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Abstract—Application Programming Interface (API) docu-
ments represent one of the most important references for API
users. However, it is frequently reported that the documentation
is inconsistent with the source code and deviates from the API
itself. Such inconsistencies in the documents inevitably confuse
the API users hampering considerably their API comprehension
and the quality of software built from such APIs. In this paper,
we propose an automated approach to detect defects of API
documents by leveraging techniques from program comprehen-
sion and natural language processing. Particularly, we focus
on the directives of the API documents which are related to
parameter constraints and exception throwing declarations. A
first-order logic based constraint solver is employed to detect such
defects based on the obtained analysis results. We evaluate our
approach on parts of well documented JDK 1.8 APIs. Experiment
results show that, out of around 2000 API usage constraints, our
approach can detect 1158 defective document directives, with
a precision rate of 81.6%, and a recall rate of 82.0%, which
demonstrates its practical feasibility.

Keywords-API documentation; static analysis; natural language
processing

I. INTRODUCTION

API (Application Programming Interface) constitutes a com-

mon reuse pattern to construct larger software systems nowa-

days [1]. To correctly use APIs — especially those developed

by third-party vendors—clients are heavily relying on the

formal documentation to seek assistance and instructions [2],

[3]. Normally, the documents need to clarify the assumptions

and constraints of these APIs, i.e., the usage context, so the

clients can hopefully avoid pitfalls when using them by follow-

ing these guidelines. However, due to the inherent evolution

nature of programs and the changes of APIs [4], as well as

somehow accidental overlook of the corresponding documents

from developers, defective API documents are frequently

encountered in practice. Sometimes, they lurk deeply in the

delivered software artifact, and potentially lead to frustration,

major loss of time, and even abandonment of the API [5].
As a concrete example, in the latest JDK1.8 API, the doc-

ument for the method javax.swing.JTabbedPane.addTab
(String title, Component component) states that this method

is to “add a component represented by a title and no icon, the

title—the title to be displayed in this tab, component—the

component to be displayed when this tab is clicked.” For a

developer who is unfamiliar with JDK, but who uses this API

in the code after reading the document, it is possible that (s)he

passes the method an instance of the javax.swing.JFrame
type, since this argument is compatible to the Component
type in Java and thus is not forbidden based on the documen-

tation. Such kind of usage will also pass the static check easily.

However, probably surprisingly, when running, an exception

will be thrown. By manually analyzing the code, we found that

addTab invokes insertTab which, in turn, invokes addImpl.
The body of addImpl contains an assertion to check whether

one of the arguments (i.e., Component in this case) is of the

Window type. The document of addImpl does clarify that,

if a Window object is added to a container, the exception

IllegalArgumentException will be thrown. But this important

constraint is not addressed at all in the related documentation

for insertTab or addTab.

As another example in JDK1.8, the document for java.awt.
font.TextLayout.getBlackBoxBounds(int firstEndpoint, int
secondEndpoint) only states that the argument firstEndpoint
is “one end of the character range” and the argument sec-
ondEndpoint is “the other end of the character range. Can

be less than firstEndpoint”. This description turns out to

be very far from complete. Indeed, the corresponding code

actually requires that the firstEndpoint is no less than 0,

and the secondEndpoint is no more than the value of the

character counts; an IllegalArgumentException would be

thrown otherwise.

As a third example in JDK1.8, the document for javax.
swing.JTable.getDefaultEditor(class columnClass) only

writes “columnClass return[s] the default cell editor for this

columnClass.” However, in the corresponding implementation,

the code actually first checks whether or not the argument c
is of null type. If it is, the method directly returns null value

without throwing an exception. But this information is not even

mentioned in the document, whereas the elusive document

seems to be discussing what will happen if c is not null.

As a fourth example in JDK1.8, the document for java.awt.
event.InputEvent.getMaskForButton(int button) states that

“if button is less than zero or greater than the number of button

masks reserved for buttons.” However, in the corresponding

source code, one may found that the exceptional condition is
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button <= 0 || button > BUTTON DOWN MASK.length,

i.e., the code actually requires that the value of button should

be no greater than 0 — the document is incorrect in specifying

the range of the argument button.
The above four examples are simply practical and evident

examples of the so called “API document defects”. Indeed

similar problems are frequently found in the documents. On

the stackoverflow website, a contributor complained that “[t]he

Javadocs are often flat-out wrong and contradictory, and Sun

has often not even bothered to fix them even after 10 years.”1

As JDK’s documentation is generally considered to be of high

quality, it might not be difficult to be convinced that documents

of other projects suffer from similar (or even worse) issues.

Some initial research has been done, for instance, Saied et al.

enumerated categories of common API usage constraints and

their documentation [6]. Undoubtedly, high-quality documen-

tation is indispensable for the usability of APIs [7], [8], and

we believe that a complete and correct documentation would

be highly favourable by API users.
Given the bulk of API documents and code, it is infea-

sible to check/discover such problems manually in practice.

Sometimes even if it is manageable on a small scale, manual

examination would be tedious, inefficient, and error-prone by

itself. In this paper, we propose an automated approach to

detect the defects of API documents. The “defect” in our

context encompasses two scenarios. The first scenario is that

the constraint description of API usage is incomplete in the

documentation (the aforementioned first three examples); the

second scenario is that the description exists but semantically

incorrect with respect to the code (the fourth example de-

scribed above). We do not consider syntactic errors in the

documents as defects, since most of such errors could be

detected by textual editors with grammar checkers and may not

be relevant for developers. Instead, we focus on the semantic
aspects. By identifying and correcting these defects, the quality

of API documents could be increased, which would further

enhance their usability.
In this paper, we assume that the API code is correct. The

rationale is that they have gone through extensive tests and

validation before delivery, hence are more reliable compared

to the documentation. (The assumption can be relaxed; cf.

Section IV.) On the other hand, the API documents are usually

a combined description of various pieces of information, such

as general descriptions, function signature related descriptions,

exception throwing declarations, code examples, etc. Among

these, we hypothesize that statements on function signatures

(i.e., related to parameter types and values) and exceptions

provide the most crucial information for users during pro-

gramming. In [9], such statements are defined as directives,

which are the main focus of our work. Particularly, we

limit our attention to method parameter usage constraints and

relevant exception specifications. They belong to the method

call directive category which represents the largest portion of

1cf. http://stackoverflow.com/questions/2967303/
inconsistency-in-java-util-concurrent-future, posted by Mark Peters on
June 03, 2010

all API documentation directives (43.7%) [9]. Indeed, all of the

aforementioned illustrative examples are directives within this

category. We believe that automatic detection of such defects

in API documents will be of great value for developers/users

to better understand APIs and to avoid inappropriate use of

an unfamiliar API. In Java programs, this kind of directive

is generally annotated with @param, @exception, @throws,
etc. tags. Such structured information makes it much easier to

extract the document directives automatically in practice.

The main contributions of the paper are:

1) We propose an approach which can automatically detect

the defects of API document directives. The approach

contains static analysis techniques for program compre-

hension, as well as domain specific, pattern based natural

language processing (NLP) techniques for document

comprehension. The analysis results are presented in the

form of first-order logic (FOL) formulae, which are then

fed into an SMT solver, i.e., Z3 [10], to detect the defects

in case of inconsistency.

2) The approach covers four types of document defects

at the semantic level, and are evaluated on a part

of the latest JDK 1.8 APIs with their documentation.

The experimental results show that our approach is

able to detect 1419 defects hidden in the investigated

documentation. Moreover, the precision and the recall of

our detection are around 81.6% and 82.0% respectively

which indicate feasibility of the application.

3) We summarize more than 60 heuristics on the typical

descriptions of API usage constraints in documents,

which could be reused across different documentation

projects. We also implement a prototype based on the

proposed approach, which can facilitate the detection of

API defects, especially for JDK1.8 (with a potentially

wider applicability in other APIs).

The rest of the paper is organized as follows. Section II

illustrates the details of our approach. The experiments with

performance evaluation are given in Section III followed by

a discussion in Section IV. Section V discusses the related

work. Section VI concludes the paper and outlines the future

research.

II. APPROACH

We mainly consider four cases of parameter usage con-

straints, based on [6]. They are nullness not allowed, nullness
allowed, range limitation, and type restriction. We now give

a brief explanation of these constraints.

• “Nullness not allowed” represents the case where the null

value cannot be passed as an argument to a method,

otherwise an exception (e.g., NullPointerException) will

be thrown.

• “Nullness allowed” represents the opposite case of “Null-

ness not allowed”, where the null value can be passed as

an argument and no exception will be thrown. Usually,

there is a default interpretation of the null value.

• “Type restriction” represents the case that there are some

specific type requirements on the argument. Not only are
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the argument types compatible with the declared param-

eters, but also some additional, implicit rules should be

respected. This is usually due to the features of object-

oriented languages, especially the inheritance.

• “Range limitation” represents the case where some spe-

cific value ranges of the arguments are expected. Other-

wise the values of the arguments are out of the scope,

and usually some exceptions will be thrown.

For a better understanding of API, such usage constraints

are supposed to be specified explicitly in the accompanied

documents, as otherwise it would be misleading to the API

users. This is, unfortunately, not the case in practice, which

gives rise to numerous defects in API documentation. Our aim

is to detect these defects automatically.

Our approach proceeds as the following steps. Figure 1 gives

an overview.

• We first extract the annotated document out of the source

code. This is a relatively simple procedure. We then have

two branches (cf. Figure 1).

• In the upper branch, we exploit static code analysis

techniques, i.e., to parse the code to obtain the abstract
syntax trees (AST) and analyze the statements of control

flow decisions and exception handling, as well as the

call invocation relation between methods. The results are

given in the form of FOL expressions. The details of this

part will be elaborated in Section II-A.

• In the lower branch, we tag the POS features of the direc-

tives of the API documents, and extract the restriction and

constraints related parts which are also rendered into FOL

expressions. The details of this part will be elaborated in

Section II-B.

• An SMT solver is employed to solve the logical equation

relation between the pair of FOL formula derived from

the above two procedures, and possible inconsistencies

are reported if any.

For technical reasons and scalability of the approach, we

make the following assumptions in the current work.

• For the code analysis: (1) we bound the depth of call

graph, which is specified as a parameter of the procedure;

(2) we disregard private methods since they are invisible

to end users; (3) we disregard method calls in the condi-

tions of statements; and (4) we do not consider aliasing

or dynamic dispatching for exception propagation.

• For handling directives, we concentrate on the directives

of the form “@tag target description”. In particular, the

@tag type includes “param”, “exception” and “throws”.

“target” denotes the tagged entity and “description” is

the constraint related expressions regarding the target.

We hypothesize that in these expressions, API developers

incline to use recurrent linguistic patterns to describe the

constraints.

In the following subsections, we will articulate the two pro-

cessing branches respectively.

A. Extract constraints from API source code

In this subsection, we illustrate the workflow of the upper

branch in Figure 1. The input of the procedure is the API

source code, and the output is an FOL formulae. The procedure

goes through the following steps:

• Step 1. Construct AST. By parsing the API source code,

for each method m we extract an AST treem. This step

is usually a routine of program analysis. In addition, we

generate the static call graph G by Eclipse’s CallHierar-
chy (org.eclipse.jdt.internal.corext.callhierarchy, used in

the plugin environment). From the call graph, we can

easily define the call relation call(m,n) by computing

the transitive closure of the edge relation in the call graph

such that call(m,n) holds if and only if method m calls

method n. Note that, as specified in the assumption (1),

we bound the depth of the call graph, so technically

we compute a sound approximation of call(m,n); this

is usually sufficient in practice.

• Step 2. Extract the exception information. For each public

method m, by traversing the AST treem, we locate each

throw statement and collect the exception information.

This is carried out for all methods in the API. The

exception information of each method m is stored as a

set ExcepInfom of tuples, each of which is of the form

(m,P, t, c) where

– m is the current method name,

– P is the set of formal parameters of the method,

– t is the type of the exception,

– c is the trigger condition of this exception.

After this step, the directly throwable exception infor-

mation, as well as the propagating exception information

introduced by method invocation, is obtained.

Algorithm 1 gives the pseudo-code of expExtractor.

The AST parsing part of the algorithm is implement-

ed by the aid of the Eclipse JDT toolkit, which also

explains the methods isThrowable, isComposite and is-
Method in the pseudo-code. The inputs expExtractor
are the statement sequence of the source code as an

AST representation and the depth of the call hierar-

chy. First the algorithm iterates the statements in m. If
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Data: stmList: AST statement block of a method m, and dep:integer
Result: infoList: list of exception information, which records the

flow-exception tuples, i.e, (m,P, t, c)
1 begin
2 infoList←− ∅;
3 if dep≥0 then
4 foreach stm ∈ stmList do

/* If stm throws an exception, records
all information in a tuple and add
to the list */

5 if isThrowable(stm) then
6 infoList←− infoList∪ {(m,P, t, c) | P :

parametert, t : exceptiontype, c : condition}
7 /* Recursively invoke itself, in case

of composite statement */
8 else if isComposite(stm) then
9 List subList←− (Block)stm.getBody();

10 infoList←−
infoList ∪ expExtractor(subList, dep);

11 /* If the statement contains a method
call of n, check the invoked method
recursively */

12 else if isMethod(stm) ∧ (stm’s args ∈ m’s list) then
/* n is the callee of m in stm */

13 mList←− n.getBody();
14 infoList←−

infoList ∪ expExtractor(mList, dep− 1);
15
16 end
17 end
18 end

Algorithm 1: expExtractor algorithm

the statement contains an exception-throw, the exception

type, trigger condition, the relevant parameter, as well

as the method name, will be recorded and inserted into

the list (line 5-6). Note that we use backtracking to

calculate a conjunction of the trigger conditions in case of

multiple enclosed branches. (For instance, for the snippet

If (A){...If (B) throw...}, both A and B are

collected as conjuncts of the trigger condition.) If the

statement itself is a composite block, we recursively

go through the internal statements of the block, and

extract the corresponding exception information (line 7-

10). If the statement invokes another method call, and m’s

argument(s) is(are) passed onto the callee method n, we

will use the recursion with parameters — the statement

body of the callee method as the parameter, together with

the depth value decreased by 1 (line 12-15). The reason

why we require the parameter match in the invocation

case is to track and guarantee the constraints are on the

same parameter list from the caller method. This recur-

sion continues until the depth decreases to 0. Since the

recursion happens only when there are composite blocks

and method invocations, the depth condition guarantees

the termination of the algorithm.

• Step 3. Calibrate the exception information. In Step
2, we have collected a list of ExcepInfom for each

method m by directly analyzing the ASTs. We now

refine them in the following two steps: (1) We remove

exceptions irrelevant to the parameter constraints. Name-

ly, for each (m,P, t, c) ∈ ExcepInfom, if none of the

parameters in P appear in the condition c, this piece

of information is deemed to be irrelevant, hence we

update ExcepInfom := ExcepInfom \ {(m,P, t, c)}.
(2) For two methods m,n such that call(m,n), assume

furthermore that we have (m,P, t, c) ∈ ExcepInfom
and (n,Q, t, c′) ∈ ExcepInfom, which means there is

some exception propagated to m from n. In this case,

we again traverse the AST of m. If n is enclosed in

some try block of m and there is a compatible exception

type handled and no new exception is thrown in the

catch or finally statements of m, (n,Q, t, c′) is removed

from ExcepInfom. Otherwise a new exception is thrown

in the catch or finally statement, and then the related

information is recorded and used to update (n,Q, t, c′).
Note that this step requires a second traverse of the AST

treem.

• Step 4. Classify the exception information. The cleaned

exception information from the previous step is further

classified into the following categories to formulate pa-

rameter usage constraints.

(1) Category “Nullness not allowed”. They consist of

exceptions (m,P, t, c) such that c implies p = null
for some p ∈ P ;

(2) Category “Type restriction”. They consist of excep-

tions (m,P, t, c) such that c contains instanceOf .

(3) Category “Range limitation”. They consist of excep-

tions (m,P, t, c) where some comparison operators

exist in condition c, except that it is compared with

null, in which case, (m,P, t, c) will not be included.

Note that we do not have a category “nullness allowed”,

as the related constraints cannot be fully handled by the

exception conditions; for them we utilize the technique

proposed in [6] and described in Step 5 below.

• Step 5. Constraints generation. We formulate the col-

lected information regarding the parameter usage con-

straints as an FOL formula ΦAPI. According to the

four types of the parameter usage constraints, we in-

troduce the following predicates: (1) NullAllow(m, a),
where m is the method and a is an argument of m; (2)

NullNotAllow(m, a); (3) Type(m, a, cl), where m is a

method, a is an argument of m and cl is a type provided

by the Java language.

Accordingly, for each method m, we generate a formula

Φm which is a (logic) conjunction of

– NullNotAllow(m, p), if p is a parameter of m and

(m,P, t, c) is in the “nullness not allowed” category

from Step 4.

– NullAllow(m, p), if p is a parameter of m and

“nullness allowed” category. For such constraints,

there are no exceptions thrown. In this case, we

use the control flow analysis technique similar to

the one proposed in [6]. We mainly examine the

parameter related conditional branches. If the branch

handles the null value of the parameter without

throwing the exception or the branch simply ignores
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the case of null value of the parameter, we regard

the parameter as “nullness allowed”. In this part, we

do not consider aliasing problems either.

– ¬Type(m, p, cl), if p is a parameter of m and

there is some (m, p, t, c) such that c implies p =
instanceOf(cl).

–
∧

m,p∈P

∧
(m,p,t,c)∈ExcepInfom

¬c which specifies the

range of each parameter available from the exception

information.

B. Extract constraints from directives

In this section we describe the approach we applied for

the automatic extraction of constraints from directives (i.e.,

workflow of the lower branch in Figure 1) in API documents.

The main idea underlying this approach is the observation that

constraints reported in textual descriptions of API documents
have specific/recurrent grammatical structures (depending of

the constraint category) that share some common characteris-
tics. Thus, such commonalities can be captured by the notion

of heuristics through domain knowledge [11], [12] for enabling

the automatic extraction of constraints.

The approach we proposed for this step relies on specific

NLP techniques for enabling the automatic extraction of

constrains of a given type in API documents. In particular,

similarly to our previous work on pattern based natural lan-

guage processing [11] (with necessary adaptions to the new

context), the definition of the proposed approach consists of

two steps:

1) (manual) analysis of the existing linguistic patterns of

constrains described in API documents having similar

(recurrent) grammatical structures;

2) for each linguistic pattern we defined an NLP heuristic
responsible for the recognition of the specific pattern.

We performed a manual examination of 429 documents of

java.awt and javax.swing packages for extracting a set of

linguistic patterns according to each of the four constraint

types. Specifically, we recognized several discourse patterns

related to each of the four constraint types (the discovered

patterns are available in our replication package2). As a simple

example, in javax.swing.UIManager.getFont(Object key)
,the constraint states that an exception would be thrown “if

key is null”; while in java.awt.Component.list(PrintStream
out), the constraint states similarly that an exception would be

thrown “if out is null”. In this case, “is null” is the recurrent

pattern and will be extracted therefore. This manual analysis

required approximately 1 week of work.

For each extracted linguistic pattern we defined an NLP

heuristic responsible for the recognition of the specific pattern.

The formalization of a heuristic requires three steps: (1) dis-

covering the relevant details that make the particular syntactic

structure of the sentence recognizable; (2) generalizing some

kinds of information; and (3) ignoring useless information. In

the end of this process, a group of related heuristics constitutes

the pattern for a specific constraint category.

2http://www.ifi.uzh.ch/en/seal/people/panichella/tools/SURF0.html

Since the API documentation is usually different from

pure natural language narrations—for instance it is frequently

mixed with code-level identifiers—, differently from our pre-

vious work, we needed to pre-process such statements. In the

following, we use some examples to explain the procedure

with emphasis on the pre-processing step.

In our approach, the documents are subject to the POS

tagging and the dependency parsing. We use Stanford lex

parser3 to mark all terms of the words and their dependency

relation in the constraint related directives extracted from the

documents. Particularly, we focus on the sentences annotated

with @param, @exception and @throws tags.

Before dependence parsing, as mentioned before, we need

to pre-process the texts. The tag headers, i.e., @param,
@exception and @throws, will be removed, but their type

and the following parameter will be recorded. In addition,

some embedded markers (such as <code>) will be removed,

but the words enclosed with such markers are recorded too,

since these are either the keyword, or the corresponding

variable/method/parameter names in the code.

After tagging, we perform dependency parsing and pattern

analysis, aided by heuristics. For this, we largely follow the

methodology of [11]. As a concrete example for heuris-

tic based parsing, the document of java.awt.Choice.add-
Item(String item) states “@exception NullPointerException

if the item’s value is equal to <code>null</code>”. We

first record the exception type. Then we remove the pair of

“<code>” and “</code>”. Thus the sentence “if the item’s

value is equal to null” is finally fed into the parser.

Fig. 2. POS tagging and dependency example4

Figure 2 illustrates the dependency parsing result of our

example document description. In this sentence, we just omit

useless words, such as “if”, since its part-of-speech is IN, i.e.,

the proposition or subordinating conjunction. The subject of

the sentence (nsubj) is “value”, but the value does not appear

in the parameter list of the method. We thus check again

the neighboring noun (NN), i.e., item, and find it matches

the parameter, so we mark it as the subject of the directive.

We observe that “equal to” is a recurring phrase that appears

in many directives. It indicates an equivalence relation to

the following word. The xcomp of such phrase—null in this

case—will be the object of the real subject. We can thus

define the language structure with “(subj) equal to null” as

a heuristic during matching. In this way, the subject(subj)

and object(“null”) of “equal to” will be extracted and be

3cf. http://nlp.stanford.edu/software/lex-parser.shtml
4The meaning of POS tags and phrasal categories can be found via

http://www.cis.upenn.edu/∼treebank/
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normalized into the expression subj = obj. In practice, “[verb]

equal to”, “equals to” and “[verb] equivalent to” are of the

same category, and they will be normalized into the same

expression. In this example, the parsing result ends up to

item = null.
Undoubtedly, there are other, more complicated cases than

this simple example, making the extraction of heuristics a non-

trivial task. They require an in-depth pre-processing. A typical

situation is that there are code-level identifiers and mathe-

matical expressions in the documents. For example, the docu-

ment of java.awt.color.Color-Space.getMinValue(int com-
ponent) states “@throws IllegalArgumentException if compo-

nent is less than 0 or greater than numComponents −1”. We

first recognize the special variable names and mathematical

expressions through regular expression matching. The naming

convention of Java variable follows the camelcase style. If a

upper case letter is detected in the middle of a word, the word

is regarded as an identifier in the method. Similarly, if the

word is followed by some mathematical operators, they are

regarded as expressions. Other cases include the identification

of method names (with the affiliation class identifier “.”),

constant variables, etc. Composite statements also need to be

divided into simple statements. We have defined 29 regular

expressions and rules to detect these cases5. One example to

recognize the member functions in the description is of the fol-

lowing form: “\W[A-Za-z ]+[A-Za-z 0-9]*(\.[A-Za-z ]+[A-

Za-z 0-9])*(#[A-Za-z ]+[A-Za-z 0-9]*)?\([∧()]*\)\W”. Af-

ter recognizing the specific identifiers and expressions in the

description, we create a fresh labeled word to replace them to

facilitate the dependency parsing.

In the end of this process (which required approximatively

2 weeks of work) we formalized 64 heuristics (available in

our replication package). A brief statistics of heuristics for

each constraint type is given in Table I. Since these heuristics

are different from each other, during the linguistic analysis

phase, one directive will be accepted by at most one heuristic

(possibly none, in the case of no constraints specified). We

remark that these heuristics are interesting in their own right,

and can potentially be reused and extended in other related

researches.

TABLE I
HEURISTICS SUMMARIZATION

Constraints types Heuristic number

Nullness not allowed 20
Nullness allowed 11
Type restriction 10
Range limitation 23

In total 64

We are now in a position to generate the parameter usage

related constraints for the documentation, again represented

by an FOL formula. From the previous steps, we have i-

dentified the relevant sentences via tagging and dependency

parsing, with necessary pre-processing. We further divide these

sentences into shorter sub-sentences. In the above example,

5http://www.ifi.uzh.ch/en/seal/people/panichella/tools/SURF0.html

the sentence is transformed to “if component is less than

0 or greater than [specExpression]”. Since “component” is

parsed as the subject and “or” is parsed as cc (conjunction in

linguistics), the sentence can be further divided into two sub-

sentences, i.e., “component is less than 0” and “component is

greater than [specExpression]”, and then each sub-sentence is

subject to the analysis.

As the next step, we define a set of rewriting rules to

translate the obtained sub-sentences into FOL formulae. For

instance, “or” is rewritten into a logic disjunction, and “less

than” is rewritten as a comparison operator <. As a result,

the above example can be rewritten into (component <
0) ∨ (component > [specExpression]). Finally, we replace

the labeled word by the original expression, yielding the output

FOL formula of the procedure. In our example, we have

(component < 0) ∨ (component > numComponent− 1).

C. Identify defects

Recall that from the preceding two sections, we have ob-

tained two FOL formulae, namely, ΦAPI and ΨDOC, over the

same set of predicates introduced in the step 5 in Section II-A.

Intuitively, they represent the collected information regarding

the API source code and the directives of the documents,

with respect to the four types parameter usage constraints.

The main task now is to detect the mismatch of these two;

our approach is to check whether the two formulae ΦAPI and

ΨDOC are equivalent. If this is the case, one can be somehow

confident to say that all constraints (wrt the four types of

method parameter usage constraints addressed in the paper)

in the API are captured in the document and vice verse. If, on

the other hand, this is not the case, we will be able to identify

the mismatch referring to the relevant predicate which can

point out the method and the parameter thereof, as well as

the involved exception. Then we can check whether such a

mistatch is a real defect of the API document.

Formally, we then make a query to check whether

ΦAPI ⇔ ΨDOC (1)

holds. If (1) holds, we can conclude that the API source

code and the related documents are matched. Otherwise,

usually a counterexample can be returned, indicating where

the mismatching happens. As a simple example, for method

f(x) with a single argument x, from the API source code,

one finds that x must be strictly positive, i.e., ΦAPI = x > 0.

However, in the document, it is only stated that x must

be nonnegative, i.e., ΨDOC = x ≥ 0. In this case, (1) is

instantiated by x > 0⇔ x ≥ 0, which clearly fails. By tracing

the relevant predicate (in this case x ≥ 0), this particular

defect of the document can be revealed. Note that, when one

counterexample is returned, in principle we can only detect one

inconsistency. To detect all inconsistencies, one has to update

the formulae ΦAPI and ΨDOC by removing the relevant part

of the detected counterexample (defect), and make the query

again to find more counterexamples (and thus further incon-

sistencies). Such a process must be repeated until no further

counterexample is returned. In practice, one counterexample
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often suggests multiple sources of inconsistences. Hence, only

a small amount of rounds is needed.
Satisfiability modulo theories (SMT) generalizes boolean

satisfiability by adding useful first-order theories such as

equality reasoning, arithmetic, fixed-size bit-vectors, arrays,

quantifiers, etc [13]. To perform the check in (1), we exploit

an SMT solver. Clearly, (1) is equivalent to checking whether

(ΦAPI ∧ ¬ΨDOC) ∨ (¬ΦAPI ∧ΨDOC)

is satisfiable. Hence, off-shelf SAT solvers, such as Z3, can

be applied.
We note that, however, in practice there are some specific

cases that need to be handled before checking (1). For instance,

some constraints extracted from the code contain method

calls (e.g., when they appear in the condition of branching

statements), but the code analysis does not further examine

the internal constraints of these embedded methods. (For

instance, for if (isValidToken(primary) in class MimeType
of java.awt.datatransfer, we do not trace the constraints

of method isValidToken(primary).) We note that the aim

of isValidToken(primary) is to check whether the value of

primary is null or not. The document directive also states that

an exception is thrown if primary is null. It is not difficult

to see that, in these cases, simple comparison of obtained

logic formulae would inevitably generate many spurious defect

reports. To mitigate this problem, we mark these constraints,

ignore them when checking (1), and thus simply regard them

as consistent.

III. EXPERIMENTS

To better support the detection process, we implement

a prototype which takes the API code and the document

directives as inputs. The outputs of the prototype are the

generated FOL expressions in the SMT-LIB 2.0 standard6.

These expressions are then fed into the SMT solver Z3.

A. Settings
We conduct two experiments. In the first one, we limit

the evaluation within the scope of the packages java.awt and

javax.swing; in the second one, we reuse the heuristics defined

in the first one and evaluate the performance for another six

packages. In both experiments, the evaluations are conducted

on a laptop with an Intel i7-4710MQ 2.5GHz processor and

12.0GB RAM, running Windows 7 64-bit operating system.

The versions of Java and Eclipse are 1.8 and Luna-SR2

respectively. The depth of call hierarchy is set to be 4.
The metrics used in the experiments are precision, recall

and F-measure. Precision is used to measure the exactness of

the prediction set; recall measures the completeness. Precision

and recall are calculated as follows7.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

6cf. http://smtlib.cs.uiowa.edu/
7TP: true positive; FP: false positive; FN: false negative.

F-measure considers both exactness and the completeness, and

thus balances the precision and recall.

F -measure = 2× precision× recall

precision+ recall
(4)

Replication Package. We make publicly available in a

replication package8 with (i) the material and working data sets

of our study (e.g., including input data, and output defective

reports); (ii) NLP patterns and the defined NLP heuristics.

B. Results

a) Experiment 1: We first evaluate the performance of

our approach applied to the target packages and their docu-

ments (i.e., java.awt and javax.swing). The packages parsed by

our prototype contain around 0.5 million lines of code (LoC)9

and 16379 Javadoc tags in total. The details are summarized in

Table II. Over these dataset, the program analysis process takes

around two hours, while the document analysis takes around

one hour. Finally, our approach outputs 1975 constraints for

the APIs methods.

To calculate the precision and the recall, the ground truth set

is required. For this purpose, three computer science master

students are hired, who have more than three years of Java

development experience, and are asked to manually inspect the

obtained results, classifying the items into true/false positives

and true/false negatives. In terms of recall, in principle, the

total false negatives are required. However, it turns out that

manual examination of all involved APIs and their documen-

tation (16379 Javadoc tags) would be practically impossible.

In particular, the tremendous number of inter-procedure invo-

cation makes the manual process both error-prone and time-

consuming. Therefore, we only consider a subset of APIs with

the constraints detected by our tool as the sample. We also

apply stratified random sampling strategy to examine 10%

of the APIs and their documentation outside of the set, and

only very few (less than 1% of them) are missing, if any.

Each report is examined by three subjects independently. A

majority vote mechanism is used to resolve possible conflicts.

The manual classification process takes around four and one-

half days.

TABLE II
DATA OVERVIEW IN EXPERIMENT 1

Package LoC @param @throws @exception
names (kilo) No. No. No.

java.awt 178.8 5383 961 423
javax.swing 372.8 8531 448 533

Total 551.6 13914 1409 956

The results of Experiment 1 are summarized in Table III.

Overall, out of these reported 1419 defects (TP+FP), 1158

turn out to be real defects, giving rise to a precision of

81.6%. Combined with 255 false negatives, we get a recall

of 82.0%. The average F-measure is 81.8%. In particular,

all of the four defective document examples in Introduction
are detected successfully. Our approach performs well on the

8http://www.ifi.uzh.ch/en/seal/people/panichella/tools/SURF0.html
9The statistics includes comments and space.
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selected API packages where the heuristics are summarized.

Moreover, Table III also gives the distribution and performance

of each constraint category. Range limitation category takes up

the largest portion of defective documentation in the selected

dataset.
TABLE III

RESULTS OF EXPERIMENT 1

Category TP FP FN Precision Recall F-measure

Nullness 116 34 33 0.773 0.779 0.776
Not Allowed

Nullness 400 34 38 0.922 0.913 0.917
Allowed
Range 485 176 97 0.734 0.833 0.780

Limitation
Type 157 17 87 0.902 0.643 0.751

Restriction

Total 1158 261 255 0.816 0.820 0.818

Among these four constraint categories, we found the preci-

sion for the range limitation type and the nullness not allowed
type is lower than other two types. We then examined some

false positives: for the range limitation, most false positives

are attributed to some vague descriptions of the parameter

range. For example, in java.awt.Container.java, the extracted

constraint for add(Component comp, int index) from the

API code is: (index < 0 ∧ ¬(index = −1)), which is propa-

gated from the callee method addImpl(int). But the document

directive just states “@exception IllegalArgumentException if

the index is invalid.” Some other similar vague descriptions

are also frequently found, for example, simply been stated

“out of range.” Such implicit expressions prohibit the effective

extraction of constraints and are deemed to be “defective”

in our approach. To mitigate this issue, we can define some

specific rules to rectify, i.e., treating such cases as non-

defective.
On the other hand, there are some opposite cases where the

descriptions are concrete, but difficult to resolve. For example,

in java.awt.Container.areFocusTraversalKeysSet(int id),
the document states that “if id is not one of KeyboardFo-

cusManager.FORWARD TRAVERSAL KEYS, KeyboardFo-

cusManager.BACKWARD TRAVERSAL KEYS, [...]”, an

IllegalARgumentException will be thrown. The document

enumerates all of the valid values for the parameter id. But in

the code, the condition for the exception is just id < 0∨ id ≥
KeyboardFocusmanager.TRAVERSAL KEY LENGTH.

In this case, since our current implementation does not

interpret the constant values, we cannot detect either. But

such false positive can be reduced by augmenting with more

reference abilities via static analysis tools which is planned

in our future research.
The nullness not allowed type suffers from the similar issue

as range limitation. The slight difference we observe is the

existence of some anti-patterns in documentation. For exam-

ple, the document of java.awt.Choice.insert(String item, int
index) states “@param item the non-null item to be inserted”.

The linguistic feature of such directive is quite different from

what we summarized before, and our approach does not

successfully extract the constraints. But we could get around

the problem by adding more such “anti-pattern” heuristics into

our repository.
We also manually analyzed some false negatives reported

by our experiment, and found that many are introduced by the

method calls embedded in the condition statements. To reduce

the false positives, we skipped the constraints inside these

embedded methods, and simply regard the accompanying

documents as non-defective. This, however, is a double-edged

sword, i.e., false negatives are also potentially introduced.

For example, in java.awt.image.AffineTransformOp.Affine-
TransformOp(AffineTransform xform, [...]), the method

invokes validateTransform(xform), and thus the constraint

“Math.abs(xform.getDeterminant())<=Double.MIN VALUE”

can be extracted. This constraint is marked and skipped. whilst

the document is considered to be sound (cf. Section II-C).

However, unfortunately, the document directive for xform is

just “the AffineTransform to use for the operation”, which is

defective because it does not provide sufficient information,

and indeed is found manually. This costs a false negative. In

general, we strive to achieve a trade-off between false positive

and false negative, but preciser program analysis would be

needed which is subject to further investigation.
b) Experiment 2: In this experiment, we extend the

exploration scale to cover more API libraries. Particularly, we

incorporate six other JDK packages, i.e.,javax.xml, javax.man-
agement, java.util, java.security, java.lang and java(x).sql10

into our study, but still reuse the heuristic of the first experi-

ment. The information of these packages is given in Table IV.

In this part, our approach generates 2057 FOL constraints for

the APIs methods, and 1188 (TP+FP) are reported as defected.
TABLE IV

DATA OVERVIEW IN EXPERIMENT 2

Package LoC @param @throws @exception
names (kilo) No. No. No.

javax.xml 61.4 1654 1031 141
javax.
management

71.5 1503 295 822

java.util 212.1 4965 2547 290
java.security 41.1 908 164 421

java.lang 89.1 1732 754 335
java(x).sql 45.7 2016 610 1338

Total 520.9 12778 5401 3347

For the second experiment, again we ask the same subjects

as in the first one to manually classify the obtained results and

use majority vote to resolve possible conflicts. Table V sum-

marizes the performance details for each constraint category.
TABLE V

RESULTS OF EXPERIMENT 2

Category TP FP FN Precision Recall F-measure

Nullness 294 154 32 0.656 0.902 0.760
Not Allowed

Nullness 45 26 14 0.634 0.763 0.692
Allowed
Range 289 334 62 0.464 0.823 0.593

Limitation
Type 31 15 5 0.674 0.861 0.756

Restriction

Total 659 529 113 0.555 0.854 0.672

Out of these 1188 detected defects, 659 turn out to be true

positives, and 529 false positives, giving a precision rate of

10It contains both java.sql and javax.sql.
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55.5%. Taking the 113 false negatives, we get a recall of

85.4%. Similar to the observations of the Experiment 1, the

precision of range limitation has the lowest value among the

four. Overall, the performance in terms of precision and F-

measure is lower than that of the first experiment, but still at

an acceptable level. Based on the obtained results, we observe

that, when our heuristics are applied to other APIs, although

suffered at a decrease in the accuracy, the performance is still

kept at an acceptable level with a precision of 55.5% and a

recall of 85.4%, and thus these heuristics can be reused.

C. Threats to Validity

c) Internal Validity: Internal validity focuses on how sure

we can be that the treatment actually caused the outcome [14].

In our approach, we directly work on the API code, as

well as the accompanying documents. The exception related

constraints are therefore solely extracted from the code (via

static analysis techniques) and the descriptions (via NLP

techniques). Another concern of this aspect is the potential

bias introduced in the data set. To minimize this threat,

we randomly select the packages from the latest JDK, and

exclude those of private methods. We also exclude those API

descriptions with obvious grammatical mistakes. Furthermore,

for the evaluation of the approach we rely on the judgement

of some computer science master students, because there is

a level of subjectivity in classifying the items into true/false

positives and true/false negatives. To alleviate this issue we

built a truth set based on the judgement of three inspectors.

Moreover, to validate the items each report is examined by

three subjects independently. Then, after an initial validation

items, all disagreements were discussed and resolved using a

majority vote mechanism.

d) External Validity: External validity is concerned on

whether the results can be generalized to the datasets other

than those studied in the experiments [14]. To maximize the

validity of this aspect, we include additional dataset from

six other packages of JDK API documentation. However,

as an inherent problem in other empirical studies, there

is no theoretical guarantee that the detection strategy still

enjoys high accuracy in other projects, especially for those

with anti-pattern document writing styles. Nevertheless, we

believe the general methodology is still valid in these cases,

since our approach for the document constraints extraction

is heuristic based, which means new, domain-specific styles

can be handled by introducing extra heuristics to boost the

performance. Our goal was to observe whether our approach

is capable to find defects in well documented APIs. Indeed,

all cases considered in our experiments are from the latest

version of JDK. Although they are generally regarded as well-

documented APIs, many defects are still detected. Finally, for

better reducing the threats mentioned above we plan for future

work to extend our study by analyzing APIs of libraries of

different domains.

IV. DISCUSSION

For program analysis, we only consider the explicit “throw”

statements as sources of exceptions (i.e., checked exceptions).

It is possible that other kinds of runtime exceptions occur

during the execution, for example, divide-by-zero. In most

cases, such implicit exceptions are caused by programming

errors, so it might be inappropriate to include them in the

documentation [15]. Therefore, we adopt a similar strategy as

in [16] and omit implicit exception extraction. For static analy-

sis tools, we use Eclipse’s JDT and CallHierarchy mainly due

to their ability to parse programs with incomplete reference

information. Some related work, such as [16], utilizes the Soot
toolset [17], which requires complete type class references.

In the analysis of API documents, we only consider

the directive statements which are preceded by @param,
@throws and @exception tags. In some exceptional cases,

the constraints are instead given in the general description

part of the methods; these constraints cannot be extracted by

our approach. Inclusion of additional parts of documents is

left as future work. Moreover, in the document descriptions,

very rarely grammatical errors exist which would potentially

interfere with the dependency parsing. For example, in

javax.swing.plaf.basic.BasicToolBarUI.paintDragWindow
(Graphics g), the document directive states “@throws

NullPointerException is g is null.” Obviously, the first “is” in

the sentence is a typo (should be “if”). Another example is that,

in the construction method of java.awt.event.MouseEvent,
“greater than” is mistakenly written as “greater then”. For

APIs with such grammatical mistakes, they are removed from

the analysis once found.

There are some other cases, where a few extracted con-

straints are composite and cover more than one category. For

example, as to java.awt.Dialog.Dialog(Window owner, Str-
ing title, ModalityType modalityType), the extracted con-

straint of owner from the code is “(owner!=null)&&!(owner

instanceof Frame)&&!(owner instanceof Dialog)”. For such

composite one, it relates with the nullness as well as the type,

and we classify the composite ones to the both categories.

One of the goals of our approach is to demonstrate wide

existence of API document defects, even in those general-

ly believed well-documented APIs. We have come up with

heuristics for JDK libraries, which prove to be effective.

However, there is no formal guarantee that the same heuristics

will work equally well to other libraries. Nevertheless, we

note that the approach presented here is essentially open to

incorporate other heuristics to facilitate the NLP. We argue

that this by no means devaluates our heuristics for JDK for at

least two reasons: (1) JDK has many users and (2) our work,

as the first work of this kind, may shed light on developing

heuristics for other libraries.

Last, the concept of document defect in our research is

based on the assumption that the API code is reliable. This

assumption can be (and should be) relaxed in situations

when the code quality is less reliable. Our approach can be

adapted to report the inconsistency between the code and the
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documentation.

V. RELATED WORK

Directives of API documentation and the evolution of API

documentation are studied in [9] and [18], [19] respectively.

The authors identified the importance of directives of API

documentation and gave a taxonomy of 23 kinds [9]. We con-

centrate on a subset of them, i.e, those related with parameter

constraints. [20] investigated the developers’ perception of

Linguistic Anti-patterns. The results indicate that developers

perceive as more serious ones the instances where the in-

consistency involves both method signature and comments

(documentation), and thus should be removed. In a latest

survey of API documentation quality conducted by Uddin

and Robillard [5], three kinds of problems are regarded as

severest, i.e., ambiguity, incompleteness and incorrectness, two

of which are considered in our approach. However, all these

work, adopted an empirical methodology to investigate the

problem and no automated techniques were applied.

Zhong and Su [21] proposed an approach combining NLP

and code analysis techniques to detect API documents errors.

The errors in their work differ significantly from ours, in that

they focus on two types of errors, i.e., grammatical errors (such

as an erroneous spelling of certain words), and broken code

names (which are referred in the documents but could not

be found in the source code). In contrast, we target at the

incomplete and incorrect descriptions about the usage con-

straints of the documentation. Thus the emphasis of our work

is more at the semantic level. Buse and Weimer [16] proposed

an automated API documentation generation technique for

exceptions. However, the authors did not consider the extant

documents. Instead, they generated new documents based on

the program analysis results. Therefore, the work could not

help to identify the document defects.

Saied et al. [6] conducted an observational study on the

API usage constraints and their documentation. They selected

four types of constraints, which are the same as ours. But

for the automated extraction of the constraints, they did not

consider the inter-procedure relation. Tan et al. [22] proposed

an approach to automatically extract program rules and use

these rules to detect inconsistencies between comments and

the code. This work differs to ours on certain aspects: Firstly,

the analysis input of this work is inline comments. Secondly,

the target is limited within the area of lock-related topics. Their

subsequent work on the comment level detection includes

[23], [24]. Similar work on comment quality analysis and use

case documents analysis were presented in [25] and [26]

respectively. Compared with all these work, we target at

different research questions although some similar analysis

techniques are used.

There is another thread of relevant research on applying the

NLP techniques to documents or even discussions in natural

languages to infer interested properties [27], such as resource

specifications [28], method specifications [29], code-document

traceability [30], document evolution/reference recommen-

dation [31], [32], API type information [33], source code

descriptions [34], [35], problematic API features [36], change

requests based on user reviews [37], [38], [39], [40], [41].

They demonstrated the feasibility of applying NLP techniques

to documentation, but did not deal with the defect detections.

VI. CONCLUSION AND FUTURE WORK

Computer software, by definition, consists of both programs

and documents. A majority of work has been conducted

to detect the defects of programs, whereas the correctness

of documents is also crucial for the success of a software

project. In this paper, we shift the focus and investigate the

problems of document defect detection. To the best of our

knowledge, this is the first work that automatically detects API

document defects at the semantic level. In our first experiment

on the latest JDK 1.8 API library, out of 1975 API usage

constraints, our approach detects 1419 defects with a precision

of 81.6% and recall of 82.0%, indicating a practical feasibility.

In our second experiment, we consider the applicability on

more API packages and reuse the heuristic from the first

experiment. Although suffered a decrease of accuracy, the

overall performance is still kept at an acceptable level, with an

average precision of 55.5%, and recall of 85.4% respectively.

We have exposed various directive defects in JDK’s API

documentation, which is widely believed to be well docu-

mented APIs. This implies that probably even more serious

defects do exist in other less robust projects’ documents. To

demonstrate a higher applicability of our approach, additional

case studies from various types of APIs, and extra coverage

of documents are required, which are planned in our future

work. We also plan to overcome the limitations identified in

the experiments to further boost the accuracy of our approach.
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