
DRONE: A Tool to Detect and Repair Directive
Defects in Java APIs Documentation

Yu Zhou∗, Xin Yan∗, Taolue Chen†, Sebastiano Panichella‡ and Harald Gall§
∗College of Computer Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Email: {zhouyu,xin yan}@nuaa.edu.cn
†Department of Computer Science and Information Systems, Birkbeck, University of London, UK

Email: t.chen@dcs.bbk.ac.uk
‡Zurich University of Applied Science, Switzerland

Email: panc@zhaw.ch
§Department of Informatics, University of Zurich, Switzerland

Email:gall@ifi.uzh.ch

Abstract—Application programming interfaces (APIs) docu-
mentation is the official reference of the APIs. Defects in API
documentation pose serious hurdles to their comprehension and
usage. In this paper, we present DRONE, a tool that can
automatically detect the directive defects in APIs documents and
recommend repair solutions to fix them. Particularly, DRONE fo-
cuses on four defect types related to parameter usage constraints.
To achieve this, DRONE leverages techniques from static program
analysis, natural language processing and logic reasoning. The
implementation is based on the Eclipse-plugin architecture, which
provides an integrated user interface. Extensive experiments
demonstrate the efficacy of the tool.
Demo webpage: https://goo.gl/BmEKic
Demo video: https://youtu.be/NDPXiapxoMk

Index Terms—API documentation; directive defects; natural
language processing; repair recommendation

I. INTRODUCTION

Application programming interfaces (APIs) provide crucial
support for software reuse. Developers heavily rely on their
documentation to understand and make use of them. Un-
doubtedly, the accompanying documents are supposed to give
correct and complete descriptions to inform client developers.
However, in practice it is frequently reported that the APIs
documentation fails to meet the developers’ expectation [1].
Manually checking the correctness of documentation would
be practically infeasible due to the huge amount of APIs code
base and their complicated interdependency structure. Auto-
matic document defect detection and repair recommendation
are thus highly desirable—not only for client developers, but
also for API providers.

Among diverse contents of APIs documentation, the usage
constraints and related guidelines are of special importance.
Such statements are termed as directives [2]. Our work focuses
on method parameter usage constraints and relevant exception
specifications. They fall into the category of method call direc-
tive which represents the largest portion of API documentation
directives (43.7%) [3]. In Java APIs, this kind of directives is
generally annotated by tags, such as @param, @exception,
@throws, etc. The structured information is crucial to extract
the document directives automatically in practice.

In this demo paper, we present DRONE1 (Detect and Repair
of dOcumentatioN dEfects), a tool that can automatically
detect the defects of directives in Java APIs documentation and
recommend repair solutions. The methodology underpinning
DRONE is partially based on our previous work [4] for the
defect detection. Concretely, we mainly consider the defects
of four parameter usage constraint types summarized in the
previous work [2], i.e., nullness not allowed, nullness allowed,
range limitation, and type restriction. More recently, DRONE
is also enhanced with the ability to provide corresponding
repair recommendations [5].

To this end, DRONE leverages techniques from static
program analysis, natural language processing (NLP), and
logic reasoning. In Java source files, the tagged directives
are usually mixed with code. To facilitate the processing,
DRONE first extracts the target directives out of the code
by pattern matching. Then, DRONE parses the source code
and generates an abstract syntax tree (AST) representation.
In this step, DRONE also considers parameter passing via
method invocation. As a result, the call hierarchy analysis
is introduced. In parallel, NLP techniques are applied to the
extracted directives. In particular, domain-specific heuristics
[6] are defined to help extract the parameter related constraints
expressed in the directives. Afterwards, the distilled constraints
from both the directives and the code are encoded into first-
order formulas, and an SMT solver is adopted to find out
the potential inconsistency between them. (In this step, we
assume that the code is correct, since it has been extensively
tested before delivered as libraries. In contrast, documentation
is seldom under strict scrutiny, so any inconsistency is more
likely due to a documentation defect.) Once a defect is
detected, a repair solution is generated based on templates
and is recommended to the API developer. The workflow of
DRONE is given in Fig. 1.

DRONE can be used by various users and can be employed
in large-scale projects to detect potential defects. For instance,
DRONE was successfully used to check some packages of the

1DRONE is open sourced at: https://github.com/DRONE-Proj/DRONE



APIs

DRONE

Code/Directive 
Separation

AST 
Parsing

Constraint 
Analysis

Pre-
processing

FOL 
Generation 

Code

Directive

FOL 
Generation 

Pattern 
Analysis

SMT
Solver

Defect
Report

Repair
Recomm
end

Fig. 1. Workflow of DRONE

JDK API documentation (cf. Section III). For future work, we
plan to send our findings to the JDK development team, which
would potentially have a positive impact on the Java ecosys-
tem. It is worthwhile emphasizing that, although DRONE is
currently focusing on Java, we expect its methodology can be
applied in a wide range of APIs written in other programming
languages. For this purpose, we have shared materials which
are possibly useful in similar projects (e.g., heuristics for NLP,
repair recommendation templates) and which are more for
“academic” users in Section II. Moreover, for open-source
projects, developers could apply DRONE to improve the
quality of their documentation. For example, API providers
could directly leverage DRONE to detect the potential defects
of directives, and repair them once they were found. Software
maintainers could also use DRONE to check the co-evolution
between directives and code, since in many cases developers
tend to overlook updating documentation after the evolution
of code.

II. THE DRONE TOOL

DRONE is implemented as an Eclipse plug-in, thus ex-
ploiting many features provided by Eclipse IDE. The current
implementation mainly supports Windows platform. To per-
form the code analysis, DRONE employs JDT2 (mainly AST
and CallHierarchy relevant classes) library in Eclipse. For the
directive constraints extraction, it relies on the Stanford Parser3

to conduct part-of-speech (POS) tagging and dependency pars-
ing. The SMT solver Z34 is integrated to check the consistency
between the formulated constraints from the two artifacts.
When an inconsistency occurs, a template based directive
repair recommendation is generated. The overall architecture
of DRONE is illustrated in Fig. 2.

Invocation 
Analysis

Directive
Analysis

Directive 
Repair

Generator

Code 
Parser

Z3
Solver

Detect 
Module

Repair
Module

Templates
Base

Defect
Localization

Defect ReportDefect Report

Fig. 2. Architecture of DRONE

DRONE’s functionalities could be divided into two parts,
i.e., detection and repair, which are elaborated as follows.

2https://www.eclipse.org/jdt/
3https://nlp.stanford.edu/software/lex-parser.shtml
4https://github.com/Z3Prover/z3

A. Defects Detection

For the detection, DRONE extracts the constraints from both
the code and the directives which are transformed to the first-
order formulae written in the SMT lib 2.0 format. DRONE
integrates the Z3 solver to reason about the equality of two
constraints, based on which DRONE outputs the directive
defect reports. The details of our approach can be found in
the previous work [4], [5].

In this demo paper, we shall focus on how the tool is
used. For academic users who might reuse/extend/adapt our
approaches to their project, we highlight some derivatives of
our research, in particular, the NLP part. We believe that
they are of independent interests. Compared with the code,
directives are much less structured, since it is written in natural
languages. However, we observed that some linguistic patterns
recurrently appeared in these directives. For instance, in the
“nullness not allowed” category, many directives state that
the [parameter] could not be null after “@param” tag, or
“if [parameter] is null” after “@throws” tag. We therefore
considered a technique based on linguistic patterns which are
formulated via heuristics approaches. To define the heuris-
tics, we manually examined more than 400 documents of
JDK packages (mainly in java.awt, javax.swing, and javaFX
packages), and identified 67 heuristics. Table I presents some
illustrative heuristics and the number of heuristics of each
category. DRONE also pre-processes the raw directives since
they are usually mixed with code elements or other tags. For
that purpose, we defined 29 regular expressions and rules to
recognize and remove these unwanted elements.

TABLE I
EXAMPLE HEURISTICS

Constraints category Heuristics
Nullness not allowed (22) [something] be/equals null

[something] be equal/equivalent to null
[soemthing1] or [something2] be/equals null

...
Nullness allowed (12) [something] can/could be null

[something] may/may not be null
[something] can/could be equivalent/equal to null

...
Type restriction (10) [something] be {not} [SpecType]

[something1] or/and [something2] be {not} [SpecType]
...

Range limitation (23) [something] > / < / = [vale]
[something] be not less/greater/larger/equal/equivalent than/to [value]

...

For users who simply want to use our tool, Fig. 3 displays
the user interface of DRONE for the detection functionality.
Once the target API libraries are imported, and the save
directory is set, users could click the first ’analyze’ button
to enable invocation analysis. It will conduct AST and call
hierarchy parsing, and the generated parsing result would be
stored in the same directory (marked as A in Fig. 3). Code
parsing and doc analysis could be enabled by clicking the next
’analyze’ button. The constraints of both codes and directives
would be analyzed. During this step, invocation parsing results
in the previous step are reused and constraints in FOL format
are produced. The file containing the constraints is generated
and stored in the same directory (marked as B in Fig. 3).
The last step is to enable the logic solver Z3 to deduce the
potential inconsistency between the generated FOLs (marked



as C in Fig. 3). The right part of the view is the console,
which displays the corresponding execution traces and logs of
the individual analysis steps (marked as D in Fig. 3).

A

B

C

D

Fig. 3. DRONE UI—defect detection view

B. Defects Repair

Based on the defect report generated from the previous
part, DRONE gives repair recommendations based on the pre-
defined templates. Again for potential benefits of academic
users, we collect some sample templates which are presented
in Table II.

TABLE II
REPAIR RECOMMENDATION TEMPLATES

Constraints category Tags Templates
Nullness not allowed @throws If [param] be null

If [param1] or [param2] be null
If [param1], ... , or [paramN] be null

Nullness allowed @param [param] could be null
Type restriction @throws If [param] be type of [SpecType]

If [param] be not type of [SpecType]
Range limitation @throws If [param] {relation} [value]

If [param] {relation} [value1],...,[valueN]
If [param1] or [param2] {relation} [value]

If [param] {relation} [value1] and {relation} [value2]
If [param] {relation} [value1] or {relation} [value2]

Fig. 4 displays the user interface of DRONE for the repair
recommendation related functionality. Users can load the de-
fect reports generated in the previous phase, and enable the
repair recommendation by clicking the ‘start’ button. Then
the list of such defects could be browsed (marked as E in
Fig. 3). The buttons in the left of the view panel could
help navigate the list items. Once an item is left-clicked, the
corresponding API method and its directives would be located
and displayed in the code editor. Particularly, the first line of
the API method will be highlighted (marked as G in Fig. 4).
The repair recommendation will be given in the right part of
the panel view (marked as F in Fig. 4).

G

F
E

Fig. 4. DRONE UI—defect repair view

III. EVALUATION

To demonstrate the feasibility of DRONE, we have eval-
uated DRONE by extensive experiments with real-life API
libraries. In this section, we mainly outline two case studies
on DRONE’s performance evaluation. The results are partially
reproduced from [4], [5], to which we also refer interested
readers for the details of the entire experiment sets. The first
case study evaluates the directive defect detection ability. We
use a subset of JDK APIs, mainly java.awt, javax.swing, and
javaFX, from which the heuristics are extracted. In total, these
three packages sum up to more than 1,100 kLoC. The metrics
we consider for this part are mainly precision, recall and F-
measure. In total, DRONE reported 1,689 defects, out of which
1,291 turn out to be true positives (TP), giving a precision
rate of 76.4%. Meanwhile, the recall rate of the experiment
is 83.8%, and accordingly, the F-measure is 79.9%. Table III
shows the result.

TABLE III
RESULTS OF CASE STUDY 1: JDK APIS

Category TP FP FN Precision Recall F-measure
Nullness 233 77 7 0.752 0.971 0.847

Not Allowed
Nullness 599 63 27 0.905 0.957 0.930
Allowed
Range 406 245 120 0.624 0.772 0.690

Limitation
Type 53 13 95 0.803 0.358 0.495

Restriction
Total 1291 398 249 0.764 0.838 0.799

We note that, in order to validate the generalizability of
our approach—particularly the heuristics—it’s necessary to
test DRONE over different APIs than those from which the
heuristics are extracted. Hence we apply our approach to the
latest Android APIs (level-24). For this purpose, we select the
largest 12 packages with more than 400 kLoC code, as well
as related documents. Table IV gives DRONE’s performance
on this set of APIs. Based on the result, we can observe
that DRONE achieves a precision rate of 74.7% and a recall
rate of 89.4%, which demonstrates its generalizability and,
in particular, the efficacy of various heuristics which have
been used. By these experiments, one can reasonably expect
to deploy them for further similar projects.

TABLE IV
RESULTS OF CASE STUDY 1: ANDROID APIS

Category TP FP FN Precision Recall F-measure
Nullness 246 38 15 0.866 0.943 0.903

Not Allowed
Nullness 89 19 3 0.824 0.967 0.890
Allowed
Range 123 93 35 0.569 0.778 0.658

Limitation
Type 6 7 2 0.462 0.750 0.571

Restriction
Total 464 157 55 0.747 0.894 0.814

The second case study targets at DRONE’s repairing ability.
In accordance with the relevant work on the quality eval-
uation of text generation, such as [7], [8], we evaluate our
recommended repairs in terms of accuracy, content adequacy,
and conciseness & expressiveness. In this part, we hired 24



graduate students majoring in software engineering (SE) as
subjects. These subjects are from different universities and all
have at least five-year programming experience in Java and
Android. We design four questions and use Likert-type scale
(5-1) to rate the responses. The questions and the responses are
given in Table V and Table VI respectively. The results show
that subjects are satisfied with the repair recommendations and
rate a majority of them with the highest score.

TABLE V
QUESTIONS DESIGNED TO EVALUATE REPAIR RECOMMENDATION

Questions Value Range
Q1 Does the repair recommendation reflect (5-1)

the code constraints? (Accuracy)
Q2 Is the repair recommendation helpful to better (5-1)

understand and use the API? (Content adequacy)
Q3 Is the repair recommendation free of (5-1)

other constraint-irrelevant information? (Conciseness)
Q4 Is the repair recommendation (5-1)

clear and understandable? (Expressiveness)

TABLE VI
RESULT DISTRIBUTION OF EXPERIMENT 4

Result Q1 Q2 Q3 Q4

5 245(81.7%) 201(67.0%) 236(78.7%) 224(74.7%)
4 19(6.3%) 24(8.0%) 30(10.0%) 31(10.3%)
3 3(1.0%) 22(7.3%) 5(1.7%) 7(2.3%)
2 5(1.7%) 23(7.7%) 15(5.0%) 13(4.3%)
1 28(9.3%) 30(10.0%) 14(4.7%) 25(8.4%)

IV. RELATED WORK

Defect defection tools have been widely investigated at the
code level, but very few studies focus on the defects at the
document level. Directives of API documentation and the evo-
lution of API documentation were empirically studied by sev-
eral researchers [9]–[11], and an empirically elicited taxonomy
of directives characterizing API documentation was recently
presented [3], [9]. The DRONE tool was conceived around a
subset of directives related with parameter constraints. In this
context, Buse and Weimer proposed an approach to analyze
the exception related statements in source code and generate
the documentation automatically [12]. Tan et al. developed
a technique to detect the inconsistencies between code and
comments [13]. Zhong and Su investigated the errors in API
documentation and proposed an automatic approach to detect
them [14]. Recent work by Panichella et al. [15] discussed
techniques for automating SE tasks by leveraging summa-
rization strategies. The approach behind DRONE leverages
summarization techniques for the detection of constrains in
API documentation, and differs from other pieces of work,
as they are mostly related to syntactic errors and no repair
recommendations are provided, [15]. Close work by Blasi and
Gorla [16] proposed a tool, called RepliComment, that could
detect comment clones and notify them to developers.

V. CONCLUSION

In this paper, we have demonstrated DRONE, the tool we
designed and implemented to automatically detect and repair
directive defects in APIs documentation. We also evaluated
DRONE via two case studies against different and extensive

qualitative and quantitative metrics. The results indicate that
DRONE is a practical and accurate tool in detecting real-
life API documentation defects, confirming its usefulness in
improving the quality of API documentation. Future work aims
at validating DRONE by contacting the original developers of
the analyzed JDK libraries, as well as extending the tool to
deal with defects present in other programming languages.

ACKNOWLEDGMENTS

This work was partially supported by the National Key R&D
Program of China (No. 2018YFB1003902), and the Collab-
orative Innovation Center of Novel Software Technology in
China. T. Chen is partially supported by UK EPSRC grant
(EP/P00430X/1), ARC Discovery Project (DP160101652,
DP180100691) and NSFC grant (No. 61872340). We also
acknowledge the Swiss National Science Foundation project
SURF-MobileAppsData (No. 200021-166275).

REFERENCES

[1] G. Uddin and M. P. Robillard, “How api documentation fails,” Software,
IEEE, vol. 32, no. 4, pp. 68–75, 2015.

[2] M. A. Saied, H. Sahraoui, and B. Dufour, “An observational study on api
usage constraints and their documentation,” in (SANER 2015). IEEE,
2015, pp. 33–42.

[3] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should
developers be aware of? an empirical study on the directives of api
documentation,” Empirical Software Engineering, vol. 17, no. 6, pp.
703–737, 2012.

[4] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. C. Gall,
“Analyzing apis documentation and code to detect directive defects,” in
Proceedings of the 39th International Conference on Software Engineer-
ing, ICSE 2017, 2017, pp. 27–37.

[5] Y. Zhou, C. Wang, X. Yan, T. Chen, S. Panichella, and H. C. Gall,
“Automatic detection and repair of directive defects of java APIs
documentation,” IEEE Transactions on Software Engineering, To appear.

[6] A. D. Sorbo, S. Panichella, C. A. Visaggio, M. D. Penta, G. Canfora,
and H. C. Gall, “Development emails content analyzer: Intention mining
in developer discussions,” in ASE 2015. IEEE, 2015, pp. 12–23.

[7] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance: an
empirical investigation,” in International Conference on Software En-
gineering, ICSE 2016, 2016, pp. 547–558.

[8] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings
of the 22nd International Conference on Program Comprehension.
ACM, 2014, pp. 279–290.

[9] L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study on evolution of
api documentation.” in FASE, vol. 6603. Springer, 2011, pp. 416–431.

[10] B. Dagenais and M. P. Robillard, “Creating and evolving developer
documentation: understanding the decisions of open source contribu-
tors,” in SIGSOFT international symposium on Foundations of software
engineering. ACM, 2010, pp. 127–136.

[11] S. Liu, J. Sun, Y. Liu, Y. Zhang, B. Wadhwa, J. S. Dong, and
X. Wang, “Automatic early defects detection in use case documents,” in
International conference on Automated software engineering. ACM,
2014, pp. 785–790.

[12] R. P. Buse and W. R. Weimer, “Automatic documentation inference for
exceptions,” in Proceedings of the 2008 international symposium on
Software testing and analysis. ACM, 2008, pp. 273–282.

[13] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in (ICST
2012). IEEE, 2012, pp. 260–269.

[14] H. Zhong and Z. Su, “Detecting api documentation errors,” in ACM
SIGPLAN Notices, vol. 48, no. 10. ACM, 2013, pp. 803–816.

[15] S. Panichella, “Summarization techniques for code, change, testing, and
user feedback (invited paper),” in Workshop on Validation, Analysis and
Evolution of Software Tests, VST@SANER 2018, 2018, pp. 1–5.

[16] A. Blasi and A. Gorla, “Replicomment: identifying clones in code
comments,” in ICPC 2018. ACM, 2018, pp. 320–323.


