p 2
P , a stack content ! 2 �

⇤. We denote by CP the set P ⇥ �

⇤.
For every (p, �, d) 2 P⇥�⇥Dc with �(hp, �i, d) = (p

0
,!),

we usually write hp, �i d
,!P hp0,!i instead.

The transition relation =)P : CP ⇥ Dc ⇥ CP of the PGS
P is defined by the following rule: for every !

0 2 �

⇤,
hp, �!0i d

=)P hp0,!!0i if hp, �i d
,!P hp0,!i. The transition

relation =)P represents possible concurrent moves of the
players involved in the game. A track of P is a finite sequence
⇡ = c0...cn over C⇤

P such that 8i : 0  i < n, ci
d

=)P ci+1.
A path of P is an infinite sequence ⇡ = c0c1... over CP such
that 8i � 0, ci

d
=)P ci+1. Given a track ⇡ = c0...cn (resp.

path ⇡ = c0c1...), for every i : 0  i  n (resp. i � 0),
let ⇡i denote ci, ⇡�i denote ci...cn (resp. cici+1...) of ⇡, ⇡<i

denote the prefix sequence c0...ci�1 of ⇡. Let TP ✓ C+
P de-

note the set of all tracks in P ,
Q

P ✓ C!P denote the set of all
paths in P . Furthermore, given a configuration c, we denote
by TP(c) (resp.

Q
P(c)) the set {⇡ 2 TP | ⇡0 = c} (resp.

{⇡ 2
Q

P | ⇡0 = c}).
A strategy for an agent in a PGS P is a function ✓ : TP !

Ac that contains all the possible choices of actions depending
upon the tracks (i.e., the history the agent saw so far). Let
⇥ denote the set of all the possible strategies. A path ⇡ is
compatible with an assignment �A : A ! ⇥ over the set A
of agents, if for every i � 0, there is a decision d 2 Dc such
that ⇡i

d
=)P ⇡i+1 and d(a) = �A(a)(⇡<i) for all a 2 A.

Given a configuration c 2 CP and an assignment �A over
the set A of agents, let

Q
P(c, �A) = {⇡ | ⇡ 2

Q
P(c) ^

⇡ is compatible with �A}.
A valuation � : V [Ag ! ⇥ is a function assigning to

each agent and element from V a strategy. Given a valuation
�, a configuration c of P , a play corresponding to (c, �) is
the unique outcome of P determined by the strategies �(a)

181

of all agents a 2 Ag participating to it. Formally, a play
corresponding to (c, �) is a path ⇡ 2

Q
P(c) such that for

every 8i � 1, ⇡i�1
di
=)P ⇡i and di(a) = �(a)(⇡<i) for

every a 2 Ag. Given an integer i � 0, let (c, �)i denote the
pair (⇡i, �i) such that ⇡i is the i-th configuration of the play ⇡
corresponding to (c, �), and �i is the updated valuation after
the i-steps of the play ⇡, more precisely, �i is the valuation
such that 8x 2 V [Ag, �i(x) is a strategy satisfying that
8⇡0 2 TP(ci), �i(x)(⇡0

) = �(x)(⇡<i⇡
0
).

3 Strategy Logic

3.1 SL[CG] and SL[DG]

SL[CG] and SL[DG] are extensions of the logic LTL by intro-
ducing quantification prefixes and binding prefixes. A quan-
tification prefix } 2 {hxi, [x] | x 2 V }|V | over a set of strat-
egy variables V is a |V |-length word in which each variable
x 2 V is either existentially quantified hxi, or universally
quantified [x]. Let |}| denote the length of }, that is, |V |,
}(i) denote the i

th symbol hxi or [x] in }, and }(x) denote
the position of x in }. Let QPreV denote the set of all quan-
tification prefixes over V . A partial binding prefix is a word
(a1, x1) . . . (an, xn) 2 (Ag ⇥ V)

⇤ such that ai 6= aj for
i 6= j. A binding prefix is a partial binding prefix of length
|Ag|, i.e., a1, . . . , an is an enumeration of all agents in Ag.
An LTL formula preceded by a binding prefix is called a goal.
In SL[CG], goals are restricted into conjunctive form. Dually,
goals are restricted into disjunctive form in SL[DG]. Given a
formula � which is a Boolean combination of goals [i'i, let
free(�) denote the set of strategy variables appearing in the
binding prefixes [0is.

Definition 2 (SL[CG] and SL[DG]). [Mogavero et al., 2014;
2013] The syntax of SL[CG] and SL[DG] is defined as fol-
lows, with ? = ^ for SL[CG] and ? = _ for SL[DG]:

' ::= q | ¬' | ' ^ ' | X' | 'U' | }
 ::= [' | ?

where q 2 AP , [is a binding prefix, } 2 QPrefree() is a
quantification prefix over free().

Given a valuation � : V [Ag ! ⇥, a configuration c of a
PGS P and an SL[CG] or SL[DG] formula ', the satisfaction
relation P, c, � |= ' is inductively defined as follows:

• P, c, � |= q iff q 2 �(c);

• P, c, � |= ¬' iff P, c, � 6|= ';

• P, c, � |= '1 ^ '2 iff P, c, � |= '1 and P, c, � |= '2;

• P, c, � |= hxi' iff 9✓ 2 ⇥, P, c, �[✓/x] |= ', where
�[✓/x] is equal to � except for �[✓/x](x) = ✓;

• P, c, � |= [x]' iff 8✓ 2 ⇥, P, c, �[✓/x] |= ';

• P, c, � |= (a, x)' iff P, c, �[�(x)/a] |= ';

• P, c, � |= X' iff P, (c, �)

1 |= ';

• P, c, � |= '1U'2 iff 9i � 0, P, (c, �)

i |= '2 and for
every j : 0  j < i, P, (c, �)

j |= '1.

Note that, all agents are bound to some strategies in � when
interpreting X' or '1U'2. A configuration c of a PGS P
satisfies a formula ', denoted by P, c |= ', iff there is a
valuation � such that P, c, � |= '. Let k'kP denote the set
of configurations c of P such that P, c |= '.
Proposition 1. SL[CG] is as expressive as SL[DG].

One-Goal SL (SL[1G]) is a special class of SL[CG] and
SL[DG] in which quantification and binding prefixes merge
into one rule, i.e., }['.

3.2 Basic Strategy-Interaction Logic

BSIL [Wang et al., 2015] is an extension of alternating-time
temporal logic (ATL) [Alur et al., 2002] for specifying col-
laboration among agents. BSIL has three types of formulae:
state formulae, tree formulae and path formulae, where state
formulae and path formulae are used to express properties on
states and paths of MAS respectively, while tree formulae are
used to describe the interaction of strategies.
Definition 3 (BSIL). BSIL formulae are defined by the fol-
lowing three syntax rules:

(State formula) � ::= q | ¬� | � ^ � | hAi⌧ | hAi';
(Tree formula) ⌧ ::= ⌧ ^ ⌧ | ⌧ _ ⌧ | h+Ai⌧ | h+Ai';
(Path formula) ' ::= ' _ ' | ' ^ ' | X� | �U� | �R�;

where, q 2 AP , A ✓ Ag.
hAi is called a strategy quantifier (SQ for short) and h+Ai

is called a strategy-interaction quantifier (SIQ for short). One
can observe that each SIQ h+Ai is bounded by some SQ hA0i,
that is, h+Ai⌧ or h+Ai' only appears as a subformula of
hA0i⌧ 0. Moreover, SIQs h+Ai do not cross path modal oper-
ators X, U or R, which is important and allows us to analyze
the interaction of strategies locally in a configuration and then
enforce the interaction along all paths from this configuration,
as pointed out by Wang et al. [Wang et al., 2015]. We will
use to denote h+;i . Let |�| denote the length of �. State
formulae are called BSIL formulae. In the rest of this paper,
we use �,�1, ... to denote state formulae, ⌧, ⌧1, ... to denote
tree formulae and ','1, ... to denote path formulae.

As in SL, the semantics of BSIL is defined over PGSs. Let
P = (P,�,�,�) be a PGS. Given a state formula � and a
configuration c 2 CP , the satisfiability relation P, c |= � is
defined inductively as follows:

• P, c |= q iff q 2 �(c);
• P, c |= ¬� iff P, c 6|= �;
• P, c |= �1 ^ �2 iff P, c |= �1 and P, c |= �2;
• P, c |= hAi⌧ iff 9�A : A ! ⇥, P, c, �A |= ⌧ ;
• P, c |= hAi' iff 9�A : A ! ⇥, 8⇡ 2

Q
P(c, �A),

P,⇡ |= '.

Given a tree formula ⌧ , a valuation � and a configuration
c 2 CP , the satisfiability relation P, c, � |= ⌧ is defined in-
ductively as follows:

• P, c, � |= ⌧1 _ ⌧2 iff P, c, � |= ⌧1 or P, c, � |= ⌧2;
• P, c, � |= ⌧1 ^ ⌧2 iff P, c, � |= ⌧1 and P, c, � |= ⌧2;
• P, c, � |= h+Ai⌧ iff 9�A : A ! ⇥, P, c, � ⌦ �A |= ⌧ ;

182

• P, c, � |= h+Ai' iff 9�A : A ! ⇥, 8⇡ 2
Q

P(c, � ⌦
�A), P,⇡ |= ',

where, � ⌦ �A is the valuation such that for every a 2 Ag,
(�⌦�A)(a) is �A(a) if a 2 A, otherwise �(a). The semantics
of path formulae is entirely standard, hence is omitted.

It was shown that BSIL is incomparable with ATL⇤ [Wang
et al., 2015], while SL[1G] subsumes ATL⇤ [Mogavero
et al., 2012]. Therefore, there are some SL[1G] formu-
lae (as well as SL[CG] and SL[DG]) that cannot be ex-
pressed in BSIL. On the other hand, it is difficult to con-
struct an equivalent SL[1G] formula for the BSIL formula
h{1}i((h{+2}iGp ^ h{+2}iGq) _ h{+2}iGq

0
). We note

that, however, this formula can be translated into an SL[CG]
formula hx1ihy1ihy2i((1, x1)(2, y1)Gp^(1, x1)(2, y2)Gq)_
hx1ihy3i((1, x1)(2, y3)Gq

0
), where Ag = {1, 2}. In general,

we have the following result.
Theorem 1. For each BSIL formula �, an equivalent SL[CG]
or SL[DG] formula �0 can be constructed.

3.3 Automata for Logic Formulae

In this section, we recall some connection of logic and au-
tomata which will be used in our model checking algorithms.
First, recall the syntax of LTL:

� ::= q | ¬� | � ^ � | X� | �U�.

Definition 4. A parity automaton PA is a tuple
(G,⌃, �, g

0
, F) where G is a finite set of states, ⌃ is

the input alphabet, � : G ⇥ ⌃ ! 2

G is a transition function,
g

0 2 G is the initial state and F : G ! {0, ..., k} is a rank
function assigning each state g 2 G a priority F (g), where
k is some natural number called index.

A run of PA over an !-word ↵0↵1... from ⌃

! is a se-
quence of states ⇡ = g0g1... such that g0 = g

0, and for every
i � 0, gi+1 2 �(gi,↵i). Let inf(⇡) be the set of states vis-
ited infinitely often in ⇡. A run ⇡ is accepting iff the smallest
number of {F (g) | g 2 inf(⇡)} is even. PA is called deter-
ministic if for every (g,↵) 2 G⇥⌃, |�(g,↵)|  1. The tran-
sition function � in a deterministic parity automaton (DPA) is
written as � : G⇥ ⌃ ! G.
Theorem 2.

[Kupferman and Vardi, 2001; Piterman, 2007]
For every LTL formula �, we can construct a DPA with
2

2O(|�|)
states and 2

O(|�|) indices such that the DPA recog-
nizes all of the !-words satisfying �.

Let BL(X,U,R) denote the set of all Boolean combina-
tions (^,_) of the formulae in the forms X�, �U� and �R�

such that � ::= q | ¬q | � ^ � | � _ �, q 2 AP .
Definition 5. A deterministic Büchi automaton (DBA) BA is
a DPA (G,⌃, �, g

0
, F) such that F : G ! {0, 1}. A DBA BA

is called 1-weak (1W-DBA for short) if each SCC (strongly
connected component) in the transition graph of BA contains
at most one state [Vardi, 1995].

For each BL(X,U,R) formula of the form X�1, �1U�2

or �1R�2, one can construct an equivalent 1W-DBA with at
most 2 states. Furthermore, 1W-DBA is closed under inter-
section and union. Then, we get that:
Proposition 2. For every BL(X,U,R) formula �, we can
construct a 1W-DBA with 2

O(|�|) states recognizing all of the
!-words that satisfy �.

3.4 The Model Checking Problem

In this work, we consider the global model checking problem.
Namely, given a PGS P and a BSIL, SL[CG] or SL[DG] for-
mula �, we compute k�kP , the set of configurations of P sat-
isfying �. Note that for the PGS model, we consider regular
valuations [Esparza et al., 2003], i.e., the labeling function is
given as l : AP ! 2

CP such that for every q 2 AP , l(q)
is a regular set (technically, it is represented by an alternat-
ing multi-automaton; see below for definition). The labeling
function l can be lifted to the function �l : P ⇥ �

⇤ ! 2

AP :
for every c 2 CP , �l(c) = {q 2 AP | c 2 l(q)}.

4 Model Checking Algorithms

Our approaches rely crucially on alternating pushdown sys-
tems which we first review, as follows.

4.1 Alternating Pushdown Systems

Given a set X , let B+
(X) denote the set of positive Boolean

formulae over X . For a set Y ✓ X and a formula 2
B+

(X), Y satisfies if assigning true to elements of Y and
assigning false to elements of X \ Y makes true.
Definition 6 (Alternating Pushdown Systems). An Alternat-
ing Pushdown System (APDS) is a tuple P = (P,�,�),
where P is a finite set of control states, � is a finite stack
alphabet, and � : P ⇥� ! B+

(P ⇥�

⇤
) is a transition func-

tion that assigns to each element of P ⇥� a positive Boolean
formula over P ⇥ �

⇤.
For every set {hp1,!1i, ..., hpn,!ni} ✓ P ⇥ �

⇤ and
every pair hp, �i 2 P ⇥ �, if {hp1,!1i, ..., hpn,!ni}
satisfies the positive Boolean formula �(p, �), we some-
times write hp, �i �!P {hp1,!1i, ..., hpn,!ni}. If
hp, �i �!P {hp1,!1i, ..., hpn,!ni}, then hp, �!i =)P
{hp1,!1!i, ..., hpn,!n!i} for every ! 2 �

⇤. For every
pair hp, �i 2 P ⇥ �, we suppose in this work that the
Boolean formula �(hp, �i) is in the disjunctive normal form.
The size |�| of � is defined as

P
(p,�)2P⇥� |�(hp, �i)|,

where |�(hp, �i)| denotes the number of satisfying sets of
the Boolean formula �(hp, �i).

A run ⇢ of the APDS P from a configuration hp,!i is a
CP -labeled tree (Tr, r) such that r(✏) = hp,!i, and for every
node t 2 Tr with r(t) = hp0,!0i and its children t0, ..., tn, it
must be the case that hp0,!0i =)P {hp00,!0

0i, ..., hp0n,!0
ni}

where r(ti) = hp0i,!0
ii for every i : 0  i  n. W.l.o.g.,

we assume that all of the runs of APDSs are infinite. Given a
path ⇡ of the run ⇢, let r(⇡) be the sequence of configurations
along ⇡, and inf(⇡) denote the set of control states appearing
infinitely often in r(⇡).

For an APDS, we consider the following acceptance con-
ditions:
• parity: an APDS (P,�,�) is equipped with a function
F : P ! {0, ..., k}, where k is referred to as the index.

• conjunctive parity: in this case, an APDS (P,�,�) is
equipped with F = {Fi}i2[m] such that for every i 2
[m], Fi : P ! {0, ..., ki}. We call k = max{ki |
i 2 [m]} as the index of the APDS with the conjunctive
parity acceptance condition.

183

Given a run ⇢, a path ⇡ in the run ⇢ is accepting if
• parity: the smallest number in {F (p) | p 2 inf(⇡)} is

even.
• conjunctive parity: 8i 2 [m] such that the smallest num-

ber in {Fi(p) | p 2 inf(⇡)} is even.
A run ⇢ in the APDS P is accepting iff all the paths in ⇢

are accepting. Let L(P) denote the set of all configurations
from which P has an accepting run. In the sequel, we usu-
ally write APDS-P, and APDS-CP for APDS with parity and
conjunctive parity acceptance conditions respectively.

We observe that APDS-CP with F = {Fi}i2[m] can be
seen as APDS with O(mk) Streett pairs [Chatterjee et al.,
2007], which can be transformed into APDS-P by using index
appearance records (e.g. [Gurevich and Harrington, 1982;
Schwoon, 2001]).
Theorem 3.

[Gurevich and Harrington, 1982; Schwoon,
2001] Given an APDS-CP P = (P,�,�, F) with
F = {Fi}i2[m], we can construct an APDS-P P 0

=

(P

0
,�,�

0
, F

0
) in O(|�|(mk)!) time such that L(P) =

L(P 0
). Moreover, |P 0| = O(|P |(mk)!), |�0| =

O(|�|(mk)!) and the index k

0 of P 0 is O(mk).

Alternating Multi-Automata

Definition 7 (Alternating Multi-Automata). [Bouajjani et al.,
1997] Let P = (P,�,�) be an APDS. An Alternating Multi-
Automaton (AMA) is a tuple M = (S,�, �, I, Sf), where S

is a finite set of states with S ◆ P , � is an input alphabet,
� : (S ⇥ �) ! B+

(S) is a transition function, I ✓ P is a
finite set of initial states, Sf ✓ S is a finite set of final states.

As before, for a set of states {s1, ..., sn} ✓ S, if
{s1, ..., sn} satisfies �(s, �), we will sometimes write s

��!
{s1, ..., sn} instead. We define the relation �!�✓ S ⇥ �

⇤ ⇥
2

S as the least relation such that the following conditions
hold:

• s

✏�!� {s} for every s 2 S;

• s

�!�!�
S

i2[n] Si if s ��! {si}i2[n] and si
!�!� Si for

every i 2 [n].
The AMA M accepts a configuration hp,!i if there exists

S

0 ✓ Sf such that p !�!� S

0 and p 2 I . Let L(M) denote
the set of all the configurations accepted by M. A set of
configurations C ✓ CP is called regular if there exists an
AMA M such that L(M) = C.
Proposition 3.

[Cachat, 2002] Let M = (S,�, �, I, Sf) be
an AMA. Deciding whether a configuration hp,!i with p 2 S

and ! 2 �

⇤ is accepted by M or not can be done in O(|S| ·
|�| · |!|) time and O(|S|) space.

4.2 SL[CG] and SL[DG] Model Checking

In this section, we consider the problem of model checking
SL[CG] and SL[DG]. Thanks to Proposition 1, it is sufficient
to consider SL[CG]. Given a PGS P = (P,�,�,�) and an
SL[CG] formula �, we first deal with the case that � is a
principal sentence = }(

V
i2[n] [i�i) such that for every

i 2 [n], �i is an LTL formula, [i binds all of the agents to

some strategy variables, and } quantifies all of the strategy
variables in [i [Cermák et al., 2015].

To compute k kP , we proceed as follows. First, we con-
struct a DPA PAi = (Gi,⌃i, �i, g

0
i , Fi) with index ki that

accepts all the !-words satisfying �i, for every i 2 [n].
Furthermore, for every q 2 AP , we assume that AMA
Mq

= (S

q
,�, �

q
, I

q
, S

q
f) and its complement M¬q

=

(S

¬q
,�, �

¬q
, I

¬q
, S

¬q
f) have been computed. Although the

states from P may occur in different AMAs, for our purpose,
we assume that each occurrence of p 2 P in different Mq or
M¬q carries a unique name, for instance, it is decorated by q

(resp. ¬q), denoted by p

q (resp. p¬q).
Next, we construct an APDS-CP for the SL[CG] principal

sentence .
For � 2 Ac

|}| and d 2 Dc, d is said to be compatible with
� under [i, if for every a 2 Ag, �(}([i(a))) = d(a), where
}([i(a)) is the position of the variable [i(a) in }. A state
mapping f is a partial function from [n] to

S
i2[n] Gi such

that for every i 2 [n], if f(i) is defined, then f(i) 2 Gi. Let
F be the set of all state mapping functions with f0 2 F such
that for every i 2 [n], f0(i) = g

0
i .

We define APDS-CP P = (P

0
,�,�

0
, F

0
), where

• P

0
= (P ⇥

S
0i|}| Ac

i ⇥ F) [
S

q2AP
(S

q [S

¬q
);

• F

0
= {F 0

i}i2[n], F 0
i : P

0 ! {0, ..., k} is the parity ob-
jective such that the following conditions hold:

– F

0
i ([p,�, f]) =

⇢
Fi(f(i)), if f(i) 2 Gi,

0, otherwise,
– F

0
i (s) = 0, for s 2

S
q2AP S

q [S

¬q;

• �

0 is the smallest transition function satisfying the fol-
lowing constraints: for each [p,�, f] 2 P

0, � 2 �, and
↵ ✓ AP ,

1. �

0
([p,�, f], �) =

W
a2Ac

h[p,�a, f], �i, if |�| < |}| and

}(|�|+ 1) = hxi for some x 2 V ;
2. �

0
([p,�, f], �) =

V
a2Ac

h[p,�a, f], �i, if |�| < |}| and

}(|�|+ 1) = [x] for some x 2 V ;
3. �

0
([p,�, f], �) =

^

d2Dc

h[p0, ✏, f 0
],!i ^

^

q2↵
hpq, �i ^

^

q2AP\↵

hp¬q
, �i,

if |�| = |}|, �(hp, �i, d) = hp0,!i, furthermore, for
every i 2 [n], f 0

(i) = �i(f(i),↵) if f(i) is defined and
d is compatible with � under [i, and f

0
(i) is undefined

otherwise;

4. for every s

��! {s1, ..., sm} 2
S

q2AP
�

q [�

¬q ,

�

0
(hs, �i) =

V
i2[m]

hsi, ✏i;

5. for every s 2
S

q2AP
S

q
f [S

¬q
f , �0

(hs,?i) = hs,?i.

Theorem 4. For every configuration hp,!i 2 CP , hp,!i 2
k kP iff h[p, ✏, f0],!i 2 L(P). The size of P is doubly-
exponential of and polynomial of P and AMAs Mq , where
 = }(

V
i2[n] [i�i).

184

Theorem 5.

[Hague and Ong, 2009] For an APDS-P P =

(P,�,�, F), an AMA M with O(|P |) states and O(|P | · |�| ·
2

|P |
) transition rules can be computed in 2

O(k|P |) time such
that L(M) = L(P), where k is the index of P .

Applying Theorem 3 and Theorem 5, we get that:
Corollary 1. For an APDS-CP P = (P,�,�, {Fi}i2[m])

with index k, an AMA M with O(|P |(mk)!) states and
O((mk)!|P | · |�| ·2|P |(mk)!

) transition rules can be computed
in 2

O(|P |(mk)!) time such that L(M) = L(P).
For each principal sentence , we can construct an AMA

M in triply-exponential time of and exponential time of
P and the AMAs Mq such that L(M) = k kP . Moreover,
the number of states of M is doubly-exponential of the size
of the principal sentence and polynomial of the size of the
PGS and that of the AMAs Mq .

For any general SL[CG] formula �, a formula �0 can be
constructed by replacing simultaneously all the subformulae
 of � that are principal sentences by some fresh atomic
propositions q and extending the labeling function � by
�(q) = L(M). We then construct AMAs for the principal
sentences in �0. Iteratively applying this procedure at most |�|
times, we can get an AMA M� such that L(M�) = k�kP .

The lower bound follows from the fact that SL[1G] sub-
sumes ATL⇤ [Laroussinie et al., 2008; Cermák et al., 2015]
and the model checking problem for ATL⇤ on PGSs is
3EXPTIME-complete [Chen et al., 2016].
Corollary 2. The model checking problems for SL[1G],
SL[CG] and SL[DG] on PGSs are 3EXPTIME-complete.
Remark 1. Our construction relies crucially on the behav-
ioral strategies, which SL[CG]/SL[DG] enjoys according to
[Mogavero et al., 2013]. The main reason is that for a frag-
ment of SL, the strategy quantifications can be replaced by
action quantifications (which is the case in our construction)
only if it admits behavioral strategies. For instance, although
it is tempting to think that our construction can be naturally
extended to SL[BG], the obvious extension would be incom-
plete (due to the non-behavioral strategies). This can be il-
lustrated by using the example in Fig. 3 from [Mogavero et
al., 2013]. We will make this point explicit in the next version.

4.3 BSIL Model Checking

In this section, we turn to BSIL. Let us fix a PGS P =

(P,�,�,�) and a BSIL formula . In case that is a
Boolean combination of the formulae of the form hAi⌧ or
hAi', an AMA can be computed via Boolean operations on
AMAs. Hence, we will focus on the case that = hAi⌧
or hAi' and assume furthermore that each proper sub-state
formula of ⌧ or ' has been replaced by a fresh atomic propo-
sition with an associated AMA. Such formulae are called sim-
ple BSIL formulae.

Recall that Theorem 1 translates a BSIL formula to an
equivalent SL[CG] formula. We can apply this translation
to a simple BSIL formula , obtaining an SL[CG] formula

0 which is of the form
W

i2[k]hXii[Yi]
V

j2[li]
[i,j i,j , where

Xi, Yi are sets of strategy variables, each [i,j is a binding
prefix, and each i,j is a BL(X,U,R) formula. Moreover,
k = O(2

| |
) and li = O(| |) for every i 2 [k].

For each disjunct ⇠ = hXii[Yi]
V

j2[li]
[i,j i,j , we then

apply the construction for SL[CG] to obtain an AMA cap-
turing k⇠kP . However, we observe that, in this case, since
 i,j is a BL(X,U,R) formula, instead of a fully-fledged
LTL formula, we can use 1W-DBA instead of DPA (cf. Sec-
tion 3.3) which only incurs a singly exponential blow-up.
As a result, we are able to compute an AMA M such that
L(M) = k⇠kP , the number of states of M is polynomial in
the size of P and exponential in the size of ⇠.

It is then not difficult to obtain an AMA M0 for 0, i.e.,
L(M0

) = k 0kP . Note that here although 0 may contain
exponentially many disjuncts, the number of states of M0 is
still polynomial in the size of P and exponential in the size of

0. This result, in conjunction with Proposition 3, yields the
main result of this section:
Theorem 6. The model checking problem for BSIL is
2EXPTIME-complete, and EXPTIME-complete for fixed for-
mulae.

Since BSIL subsumes ATL, and the model checking prob-
lem for ATL on PGSs is EXPTIME-complete for fixed ATL
formulae [Chen et al., 2016], we conclude that the model
checking problem for BSIL is EXPTIME-hard for fixed
formulae. The 2EXPTIME-hardness for non-fixed formu-
lae is obtained by a reduction from the word problem of
EXPSPACE-bounded alternating Turing machines T . We can
construct, in polynomial time, a PGS P with two agents E

and A simulating the existential moves of T and the univer-
sal moves of T , respectively. The plays of P have two phases.
In the first phase, P guesses a computation tree of T over the
input word and pushes the guessed symbols in each path of
the computation tree into the stack. In the second phase, P
pops up the content of the stack, and checks at the same time
that the sequence of symbols stored in the stack is indeed an
encoding of a valid computation path of T , with the help of
some BSIL formula. (The further details will be provided in
the full version of the paper.)

5 Conclusion

In this paper, we have investigated model checking algo-
rithms for variants of strategy logic over PGSs.

We showed that the model checking problems on PGSs for
SL[CG], SL[DG] and SL[1G] are 3EXTIME-complete, while
for BSIL is 2EXPTIME-complete. Future work includes im-
plementation, extension to SL[AG] and games with imperfect
recall or partial information.

6 Acknowledgments

Taolue Chen is partially supported by the ARC Discovery
Project (DP160101652), the Singapore Ministry of Educa-
tion AcRF Tier 2 grant (MOE2015-T2-1-137), and an oversea
grant from the State Key Laboratory of Novel Software Tech-
nology, Nanjing Unviersity. Fu Song is partially supported
by Shanghai Pujiang Program (No. 14PJ1403200), Shanghai
ChenGuang Program (No. 13CG21), and NSFC Projects (No.
61402179, 61532019 and 91418203). Zhilin Wu is partially
supported by the NSFC projects (No. 61272135, 61472474,
and 61572478).

185

References

[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and
Orna Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

[Aminof et al., 2013] Benjamin Aminof, Axel Legay,
Aniello Murano, Olivier Serre, and Moshe Y. Vardi.
Pushdown module checking with imperfect information.
Inf. Comput., 223:1–17, 2013.

[Bouajjani et al., 1997] Ahmed Bouajjani, Javier Esparza,
and Oded Maler. Reachability Analysis of Pushdown Au-
tomata: Application to Model Checking. In CONCUR,
1997.

[Bourahla and Benmohamed, 2005] Mustapha Bourahla and
Mohamed Benmohamed. Model checking multi-agent sys-
tems. Informatica (Slovenia), 29(2):189–198, 2005.

[Bouyer et al., 2015] Patricia Bouyer, Patrick Gardy, and
Nicolas Markey. Weighted strategy logic with boolean
goals over one-counter games. In FSTTCS, 2015.

[Bozzelli et al., 2010] Laura Bozzelli, Aniello Murano, and
Adriano Peron. Pushdown module checking. Formal Meth-
ods in System Design, 36(1):65–95, 2010.

[Bulling and Jamroga, 2011] Nils Bulling and Wojciech Jam-
roga. Alternating epistemic mu-calculus. In IJCAI, 2011.

[Cachat, 2002] Thierry Cachat. Symbolic strategy synthesis
for games on pushdown graphs. In ICALP, 2002.

[Carayol and Hague, 2014] Arnaud Carayol and Matthew
Hague. Saturation algorithms for model-checking push-
down systems. In AFL, 2014.

[Cermák et al., 2015] Petr Cermák, Alessio Lomuscio, and
Aniello Murano. Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In
AAAI, 2015.

[Chatterjee et al., 2007] Krishnendu Chatterjee, Thomas A.
Henzinger, and Nir Piterman. Generalized parity games.
In FOSSACS, 2007.

[Chatterjee et al., 2010] Krishnendu Chatterjee, Thomas A.
Henzinger, and Nir Piterman. Strategy logic. Inf. Comput.,
208(6):677–693, 2010.

[Chen et al., 2016] Taolue Chen, Fu Song, and Zhilin Wu.
Global model checking on pushdown multi-agent systems.
In AAAI, 2016.

[Chockler et al., 2006] Hana Chockler, Orna Kupferman, and
Moshe Y. Vardi. Coverage metrics for temporal logic
model checking. Formal Methods in System Design,
28(3):189–212, 2006.

[Esparza et al., 2003] Javier Esparza, Antonı́n Kucera, and
Stefan Schwoon. Model checking LTL with regular val-
uations for pushdown systems. Inf. Comput., 186(2):355–
376, 2003.

[Gurevich and Harrington, 1982] Yuri Gurevich and Leo
Harrington. Trees, automata, and games. In STOC, 1982.

[Hague and Ong, 2009] Matthew Hague and C.-H. Luke
Ong. Winning regions of pushdown parity games: A satu-
ration method. In CONCUR, 2009.

[Jamroga and Murano, 2014] Wojciech Jamroga and Aniello
Murano. On module checking and strategies. In AAMAS,
2014.

[Jamroga and Murano, 2015] Wojciech Jamroga and Aniello
Murano. Module checking of strategic ability. In AAMAS,
2015.

[Kupferman and Vardi, 2001] Orna Kupferman and Moshe Y.
Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Log., 2(3):408–429, 2001.

[Laroussinie et al., 2008] François Laroussinie, Nicolas
Markey, and Ghassan Oreiby. On the expressiveness
and complexity of ATL. Logical Methods in Computer
Science, 4(2), 2008.

[Löding et al., 2004] Christof Löding, P. Madhusudan, and
Olivier Serre. Visibly pushdown games. In FSTTCS, 2004.

[Mogavero et al., 2012] Fabio Mogavero, Aniello Murano,
Giuseppe Perelli, and Moshe Y. Vardi. What makes ATL*
decidable? A decidable fragment of strategy logic. In
CONCUR, 2012.

[Mogavero et al., 2013] Fabio Mogavero, Aniello Murano,
and Luigi Sauro. On the boundary of behavioral strategies.
In LICS, 2013.

[Mogavero et al., 2014] Fabio Mogavero, Aniello Murano,
Giuseppe Perelli, and Moshe Y. Vardi. Reasoning about
strategies: On the model-checking problem. ACM Trans.
Comput. Log., 15(4):34:1–34:47, 2014.

[Murano and Perelli, 2015] Aniello Murano and Giuseppe
Perelli. Pushdown multi-agent system verification. In IJ-
CAI, 2015.

[Piterman and Vardi, 2004] Nir Piterman and Moshe Y.
Vardi. Global model-checking of infinite-state systems. In
CAV, 2004.

[Piterman, 2007] Nir Piterman. From nondeterministic büchi
and streett automata to deterministic parity automata. Log-
ical Methods in Computer Science, 3(3), 2007.

[Schwoon, 2001] Stefan Schwoon. Determinization and
complementation of streett automata. In Automata, Log-
ics, and Infinite Games, pages 79–91, 2001.

[Serre, 2003] Olivier Serre. Note on winning positions on
pushdown games with [omega]-regular conditions. Inf.
Process. Lett., 85(6):285–291, 2003.

[Vardi, 1995] Moshe Y. Vardi. An automata-theoretic ap-
proach to linear temporal logic. In Banff Higher Order
Workshop, 1995.

[Walukiewicz, 2001] Igor Walukiewicz. Pushdown pro-
cesses: Games and model-checking. Inf. Comput.,
164(2):234–263, 2001.

[Wang et al., 2015] Farn Wang, Sven Schewe, and Chung-
Hao Huang. An extension of ATL with strategy interaction.
ACM Trans. Program. Lang. Syst., 37(3):9, 2015.

186

