
Lightweight Approaches to DNN Regression Error
Reduction: An Uncertainty Alignment Perspective

Zenan Li1, Maorun Zhang1, Jingwei Xu1, Yuan Yao1, Chun Cao1, Taolue Chen2, Xiaoxing Ma1, Jian Lü1
1State Key Lab of Novel Software Technology and

Department of Computer Science and Technology, Nanjing University, China
2Department of Computer Science, Birkbeck, University of London, UK

{lizenan, maorunzhang}@smail.nju.edu.cn, {jingweix, y.yao, caochun}@nju.edu.cn,
t.chen@bbk.ac.uk, {xxm, lj}@nju.edu.cn

Abstract—Regression errors of Deep Neural Network (DNN)
models refer to the case that predictions were correct by the
old-version model but wrong by the new-version model. They
frequently occur when upgrading DNN models in production
systems, causing disproportionate user experience degradation.
In this paper, we propose a lightweight regression error reduction
approach with two goals: 1) requiring no model retraining and
even data, and 2) not sacrificing the accuracy. The proposed
approach is built upon the key insight rooted in the unmanaged
model uncertainty, which is intrinsic to DNN models, but has
not been thoroughly explored especially in the context of quality
assurance of DNN models. Specifically, we propose a simple yet
effective ensemble strategy that estimates and aligns the two
models’ uncertainty. We show that a Pareto improvement that
reduces the regression errors without compromising the overall
accuracy can be guaranteed in theory and largely achieved in
practice. Comprehensive experiments with various representative
models and datasets confirm that our approaches significantly
outperform the state-of-the-art alternatives.

Index Terms—Software regression, deep neural networks, un-
certainty alignment, model ensemble

I. INTRODUCTION

As key components of many modern software systems, deep
learning models undergo continuous evolution (due to, e.g.,
the availability of new data or new model architectures) [1].
Similar to the case in traditional software engineering [2]–
[5], the continuous evolution of machine learning models may
also introduce regression errors, i.e., there always exist some
inputs where the predictions by the old-version model were
correct but the ones by the new-version model were wrong.
For example, if one upgrades the ResNet-50 model [6] to the
DenseNet-169 model [7], there will be up to 9.44% inputs in
the ImageCLEF dataset [8] that cause regression errors.

Although a deep learning model never promises to be
always correct, regression errors can be especially damaging
in practice. Consider an AI-assisted medical scenario where a
DNN model is incorporated to help a doctor decide whether a
patient needs to be hospitalized. At the beginning, the doctor
does not fully trust the model and makes her own verification.
Gradually, she becomes familiar with the model’s behavior,
being able to identify situations where the model excels, and
only needs to take more cautions in other cases. Essentially,
the doctor learns a mental model [9, Chap. 1] for the DNN
model’s reliability. Now, suppose the model is upgraded to a

new version with a higher overall accuracy. Regression errors
may invalidate the doctor’s mental model, so she has to re-
adapt to the new version, incurring additional risk of wrong
decisions. The negative impact of regression errors are also
discussed in [10], [11], including the update to fix Tesla’s
braking system leaves users a bad impression that the fix slows
down cars, and the update of user’s photo search app fluctuates
over the search results causing downvotes in the app store, etc.

Reducing regression errors has been largely ignored by the
software engineering community. Although there are some
recent efforts in the machine learning community [10]–[13],
these approaches are often heavyweight and less friendly to
software engineers because they require a large amount of
labeled data as well as model retraining expertise. In addition,
these approaches usually trade model accuracy for backward
compatibility (i.e., regression error reduction), which dimin-
ishes the benefit of model upgrading.

In this work, we propose to tackle the regression error
reduction problem of DNNs with two goals. First, we aim
to deliver a solution under more practical constraints. That is,
we require only a limited amount of unlabeled data or even no
data. We also avoid model retraining or fine-tuning, and thus
there is no need of strong training expertise or computation
resources. Second, we ambitiously aim at reducing regression
errors without sacrificing the accuracy of the new-version
model, i.e., to achieve a Pareto improvement.

To achieve the first goal, a promising (and perhaps the
only) solution is to directly combine the predictions of old-
version and new-version models through ensemble techniques.
However, it is non-trivial for off-the-shelf ensemble techniques
to satisfy the second goal, as they require the base models to
have comparable accuracies [14], which is not the case in the
regression reduction problem. To overcome this issue, the key
insight of our solution comes from an in-depth understanding
and handling of the uncertainty in deep learning models. There
are two levels of uncertainties associated with each prediction
(output) of the model [15]. First, the model is uncertain about
its prediction, and this uncertainty is usually quantified by
probability or confidence (e.g., a model may say that the image
is a dog with 90% confidence). Second, note that the value of
this confidence itself is only a rough approximation without
explicit characterization, which introduces the second level of

uncertainty (i.e., the reliability of the confidence). While it is
natural to combine the outputs of the two models based on
their confidence values to reduce regression errors, ignoring
the second-level uncertainty will easily compromise the overall
prediction accuracy. To understand where the problem is,
simply consider the risk of yielding to a strong opinion
of a conceited newbie for a modest opinion of a humble
expert. To achieve a safe conclusion, one must estimate the
expertise (second-level uncertainty) and align the opinions
before combining them.

Based on the above insight, we propose to quantify the
second-level uncertainty so as to align the first-level uncer-
tainty to reduce DNN regressions errors. Specifically, we
consider two practical cases. In the first case where no data
is available, we propose to quantify the uncertainty with
the variance of the confidence values for the given input.
Technically, we estimate the variance via input perturbation or
model perturbation. In the second case, where one can collect
a very small amount of unlabeled data, we can do better by
calibrating the confidence of the old-version model against the
new-version model, and safely combining the two models for
a Pareto improvement. We name the above two approaches as
data-free and label-free approaches, respectively.

We conduct extensive empirical evaluations with different
model upgrade settings to evaluate the general efficacy of our
approaches. On the one hand, our results show that existing
proposals, including ensemble methods and training meth-
ods, sacrifice too much accuracy (up to 20.8%) in exchange
for regression error reduction. In fact, their performance is
sometimes even worse than that of a simple baseline (i.e.,
proportional random model selection). On the other hand, our
approaches all outperform the existing methods. Our data-free
approach reduces 32.7% (via input perturbation) and 29.1%
(via model perturbation) regression errors with little or even
no accuracy loss (at most 1.8%). Our label-free approach
successfully yields Pareto improvements in all cases, i.e.,
achieving a regression error reduction rate of 48.1% on average
without sacrificing accuracy.

The main contributions of this paper include:
• We raise and analyze the problem of DNN regression

error reduction from a software engineering perspective. In
particular, we highlight the important role of uncertainty in
its solution.

• We propose novel, principled, and lightweight data-free
and label-free approaches to reduce regression errors. Both
approaches can provide Pareto improvements that reduce
regression errors without sacrificing model accuracy.

• We carry out extensive experiments with various repre-
sentative tasks, models, and datasets; the results confirm
the efficacy of our approaches compared with the existing
alternatives.

Structure. The rest of this paper is organized as follows.
Section II formalizes the problem of regression error reduction
and analyzes the technical challenges. Section III presents the
ensemble-based, uncertainty-aware solutions in both data-free
and label-free settings, and Section IV shows evaluations of

our approaches. Section V discusses the related work, and
Section VI concludes this work.

II. REGRESSION ERRORS OF DNN MODELS

In this section, we formalize the problem of regression error
reduction, and analyze its technical challenges as well as the
limitations of existing work. For easier understanding, we start
with an illustrative example to show our key insight.

A. An Illustrative Example
Let us consider the following metaphoric scenario:

Two reviewers, a junior and a senior, are so-
licited to judge whether a submission to an aca-
demic conference shall be accepted or rejected. In
addition to a yes/no recommendation, each reviewer
is required to give a fine-grained recommendation
score which quantifies the reviewer’s (un)certainty
about his/her recommendation (i.e., the first-level
uncertainty).

The PC Chair needs to make a final decision
in case of divergent recommendations. The sim-
plest solution is to average the two recommendation
scores. However, reviewers’ recommendation scores
themselves are highly uncertain due to issues such
as time, expertise, and enthusiasm, introducing the
second-level of uncertainty. If the recommendation
scores are unbalanced with uncertainty, the simple
average would not work well. That is why in the
real world the reviewers are asked to provide a
second level of the (un)certainty (i.e., the “exper-
tise” level in many review forms), based on which
some weighted average strategy is used to make a
decision.

As an analogy between our DNN regression error problem
and this example, one can view the DNN models as reviewers,
and DNN confidence values as fine-grained recommendation
scores. However, DNN models, unlike rational reviewers, do
not provide a measure of the second-level uncertainty. If this
information were missing, the Chair would have to make
her own deliberation. To achieve a safe combination of the
recommendation scores, she may align the uncertainties by, for
example, identifying the humbleness and ego of the reviewers,
and then scaling the scores accordingly.

B. Problem Formulation
We consider the typical K-label classification task, where

a deep neural network classifier M is often devised to learn a
posterior probability distribution over the label space. Namely,
M outputs an estimated probability distribution conditioned on
the input x by applying softmax on the logit z, i.e.,

pM (y = k|x) = Softmax(z)k, k = 1, . . . ,K.

We further use pM (y | x) to represent a vector of the estimated
probabilities for each class. The final predictive result for x is
the class with the maximum posterior probability, i.e.,

fM (x) = argmax
k=1,...,K

pM (y = k|x),

and the maximum probability is referred to as the confidence
for this prediction [16]. We also use Mold (resp. Mnew) to
represent the model of the old (resp. new) version.

We now formulate the regression error reduction problem.
For a given input x with its actual label y, we use an indicator
function I(fM (x) = y) to represent whether x is correctly
classified by M . The accuracy of M is defined as

Acc(M) = E(x,y)∼D[I(fM (x) = y)],

where D is the distribution of the population. Usually, we
upgrade Mold to Mnew for better accuracy, which means that,
in the distinct predictions of the two models, the majority will
be positive flips (PFs) where Mnew corrects the mispredictions
of Mold . However, due to the random nature of DNNs,
negative flips (NFs), or regression errors, also emerge where
inputs were correctly classified by Mold but are misclassified
by Mnew . The accuracy improvement of Mnew comes from
the difference between PFs and NFs. Formally, we define the
regression error rate as the expectation of NF1:

Reg(Mold ,Mnew) = E[I(fMold
(x) = y, fMnew

(x) ̸= y)].

Although the number of NFs is usually smaller than PFs, as
discussed in Section I, an NF may cost significantly more than
a PF can save due to the price of human-AI re-adaptation. This
disproportionate cost can neutralize or even reverse the benefit
of model upgrading. Formally, we define the regression error
reduction problem as follows.

Problem (Regression Error Reduction through Model Combi-
nation). Given an old-version model Mold , and a new-version
model Mnew , obtain a combined model M̂ which admits
lower regression error rate Reg(Mold , M̂) without loss of the
overall accuracy. The corresponding optimization problem can
be formulated as

min
M̂

Reg(Mold , M̂), s.t. Acc(M̂) ≥ Acc(Mnew). (P)

With regard to the accessibility of dataset, since there are
increasing concerns in data privacy and proprietary limitations
(e.g., EU GDPR and CCPA [17], [18]), a third-party trained
model is usually provided as is, without access to its train-
ing data. Additionally, it is usually too expensive to collect
and label enough data from the application domain during
model upgrading, making effective re-training or fine-tuning
on Mnew impractical.

Instead, we aim at regression error reduction in two practical
cases: (1) the data-free case where no data from original
training distribution is required; and (2) the label-free case,
where only a limited volume of unlabeled data sampled from
the application domain D is needed. In such cases, combining
models Mold and Mnew to reduce regression errors is the only
practical choice. Note that although there exist a plethora of
ensemble learning techniques [19], [20], as far as we know
none of them work well in these data-limited cases.

1We drop the subscript (x, y) ∼ D for simplicity, and the expectation is
computed over D if it is not specified.

C. Technical Challenges

The key challenge is how to reduce regression errors without
sacrificing model accuracy. To understand the challenge, let us
first look at the existing model combination solutions.

The first mode combination strategy is to simply select the
model with higher confidence [21, Sec. 13.2], i.e.,

f
M̂
(x) =

{
fMold

(x) if cMold
(x) > cMnew

(x),
fMnew

(x) otherwise.

Analogously, this strategy can be seen as deciding the recom-
mendation of a submission by following the reviewer whoever
has a stronger recommendation score. It is not hard to see that
the Chair can be easily misled by a conceited reviewer.

Similarly, the Chair can make a simple average

p
M̂
(y|x) = pMold

(y|x) + pMnew (y|x)
2

and decide accordingly. However, this strategy only works
well when the two models have aligned uncertainty in confi-
dence [19], [22]. In practice, the old-version model tends to be
significantly outperformed by the new-version model (which
is the reason for model upgrade). This implicitly indicates that
the old-version model has a higher uncertainty than the new-
version model, and hence the simple average often damages
the accuracy of the upgraded model.

Finally, taking the second-level uncertainty into consider-
ation, the Chair can make a weighted average with a scalar
parameter α, i.e.,

p
M̂
(y|x) = αpMold

(y|x) + (1− α)pMnew
(y|x).

Unfortunately, the optimal α in the context of DNN predictions
is very difficult to be determined without any labeled data.
To illustrate this point, we conduct a simulated experiment
on two synthetic datasets and show the results in Figure 1.
Specifically, we upgrade the old-version model AlexNet to the
new-version model ResNet-56, and combine the two models
with different α’s. By the model upgrade, the classification
error rate is successfully decreased from 45.6% to 32.6%,
but it also introduced regression errors as high as 10.0%.
From the two examples (i.e., two rows) in Figure 1, we can
observe that when the model uncertainties are misaligned (the
left two figures), the range of the optimal α (i.e., the sweet
spot) is relatively small, and this range differs for different
cases. Therefore, it is very difficult to obtain a general setting
strategy of α especially when the labeled data is unavailable.
In contrast, with aligned uncertainties (the right two figures),
we can simply set α = 0.5 to obtain a safe model combination.

III. UNCERTAINTY-AWARE SOLUTIONS

In this section, we present our uncertainty-aware model
combination for the reduction of DNN regression errors. We
first discuss the need to align the second-level uncertainty, and
then give our solutions for the data-free and label-free cases.

(a) Before uncertainty alignment (b) After uncertainty alignment

(c) Before uncertainty alignment (d) After uncertainty alignment

Fig. 1. The curves of classification error rate and regression error rate with
different α’s. The sweet spot indicates the optimal α’s that lead to regression
error reduction without sacrificing accuracy. The two rows correspond to two
different examples, showing that the unaligned uncertainties shrink and shift
the range of the optimal α, making it very difficult to determine a general
setting of α. In contrast, with aligned uncertainties, we can simply set the
optimal α = 0.5.

A. Rationale of Uncertainty Alignment

A wise PC Chair surely needs to consider the reviewer’s
expertise (i.e., the second-level uncertainty) before making a
final decision. Here, we examine the problem more rigorously
to show the rationale behind uncertainty alignment. Consider
the mean squared error (MSE) of a model M . It can be
decomposed into the two levels of uncertainty, i.e.,

MSE(M) = E[∥y − pM (y|x)∥2]
= E[∥y − p(y|x)∥2]︸ ︷︷ ︸

first level uncertainty

+E[∥pM (y|x)− p(y|x)∥2]︸ ︷︷ ︸
second level uncertainty

, (1)

where y is the one-hot form of the actual label y, and p(y|x)
stands for the accurate (real) confidence for the prediction. The
second-level uncertainty can be further decomposed by using
the bias-variance decomposition,

E[∥pM (y|x)− p(y|x)∥2]
= Ex[∥p(y|x)− Ey|x[pM (y|x)]∥2︸ ︷︷ ︸

bias2

+Var[pM (y|x)]︸ ︷︷ ︸
variance

]. (2)

The detailed computation of Eqs. (1) and (2) can be found in
Appendix A. Furthermore, by taking MSE as the surrogate
loss for the original accuracy loss, we can approximately
reformulate Problem (P) as

min
M̂

Reg(Mold , M̂), s.t. MSE(M̂) ≤ MSE(Mnew). (3)

Since the first-level uncertainty is intrinsically due to the
task itself, statistically it shall be similar for different models.

Therefore, the accuracy difference between models is largely
decided by their second-level uncertainty. Actually, we have
the following proposition.

Proposition 1. If Mold and Mnew have aligned second-level
uncertainties, i.e.,

E[∥pMold
(y|x)− p(y|x)∥2] = E[∥pMnew

(y|x)− p(y|x)∥2],

it holds that MSE(Mold) = MSE(Mnew). In this case, the
ensemble model M̂ derived by simple average, achieves the
minimum of MSE(M̂).

The proof of the proposition can be adapted from [23]. The
above proposition essentially proves that we could simply set
α = 0.5 for a safe model combination if the uncertainties are
aligned. Note that gearing toward a minimum MSE(M̂) means
less PFs are sacrificed when we reduce regression errors by
incorporating Mold into M̂ .

B. Variance Estimation in Data-free Cases

Here, we first show how to reduce regression errors when no
additional data is available. Note that it is infeasible to directly
solve Problem (3) without any data. In this work, we propose
to align the uncertainty of the Mold and Mnew for each
input by estimating their prediction variance. The intuitive
analogy to the PC reviewing process is as follows. If a reviewer
gives divergent recommendation scores for similar papers that
are deemed to be of close quality, his/her recommendation
scores shall be less reliable. With this intuition, the PC Chair
can estimate the expertise of each reviewer, and scale their
recommendation scores accordingly to make a simple average
work following Proposition 1.

More rigorously, by applying the bias-variance decomposi-
tion in Eq. (2) for the second-level uncertainty, and dropping
the bias term considering the low-biased property of DNN
models [24], the inequality constraint in Eq. (3) can be reduced
to

Ex[Var[pM̂ (y|x)]] ≤ Ex[Var[pMnew
(y|x)]]. (4)

This formula motivates us to adapt the variance in a pointwise
way since it can hold if M̂ achieves lower variance for each
prediction. Elaborately, for a given input x, if we know the
variances of Mold and Mnew , i.e., σ2

Mold
(x) = Var[pMold

(y|x)],

σ2
Mnew

(x) = Var[pMnew (y|x)],

the simple average of two models’ predictions scaled in
respective with α1 and α2, where α2

1(x) =
(
σ2
Mold

(x) + σ2
Mnew

(x)
)
/2σ2

Mnew
(x),

α2
2(x) =

(
σ2
Mold

(x) + σ2
Mnew

(x)
)
/2σ2

Mold
(x),

(5)

can preserve the lowest variance. We conclude the result in
the following proposition.

Proposition 2. The variance inequality in Eq. (4) holds, if
M̂ is the simple average of Mα1

old and Mα2
new , where Mα1

old

and Mα2
new represent Mold and Mnew scaled by α1 and α2

pointwisely, i.e., pMα1
old

(y|x) = pMold
(y|x)/α1(x),

pMα2
new

(y|x) = pMold
(y|x)/α2(x).

(6)

Furthermore, if the biases of Mold and Mnew nearly vanish
(≈ 0), the inequality in Eq. (3) also holds.

The proof of this proposition is not difficult, and one can
refer to [25, Chap. 4]. Actually, it can be observed that the
variances of Mα1

old and Mα2
new are aligned to the same scale:

σ2
M

α1
old

(x) = σ2
M

α2
new

(x) =
2σ2

Mold
(x) · σ2

Mnew
(x)

σ2
Mold

(x) + σ2
Mnew

(x)
.

It is also worth noting that the simple average of such scaling
is equivalent to the inverse-variance weighting, which attains
the lowest variance when the correlation between Mold and
Mnew is inaccessible.

Now, the rest issue is how to estimate the variance for a
given input, for which we propose to apply the following two
implementation techniques [26].
(a) Perturb the input via random noise [27]:

σ̂2(x) = Varε∼N (0,δI)[pM (y|x+ ε)]. (7)

(b) Perturb the model via dropout [28]:

σ̂2(x) = VarM̃∼D(M)[pM̃ (y|x)]. (8)

These two techniques are very natural, which essentially
measure the prediction instability of DNN models under
random noise on the input data or model architecture. Besides,
the theoretical analysis of their soundness can be found in a
recent study [29, Chap. 2.3].

The algorithm of reducing regression errors via variance
estimation is summarized in Alg. 1. Given the input x, we first
obtain the output distributions via querying the old-version
model and the new-version model, and then estimate the
variance via either input perturbation or model perturbation.
Next, we compute the weights of the two models based on
the estimated variance, and combine the outputs of the two
models to obtain the final prediction result.

C. Temperature Scaling in Label-free Cases

In cases we can collect a small set of unlabeled data from
the application domain, we can better handle the problem.
The intuitive analogy to the PC reviewing process is as
follows. Still consider the conflicting reviews from a junior
reviewer and a senior reviewer. The PC Chair can let the junior
reviewer, who may have an unnecessary ego, learn from the
senior reviewer, who is properly humble, by calibrating the
former’s recommendation score against the latter’s on a set of
submissions. In this way, the Chair avoids being misled by the
junior reviewer’s ego (i.e., inaccurate recommendation scores)
in the balancing of the divergent recommendations.

Technically, we adopt temperature scaling to align Mold

against Mnew , so that we can get an optimized M̂ by averaging

Algorithm 1 Data-free Regression Error Reduction
Input: An old-version model Mold , a new-version model

Mnew , and a given input x.
Output: The prediction p

M̂
(y | x).

Variance Estimation:
1: Estimate variances σ̂2

Mold
(x) and σ̂2

Mnew
(x) via (7) or (8).

2: Compute scaling coefficients

α2
1(x) =

(
σ̂2
Mold

(x) + σ̂2
Mnew

(x)
)
/2σ̂2

Mnew
(x),

α2
2(x) =

(
σ̂2
Mold

(x) + σ̂2
Mnew

(x)
)
/2σ̂2

Mold
(x).

Prediction Combination:
3: Compute the outputs pMold

(y|x) and pMnew (y|x), and then
scale the two predictions by (6).

4: Output the combined prediction

p
M̂
(y|x) = 1

2
pMold

(y|x) + 1

2
pMnew (y|x).

them. Temperature scaling is a simple but effective technique
used for various purposes such as confidence calibration, out-
of-distribution detection, and model compression [30]–[32]. It
divides the logit z by a scalar T (called temperature) before
the softmax layer, i.e.,

p
(T)
M (y|x) = Softmax(zM/T).

The temperature T is a positive constant that controls the
“sharpness” or “softness” of the class probability. Specifically,
a smaller value of T (T → 0) collapses the class probability to
a single point mass (i.e., a one-hot vector), whereas a higher
value (T → ∞) encourages uniform distribution.

One specific property of the temperature scaling is that it
does not change the maximum of the softmax output, and thus
preserves the model’s predictions. As a result, we have

Reg(M̂,M
(T)
old) = Reg(M̂,Mold),

where M
(T)
old represents the model Mold applied by temper-

ature scaling with given temperature T . Therefore, we can
equivalently minimize the regression error Reg(M (T)

old , M̂) in-
stead of Reg(Mold , M̂), and obtain the following optimization
problem,

min
M̂

Reg(M
(T)
old , M̂), s.t. MSE(M̂) ≤ MSE(Mnew), (9)

for which we have the following proposition.2

Proposition 3. If we have MSE(M
(T∗)
old) ≈ MSE(Mnew) for

the optimal temperature T ∗, the model M̂ constructed by the
simple average of M (T∗)

old and Mnew ensures that the inequality
in Eq. (9) holds. Moreover, M̂ achieves the minimum of
MSE(M̂).

2This proposition is a direct result of Proposition 1. We provide several
analyses in Appendix B to further illustrate our temperature scaling method.

Algorithm 2 Label-free Regression Error Reduction
Input: An old-version model Mold , a new-version model

Mnew , an unlabeled dataset D, and the given input x.
Output: The prediction p

M̂
(y|x).

Temperature scaling:
1: if T ∗ not exist then
2: Solve T ∗ = argminT MSE(Mnew ,M

(T)
old), where MSE

is empirically computed based on dataset D.
3: end if

Prediction Combination:
4: Compute the outputs p

M
(T∗)
old

(y|x) and pMnew (y|x).
5: Output the combined prediction

p
M̂
(y|x) = 1

2
p
M

(T∗)
old

(y|x) + 1

2
pMnew

(y|x).

Essentially, the temperature T is used to align the uncer-
tainty of Mold to that of Mnew ,3 which prevents the simple
average from the loss of accuracy. To obtain such a T ∗ in
label-free cases, we solve the following minimization problem
instead,

min
T

MSE(M
(T)
old ,Mnew), (10)

where

MSE(M
(T)
old ,Mnew) = E[∥p

M
(T)
old

(y|x)− pMnew
(y|x)∥2].

This optimization problem can be solved using a small set
of unlabeled data. If the optimal value of this optimiza-
tion problem is small enough, it can be easily derived that
MSE(M

(T∗)
old) ≈ MSE(Mnew) via the triangle inequality. To

achieve the global minimum of this subproblem, we apply the
quasi-newton method L-BFGS with several initial points [33],
[34].

The regression error reduction algorithm via temperature
scaling is presented in Alg 2. Given the old-version and new-
version models, we first solve Eq. (10) using the unlabled
dataset. Note that the temperature scaling step only needs to be
executed once, and thus the running time is utterly acceptable.
We then compute the output distributions of the given input x
from the old-version model calibrated by temperature scaling
as well as the new-version model. These two distributions are
averagely weighted to form the final output.

IV. EMPIRICAL EVALUATION

In this section, we carry out experiments to evaluate our
regression error reduction approaches. We mainly focus on
the following four research questions:
RQ1 Do our approaches perform in line with the theoretical

expectations, i.e., do they achieve a Pareto improvement?
RQ2 Are our approaches more effective compared with the

alternative approaches?

3Since Mold achieves lower accuracy compared to Mnew , Mold should
have a higher uncertainty compared to Mnew , which is also the reason that
we only apply the temperature scaling on Mold .

RQ3 Can our approaches be combined with existing training
techniques proposed for regression error reduction?

RQ4 Is our label-free approach consistently effective when
the amount of available data varies?

Implementation. We implemented our approaches via the
PyTorch DL framework. The experiments were conducted on
a GPU server with two Intel Xeon Gold 5118 CPU@2.30GHz,
400GB RAM, and 9 GeForce RTX 2080 Ti GPUs. The server
ran Ubuntu 16.04 with GNU/Linux kernel 4.4.0. For the
variance estimation approaches, we set the magnitude of the
random noise to 0.01, and the dropout is executed before the
last fully-connected layer of each model with rate 0.8. For
the temperature scaling approach, we use three initial points
(T = 1.0, 1.5, and 2.0) to start the L-BFGS algorithm. One
can refer to our project website (https://github.com/Lizn-zn/
Uncertainty-Alignment) for other implementation details.
Inference time cost. Leveraging parallel computation for both
input/model perturbation and model inference, our approach
barely induces additional time cost. For the tasks in our
experiments, the inference time for each input varies from
about 0.33ms to 33ms, which is consistent with that of only
adopting the new models (0.26ms to 34ms)

A. Experimental Tasks

There are two possible reasons that may lead to the up-
grade of DNN models. (1) More data is collected from the
application domains. For example, the old-version model was
trained on the data collected a few years ago, and it calls for
an upgrade to better classify the up-to-date examples given
that the new data is available now. (2) The architecture of the
DNN model is updated. For example, the VGG architecture
was very popular nearly ten years ago for image classification.
However, new architectures such as ResNet are shown to offer
higher accuracy, and hence an upgrade is needed.

To mimic a variety of practical scenarios, we design six
tasks of different upgrade setups, including data update, model
update, and a mixture of both. To evaluate the general efficacy
of our approaches, DNN models with different complexities
(ranging from ˜103 to ˜107 parameters), architectures (e.g.,
dense layer and residual blocks), and training algorithms (e.g.,
SGD and Adam) are employed in our tasks. Both the old-
and new-version models are assumed to be provided by third
parties, and are trained in the standard way.

Table I summaries some critical settings in our experiments.
Take Task 3 as an example. This task is a mixture of both
model update and data update: the old-version model VGG-8
is trained on CIFAR10, and the new-version model ResNet-
56 is trained on STL10. The update from CIFAR10 to STL10
mimics camera upgrading, as these two datasets contain im-
ages from the same ten classes but with different resolutions
(see Figure 2). Since regression error reduction does not rely
on the training data of the old-version model, we only specify
the statistics of the data used for the new-version model in
the table. For the proposed label-free approach, as a small set
of unlabeled data is needed, we extract it (henceforth referred
to as the validation set) from the test set. Except for Task 6,

https://github.com/Lizn-zn/Uncertainty-Alignment
https://github.com/Lizn-zn/Uncertainty-Alignment

TABLE I
THE UPGRADE SETUPS OF DIFFERENT TASKS.

Task Model Dataset Acc. (%) Reg. (%) Dataset Size∗

1 LeNet5 [35] MNIST [35] ↑ EMNIST [36] 35.1 ↑ 84.8 3.59 (500/10/990)×10

2 AlexNet [37] ↑ VGG16 [38] STL10 [39] 55.0 ↑ 73.7 7.01 (500/16/784)×10

3 VGG8 [38] ↑ ResNet56 [6] CIFAR10 [40] ↑ STL10 [39] 44.4 ↑ 71.7 9.03 (500/16/784)×10

4 DenseNet40 [7] ↑ ResNet110 [6] CIFAR100 (0.2 ↑ 0.8) [40] 44.0 ↑ 70.6 5.10 (500/20/80)×100

5 ResNet50 [6] ↑ DenseNet169 [7] ImageCLEF ((c) ↑ (p)) [8] 69.1 ↑ 75.8 9.44 (38/6/6)×12

6 ResNet18 [6] ↑ WRN101 [41] ImageNet [42] ↑ ObjectNet [43] 17.0 ↑ 28.7 3.37 (0/80/80)×113
* Dataset size is recorded in the form of (a/b/c)× d, where a/b/c is the size per class of training/validation/test set, and d is

the number of classes. The ObjectNet does not contain training data (https://objectnet.dev/).

(a) CIFAR10 (b) STL10

Fig. 2. Examples of data update from CIFAR10 to STL10 in Task 3. Images
resolutions increase from 32×32 to 96×96.

we set the size of the validation set to around 6-20 per class.
All the approaches are evaluated on the rest of the test set for
fairness.

For all the tasks, we report two evaluation metrics, i.e., the
model accuracy (Acc) and the regression error rate (Reg).

B. Experimental Results

1) RQ1: Pareto Imprvoment: We first compare the pro-
posed methods with the original new-version model (Orig),
and show the results in Table II. For our approaches, we denote
the variance estimation via perturbation by VE-P, the variance
estimation via dropout by VE-D, and the temperature scaling
by TS.

As shown in Table II, all our methods significantly reduced
the regression error rate while preserving the accuracy. Elab-
oratively, VE-P improved the accuracy in all tasks except
Task 4 (from 70.6% to 69.9%, down by 0.7%); meanwhile,
it achieved significant regression error reduction compared to
the respective new-version model (lowest 18.5% in Task 2
and highest 44.1% in Task 1). VE-D incurred at most 1.8%
accuracy loss among six tasks, while it obtained relatively
higher regression error reduction rates in Task 1 (52.1%)
and Task 3 (54.0%). For TS, it did not sacrifice accuracy
in any task, and attained the highest average regression error
reduction rate (48.1%) compared with VE-P (32.7%) and VE-
D (29.1%).

To conclude RQ1, consistent with our theoretical expec-
tations, our methods significantly reduced regression error
rates while preserving the accuracy in most cases. The label-
free method strictly achieved Pareto improvements in all
tasks, while the data-free method practically achieved Pareto
improvements with neglectable accuracy losses in some cases.

2) RQ2: Effectiveness Comparison: We next compare the
proposed methods with existing alternatives. The methods
included in the comparison are as follows. It should be em-
phasized that all the compared ensemble methods and training
methods require labeled data, and we additionally feed the
labels for them.

Simple Methods. First of all, two simple data-free methods,
viz. simple average (Avg) and taking maximum confidence
(Max) as explained in Section II-C, are included. Moreover,
some test adequacy metrics may be applicable as a surrogate
of the original confidence value, since they can quantify the
misclassification probability. To this end, we employ DeepGini
(Gini) [44], i.e., taking the final prediction with the maximum
Gini index. (We also try Surprise Adequacy [45], but are
unsuccessful due to too limited data.)
Ensemble Methods. We consider the three ensemble meth-
ods introduced by Träuble et al. [11], including MaxBelief
(MB), MaxBeliefMinEntropy (MBME), and CostRatio (CR)
(with c = 5). All the three methods attempt to combine the
old model and the new model based on the uncertainty built in
a Bayesian method. The reserved validation data (with labels)
is used as input for these ensemble methods.
Training methods. Yan et al. [46] and Xie et al. [13] propose
to use knowledge distillation (KD) and logit matching (LM) to
reduce regression errors. We implement these two techniques,
and additionally adopt a focal-loss based weighted-training
(WT) as competitors. WT essentially requires assigning more
weights to examples that are correctly classified by the old-
version model. The full training data (used for training the
new-version model) with labels is provided for these methods.

The accuracy and regression error rate results of the methods

https://objectnet.dev/

TABLE II
THE ACCURACY AND REGRESSION ERROR RATE RESULTS OF DIFFERENT METHODS (%). FOR OUR APPROACHES, THE RESULTS ARE IN BOLD IF IT

REDUCES REGRESSION ERRORS AND PRESERVES AT LEAST 99% ACCURACY.

Task Metric Simple Ensemble Training Ours

Orig Avg Max Gini MB MBME CR KD LM WT VE-P VE-D TS

1 Acc 84.8 72.0 70.9 70.4 79.9 79.8 77.5 43.8 32.7 74.4 85.7 83.6 85.7

Reg 3.59 0.42 0.64 0.65 2.53 1.64 1.73 4.18 7.44 4.21 2.01 1.85 1.72

2 Acc 73.7 68.4 68.2 68.1 66.2 66.1 61.3 68.1 67.8 73.1 74.1 73.9 73.8

Reg 7.01 1.95 2.08 2.08 5.61 5.30 2.97 8.01 7.45 7.49 5.72 5.73 4.84

3 Acc 71.7 55.9 55.7 55.9 68.3 70.6 67.5 44.9 54.7 73.3 72.5 69.1 71.7

Reg 9.03 1.69 1.68 1.65 7.15 5.25 4.21 5.96 4.55 7.36 6.61 4.16 5.20

4 Acc 70.6 65.2 64.7 64.5 51.3 52.2 49.7 54.1 51.7 70.9 69.9 70.1 70.6

Reg 5.10 1.39 1.52 1.55 4.12 3.46 2.27 4.41 4.91 4.59 3.11 4.37 2.01

5 Acc 75.8 71.8 72.6 70.8 70.5 76.1 74.4 73.7 76.6 75.8 76.3 75.0 75.9

Reg 9.44 3.05 3.61 4.16 10.5 6.94 4.02 3.75 8.19 9.58 6.11 7.49 3.19

6 Acc 28.7 26.9 26.4 27.9 - - - - - - 29.4 28.6 28.7

Reg 3.37 1.73 1.98 2.11 - - - - - - 2.26 2.73 2.13

are shown in Table II.4 We first observe that none of the
compared methods yield consistent Pareto improvements, i.e.,
they reduce regression errors with a significant loss in accuracy
in most cases. For the two data-free methods Avg and Max,
we can see that they could reduce regression errors but with
significant accuracy drops in all cases. The reasons have been
discussed in Section II-C. For the Gini, its result is consistent
with Avg and Max, since the Gini index is still computed
based on the confidence.

Alternative ensemble methods also significantly decrease
the accuracy. For example, MB, MBME, and CR relatively
decrease the accuracy of Orig (the new-version model) by
11.01%, 8.68%, and 12.55%, respectively. The only exception
is MBME in Task 5 where it reduced regression error rate and
improved accuracy at the same time. However, MBME is still
worse than VE-P in both accuracy and regression error rate.
In addition, they performed even worse than the simple Avg
and Max in Tasks 2 and 4.

The training methods do not achieve a Pareto improvement
in most cases either. The only exceptions are from LM on
Task 5 and WT on Tasks 3 and 4. However, in these three
cases, the reduction of regression error rate was minor (by
1.25%, 0.51%, and 1.67%, respectively). Contrastingly, our TS
method achieved an average of 3.44% reduction. Additionally,
these methods may incur significant accuracy drops. For
example, KD and LM incurred significant accuracy drops in
Tasks 1-4, and KD even did not achieve lower regression
error rates than TS with such large accuracy drops. LM only

4The results of the ensemble methods and training methods for Task 6
are not shown. The ensemble methods need a large set of data to output an
accurate Bayesian estimate of the uncertainty, but the validation set is much
smaller than the entire ImageNet dataset, rendering a meaningless uncertainty
estimate. For training methods, ObjectNet only contains a small test set as
mentioned in the task setup.

obtained lower regression error rates than TS in Task 3, but
with a 17% accuracy drop. In Task 5, the models were obtained
via fine-tuning pre-trained models on ImageNet, and hence the
accuracy was preserved for the three methods. Nonetheless,
in this task, our TS still attained lower regression error rates
compared to all these three methods. WT ensured a stable
accuracy of the new model in Tasks 2–5, but it did not reduce
more regression errors than our methods, and even introduced
some new errors in Tasks 1, 2, and 5. We also find that WT
achieves nearly zero regression error, but fails to generalize
the backward compatibility due to overfitting.

Surprisingly, even with labeled data, ensemble methods and
training methods are outperformed by our data-free and label-
free methods in many practical settings. In the following, we
analyze the failure of these two kinds of methods, respectively.
First, the alternative ensemble methods attempts to reconstruct
an accurate uncertainty estimation. However, the two levels of
uncertainty are not clearly distinguished, and the first-level
uncertainty, i.e., the confidence provided by the model, is
not fully exploited, which leads to their low data efficiency.
Second, the training methods (KD and LM) have been proved
to be essentially a simple average of old- and new-version
models [47], and thus also suffer from the issue of unaligned
uncertainties.

Next, to compare the relative effectiveness of the methods,
we consider the exchange rate ∆PF

∆NF which is the ratio of the
number of sacrificed positive flips to the number of reduced
negative flips. The smaller the exchange rate, the better. For
Pareto improvement, this ratio must be no greater than 1. As
different methods strike different trade-offs between regres-
sion error reduction and accuracy loss, we also introduce a
conceptual baseline for fair and intuitive comparison. Suppose
we randomly select Mold (with probability p) or Mnew (with
probability (1 − p)) as M̂ to predict over the current input.

Task 1 Task 2

Task 3 Task 4

Task 5

Pareto improvement

X-axis: Ratio of reduced regression errors
(the bigger the better)

Y-axis: Exchange rate ∆"#∆$%
(the smaller the better)

Proportional random model selection

Simple methods

Ensemble methods

Our methods

Fig. 3. Exchange rates of different methods. Particularly, for MB and MBME,
they are Pareto-dominated by TS in all tasks. CR is also Pareto-dominated by
TS in Task 1, 4, and 5, and incurs large accuracy sacrifice in Task 2 and 3.

Then by setting p from 0 to 1 we can have a flexible
method reducing 0% to 100% of regression errors. We call
this baseline method proportional random model selection.

We show the results of exchange rates in Figure 3, where
exchange rate (y-axis) is plotted against the percentage of the
reduced regression errors (the x-axis). The result of the pro-
portional random model selection is plotted as the dash line.
Notice that the training methods are omitted in Figure 3 since
they are unable to achieve Pareto improvement in most cases.
From Figure 3, we can see that our methods are optimized
for exchange rate and give priority to preserving accuracy.
When the damage of regression errors is so severe which
warrants some accuracy sacrifice, one can easily combine our
methods with the Avg, Max methods for more regression error
reduction.

To conclude RQ2, our methods are more effective than the
existing competitors, even in the case where these competitors
use extra labeled training data.

3) RQ3: Combination with Existing Techniques: We study
a special case in which the old-version model and the new-
version model have close performance. This situation is what
the training methods, KD and LM, are originally designed for.

Theoretically, the second-level uncertainties of two models
achieving close accuracy are naturally aligned, and thus our
TS will obtain temperature T ∗ close to 1, which means that TS
will degenerate to the simple average. To confirm this result

TABLE III
THE ACCURACY OF DIFFERENT METHODS (%).

Case ResNet-34 ↑ ResNet-56 ResNet-56 ↑ ResNet-34
Avg 80.3 80.3
Max 80.0 79.9
KD 78.5 78.0
LM 79.2 80.0

TS 80.2 80.9
KD+TS 79.0 80.0
LM+TS 79.3 80.4

*Results of Avg and Max should be symmetric in the two cases, but
the randomness leads to a very slight difference.

7.64

5.88

2.1 1.912.01 1.952.11
1.84

5.23
4.9

2.8

1.71

3.54 3.7

1.73

1.05

Orig

Avg

Max

TS

KD

KD+TS

LM

LM+TS

Fig. 4. Regression error rates of different methods. Avg and Max are effective
when two models have aligned uncertainties. TS achieves similar results with
them, and one can further reduce regression errors by combining TS with KD.

empirically, we conduct two experiments on the CIFAR100
dataset. For details, we trained a ResNet-34 model and a
ResNet-50 model, which achieved accuracy 76.8% and 78.4%,
respectively. In the first experiment, we used the former as the
old model and the latter as the new model, and we exchanged
their roles in the second experiment.

The accuracy results of Orig, Avg, Max, KD, LM, and
TS are shown in Table III, where we also include results of
KD+TS and LM+TS, i.e., applying temperature scaling for
models trained by KD and LM.

The results of regression error reduction are shown in
Figure 4. We can first observe that TS can achieve close
results with Avg and Max, just as predicted by theory. For
KD and LM, although we successfully reproduce their results,
they cannot achieve lower regression error rates compared
with others. Second, we can observe that, combining TS and
the training methods can further reduce regression errors,
especially for LM+TS. This combination achieves the lowest
regression error rates in both two experiments.

To conclude RQ3, combining the proposed approach TS
with existing training methods KD and LM can further reduce
the regression errors, even in cases when these methods have
been effective in reducing regression errors.

4) RQ4: Efficiency of TS: We finally investigate the data ef-
ficiency of our label-free method TS, i.e., how many unlabeled
examples are needed to effectively determine the temperature
T . We conduct experiments in Tasks 1 and 3 for brevity.

0 10 20 30 40 50

Data Size

1

1.5

2

2.5

3

3.5

4

R
e
g
re

s
s
io

n
 E

rr
o
r

R
a
te

0

20

40

60

80

100

A
c
c
u
ra

c
y

(a) Task 1

0 40 80 120 160

Data Size

4

5

6

7

8

9

10

R
e
g
re

s
s
io

n
 E

rr
o
r

R
a
te

0

20

40

60

80

100

A
c
c
u
ra

c
y

(b) Task 3

Fig. 5. Regression error rate and accuracy of different data size. The data
size of zero represents the results of Orig. It can be observed that TS still
works well with extremely limited data.

Specifically, in Task 1, we apply the TS method on the data
whose size ranges from 5 to 50 with interval 5, and in Task
3, the data size is in the range from 8 to 160 with interval 8.

Intuitively, only a scalar T is involved in the TS method,
and thus it should not need many examples. The results in
Figure 5 also confirm this point. In Task 1, the regression
error rate has achieved the minimum even when only five
unlabeled examples are provided. The regression error rate
and accuracy, together with temperature T , converge to stable
results at the data size of 30. In Task 3, the regression error
reduction is also effective with only eight unlabeled examples,
and TS successfully converges by using about 120 examples.

To conclude RQ4, the proposed approach TS is still effective
even with a very limited set of unlabeled data, and it easily
converges as more data are collected.

V. RELATED WORK

We briefly discuss related work from the software engineer-
ing and machine learning communities.
Software regression testing and debugging. Software re-
gression refers to the situation where a software update
breaks a feature that worked before the update. Regressions
in traditional software are viewed as newly introduced bugs
that need to be exposed, localized, and fixed. So the research
efforts have been focused on improving the efficiency and
efficacy of regression testing [2]–[4], [48] and debugging [5],
[49]–[51]. On the contrary, an individual regression case of
an upgraded DNN model is not a bug in the traditional
sense because of the statistical nature of DNN [52]–[54]. It is
also generally infeasible to explain or localize the regression
with the constitutes of a DNN model [55]–[57]. That’s why
we propose non-intrusive model combination approaches to
reduce DNN regressions.
Regression errors of DNN-based systems. In the software
engineering community, little effort has been put on the prob-
lem of DNN regression error reduction [58]. One may wonder
if error-inducing input detection techniques for DNNs [44],
[45], [59] could be used to reduce regression errors. Unfor-
tunately, they are not suitable for this purpose because their
quantifications of misclassification probability are not system-
atically calibrated [31], [60], which makes their uncertainty far
from aligned. Our experiments with DeepGini [44] confirmed

this. Moreover, these quantifications are all too sensitive to
data drift [61], [62], which also makes them ineffective in
practical settings.

In the machine learning community, related techniques,
unlike ours, require labeled data to work. They fall into three
categories. The first is retraining-based approaches [13], [46],
[63]. They are mainly designed for the regression cases caused
by catastrophic forgetting [64], and thus employ knowledge
distillation or weighted training to overcome this forgetting.
However, as shown by a recent theoretical analysis [47], these
retraining strategies are essentially simple average ensemble,
and thus limited to the case that the old- and new-version
models have similar performance.

The second category is ensemble-based approaches [11].
A typical example is applying the classic Bayesian ensemble
strategy to reduce regression errors. Nevertheless, this strategy
wastes the confidence information provided by the model and
incurs a high cost of data labeling. For other possible choices,
the boosting strategy has been shown to be ineffective for
DNN models [47], and the bagging strategy requires that
base models should have aligned second-level uncertainty [19],
which does not hold in general model upgrade cases.

The third category contains research on the measurement
of backward compatibility. The compatibility problem of an
updated AI software is regarded as its inconsistency with
the user’s prior experience, and various metrics are proposed
to quantify this inconsistency [10], [65]. As highlighted by
a recent empirical analysis [12], the challenge of backward
compatibility comes from the data shifts when model deployed
in application. The experimental results also indicate that
DNN models’ confidence is insufficient for regression error
detection, which confirms the necessity of the consideration
of the second-level uncertainty.
Decision under uncertainty. Uncertainty takes an increas-
ingly important role in modern computing systems, and it
increasingly requires explicit management rather than being
abstracted away [66]. In the software engineering community,
researchers of self-adaptive software systems have a particular
interest in uncertainty management [67], [68]. However, they
usually stay at the first level of uncertainty.

In the machine learning community, uncertainty is better
understood and managed. The confidence of DNN models
(i.e., the first-level uncertainty in this paper) is used in a
wide range of scenarios such as sample selection [52], [69],
[70], out-of-distribution, and adversarial detection [32], [71].
Nevertheless, the second-level uncertainty (i.e., “uncertainty”
of the confidence) is still often ignored [72].

Our work is also closely related to the mixture of experts
(MoE) [73]–[76], and three straightforward combination so-
lutions discussed in Section II-C actually correspond to the
stochastic selection, winner-takes-all, and weights introduced
in MoE [20]. In contrast to common ensemble methods
assuming that models have aligned uncertainty, MoE methods
also consider the second-level uncertainty (i.e., the biased
experts). However, existing MoE methods deal with this issue
by training a gate network to combine the experts, which is

infeasible in our data-free and label-free setting [77].

VI. CONCLUSION

The current paper is devoted to the reduction of regression
errors emerged during DNN model upgrading, which, we
believe, is an important software engineering problem for
machine learning applications. On the one hand, the problem
resembles the classic software regression but requires a dif-
ferent mindset to solve. On the other hand, solutions from the
machine learning community ignore the practical engineering
difficulties (e.g., data availability). Leveraging uncertainty-
aware ensemble, we propose data-free and label-free solutions
that are not only practically feasible and effective, but also
theoretically appealing in guaranteeing Pareto improvement.
More generally, we would advocate embracing the uncertainty
that is intrinsic in deep learning models which we believe
will play a central role in developing new-generation software
artifacts.

APPENDIX

A. The Derivation of Equations (1) and (2)

First, the decomposition of MSE (Eq. (1)) is derived by

MSE(M) = E[∥y − p(y|x) + p(y|x)− pM (y|x)∥2]
= E[∥y − p(y|x)∥2] + E[p(y|x)− pM (y|x)∥2]
+ 2E[(y − p(y|x))(p(y|x)− pM (y|x))].

Noting that the last term in the equation can be removed,
because the error (y− p(y|x)) is independent to both p(y|x)
and pM (y|x), and we have Ey|x[y] = p(y|x) for any given
x by the definition of p(y|x).

For the second-level uncertainty, we have

E[∥pM (y|x)− p(y|x)∥2]

= Ex

K∑
i=1

Ey|x[(pM (yi|x)− p(yi|x))2]

= Ex

K∑
i=1

(p(yi|x)− Ey|x[pM (yi|x)])2 +Var[pM (y|x)],

where the variance in Eq. (2) is defined as Var[pM (y|x)] =∑K
i=1 Var[pM (yi|x)]. The second equation is obtained by the

classic bias-variance decomposition, i.e., using the variance
equation Var[X] = E[X2] − E[X]2 and substituting X by
(pM (yi|x)− p(yi|x)).

B. The Proof of Proposition 3

We first give the following proposition, showing that our
temperature scaling method will shift M̂ into a safer region.

Proposition 4. For the model M̂ constructed by the simple
average of M (T∗)

old and Mnew , the upper bound of MSE(M̂)

decreases with MSE(M
(T)
old ,Mnew) decreased.

Proof. For the model M̂ constructed by the simple average of
M

(T∗)
old and Mnew , MSE(M̂) can be computed as

MSE(M̂) = E[∥y − 1

2
p
M

(T)
old

(y|x)− 1

2
pMnew (y|x)∥

2]

=
1

4
(MSE(M

(T)
old) +MSE(Mnew))

+
1

2
E[(y − p

M
(T)
old

(y|x))(y − pMnew (y|x))],

and MSE(M
(T)
old ,Mnew) can be computed as

MSE(M
(T)
old ,Mnew) = E[∥p

M
(T)
old

(y|x)− pMnew (y|x)∥
2]

= MSE(M
(T)
old) +MSE(Mnew)

− 2E[(y − p
M

(T)
old

(y|x))(y − pMnew (y|x))].

Putting these two equations together, we can obtain that

MSE(M̂) =
1

2
(MSE(M

(T)
old) +MSE(Mnew))

− 1

4
MSE(M

(T)
old ,Mnew).

Using the triangle inequality, we can compute the upper
bounds of MSE(M

(T)
old):

MSE(M
(T)
old) ≤

(√
MSE(Mnew) +

√
MSE(M

(T)
old ,Mnew)

)2

Therefore, the upper bound of MSE(M̂) is

MSE(M̂) ≤ MSE(Mnew) +
1

4
MSE(M

(T)
old ,Mnew)

+

√
MSE(Mnew) ·MSE(M

(T)
old ,Mnew).

In a nutshell, by minimizing MSE(M
(T)
old ,Mnew), the tem-

perature scaling method strictly controls the upper bound of
MSE(M̂), and thus effectively guarantees the performance of
the model M̂ .

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful com-
ments and suggestions. This work is supported by the National
Natural Science Foundation of China (Grants #62025202,
#62172199). T. Chen is also partially supported by Birkbeck
BEI School Project (EFFECT) and an overseas grant of the
State Key Laboratory of Novel Software Technology under
Grant #KFKT2022A03. Jingwei Xu (jingweix@nju.edu.cn)
and Xiaoxing Ma (xxm@nju.edu.cn) are the corresponding
authors.

REFERENCES

[1] I. Ozkaya, “What is really different in engineering ai-enabled systems?”
IEEE Software, vol. 37, no. 4, pp. 3–6, 2020.

[2] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software testing, verification and reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[3] R. H. Rosero, O. S. Gómez, and G. Rodrı́guez, “15 years of software re-
gression testing techniques—a survey,” International Journal of Software
Engineering and Knowledge Engineering, vol. 26, no. 05, pp. 675–689,
2016.

[4] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming behavioral
backward incompatibilities via cross-project testing and analysis,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 112–124. [Online].
Available: https://doi.org/10.1145/3377811.3380436

[5] H. Wang, Y. Lin, Z. Yang, J. Sun, Y. Liu, J. Dong, Q. Zheng, and
T. Liu, “Explaining regressions via alignment slicing and mending,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2421–
2437, 2021.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[8] B. Caputo, H. Müller, J. Martinez-Gomez, M. Villegas, B. Acar, N. Patri-
cia, N. Marvasti, S. Üsküdarlı, R. Paredes, M. Cazorla et al., “Imageclef
2014: Overview and analysis of the results,” in International Conference
of the Cross-Language Evaluation Forum for European Languages,
Springer. Springer, 2014, pp. 192–211.

[9] D. Norman, The design of everyday things: Revised and expanded
edition. Basic books, 2013.

[10] G. Bansal, B. Nushi, E. Kamar, D. S. Weld, W. S. Lasecki, and
E. Horvitz, “Updates in human-ai teams: Understanding and addressing
the performance/compatibility tradeoff,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 2429–
2437.

[11] F. Träuble, J. Von Kügelgen, M. Kleindessner, F. Locatello,
B. Schölkopf, and P. V. Gehler, “Backward-compatible prediction up-
dates: A probabilistic approach,” in Thirty-Fifth Conference on Neural
Information Processing Systems, 2021.

[12] M. Srivastava, B. Nushi, E. Kamar, S. Shah, and E. Horvitz, “An empir-
ical analysis of backward compatibility in machine learning systems,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 3272–3280.

[13] Y. Xie, Y.-a. Lai, Y. Xiong, Y. Zhang, and S. Soatto, “Regression bugs
are in your model! measuring, reducing and analyzing regressions in nlp
model updates,” arXiv preprint arXiv:2105.03048, 2021.

[14] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[15] Y. Gal et al., “Uncertainty in deep learning,” 2016.
[16] T. Silva Filho, H. Song, M. Perello-Nieto, R. Santos-Rodriguez, M. Kull,

and P. Flach, “Classifier calibration: How to assess and improve pre-
dicted class probabilities: a survey,” arXiv e-prints, pp. arXiv–2112,
2021.

[17] Council of European Union, “Council regulation (EU) no 269/2014,”
2014.

[18] C. S. Legislature, “Privacy: personal information: businesses,” 2018.
[19] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC

press, 2012.
[20] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms.

John Wiley & Sons, 2014.
[21] T. Roughgarden, “Algorithmic game theory,” Communications of the

ACM, vol. 53, no. 7, pp. 78–86, 2010.
[22] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical

learnin,” Cited on, p. 33, 2009.
[23] S. Hashem, “Optimal linear combinations of neural networks,” Neural

networks, vol. 10, no. 4, pp. 599–614, 1997.
[24] Z. Yang, Y. Yu, C. You, J. Steinhardt, and Y. Ma, “Rethinking bias-

variance trade-off for generalization of neural networks,” in International
Conference on Machine Learning. PMLR, 2020, pp. 10 767–10 777.

[25] J. Hartung, G. Knapp, B. K. Sinha, and B. K. Sinha, Statistical meta-
analysis with applications. Wiley Online Library, 2008, vol. 6.

[26] A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework for
uncertainty estimation in deep learning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3153–3160, 2020.

[27] B. J. Frey and G. E. Hinton, “Variational learning in nonlinear gaussian
belief networks,” Neural Computation, vol. 11, no. 1, pp. 193–213, 1999.

[28] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[29] A. Camuto, “Understanding gaussian noise injections in neural net-
works,” Ph.D. dissertation, University of Oxford, 2021.

[30] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[31] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1321–1330.

[32] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-
of-distribution image detection in neural networks,” arXiv preprint
arXiv:1706.02690, 2017.

[33] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp. 503–528, 1989.

[34] ccs.neu.edu, “Numerical optimization: Understanding l-bfgs,” 2017.
[35] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[36] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 international joint conference on
neural networks (IJCNN). IEEE, 2017, pp. 2921–2926.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[39] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2011, pp. 215–223.

[40] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[41] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[42] J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Fei-fei, “Imagenet:
A large-scale hierarchical image database,” in In CVPR. CVPR, 2009.

[43] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund,
J. Tenenbaum, and B. Katz, “Objectnet: A large-scale bias-controlled
dataset for pushing the limits of object recognition models,” Advances
in neural information processing systems, vol. 32, 2019.

[44] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini:
prioritizing massive tests to enhance the robustness of deep neural
networks,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 177–188.

[45] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). IEEE, 2019, pp. 1039–1049.

[46] S. Yan, Y. Xiong, K. Kundu, S. Yang, S. Deng, M. Wang, W. Xia, and
S. Soatto, “Positive-congruent training: Towards regression-free model
updates,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 14 299–14 308.

[47] Z. Allen-Zhu and Y. Li, “Towards understanding ensemble, knowl-
edge distillation and self-distillation in deep learning,” arXiv preprint
arXiv:2012.09816, 2020.

[48] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,
“Reflection-aware static regression test selection,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, oct 2019. [Online]. Available: https:
//doi.org/10.1145/3360613

[49] Q. Yi, Z. Yang, J. Liu, C. Zhao, and C. Wang, “A synergistic analysis
method for explaining failed regression tests,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ser. ICSE
’15. IEEE Press, 2015, pp. 257–267.

[50] K. Yu, M. Lin, J. Chen, and X. Zhang, “Practical isolation of failure-
inducing changes for debugging regression faults,” in Proceedings of
the 27th IEEE/ACM International Conference on Automated Software

https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/3360613
https://doi.org/10.1145/3360613

Engineering, ser. ASE 2012. New York, NY, USA: Association
for Computing Machinery, 2012, pp. 20–29. [Online]. Available:
https://doi.org/10.1145/2351676.2351681

[51] F. Pastore, L. Mariani, and A. Goffi, “Radar: A tool for debugging
regression problems in c/c++ software,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13. IEEE
Press, 2013, pp. 1335–1338.

[52] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting operational
dnn testing efficiency through conditioning,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
499–509.

[53] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

[54] X. Sun, T. Zhou, R. Wang, Y. Duan, L. Bo, and J. Chang, “Experience
report: investigating bug fixes in machine learning frameworks/libraries,”
Frontiers of Computer Science, vol. 15, no. 6, pp. 1–16, 2021.

[55] Z. Li, X. Ma, C. Xu, and C. Cao, “Structural coverage criteria for neural
networks could be misleading,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 2019, pp. 89–92.

[56] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” in Artificial intelligence safety and security.
Chapman and Hall/CRC, 2018, pp. 99–112.

[57] V. Buhrmester, D. Münch, and M. Arens, “Analysis of explainers of
black box deep neural networks for computer vision: A survey,” Machine
Learning and Knowledge Extraction, vol. 3, no. 4, pp. 966–989, 2021.

[58] G. Giray, “A software engineering perspective on engineering machine
learning systems: State of the art and challenges,” Journal of Systems
and Software, vol. 180, p. 111031, 2021.

[59] H. Wang, J. Xu, C. Xu, X. Ma, and J. Lu, “Dissector: Input validation
for deep learning applications by crossing-layer dissection,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 2020, pp. 727–738.

[60] P. A. Flach, “Classifier calibration,” in Encyclopedia of machine learning
and data mining. Springer US, 2016.

[61] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,
B. Lakshminarayanan, and J. Snoek, “Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset shift,” Advances
in neural information processing systems, vol. 32, 2019.

[62] Z. Li, X. Ma, C. Xu, J. Xu, C. Cao, and J. Lü, “Operational calibration:
Debugging confidence errors for dnns in the field,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
901–913.

[63] Y. Shen, Y. Xiong, W. Xia, and S. Soatto, “Towards backward-
compatible representation learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
6368–6377.

[64] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-based
neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[65] T. Sakai, “A generalized backward compatibility metric,” in Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2022, pp. 1525–1535.

[66] J. Wing, “Embracing uncertainty,” in Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, ser.
SIGCSE ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 7. [Online]. Available: https://doi.org/10.1145/
3017680.3025045

[67] S. M. Hezavehi, D. Weyns, P. Avgeriou, R. Calinescu, R. Mirandola,
and D. Perez-Palacin, “Uncertainty in self-adaptive systems: A research
community perspective,” ACM Trans. Auton. Adapt. Syst., vol. 15,
no. 4, dec 2021. [Online]. Available: https://doi.org/10.1145/3487921

[68] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming uncertainty in
self-adaptive software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, pp. 234–244. [Online].
Available: https://doi.org/10.1145/2025113.2025147

[69] M. Li and I. K. Sethi, “Confidence-based active learning,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 28, no. 8, pp.
1251–1261, 2006.

[70] M. Dredze and K. Crammer, “Active learning with confidence,” in
Proceedings of ACL-08: HLT, Short Papers, 2008, pp. 233–236.

[71] Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting
out-of-distribution image without learning from out-of-distribution data,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 951–10 960.

[72] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods,” Machine
Learning, vol. 110, no. 3, pp. 457–506, 2021.

[73] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79–87,
1991.

[74] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the
em algorithm,” Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[75] M. Woźniak, M. Grana, and E. Corchado, “A survey of multiple classifier
systems as hybrid systems,” Information Fusion, vol. 16, pp. 3–17, 2014.

[76] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake, “Finite mixture
models,” Annual review of statistics and its application, vol. 6, pp. 355–
378, 2019.

[77] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: a literature
survey,” Artificial Intelligence Review, vol. 42, no. 2, pp. 275–293, 2014.

https://doi.org/10.1145/2351676.2351681
https://doi.org/10.1145/3017680.3025045
https://doi.org/10.1145/3017680.3025045
https://doi.org/10.1145/3487921
https://doi.org/10.1145/2025113.2025147

	Introduction
	Regression Errors of DNN Models
	An Illustrative Example
	Problem Formulation
	Technical Challenges

	Uncertainty-Aware Solutions
	Rationale of Uncertainty Alignment
	Variance Estimation in Data-free Cases
	Temperature Scaling in Label-free Cases

	Empirical evaluation
	Experimental Tasks
	Experimental Results
	RQ1: Pareto Imprvoment
	RQ2: Effectiveness Comparison
	RQ3: Combination with Existing Techniques
	RQ4: Efficiency of TS

	Related work
	conclusion
	The Derivation of Equations (1) and (2)
	The Proof of Proposition 3

	References

