
Synthesizing Barrier Certificates Using Neural Networks

Hengjun Zhao
∗

School of Computer and Information Science

Southwest University, Chongqing, China

zhaohj2016@swu.edu.cn

Xia Zeng
†

School of Computer and Information Science

Southwest University, Chongqing, China

xzeng0712@swu.edu.cn

Taolue Chen
‡

Department of Computer Science and Information Systems

Birkbeck, University of London

taolue@dcs.bbk.ac.uk

Zhiming Liu
§

School of Computer and Information Science

Southwest University, Chongqing, China

zhimingliu88@swu.edu.cn

ABSTRACT
This paper presents an approach of safety verification based on

neural networks for continuous dynamical systems which are mod-

eled as a system of ordinary differential equations. We adopt the

deductive verification methods based on barrier certificates. These

are functions over the states of the dynamical system with certain

constraints the existence of which entails the safety of the system

under consideration. We propose to represent the barrier function

by neural networks and provide a comprehensive synthesis frame-

work. In particular, we devise a new type of activation functions,

i.e., Bent-ReLU, for the neural networks; we provide sampling based

approaches to generate training sets and formulate the loss func-

tions for neural network training which can capture the essence

of barrier certificate; we also present practical methods to check

a learnt candidate barrier certificate against the criteria of barrier

certificates as a formal guarantee. We implement our approaches

via proof-of-concept experiments with encouraging results.

CCS CONCEPTS
• General and reference→ Verification; • Computer systems
organization→Embedded and cyber-physical systems; •Com-
puting methodologies → Machine learning.
∗
Hengjun Zhao was supported partially by the National Natural Science Foundation of

China (No. 61702425, 61572024, 61972385), “Fundamental Research Funds for the Cen-

tral Universities" (SWU116079), and Basic Science and Frontier Technology Research

Program of Chongqing (cstc2017jcyjAX0295).

†
Xia Zeng is the corresponding author and is supported partially by the National

Natural Science Foundation of China (No. 61902325), and “Fundamental Research

Funds for the Central Universities" (SWU117058).

‡
Taolue Chen is partially supported by Birkbeck BEI School Project (ARTEFACT), the

National Natural Science Foundation of China (No. 61872340), Guangdong Science

and Technology Department Grant (No. 2018B010107004), Natural Science Foundation

of Guangdong Province, China (No. 2019A1515011689).

§
Zhiming Liu was supported partially by the National Natural Science Foundation of

China (No. 61672435, 61732019, 61811530327), and Capacity Development Grant of

Southwest University (SWU116007).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7018-9/20/04. . . $15.00

https://doi.org/10.1145/3365365.3382222

KEYWORDS
Barrier certificates, Neural networks, Continuous dynamical sys-

tems, Verification

ACM Reference Format:
Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu. 2020. Synthesizing

Barrier Certificates Using Neural Networks. In 23rd ACM International
Conference on Hybrid Systems: Computation and Control (HSCC ’20), April
22–24, 2020, Sydney, NSW, Australia. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3365365.3382222

1 INTRODUCTION
This paper is concerned with verification of continuous dynamical

systems which are specified by a system of differential ordinary

equations (ODEs). They are an indispensable component of hybrid

systems, which feature interacting discrete and continuous dynam-

ics and play a foundation role in the modeling of cyber-physical

systems. Indeed, a typical hybrid system can be viewed, in a large

sense, as continuous dynamical systems over discrete modes which

may jump from each other when certain transitions are triggered.

Many of these systems, especially those applied in, e.g., aircrafts,

automobiles, chemicals and nuclear power plants, are safety-critical

systems, where safety refers to, in the most fundamental form, that

the system cannot reach a dangerous or unwanted state.

Safety verification of continuous dynamical systems, i.e., to de-

termine whether the underlying system is absent from a dangerous

or unwanted state, is of paramount importance. However, due to

its inherent complexity, it also poses a long-standing challenge.

In a nutshell, there are generally two classes of methods of analy-

sis and verification of continuous dynamical systems. One is via

directly computing sets of reachable states including the computa-

tion of the over—or in some cases under—approximations thereof

[4, 13, 14, 32, 45]. For some special families of ODEs (especially

when their vector fields are linear), one could also use symbolic

approaches reducing to, for instance o-minimal theory [15, 16, 22].

However, as generally ODEs do not have closed form solutions

and the numerical methods are usually computation intensive, the

scalability of these approaches poses a severe limitation.

Alternatively, deductive methods have been studied and suc-

cessfully applied in practice [26, 31, 33]. They are rooted at classic

program verification methods (such as Hoare logic [17]) and are

essentially based on the notion of (inductive) invariants; typical

examples include loop invariants, pre/post contracts for functions,

https://doi.org/10.1145/3365365.3382222
https://doi.org/10.1145/3365365.3382222
https://www.acm.org/publications/policies/artifact-review-badging/#replicated

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu

or even rely-guarantee contracts for concurrent programs. In the

setting of continuous dynamical system, or hybrid system in gen-

eral, because of the continuous dynamics, one usually considers

differential invariants [27, 34]. Suppose one can discover such an

invariant which can be shown to hold at all reachable states, but not

at those unsafe states, then immediately the safety of the system

under consideration can be asserted. The reason that this class of

approaches may be more effective than the previous one lies in

that an invariant is only a (rough) approximation of the reachable

set and may be discovered with awareness of the safety specifica-

tion and according to the ODEs, rather than their solutions. The

challenge, however, is how to discover such an invariant. An recur-

ring pattern for synthesizing invariants is to reduce to constraint

solving problems. More concretely, one may first predefine a prop-

erty template (linear or non-linear, depending on the property to

be verified) and then encode the conditions of a useful invariant

into some constraints on state variables and parameters which is

followed by the endeavor to find out solutions to the constraints.

The method considered in the current paper falls into the second

category. In particular, we follow a deductive method based on the

notion of barrier certificate [35], which has attracted much atten-

tion lately. A barrier certificate is a function of states that divides

the state space into two parts. All system trajectories starting from a

given set of initial conditions fall into one side of the barrier certifi-

cate while the unsafe region locates on the other side. As common

in deductive verificationmethods, there are generally two closely re-

lated questions which are the focus of the current research: (1) what

is the appropriate form of barrier certificates? (2) how to efficiently

(needless to say, automatically) synthesize a barrier certificate of

a fixed shape. As one may expect, there is a delicate trade-off be-

tween the two questions: in general, expressive barrier certificates

are powerful to handle involved system dynamics and unsafe sets,

but usually bring computational intractability to synthesis. For in-

stance, a substantial body of work along this line is to consider

(especially for polynomial ODEs) barrier functions to be polyno-

mial functions, and accordingly, the synthesis of barrier functions

reduces, owing to rich theory and tools in real algebraic geometry,

to polynomial optimization (for instance, Sum-Of-Squares methods

and Semi-definite programming) or quantifier elimination. (A more

detailed discussion of the line of work is deferred to the related

work section.) Our main work can be summarized as providing a

new trade-off of the expressiveness of barrier certificates and the

synthesis tractability via neural networks and the accompanied

data-driven invariant synthesis technique.

Contributions. In this paper, we propose a new class of barrier

certificates for safety verification of continuous systems based on

neural networks. The rationale is that, by the well-known universal

approximation theorem [23], neural networks can approximate

arbitrary functions, which would be an ideal candidate to represent

barrier certificates. While enjoying the expressiveness of neural

networks, as we will demonstrate later, the synthesis can also be

performed in an efficient way which go through following 3 steps.

As the first step, we devise a new class of activation functions,

Bent-ReLU, for barrier certificates. Salient properties of this class

of functions include: (1) they are smooth, so automatically continu-

ously differentiable as required by barrier certificates. (2) it has a

similar shape as ReLU functions, so demonstrates piece-wise linear

zero-level sets, which would facilitate training (cf. Section 3.1.1)

and post-verification (cf. Section 4). In particular, the proposed new

activation function can be both transformed equivalently into poly-

nomial forms or approximated as piecewise linear forms, so can be

used in other training scenarios where one can employ tools from

polynomial optimization and SMT solvers for a rigorous analysis

of the trained networks.

As the next step, we train the neural network where the appli-

cation of standard learning algorithms requires to come up with a

training set as well as the loss function. To generate training data,

we devise various methods to sample points from respective regions

including the initial and unsafe domains (cf. Section 3.2). For the loss

function, we propose a new form which is able to encode the three

conditions of barrier certificates. In a nutshell, the points which

do not respect these conditions are penalized by the loss function,

and when barrier certificates exist, the loss becomes 0. (In terms of

standard supervised learning, this is to encode the empirical risks.)

The details are given in Section 3.3. It is worth mentioning that, to

increase the chance of successful learning of barrier certificates, we

impose gradient controls of the learnt function, which should be

treated as regularization in standard machine learning terms (cf.

Section 3.4.2). As is well-known in machine learning, designing a

suitable loss function is usually the key to a successful application.

The importance of our work is not only to give a formulation of the

loss functions which are effective in generation of barrier certificate,

but also to provide a pattern for applications of similar data-driven

approaches in other verification tasks. Once the training set and

loss functions are available, we apply standard learning algorithms,

supported by the open source deep learning framework PyTorch.
The third step is to check whether the learnt candidate barrier

function from the previous steps, represented by a neural network,

satisfies all the requirements of barrier certificates. This step is

necessary because of the data-driven nature of the approach: the

generalizability of neural networks likely, but does not provide a

formal guarantee to, generate a barrier certificate. Cast as a spe-

cial neural network verification problem, in the current work, the

verification is tackled by both symbolic approaches which reduce

to quantifier elimination and are implemented via the algebraic

system Redlog [8] and Mathematica
1
, and approaches based on

piecewise linear approximation which are based on interval con-

straint propagation based SMT solver isat3. (Cf. Section 4.)

The main contributions of the paper are summarized as follows:

• We put forward a learning-based framework for synthesizing

barrier certificates via neural networks training and verifica-

tion. This is largely a data-driven approach, with little prior

knowledge required, and enjoys great flexibility to effectively

handle nonlinear (beyond polynomial) dynamics of ODEs.

• We instantiate the framework by proposing a new class of

activation functions Bent ReLU. Moreover, we demonstrate

how to generate training set, and to construct loss functions

of neural networks to encode the constraints of barrier cer-

tificates, as well as regularization. We also provide practical

methods to formally verify the learnt barrier certificates

represented as neural networks.

1
https://www.wolfram.com/mathematica/

https://www.wolfram.com/mathematica/

Synthesizing Barrier Certificates Using Neural Networks HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

• We carry out proof-of-concept case studies to showcase the

efficacy of the approach (cf. Section 5).

To the best of our knowledge, this is the first paper to exploit

neural networks as a representation of barrier certificates in contin-

uous dynamical system verification, and to provide a comprehensive

framework to support its synthesis.

1.1 Related Work
Our work is to formulate and synthesize neural network-type bar-

rier certificates for the verification of continuous dynamical systems

whereby the related work mainly concentrates on the method on

barrier certificate generation and more generally, verification of

neural networks and learning for program verification.

Barrier certificate generation. The seminal work of using barrier

certificates in safety verification of hybrid systems was introduced

by Prajna et al. [35, 36]. Following this line, studies have been fo-

cusing on various forms of barrier certificates, striving to strike a

balance between expressiveness and tractability of synthesis. The

endeavor includes: Kong et al. [20, 21] proposed a barrier certificate

defined over an exponential condition for semi-algebraic hybrid

systems. Dai et al. [6] discussed how to relax the condition of bar-

rier certificates in a general way without losing their convexity.

Sloth et al. [40] proposed a new barrier certificate for a special class

of hybrid systems consisting of many interconnected subsystems.

Zeng et al. [48] considered a Darboux-type barrier certificate which

characterizes an algebraic curve that restricts the trajectories of the

system from leaving it once they enter it. Platzer and Clarke [34]

investigated differential invariants, which lift barrier certificates

from defining invariant sub-level sets of differentiable functions

to formulas which can feature Boolean combinations of equalities

and inequalities, describing a richer class of continuous invariants.

Sogokon et al. [41] modified the conditions on the derivative of

barrier functions which are relaxed in a way analogous to vector

Lyapunov functions so as to preserve the convexity of the search

space and search for more general classes of barrier certificates

at the same time. From a computational point of view, relaxation

based methods provide much better efficiency at the cost of more

conservative results. Among them, sum-of-squares (SOS) relaxation

is the most popular one [6, 20, 36, 40, 47]. Instead of directly han-

dling constraints with quantifiers, SOS relaxation converts them

to more conservative constraints represented as either linear ma-

trix inequalities (LMI) [20] or bilinear matrix inequalities (BMI)

[36, 47]. In addition, to make the computation tractable, the degrees

of the polynomial multipliers appearing in LMI or BMI must be

bounded. Instead of SOS relaxation, our generation is based on

learning method which merges all the constraints from sampling

into an unconstrained optimization problem, in a similar vein to

Xue et al.’s work [46]; moreover, most of existing barrier certifi-

cates are more or less formalized from conservative conditions

to preserve convexity while our approach adopts the non-convex

condition (strict barrier certificate).

Verification of neural networks. Learnt barrier certificates are sub-
ject to further verification which is related to formal verification

of neural networks. This has attracted considerable research ef-

forts in recent years, and the general problem is NP-hard [19]. A

large body of research focuses on the robustness issue of neural

networks. In particular, given an input subject to (adversarial) per-

turbations, one intends to determine whether the output of the

neural network (e.g., the classification result) is invariant to these

perturbations. Essentially, this is to estimate the output range of

a given neural network on a compact set. There are now a wide

range of methods including constraint-solving based approaches

[19], optimization based approaches [11, 43, 44], abstract interpreta-

tion based approaches [24, 37], etc. Furthermore, recently work has

been done for verification of control systems with neural network

components [9, 10, 18, 42]. Note that the discussions are necessar-

ily non-exhaustive as a reasonably detailed discussion requires an

independent survey which is out of the scope of this paper.

Learning in program verification.Machine learning has been used ex-

tensively in program verification, in particular, for invariant synthe-

sis. Data-driven synthesis techniques for invariant or interpolants

have been studied lately [2, 3, 12, 25, 38, 39]. They are used to han-

dle programs which manipulate complex data-structures, arrays,

pointers, etc., or to reason over a complicated memorymodel and its

semantics. In such a scenario, a black-box, data-driven guess-and-

check approach, guided by a finite set of program configurations,

has been shown to be advantageous. In general, they formulate

the synthesis problem as a learning problem where off-the-shelf

techniques (e.g., support vector machines, decision trees) are used.

In contrast, our work is in the continuous regime and adopts neural

networks, although it does share the same spirit.

2 PRELIMINARIES
Throughout this paper, R denotes the set of real numbers. For any

natural number n, we write [n] = {1, · · · ,n}.

2.1 Constrained Continuous Dynamical
System

We consider a continuous system given as a system of ordinary

differential equations (ODEs).

A continuous dynamical system S is modeled by a finite number

of first-order ordinary differential equations

Ûx = f(x),

where x = (x1,x2, . . . ,xn)
T ∈ Rn is a column vector, Ûx denotes

the derivative of x with respect to the time variable t , and f(x) :

Ω → Rn is a vector field f(x) = (f1(x), · · · , fn (x))T defined on

an open subset of Ω ⊆ Rn . We assume that f satisfies the local
Lipschitz condition, which ensures that given x = x0, there exists a

time T > 0 and a unique time trajectory x(t) : [0,T) → Rn such

that x(0) = x0, also denoted by x(t , x0).

We consider constrained continuous dynamical systems given by

Γ = (f ,XD ,XI ,XU), where f : Ω → Rn is the vector field, XD ⊆ Ω
is an evolution constraint (also called the state space, or system

domain), XI ⊆ XD , XU ⊆ XD . For safety verification, we only

consider trajectories initialized in XI that are contained in XD and

check whether a trajectory exists that can reach an unsafe set XU .

Definition 2.1 (Safety verification problem). A considered system

Γ = (f ,XD ,XI ,XU) is safe if ∀x0 ∈ XI and ∀t ≥ 0, x(t , x0) ∈ XD
implies x(t , x0) < XU , i.e., the system never reaches XU from XI .

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu

Given a continuously differentiable function д : Rn → R, the

gradient ofдw.r.t. x = (x1, . . . ,xn)
T
is defined by the column vector

∇д =
∂д

∂x
= (
∂д

∂x1

, . . . ,
∂д

∂xn
)T .

Definition 2.2 (Lie derivative). Given a vector field f : Ω → Rn ,
the Lie derivative of a continuously differentiable function д w.r.t.
f , Lfд : Ω → R, is defined as the inner product of f and ∇д:

Lfд(x) = (∇д) · f(x) =
n∑
i=1

(
∂д

∂xi
(x) · fi (x)

)
. (1)

2.2 Barrier Certificate
Given a system Γ, a barrier certificate is a real-valued function B(x)
over the states of the system satisfying the condition that B(x) ≤ 0

for any reachable state x and B(x) > 0 for any state in the unsafe

set XU . If such a function B(x) exists, one can easily deduce that

the reachable set of states and the unsafe set are disjoint, viz., the

system can not reach a state in the unsafe set from the initial set.

There are several different formulations of barrier certificates

without explicit reference to the solutions of the ODEs [6, 20, 36, 41].

In this paper, we will adopt what termed as strict barrier certificate
[40] (aka. non-convex conditions) which imposes less conservative

requirements of barrier certificate conditions and increases the

chance of successful synthesis.

Theorem 2.3 (Nonconvex Condition). Given a system Γ =
(f ,XD ,XI ,XU), if there exists a continuously differentiable function
B : XD → R s.t.

(1) B(x) ≤ 0 for ∀x ∈ XI
(2) B(x) > 0 for ∀x ∈ XU
(3) LfB(x) < 0 for all x ∈ XD s.t. B(x) = 0,

then the system Γ is safe, and such B is a barrier certificate.

2.3 Neural Networks
We introduce some basic concepts of (feed-forward artificial) neural

networks (NNs). A typical NN consists of a number of intercon-

nected neurons which are organized in a layered structure. Each

neuron is a single processing element that responds to the weighted

inputs received from other neurons.

In general, an NN represents a function h and can be represented

as a composition of its layers. We normally reserve 0 and L for the

indices of the input and output layers respectively, and all the other

layers in between are hidden layers. Superscripts (l) are used to

index layer l-specific variables. In particular, the layer l comprises

neurons n
(l)
i for i ∈ [d(l)], where d(l) is the dimension of the layer l .

For a feed-forward NN, neuron n
(l−1)

j of the layer l − 1 is connected

with neuron n
(l)
i of layer l by a directed edge with weightw

(l)
i j ∈ R,

and each neuron n
(l)
i of layer l is associated with a bias b

(l)
i ∈ R.

The network is fed an input through its input layer, which is

then propagated through the layers by successive application of

linear calculations and activation functions until it reaches the

output layer. More formally, each hidden layer h(l) is defined as

h(l)(x) = a(W(l)x + b(l)), whereW(l)
is a weight matrix, b(l) is an

offset (aka. bias) vector, and a is an activation function. A more

detailed formulation of the propagation is presented in Section 3.1.2.

The most common types of activation functions include ReLU

(Rectified Linear Unit, i.e., max(0,x) for x ∈ R), sigmoid, hyper-

bolic tangent, etc. Training of NN are usually through optimization,

during which the parametersW’s and b’s are learned through an

optimization algorithm (e.g., stochastic gradient descent) applied

on the training set.

3 LEARNING BARRIER CERTIFICATES
In this section, we present our approach to learn barrier functions

represented by neural networks. Given a system Γ = (f ,XD ,XI ,XU),

the process of learning a barrier certificate for Γ consists of the

following steps:

(1) Fix the NN structure that represents the candidate barrier

function;

(2) Generate a set of training data from XD ,XI ,XU ;

(3) Encode the three conditions of barrier certificate in Theo-

rem 2.3 into the loss of the NN on the generated training

data;

(4) Train the NN until the loss stabilizes at 0, and the stabilized

weights and biases give rise to a barrier certificate.

In the rest of this section we explain the details of the four steps.

3.1 The Structure of NN
Given a system Γ = (f ,XD ,XI ,XU), the basic structure of the NN

used to learn a barrier certificate is as follows: it has one input layer,

one output layer, and L − 1 hidden layers; the number of neurons

in the input layer is equal to the dimension of Γ, i.e. d(0) = n; the

number of neurons in the output layer is 1, i.e. d(L) = 1. Essentially,

such an NN represents a smooth scalar function defined on Rn .

3.1.1 Activation Function. In this paper, we use activation func-

tions in the following form:

a(x) = 0.5 · x +
√

0.25 · x2 + ϵ (2)

with ϵ a small positive real number. Actually (2) gives a family of

activation functions resembling ReLU, which we call Bent ReLU
functions, and ϵ denotes how bent the function is (c.f. left part of

Fig. 1 for an illustration). Bent ReLU functions facilitate our purpose

of learning barrier certificate in the following aspects:

Figure 1: Bent ReLU and its derivative with ϵ = 0.0001

• It is a smooth function stipulated by barrier certificates. The

first-order derivative of Bent ReLU is

a′(x) = 0.5 +
0.25 · x

√
0.25 · x2 + ϵ

(3)

An illustration is given in the right part of Fig. 1.

Synthesizing Barrier Certificates Using Neural Networks HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

• It provides the possibility of rigorously verifying the learned

barrier in two different ways:

– It is obvious from (2) and (3) that the relation between a(x)
and x , as well as the relation between a′(x) and x can both

be transformed to equivalent polynomial constraints. As

a result, symbolic computation methods from first-order

real algebra [5] can be employed.

– When ϵ is sufficiently small, Bent ReLU can be approxi-

mated quite well by ReLU, which is piece-wise linear and

can be well dealt with by SMT solvers. We will discuss the

formal verification issue in more detail in Section 4.

• ReLU activation function is widely used in the machine learn-

ing community and learning NN with ReLU is intensively in-

vestigated. It is reasonable to assume that properties proved

with ReLU will (at least to some extent) transfer to Bent

ReLU. So the proposed method in this paper will hopefully

be able to employ any such progress, e.g. [30].

In all our case studies, the activation functions of the input and

output layers are identity maps, whereas the activation functions

of the hidden layers are set to be Bent ReLU with ϵ = 0.0001, i.e.

a(x) = 0.5 · x +
√

0.25 · x2 + 0.0001 (4)

and accordingly

a′(x) = 0.5 +
0.25 · x

√
0.25 · x2 + 0.0001

. (5)

3.1.2 Forward and Backward Propagation. Denote the input vector
to the NN by x ∈ Rn . Let the output vector of the l-th layer be

x(l). Then x(0) = x. We introduce the vector variable z(l) to denote

the input vector to the l-th layer for 1 ≤ l ≤ L. Thus the forward
propagation equations of NN can be defined as

x(0) = x
z(l) = W(l) · x(l−1) + b(l) for 1 ≤ l ≤ L

x(l) = a(l)(z(l)) for 1 ≤ l ≤ L

y = x(L)

(6)

where x is an n-dimensional column vector, W(l)
is a matrix of

dimension d(l)×d(l−1)
, and b(l) is ad(l)-dimensional column vector;

a(L) is the identity map, and a(l) for 1 ≤ l ≤ L − 1 is defined by

(4) and taken as an element-wise function; y is the scalar output

of the NN with input x, and is identified as an abbreviation of the

function y(x) : Rn → R.
For the function y(x) to be a barrier, by Theorem 2.3, it is crucial

to analyze its Lie derivative Lfy, or its gradient ∇y. From (6) and by

applying the chain-rule of derivative, we can deduce the backward
propagation equations of the NN as follows:

∂y
∂z(L) = 1

∂y
∂z(l−1) =

(
(W(l))T ·

∂y
∂z(l)

)
⊙ a′(z(l−1)) for 2 ≤ l ≤ L

∂y
∂x = (W(1))T ·

∂y
∂z(1)

(7)

where z(l) is computed from (6), ⊙ denotes the element-wise product

of two vectors, i.e., the Hadamard product, and a′(x) is defined as (5)
and is taken as an element-wise function when applied to vectors.

For a given NN and an input x, we can compute y(x) and ∇y(x)
according to (6) and (7), and thus Lfy(x) according to (1). There-

fore the two sets of propagation equations are cornerstone of our

approach to learn and formally verify barrier certificates.

Example 3.1. Prajna07 [36]. We use the following system as a

running example to demonstrate our approach.

f :

[
Ûx1

Ûx2

]
=

[
x2

−x1 +
1

3
x 3

1
− x2

]
,

• XD : {x ∈ R2 | − 3.5 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 1};

• XI : {x ∈ R2 |(x1 − 1.5)2 + x2

2
≤ 0.25};

• XU : {x ∈ R2 |(x1 + 1)2 + (x2 + 1)2 ≤ 0.16}.

An NN with two input neurons and one output neuron will be

constructed as a barrier candidate. For the purpose of showing

the propagation process, we temporarily assume that there is one

hidden layer with two neurons, and assign values to weights and

biases which are labeled on the arrows and neuron nodes in Fig. 2:

Figure 2: An NN constructed for Example 3.1

W(1) =

[
0.1 0.3

0.2 0.4

]
, b(1) =

[
0.5

0.6

]
,W(2) =

[
0.7

0.8

]T
, b(2) =

[
0.9

]
and a(1) is given by (4). Given input x = (1, 0)T , we can compute

from (6) and (7) that y(x) = 1.9602 and ∇y(x) = (0.2300, 0.5299)T .

Then it can be deduced that Lfy(x) = −0.3533.

3.2 Training Data Generation
To learn a barrier certificate for Γ = (f ,XD ,XI ,XU), we sample

fromXD ,XI andXU separately to generate three sets of data points,

whichwill play different roles in the loss function. Although bothXI
and XU are assumed to be subsets of XD , treating them differently

allows more flexible control of the size of the three generated data

sets. In the sequel, we show how to sample data points from XD
and sampling of XI and XU follows in the same manner.

Mesh generation. Suppose XD ⊆ [l, u]D , where l, u ∈ Rn are

lower and upper bounds ofXD , i.e., for all x ∈ XD , x ∈ [l, u]D holds

element-wisely. We then sample from each dimension of [l, u]D
equidistantly with a fixed mesh size δi for i ∈ [n], or equivalently,
we can provide a vector of integers nDmesh specifying the number

of points to be sampled from each dimension.

Mini-batch generation. For high-dimensional systems, the result-

ing mesh of [l, u]D has a huge size. As a common practice in ma-

chine learning, the data mesh will be partitioned into mini-batches,

each with a small size. The advantages of using mini-batch training

lie in allowing neural network training on a large data set, and,

more specific to the barrier synthesis, it could facilitate fine tuning

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu

of the shape of the barrier function, which will be demonstrated

in Section 4. More concretely, we partition the mesh of [l, u]D into

mini-batches by providing a vector of integers nDbatch, specifying
the number of partitions in each dimension.

Filtering. Let
∏

x denote the product of elements of x. Then we

have generated

∏
nDmesh data points fromXD which are partitioned

into

∏
nDbatch mini-batches. IfXD is identical to the super-rectangle

[l, u]D , then the training data generation from XD has been com-

pleted. Otherwise, suppose that XD = {x ∈ Rn |ϕ(x)}, and then the

generated mini-batches are sent to a filter to remove those data

points violating ϕ.
Finally, a list of mini-batches blD comprising sampled data from

XD is obtained, which can be expressed as

blD := filter
(
batch

(
mesh([l, u]D ,nDmesh),n

D
batch

)
,ϕ(XD)

)
,

wheremesh, batch, filter denote the operations for mesh generation,

mini-batch generation and filtering. The lists of mini-batches blI
and blU for XI and XU can be obtained similarly.

Figure 3: Illustration of batches of data for Example 3.1

Example 3.1 continued. Figure 3 shows the generated data points
and batches with nDmesh = (16, 32) and nDbatch = (4, 2) for XD .

3.3 Loss Function
The core of our barrier certificate learningmethod is encoding of the

three constraints in Theorem 2.3 into loss functions of NN. During

the learning process, loss value being reduced to 0 indicates that the

current learned weights and biases result a barrier certificate in the

sense of Theorem 2.3. Given three finite training data sets SD ⊆ XD ,

SI ⊆ XI , and SU ⊆ XU , our loss function can be expressed as:

C(SD , SI , SU) =
∑
x∈SD

CD (x) +
∑
x∈SI

CI (x) +
∑
x∈SU

CU (x) (8)

where CI , CU , and CD are sub-loss functions from Rn to R, related
to the initial constraint, the unsafe constraint, and the Lie deriva-

tive constraint in Theorem 2.3, respectively. These three sub-loss

functions will be formally defined below. Since the barrier function

is to be represented by an NN, in the rest of this paper, we will

replace the B(x) in Theorem 2.3 by y(x) with y defined in (6).

Encoding initial constraint. The intuition of defining CI is to
forcey(x) to have nonpositive values on x ∈ SI , by penalizing those
x ∈ SI with y(x) > 0. The simplest way to achieve this is to let

CI (x) = ReLU(y(x) + τI) for x ∈ SI , (9)

where τI ≥ 0 is a small non-negative constant. Roughly speaking,

CI is defined as the composition of ReLU and the output function

y of the considered NN. It is obvious that

∀x ∈ SI . (CI (x) = 0 ⇒ y(x) ≤ 0) . (10)

The tolerance τI in (9) is to make the post-condition y(x) ≤ 0 in

(10) holds in a neighbourhood of x for any x satisfying C(x) = 0.

Encoding unsafe constraint. The sub-loss function CU can be

defined in the same manner as CI :

CU (x) = ReLU(−y(x) + τU) for x ∈ SU , (11)

where τU > 0 is a small positive tolerance for guaranteeing the

strict positivity of y(x) on SU . Likewise,

∀x ∈ SU . (CU (x) = 0 ⇒ y(x) > 0) . (12)

Encoding Lie derivative constraint. The encoding of the Lie

derivative constraint in Theorem 2.3 is slightly different from CI
and CU , as such a constraint is only relevant to the points x on

the 0-level set of y(x). Since in practice it is hard to sample points

satisfying y(x) = 0 exactly, we consider a belt (or tube) region

around the boundary y(x) = 0. Thus CD can be defined as

CD (x) =
{

ReLU

(
Lfy(x) + τD

)
if |y(x)| ≤ τB

0 otherwise

(13)

where τD > 0 is a small positive tolerance for guaranteeing the

strict negativity of Lfy(x) for x satisfying y(x) = 0; τB > 0 is a

positive constant specifying the width of the belt region around

y(x). It is obvious that

∀x ∈ SD .
(
CD (x) = 0 ∧ y(x) = 0 ⇒ Lfy(x) < 0

)
. (14)

Example 3.1 continued. For the NN shown in Fig. 2 with input

x = (1, 0), if τI = τU = τD = 0 and τB = 0.05, then we have

CI (x) = 1.9602, CD (x) = 0, and CU (x) is not applicable.
The following proposition shows that the loss functionC defined

above well characterizes the conditions of Theorem 2.3.

Proposition 3.2. Given a system Γ = (f ,XD ,XI ,XU), if the out-
put function y(x) of an NN constructed for Γ satisfiesC(SD , SI , SU) =

0 for any finite sets SD ⊆ XD , SI ⊆ XI , SU ⊆ XU , whereC is defined
by (8), (9), (11) and (13), then y(x) is a barrier certificate of Γ.

Proof. By the proof method of contradiction, the result follows

from (10), (12), (14) and the three conditions from Theorem 2.3. □

By Proposition 3.2, given a system Γ, if the training data set

in Subsection 3.2 is appropriately generated and an NN is trained

to obtain 0 loss value on the training set with the loss function C
defined by (8), then it is likely that such anNN satisfies the condition

of Proposition 3.2 and thus is quantified to be a barrier certificate of

Γ. This indicates that the barrier certificate generation problem can

be reduced to the well-studied NN training problem. Furthermore,

by Proposition 3.3, the loss function C has the property that once

the loss is decreased to 0 it will stabilize, which suggests a good

terminating criterion for the training process.

Proposition 3.3. Given an NN with the loss functionC defined in
(8), when C evaluates to 0 on the full set of training data, the NN will
not be updated in subsequent training by gradient descent methods.

Synthesizing Barrier Certificates Using Neural Networks HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

Proof. Suppose all the weights and biases of the NN can be

denoted by W and b, and accordingly the loss function C in (8) on

the full data set can be expressed asC(W, b). From (9), (11) and (13)

and by the chain rule of derivative and the derivative of ReLU, it is

easy to show that
∂C
∂W and

∂C
∂b are both zero vectors. As a result,

W and b will not be updated and the training stabilizes. □

By Proposition 3.2, in NN-learning based barrier certificate syn-

thesis, the chance of successfully synthesizing a barrier certificate

depends on the quality of the generated training set. In the rest of

the paper, we will present the detailed synthesis algorithm, and dis-

cuss the issues regarding increasing chances of successful synthesis

and formally guaranteeing the correctness of the generated barrier

certificates.

3.4 The Learning Algorithm
3.4.1 The Main Algorithm. Our main learning algorithm is illus-

trated in Algorithm 1.

Algorithm 1 Barrier Certificate Learning

Input: Γ = (f ,XD ,XI ,XU), L, d, nDmesh, n
I
mesh, n

U
mesh, n

D
batch,

nIbatch, n
U
batch, nrestart, nepoch, τI , τU , τD , τB , lr , u∇;

Output: W, b of the learned NN;

1: W, b = nn_construct(Γ, L, d);
2: blI , blU , blD = data_gen(Γ, nD, I,Umesh , nD, I,Ubatch);
3: for i = 1 to nrestart do
4: initialize(W, b);
5: for j = 1 to nepoch do
6: Cepoch = 0;

7: shuffle(blI , blU , blD);
8: for SI , SU , SD in blI , blU , blD do
9: Cbatch = loss(SI , SU , SD , τI , τU , τD , τB);
10: Cepoch += Cbatch;

11: update_gradient_descent(W, b, lr);
12: gradient_control(u∇);
13: end for
14: if decide_success(Cepoch, u∇) then
15: return W, b;
16: end if
17: end for
18: end for

The details of Algorithm 1 and its subroutines are given as fol-

lows:

• Inputs of the algorithm: Γ is the considered system to

be verified; L specifies the number of layers of the NN to

be constructed and d specifies the number of neurons in

L − 1 hidden layers (nn_construct in Line 1); nD, I,Umesh and

nD, I,Ubatch are shorthand for 6 integer vectors specifying the

number of sampling points and the number of batches for

each dimension when generating training data (data_gen in

Line 2); since we adopt mini-batch training, one traversal of

all the mini-batches is called an epoch, and nepoch specifies

how many passes we need to traverse the full data set (Line

5 to 17); since the performance of neural network training

depends on the weights and biases initialization (initialize
in Line 4 adopts standard Gaussian distribution), we specify

how many times we want to re-initialize the NN parameters

by nrestart (Line 3 to 18); τI , τU , τD , τB are the four tolerances

used in the computation of loss values Cbatch according to

(8) for each mini-batch 3-tuple (SI , SU , SD) (loss in Line 9);

lr ∈ R specifies a constant learning rate for the gradient
descent optimization method used to update the weights and

biases (update_gradient_descent in Line 11);

• Output of the algorithm: if the algorithm succeeds within

the specified number of restarts, the learned weights W and

biases b will be returned (Line 15);

• Data shuffling: as a common practice in NN training using

stochastic gradient descent (SGD) method, the training data

set is shuffled at the beginning of each epoch; here to keep

the locality of training data whose advantage will be demon-

strated in Section 4, we adopt limited shuffling, that is, we

shuffle the list of mini-batches in blI , blU , blD instead of the

full data set (shuffle in Line 7);

• Gradient control: the input u∇ ∈ R is used as an upper

bound in the gradient_control sub-routine (Line 12) for con-
trolling the gradient norm of the learned NN; and the return

condition checks not only whether Cepoch = 0 but also the

norm of ∇y w.r.t. u∇ (decide_success in Line 14), the reason

for which is to avoid generating a false barrier certificate and
we will investigate this in depth in the following subsection.

3.4.2 Gradient Control. The importance of gradient control in

Algorithm 1 can be illustrated by Fig. 4. Intuitively, to learn a barrier

Figure 4: Poor sampling may result in false barriers

certificate, by Proposition 3.2, we need to reduce CD (x) to 0 for

all x in the belt |y(x)| ≤ τB . Since our approach is data-driven,

it demands that sufficiently many points are sampled in the belt

|y(x)| ≤ τB , and these points should be scattered evenly in the belt.

However, if the belt is so narrow that it is entirely or partly located

in the gaps of the sampled data points as shown in Fig. 4, then the

Lie derivative Lfy on the boundary y(x) = 0 will (partly) not be

constrained by the sampled data at all, and thus a false barrier may

be learned. The vertical part of y(x) = 0 in Fig. 4 may suffer from

such risks.

The simplest way to avoid generating a false barrier is to control

the norm of ∇y within a specified upper bound u∇ so that the belt

|y(x)| ≤ τB will be wide enough compared to the mesh size of data

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu

sampling, as we do in Algorithm 1. The idea is as follows. Consider

an arbitrary x0 ∈ XD s.t. y(x0) = 0.
2
Then the Taylor expansion of

y(x) at x0 gives that y(x) = ∇y(x0) · (x− x0)+o(∥x − x0∥2
) , where

∥·∥
2
denotes the Euclidean norm. By the triangle inequality and

the Cauchy-Schwarz inequality we have

|y(x)| ≤ |∇y(x0) · (x − x0)| + o(∥x − x0∥2
)

≤ ∥∇y(x0)∥2
· ∥x − x0∥2

+ o(∥x − x0∥2
)

≤
√
n · ∥∇y(x0)∥2

· ∥x − x0∥∞ + o(∥x − x0∥2
)

(15)

The last inequality is by ∥·∥
2
≤
√
n ∥·∥∞ where ∥·∥∞ denotes the

ℓ∞ norm, i.e. ∥x∥∞ = maxi ∈[n] |xi |. Assume a mesh size δ when

generating training data. Thus x0 is located in a hyper-rectangle

with side length δ . Now consider a vertex x1 of the rectangle at

which x0 is located, then ∥x1 − x0∥∞ ≤ δ . Thus from (15) we can

have a good upper bound estimate of |y(x1)| by
√
nδ ∥∇y(x0)∥2

.

Based on this estimate, if the upper bound u∇ of ∥∇y∥
2
is chosen

such that

u∇ ≤
τB
√
nδ

, (16)

then |y(x1)| will have an upper bound estimate of τB , which implies

that all the sampled points in the neighbourhood of x0 will have

high possibility of falling in the belt |y(x)| ≤ τB . In practice, we

will relax the bound given by (16) to some extent.

Given u∇ in accordance with (16), the gradient_control subrou-
tine in Algorithm 1 detects whether the norm of ∇y exceeds u∇,
and if so, will bring it down below u∇. The mechanism of gra-
dient_control is to scale the weights and biases of the currently

learned NN. The basic idea is: given a system Γ = (f ,XD ,XI ,XU),

if B(x) is a barrier certificate of Γ as per Theorem 2.3, then it is obvi-

ous that c · B is also a barrier certificate of Γ for any constant c > 0.

This indicates that scaling an NN with small positive c will reduce
the norm of the gradient of the output function without affecting

barrier certificate learning. In our implementation of Algorithm 1,

scaling is based on the following lemma:

Lemma 3.4. Consider an NN with the same structure as the one in
Subsection 3.1 except that all the activation functions in the hidden
layers are replaced by ReLU. Given a positive constant α > 0, if we
reset the weight matrix W(l) to α ·W(l) and reset the bias vector b(l)

to α l · b(l), for all 1 ≤ l ≤ L. Then the new output function will be
αL · y(x) where y(x) is the original output before reset.

The proof of Lemma 3.4 is straightforward and thus omitted here.

Lemma 3.4 indicates a specific scaling approach for NN with ReLU

activations, by scaling the weights and biases of each layer using

different factors. Since Bent ReLU has a similar shape to ReLU, we

adopt the same scaling approach in Algorithm 1, by choosing the

scale constant α = 0.5. This means, for an NN with one hidden

layer, the scaled y(x) would be roughly 1

4
of the original one.

Example 3.1 continued. For Example 3.1, by constructing an NN

with one hidden layer consisting of 5 neurons, a barrier certificate is

successfully generated. In Fig. 5, the green and red circles represent

the initial and unsafe regions, the arrows represent the vector field,

and the three solid curves represent the |y | ≤ τB belt of the learned

2
If y(x) is a barrier function, then it has opposite signs on XI and XU so that x0

usually exists.

barrier, i.e., the τB , 0, and −τB -level sets of y. The returned weights

and biases are:

W(1) =

[
0.1729 −0.3968 −0.6386 −0.3343 −0.7811

−0.7008 −0.1161 0.2372 −0.4997 0.2423

]T
,

b(1) =
[
−0.1114 −0.7368 −1.1864 −0.1170 −0.9058

]T
,

W(2) =
[
0.2850 −0.9105 0.5477 0.3664 −0.6661

]
,

b(2) =
[
−0.1962

]
For this example, τB = 0.05, and the mesh sizes of XD are δx1

=

0.0215 and δx2
= 0.0117. Then

τB√
2δx

1

= 1.645 and
τB√
2δx

2

= 3.017 by

(16). In Algorithm 1, we relaxed the upper bound of ∇y to u∇ = 6.

Figure 5: Barrier certificate generated for Example 3.1

4 FORMAL VERIFICATION
The gradient control technique in Algorithm 1 significantly reduces

the risk of generating a false barrier certificate. However, it does not

provide a formal guarantee. In this section, we present an approach

to formally check whether the learned function, represented by the

neural network, can indeed serve as a barrier certificate. That is,

given a candidate barrier function B(x) in the form of an NN output

function y(x), we verify the three conditions of Theorem 2.3 hold,

or equivalently, the negation of the conditions are unsatisfiable:
∃x. x ∈ XI ∧ y(x) > 0

∃x. x ∈ XU ∧ y(x) ≤ 0

∃x. x ∈ XD ∧ y(x) = 0 ∧ Lfy(x) ≥ 0

(17)

Essentially, (17) can be encoded into SMT constraints and is a

range estimation problem. Note the computation ofy(x) andLfy(x)
in (17) by the forward and backward equations (6) and (7) involves

the computation of nonlinear functions a(x) and a′(x), which are

the hard-core of formal verification. Our strategies for tackling the

problem are as follows.

Symbolic Approach. As claimed in Subsection 3.1.1, the Bent

ReLU activation function enables the application of symbolic com-

putation in the verification of NN. To see this, we rewrite (2) and

(3) into the following polynomial forms:{
(a − 0.5 · x)2 = 0.25 · x2 + ϵ ∧ a > 0

(a′ − 0.5) · (a − 0.5 · x) = 0.25 · x
(18)

where a and a′ are shorthand of a(x) and a′(x) respectively. It is
not difficult to check that (18) is equivalent to the conjunction

of (2) and (3). If XD ,XI ,XU and f are all described by polynomial

expressions, then (6), (7), (17) and (18) together form an existentially

Synthesizing Barrier Certificates Using Neural Networks HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

quantified polynomial formula, the truth value of which can be

obtained by quantifier elimination (QE [5]). However, due to its

high computational complexity [7], QE is applied restrictedly in

our approach, as shown in the following paragraph.

Piecewise Linear Approximation. It was also claimed in Subsec-

tion 3.1.1 that the shape of Bent ReLU activation function is quite

similar to (piece-wise linear) ReLU, which suggests that we could

compute a precise piece-wise linear (over-)approximation of Bent

ReLU, to simplify the computation of a and a′. For instance, a(x) in
(4) could be easily approximated by 4 pieces as ā(x):

ā(x) ∈


(0, 0.001926) if x ∈ (−∞, −0.05]

(0.001925, 0.01] if x ∈ (−0.05, 0]

(x + 0.001925, x + 0.01) if x ∈ (0, 0.05)

(x , x + 0.001926) if x ∈ [0.05, ∞)

(19)

The approximation error between a(x) and ā(x) is at most 0.01.

If we increase the number of pieces, higher approximation preci-

sions will be achieved. In our verification practice, we use 2, 4 or 6

pieces to approximate a(x) and 6 pieces to approximate a′(x). The
details are omitted here due to space limitation. Note that as in

(19), linearized formulas usually involve floating-point numbers

due to Taylor expansion. In our work, all numerically computed

approximations are symbolically verified using (18) and QE. Our

linearizations, together with (6), (7) and (17), form a constraint

in which most expressions are linear and nonlinearity may only

exist in the expressions defining XD ,XI ,XU and f . In our work,

the finally resulting problem is sent to isat3, an interval constraint

propagation (ICP) based nonlinear SMT solver for verification.
3

Example 3.1 continued. The barrier function shown in Fig. 5 is

successfully verified using isat3 with 2-pieces approximation of a
and 6-pieces approximation of a′.

Combine Pre-training and Fine-tuning. In our encoding of loss

functions in Section 3.3, four tolerances τI ,τU ,τD ,τB are used so

that points not sampled will also have zero loss, but generally

there is no good principle on how to choose the tolerances. If

τI ,τU ,τD ,τB are not large enough, even a true barrier certificate

may fail the verification due to error propagation of interval com-

putation and the approximation error of linearization. Our strategy

for tackling this problem is to perform pre-training with very small

tolerances (or even zero tolerances except for τB) to get a first so-

lution. Then we iteratively increase the tolerances and perform

fine-tuning of the NN initialized by the pre-trained solutions. In

practice, fine-tuning works very well in that it costs much less

time than pre-training, and the increased tolerances enable us to

succeed in formal verification. The reason for the effectiveness of

fine-tuning may be that our mini-batch training keeps the locality

of data so the shape of the barrier can be tuned in a fine granularity.

The experiment details are reported in the next section.

Example 3.1 continued. In Fig. 6, the left figure shows the pre-

trained |y | ≤ 0.05 belt with tolerances τI = τU = τD = 0,τB = 0.05,

which is learned from a randomized initialization, while the right

figure shows the fine-tuned |y | ≤ 0.05 belt with the safety tolerance

τU increased to 0.05. It is evident that verification of the fine-tuned

one is much easier.

3
https://projects.informatik.uni-freiburg.de/projects/isat3/

Figure 6: Illustration of pre-training and fine-tuning

5 CASE STUDIES
We have implemented a prototype tool named nnbarrier based on

Algorithm 1 using the PyTorch
4
platform. We apply nnbarrier to

verify a number of cases from the literature. All experiments are

performed on a laptop workstation running Ubuntu 18.04 with

Intel i7-8550u CPU and 32GB memory. The tool package together

with a short instruction, as well as all the case studies, are publicly

available.
5

Figure 7: The learned barrier for Example 5.1

Example 5.1. Prajna07-modified. This example is to show the

flexibility of our method in dealing with multiple or irregular initial

and unsafe regions.

f :

[
Ûx1

Ûx2

]
=

[
x2

−x1 +
1

3
x 3

1
− x2

]
,

• XD : {x ∈ R2
: −3.5 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 1};

• XI : {x ∈ R2
: (x1 − 1.5)2 + x2

2
≤ 0.25 ∨ (x ≥ −1.8 ∧ x ≤

−1.2 ∧ y ≥ −0.1 ∧ y ≤ 0.1) ∨ (x ≥ −1.4 ∧ x ≤ −1.2 ∧ y ≥

−0.5 ∧ y ≤ 0.1)};

• XU : {x ∈ R2
: (x1+1)2+(x2+1)2 ≤ 0.16∨(x ≥ 0.4∧x ≤ 0.6∧

y ≥ 0.1∧y ≤ 0.5)∨ (x ≥ 0.4∧x ≤ 0.8∧y ≥ 0.1∧y ≤ 0.3)}.

Using an NN with one hidden layer consisting of 20 neurons, a

barrier certificate was generated as shown in Fig. 7, in which initial

and unsafe sets are colored green and red respectively, and the

|y | ≤ 0.025 belt of the learned barrier is shown. Note that it would

be rather complicated to encode this example into SOS-constraints

using SOS-based methods.

Example 5.2. Darboux [48]. This example is to show the strength

of our approach by encoding the strict barrier certificate condition.

f :

[
Ûx1

Ûx2

]
=

[
x2 + 2x1x2

−x1 + 2x 2

1
− x 2

2

]
,

4
https://pytorch.org/

5
https://github.com/zhaohj2017/HSCC20-Repeatability

https://projects.informatik.uni-freiburg.de/projects/isat3/
https://github.com/zhaohj2017/HSCC20-Repeatability

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu

Table 1: Inputs and time costs for barrier certificate training and verification

L d nDmesh nDbatch nr ne τI τU τD τB lr u∇ Tnnbarrier τ fI τ fU τ fD τ fB Tisat3
Ex 5.1 2 20 (28, 2

8) (26, 2
6) 5 500 0 0 0.001 0.05 0.01 6 1731.03s 0.01 0.01 0.03 0.025 635.31s

Ex 5.2 2 10 (28, 2
8) (26, 2

6) 5 100 0 0 0.005 0.05 0.1 6 341.45s 0.025 0.025 0.005 0.05 20.84s

Ex 5.3 2 10 (28, 2
8) (26, 2

6) 5 500 0 0 0.001 0.05 0.1 6 637.48s 0.02 0.02 0.10 0.05 11.30s

Ex 5.4 2 10 (27, 2
7, 2

7) (24, 2
4, 2

4) 5 100 0 0 0 0.05 0.01 6 3165.28s 0.05 0.07 0.15 0.10 1003.37s

• XD : {x ∈ R2
: −2 ≤ x1,x2 ≤ 2};

• XI : {x ∈ R2
: 0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 2};

• XU : {x ∈ R2
: x1 + x

2

2
≤ 0}.

It was reported [48] that LMI-based methods failed to verify this

problem using polynomial template of degree 6, and we failed to

verify this problem using the exponential barrier certificate con-

dition [20] with polynomial template of degree 8.
6
However, by

constructing an NN with one hidden layer consisting of 10 neurons,

we successfully generate a barrier certificate.

Example 5.3. Elementary [28]. This example is to show the

ability of our methods in dealing with non-polynomial systems.

f :

[
Ûx1

Ûx2

]
=

[
e−x1 + x2 − 1

− sin
2 x1

]
,

• XD : {x ∈ R2
: −2 ≤ x1,x2 ≤ 2};

• XI : {x ∈ R2
: (x1 + 0.5)2 + (x2 − 0.5)2 ≤ 0.16};

• XU : {x ∈ R2
: (x1 − 0.7)2 + (x2 + 0.7)2 ≤ 0.09}.

In [28], the elementary ODE was transformed into an equivalent

polynomial ODE with higher dimension. In contrast, our method

can deal with it directly, and a barrier certificate was successfully

generated by an NN with one hidden layer consisting of 10 neurons.

Example 5.4. Obstacle avoidance [1]. This example is to show

the application of our method in control. The problem is to control

a 2-dimensional airplane to avoid an obstacle by controlling its

angular velocity.

f :


Ûx1

Ûx2

Ûψ

 =
[
v sinψ
v cosψ

u

]
,

whereψ is the clockwise angle from the positive x2-axis, v is the

magnitude of velocity which is assumed to be 1, and the control

law u is designed as:

u = − sinψ + 3 ·
x1 · sinψ + x2 · cosψ

0.5 + x2

1
+ x2

2

Intuitively, the plane is controlled to fly in the direction of positive

x2-axis, and meanwhile to avoid an obstacle centered at (0, 0) by

turning left.

• XD : {x ∈ R3
: −2 ≤ x1,x2 ≤ 2,−π/2 < ψ < π/2};

• XI : {x ∈ R3
: −0.1 ≤ x1 ≤ 0.1,−2 ≤ x2 ≤ −1.8,−π/6 <

ψ < π/6};

• XU : {x ∈ R3
: x2

1
+ x2

2
≤ 0.04}.

Using an NN with one hidden layer consisting of 10 neurons, we

successfully verified the obstacle avoidance property by generating

a barrier certificate. In Fig. 8, the green cuboid, red cylinder, and

6
Experiment was done in Matlab using Yalmip [29] and the Mosek SDP solver (https:

//www.mosek.com/), with λ = 0, −0.5, −1.

Figure 8: The learned barrier for Example 5.4

yellow surface represent the initial set, unsafe set, and the 0-level

set of the learned barrier, respectively; some simulated trajectories

from the initial set are also shown in Fig. 8 as blue curves.

Statistics of our case studies are summarized in Table 1: nr and

ne denote the number of restarts and epochs; nI,Umesh and nI,Ubatch are

omitted; the tolerances τI ,τU ,τD ,τB are used for pre-training, while

their counterparts with superscripts f are the finally fine-tuned

ones; Tnnbarrier measures the averaged time cost (in seconds) of

pre-training for each case over 5 runs;Tisat3 measures the time cost

of verification in isat3 of the finally fine-tuned barrier certificates.

6 CONCLUSIONS
We have presented a data-driven approach for synthesis of barrier

certificates for safety verification of general continuous dynamical

systems. We proposed NN-type barrier certificates and introduced a

new class of activation functions. We also gave methods to generate

train sets, formulate the loss functions, together with regularization

via gradient controls. Furthermore, we presented practical methods

to formally verify the generated barrier certificates. The techniques

can be adapted to hybrid systems, at least in principle. We believe

the current work has made the first step towards exploiting NN in

traditional verification methods for hybrid systems, and has greater

potential to shed light on other applications of the same kind.

In the future, we shall explore the scalability to higher dimen-

sions via deeper NNs and GPU training. Moreover, hyper-parameter

tuning is challenging which may need more experiments. It is also

interesting to explore the case when the (initial or unsafe) domains

are unbounded. More generally, we believe verification would be

a new, exciting application domain of NNs which merits further

investigations.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.

https://www.mosek.com/
https://www.mosek.com/

Synthesizing Barrier Certificates Using Neural Networks HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

REFERENCES
[1] Andrew J. Barry, Anirudha Majumdar, and Russ Tedrake. 2012. Safety verification

of reactive controllers for UAV flight in cluttered environments using barrier

certificates. In 2012 IEEE International Conference on Robotics and Automation,
ICRA 2012. nstitute of Electrical and Electronics Engineers Inc., 484–490.

[2] Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna, and Daniel

Tarlow. 2017. Learning Shape Analysis. In Static Analysis. Springer International
Publishing, 66–87.

[3] Mingshuai Chen, Jian Wang, Jie An, Bohua Zhan, Deepak Kapur, and Naijun

Zhan. 2019. NIL: Learning Nonlinear Interpolants. In Automated Deduction –
CADE 27. Springer International Publishing, 178–196.

[4] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2012. Taylor Model

Flowpipe Construction for Non-linear Hybrid Systems. In RTSS 2012. IEEE Com-

puter Society, Los Alamitos, CA, USA, 183–192.

[5] George E. Collins. 1975. Quantifier elimination for real closed fields by cylindrical

algebraic decompostion. In Automata Theory and Formal Languages, H. Brakhage
(Ed.). LNCS, Vol. 33. Springer Berlin Heidelberg, 134–183.

[6] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. 2017. Barrier Certificates

Revisited. Journal of Symbolic Computation 80 (2017), 62–86.

[7] James H. Davenport and Joos Heintz. 1988. Real quantifier elimination is doubly

exponential. J. Symb. Comput. 5, 1-2 (Feb. 1988), 29–35.
[8] A. Dolzmann, A. Seidl, and T. Sturm. 2006. Redlog User Manual (edition 3.1, for

redlog version 3.06 (reduce 3.8) ed.). http://redlog.dolzmann.de/downloads/.

[9] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravan-

bakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. 2019. VerifAI: A Toolkit

for the Formal Design and Analysis of Artificial Intelligence-Based Systems. In

Computer Aided Verification. Springer International Publishing, 432–442.
[10] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability

analysis for neural feedback systems using regressive polynomial rule inference.

In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC. 157–168.

[11] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.

Output Range Analysis for Deep Feedforward Neural Networks. In NASA Formal
Methods. Springer International Publishing, 121–138.

[12] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan.

2018. Horn-ICE learning for synthesizing invariants and contracts. PACMPL 2,

OOPSLA (2018), 131:1–131:25. https://doi.org/10.1145/3276501

[13] Goran Frehse. 2008. PHAVer: algorithmic verification of hybrid systems past

HyTech. Int. J. Softw. Tools Technol. Transf. 10, 3 (May 2008), 263–279.

[14] Goran Frehse, Colas Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,

Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.

2011. SpaceEx: Scalable Verification of Hybrid Systems. In CAV 2011, Ganesh
Gopalakrishnan and Shaz Qadeer (Eds.). LNCS, Vol. 6806. Springer Berlin Heidel-

berg, 379–395.

[15] Ting Gan, Mingshuai Chen, Liyun Dai, Bican Xia, and Naijun Zhan. 2015. De-

cidability of the Reachability for a Family of Linear Vector Fields. In Automated
Technology for Verification and Analysis. Springer International Publishing, 482–
499.

[16] Ting Gan, Mingshuai Chen, Y. Li, Bican Xia, and Naijun Zhan. 2018. Reachability

Analysis for Solvable Dynamical Systems. IEEE Trans. Automat. Control 63, 7
(2018), 2003–2018.

[17] C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun.
ACM 12, 10 (Oct. 1969), 576–580.

[18] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee.

2019. Verisig: verifying safety properties of hybrid systems with neural network

controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2019. 169–178.

[19] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.

2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In

International Conference on Computer Aided Verification. Springer, 97–117.
[20] Hui Kong, Fei He, Xiaoyu Song, William NN Hung, and Ming Gu. 2013.

Exponential-condition-based barrier certificate generation for safety verification

of hybrid systems. In Proceedings of the 25th International Conference on Computer
Aided Verification (CAV). Springer, 242–257.

[21] Hui Kong, Xiaoyu Song, Dong Han, Ming Gu, and Jiaguang Sun. 2014. A new

barrier certificate for safety verification of hybrid systems. Comput. J. 57, 7 (2014),
1033–1045.

[22] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. 1999. A New Class of

Decidable Hybrid Systems. In HSCC 1999 (LNCS), Frits W. Vaandrager and Jan H.

Schuppen (Eds.), Vol. 1569. Springer Berlin Heidelberg, 137–151.

[23] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. 1993.

Multilayer feedforward networks with a nonpolynomial activation function can

approximate any function. Neural Networks 6, 6 (1993), 861 – 867.

[24] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun

Zhang. 2019. Analyzing Deep Neural Networks with Symbolic Propagation:

Towards Higher Precision and Faster Verification. In Static Analysis. Springer
International Publishing, 296–319.

[25] Yi Li, Xuechao Sun, Yong Li, Andrea Turrini, and Lijun Zhang. 2019. Synthesizing

Nested Ranking Functions for Loop Programs via SVM. In Formal Methods and
Software Engineering. Springer International Publishing, 438–454.

[26] Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao, Chaochen Zhou,

and Liang Zou. 2010. A Calculus for Hybrid CSP. In APLAS 2010, Kazunori Ueda
(Ed.). LNCS, Vol. 6461. Springer Berlin Heidelberg, 1–15.

[27] Jiang Liu, Naijun Zhan, and Hengjun Zhao. 2011. Computing semi-algebraic

invariants for polynomial dynamical systems. In EMSOFT 2011. ACM, New York,

NY, USA, 97–106.

[28] Jiang Liu, Naijun Zhan, Hengjun Zhao, and Liang Zou. 2015. Abstraction of

Elementary Hybrid Systems by Variable Transformation. In FM 2015: Formal
Methods - 20th International Symposium, Oslo, Norway, June 24-26, 2015, Proceed-
ings. Springer, 360–377.

[29] Johan Löfberg. 2004. YALMIP : A Toolbox for Modeling and Optimization in

MATLAB. In Proc. of the CACSD Conference. Taipei, Taiwan. http://users.isy.liu.
se/johanl/yalmip/.

[30] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. 2017.

The Expressive Power of Neural Networks: A View from the Width. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA.
6231–6239.

[31] ZoharManna and Henny B. Sipma. 1998. Deductive verification of hybrid systems

using STeP. In HSCC 1998, ThomasA. Henzinger and Shankar Sastry (Eds.). LNCS,

Vol. 1386. Springer Berlin Heidelberg, 305–318.

[32] Ian Mitchell and Claire J. Tomlin. 2000. Level Set Methods for Computation in

Hybrid Systems. In HSCC 2000, Nancy Lynch and Bruce H. Krogh (Eds.). LNCS,

Vol. 1790. Springer Berlin Heidelberg, 310–323.

[33] André Platzer. 2010. Differential-algebraic Dynamic Logic for Differential-

algebraic Programs. J. Log. and Comput. 20, 1 (Feb. 2010), 309–352.
[34] André Platzer and Edmund M. Clarke. 2008. Computing Differential Invariants

of Hybrid Systems as Fixedpoints. In CAV 2008, Aarti Gupta and Sharad Malik

(Eds.). LNCS, Vol. 5123. Springer Berlin Heidelberg, 176–189.

[35] Stephen Prajna and Ali Jadbabaie. 2004. Safety Verification of Hybrid Systems

Using Barrier Certificates. In Proceedings of the 7th International Workshop on
Hybrid Systems: Computation and Control HSCC. 477–492.

[36] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. 2007. A framework for

worst-case and stochastic safety verification using barrier certificates. IEEE Trans.
Automat. Control 52, 8 (2007), 1415–1429.

[37] Luca Pulina and Armando Tacchella. 2010. An Abstraction-Refinement Approach

to Verification of Artificial Neural Networks. In Computer Aided Verification.
243–257.

[38] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and

Aditya V. Nori. 2013. A Data Driven Approach for Algebraic Loop Invariants. In

Programming Languages and Systems. Springer Berlin Heidelberg, 574–592.

[39] Rahul Sharma, Aditya V. Nori, and Alex. Aiken. 2012. Interpolants as Classifiers.

In Computer Aided Verification. Springer Berlin Heidelberg, 71–87.

[40] Christoffer Sloth, George J Pappas, and Rafael Wisniewski. 2012. Compositional

safety analysis using barrier certificates. In Proc. of the Hybrid Systems: Computa-
tion and Control (HSCC). ACM, 15–24.

[41] Andrew Sogokon, Khalil Ghorbal, Yong Kiam Tan, and André Platzer. 2018. Vector

Barrier Certificates and Comparison Systems. In Formal Methods. 418–437.
[42] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal verification of

neural network controlled autonomous systems. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC 2019.
147–156.

[43] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca

Daniel, Duane S. Boning, and Inderjit S. Dhillon. 2018. Towards Fast Computation

of Certified Robustness for ReLUNetworks. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018. 5273–5282.

[44] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2017. Output Reach-

able Set Estimation and Verification for Multi-Layer Neural Networks. CoRR
abs/1708.03322 (2017).

[45] Bai Xue, Martin Fränzle, and Naijun Zhan. 2019. Inner-Approximating Reachable

Sets for Polynomial Systems with Time-Varying Uncertainties. IEEE Trans.
Automat. Control (2019), 1–1.

[46] Bai Xue, Martin Fränzle, Hengjun Zhao, Naijun Zhan, and Arvind Easwaran.

2019. Probably Approximate Safety Verification of Hybrid Dynamical Systems.

In Formal Methods and Software Engineering. Springer International Publishing,
236–252.

[47] Zhengfeng Yang, Min Wu, and Wang Lin. 2015. Exact Verification of Hybrid

Systems Based on Bilinear SOS Representation. (2015), 19 pages.

[48] Xia Zeng, Wang Lin, Zhengfeng Yang, Xin Chen, and Lilei Wang. 2016. Darboux-

type Barrier Certificates for Safety Verification of Nonlinear Hybrid Systems.

In Proceedings of the 13th International Conference on Embedded Software. ACM,

Article 11, 10 pages.

http://redlog.dolzmann.de/downloads/
https://doi.org/10.1145/3276501
http://users.isy.liu.se/johanl/yalmip/
http://users.isy.liu.se/johanl/yalmip/

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Constrained Continuous Dynamical System
	2.2 Barrier Certificate
	2.3 Neural Networks

	3 Learning Barrier Certificates
	3.1 The Structure of NN
	3.2 Training Data Generation
	3.3 Loss Function
	3.4 The Learning Algorithm

	4 Formal Verification
	5 Case Studies
	6 Conclusions
	Acknowledgments
	References

