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ABSTRACT
We develop a novel hybrid heart model in Simulink that is
suitable for quantitative verification of implantable cardiac
pacemakers. The heart model is formulated at the level of
cardiac cells, can be adapted to patient data, and incorpo-
rates stochasticity. It is inspired by the timed and hybrid
automata network models of Jiang et al and Ye et al, where
probabilistic behaviour is not considered. In contrast to our
earlier work, we work directly with action potential signals
that the pacemaker sensor inputs from a specific cell, rather
than ECG signals. We validate the model by demonstrating
that its composition with a pacemaker model can be used
to check safety properties by means of approximate proba-
bilistic verification.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: SIMULATION AND
MODELING—Model Validation and Analysis

General Terms
Verification

Keywords
Hybrid systems, Quantitative verification, Pacemaker

1. INTRODUCTION
Today’s implantable medical devices are increasingly of-

ten controlled by embedded software and rigorous software
design methodologies are needed to ensure their safe opera-
tion and to avoid costly device recalls. The natural models
for medical devices, such as cardiac pacemakers [6], GPCA
infusion pumps [8] and continuous glucose monitors [16],
are stochastic hybrid systems: they involve discrete mode
switching and nonlinear continuous flows, e.g., electrical sig-
nal or glucose level, while at the same time allowing for
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stochasticity that arises from randomness of the timing of
events. Therefore, developing effective methodologies to
provide safety assurance in this setting by means of quanti-
tative verification is an important challenge.

Regarding cardiac pacemakers, a number of model-based
frameworks have been proposed, to mention the Virtual
Heart Model (VHM) of Jiang et al [4, 5]. Though mainly in-
tended for simulation and testing, its timed automata pace-
maker model [6] has been verified using UPPAAL [9] against
a random heart model. The random heart model can capture
the timing delays between events, but is unable to model
the stochasticity in the timing that is characteristic in a
heart rhythm and varies from patient to patient. Following
a suggestion in [6] that physiologically-relevant heart mod-
els are needed to establish the correctness of more complex
properties for pacemakers, we earlier proposed a realistic
heart model that addresses this issue [1]. The model was
adapted from a sophisticated model that generates multi-
channel electrocardiogram (ECG) based on nonlinear ordi-
nary differential equations (ODEs) due to Clifford et al [2].
To transfer to our setting, where we need to consider that
the pacemaker is implanted in the heart tissue, we convert
external ECG signals into action potential signals read by
implanted sensors. A unique feature of the model of [1] is
that the heart can probabilistically switch between normal
and abnormal beat types, in a manner that can be learnt
from patient data. We performed quantitative, probabilistic
verification by analysing the composition of the pacemaker
model of [6] and the heart model against typical correct-
ness properties such as (i) whether the pacemaker corrects
faulty heart beats, maintaining normal heart rhythm of 60-
100 beats per minute (BPM), and (ii) that the pacemaker
does not induce erroneous heart behaviours (that is, it does
not overpace the heart unless necessary). These were imple-
mented based on the probabilistic model checker PRISM [7]
and MATLAB.

One of the shortcomings of the heart model in [1] is that
it does not capture the electrical conduction system of the
heart, and specifically the delays in the action potential sig-
nal as it is propagated from cell to cell. In this paper, we
propose an accurate, fine-grained, heart model which is a
network of cells, and which can therefore model the con-
duction delays. Moreover, we work directly with the action
potentials that the pacemaker can read from a specific cell.
Our model is inspired by the VHM system developed in [5],
except that we model cells as hybrid automata, in the style
of [17], and add stochasticity not considered in [5, 17].
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The model of [5] can reproduce the timing of the action
potential signals, but they do not address the voltage change
when the signal is propagated through the cells. Our model
is more precise, in that we work directly with cell action
potential, explicitly representing the voltage of the cardiac
cell signal as a hybrid automaton of [17]. As a result, the
timing of the effective refractory period (ERP), i.e., the time
of non-responsiveness for the cell to further stimulus, and
the relative refractory period (RRP), i.e., the period of time
when an altered secondary excitation stimulus is possible,
can be naturally expressed.

Contribution. The contribution of the paper is as follows.
We propose a physiologically-relevant heart model built as
a network of communicating input-output hybrid automata
which features stochasticity. The model enables the mod-
elling of both diseased and normal rhythms, and can be
adapted to exhibit random delays in the timing of events
that are patient-specific. We implement the heart model in
Simulink and validate it against the pacemaker models of
[5], demonstrating basic safety properties of the pacemaker
by means of probabilistic approximate model checking, with
encouraging results.

Related work. [6] formulate a timed automata model for
a cardiac pacemaker and verify it using UPPAAL against
a simple random heart model. Tuan et al [12] develop a
real-time formal model for a pacemaker and verify it with
the PAT model checker. Networks of timed automata are
employed to devise the Virtual Heart Model [4, 5] and hy-
brid automata are used in the model of [17], both analysed
through simulation. Macedo et al [13] develop and analyse a
concurrent and distributed real-time model for pacemakers
through a pragmatic incremental approach using VDM and
a scenario-based approach. Gomes et al [3] present a formal
specification of the pacemaker using the Z notation and em-
ploy theorem proving, whereas Mert et al [15] use Event-B
and the ProB tool, to validate their models in different sit-
uations. None of the above approaches considers stochastic
behaviours and properties. Risk analysis of glucose infusion
pumps is performed with physiological models using statis-
tical model checking in [16], but there is no stochasticity in
the models.

Organisation. The rest of the paper is organised as follows.
Sect. 2 presents the necessary background on the function of
human heart, its modelling and a pacemaker model. Sect. 3
introduces the electrical conduction system of the heart.
There, it is discussed how single cells are implemented, how
the SA node differs from other cells and how the conduction
system works. Sect. 4 gives an overview of the pacemaker
model and some of its characteristic features. Sect. 5 de-
scribes the composition of the heart and the pacemaker and
how probabilistic approximate verification on such a model
is performed. Sect. 6 presents experimental results for basic
safety properties for pacemakers. Finally, Sect. 7 includes
conclusion and possible future directions.

2. PRELIMINARIES
In this section we describe the working of the heart, in-

cluding its electrical system. The main function of the hu-
man heart is to maintain blood circulation of the body. This
rhythmic, pump-like function is driven by muscle contrac-
tions, in particular, the contraction of the atria and ventri-
cles which are triggered by electrical signals.

Figure 1: Electrical conduction system of the heart.

The sinoatrial (SA) node (a special tissue in the heart, see
Fig. 1) spontaneously produces an electrical signal, which is
the primary pacemaker of the heart. On each heart beat,
it generates the control electrical signal which is conducted
through prescribed internodal pathways into the atrium caus-
ing its contraction. The signal then passes through the slow
conducting atrioventricular (AV) node, allowing the blood
to empty out the atria and fill the ventricles. The fast con-
ducting Purkinje system spreads the electricity through the
ventricles, causing all tissues in both ventricles to contract
simultaneously and to force blood out of the heart. This
electrical system is called the natural pacemaker (in con-
trast to the artificial pacemaker) of the heart. At the cel-
lular level, the electrical signal is a change in the potential
across the cell membrane, which is caused by the flow of ions
between the inside and outside of the cell.

Abnormalities in the electrical signal generation and prop-
agation can cause different types of arrhythmias, such as
Tachycardia (fast heart beat) and Bradycardia (slow heart
beat), which require medical intervention in the form of med-
ication, surgery or implantable pacemakers.

Action Potential. At the cellular level, the heart tissue is
activated by an external voltage applied to the cell. After
the activation, a transmembrane voltage change over time
can be sensed due to ion channel activities, which is referred
to as an action potential (AP). The AP is fired as an all-or-
nothing response to a supra-threshold electrical signal, and
each AP follows roughly the same sequence of events and
has the same magnitude regardless of the applied stimulus.
This is also the signal that an implantable pacemaker will
receive or generate (see Sect. 2 of [1] for more detail).

3. ELECTRICAL CONDUCTION SYSTEM
In this section, we propose a model for the electrical con-

duction system of the heart which is tailored for the verifi-
cation of pacemakers.

3.1 The Cardiac Cell
In this paper, we adapt the so called Luo-Rudy Guinea Pig

Ventricular Cell model (LRd), which is presented in [17] as
a hybrid automaton and is depicted in Fig. 2. In a nutshell,
there are four (discrete) locations and each of them is associ-
ated with an AP phase: resting and final repolarisation (q0),
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stimulated (q1), upstroke (q2), and plateau and early repo-
larisation (q3). The variables introduced in the model are:
the membrane voltage v, which controls switches among lo-
cations; a memory variable vn which is used to modify next
ERP phases upon new rounds of excitation; and the excita-
tion current ist.
The memory variable vn captures the proper response

of AP to pacing frequency, which is an essential feature
of cardiac excitation. Following [17] we define θ = vn

VR

and incorporate the function f(θ) = 1 + 13 6
√
θ into loca-

tion q3. The function g("v) denotes the voltage contribu-
tion from the neighbouring cells. Assuming the total num-
ber of cells connected to the current cell k is N − 1, we
define gk("v), the function for the k’th cell to be gk("v) =∑N

i=1,i !=k vi(t−δki)·aki−vk ·dk, where aki is the gain applied
to the potential vi from cell i, δki is the time it takes for the
potential to reach cell k, and dk is the distance coefficient.
Moreover, the mode invariants of each location are given as
linear inequalities which constraint the membrane voltage.
They depend on three model-specific constants: threshold
voltage VT , overshoot voltage VO, and repolarisation volt-
age VR.
The cell starts at location q0 where two different scenar-

ios are possible. If the cell is externally stimulated with the
event Vs?, it enters the stimulated mode updating its voltage
according to the stimulus current (ist). When the stimulus
is terminated, via event Vs?, with a sub-threshold voltage,
the cell returns to resting without firing an AP. If the stimu-
lus is supra-threshold, i.e., v ≥ VT holds, the excited cell will
generate an AP by progressing to mode upstroke. Similarly,
without any external stimulus, the cell can move from q0 to
q2 if the voltage (due to the contribution of the neighbouring
cells) is supra-threshold v ≥ VT . The recovery course of the
cell follows transitions to mode plateau and ER and then to
resting and FR. The jump conditions on the control switches
monitor the transmembrane potential v, rather than impos-
ing a rigid timing scheme. This approach allows for AP
adaptation (response to various pacing frequencies).

Figure 2: Hybrid automaton for the cardiac cell
model.

3.2 The Conduction System
Modelling every single cell of the electrical conduction sys-

tem is computationally intensive. Thus, we abstract the
conduction system as a network of cells in order to achieve
a good trade-off between the complexity of the model and
the running time of the experiments.

In our experiments each cell is connected to neighbour-
ing cells forming a graph as shown in Fig. 1 (black circles

connected with lines). There are 33 cells in our graph. The
electrical conduction system of the heart consists of conduc-
tion pathways with different conduction delays. Cells are
connected by pathways. The delays of the pathways depend
on the physiology of the tissue considered. Moreover, it is
possible to use the pathway delays to model various known
tissue diseases.

More specifically, our model consists of the SA node, the
AV node and 31 cells that share similar properties. The
SA node generates sequences of AP which are propagated
through the electrical conduction system of the heart (see
Sect. 3.3). The AV node is a special cell with the role of
slowing down the signal coming from the atria to the ven-
tricles and 31 cells. The 31 cells are connected together
forming the graph structure presented in Fig. 1.

Cells communicate with their neighbours through input
and output actions. Output actions are propagated to neigh-
bouring cells. For each output action there is a correspond-
ing input action. The set of input actions is {AP?, AP?,
VP?, VP?, Vs? and Vs?}, and the set of output actions is
defined accordingly. AP? and AP? are the start and end ac-
tions that the pacemaker generates when it paces the atrium
(and similarly for VP? and VP? in the ventricle). Cells that
are not stimulated by the pacemaker are stimulated by the
voltage of their neighbours.

3.3 The SA Node
In this section we present a model for the SA node, which

is known to control the normal rhythm of the heart. The
SA node is the impulse-generating tissue located in the right
atrium of the heart.

The heart rate is composed of two main periodic compo-
nents: respiratory sinus arrhythmia (RSA) and Mayer wave
(MW). The RSA oscillation is located between 0.15−0.4 Hz
(HF band), while the MW oscillation is at approximately
0.1 Hz between 0.04 − 0.15 Hz (LF band). The heart rate
is measured by monitoring the electrocardiogram (ECG) of
the heart. An ECG is a signal recorded from the surface of
the human chest. Typically, an ECG signal describes a car-
diac cycle, which has three main waves, P, QRS and T. The
P wave denotes the atrial depolarisation. The QRS wave
reflects the rapid depolarisation of the right and left ventri-
cles. The T wave denotes the repolarisation of the ventricle.
The RR-interval is the time between successive R-peaks of
the QRS wave, and is the inverse of this time interval that
determines the instantaneous heart rate. Analysis of varia-
tions in the instantaneous heart rate time series using the
beat-to-beat RR-intervals is known as HRV analysis, which
has been shown to provide an assessment of cardiovascular
diseases.

The RR time series can be generated by first constructing
the power spectrum S(f) as a sum of two Gaussian distri-
butions for the LF band and HF band

S(f) =
σ2
1√

2πc21
exp

(
(f − f1)

2

2πc21

)
+

σ2
2√

2πc22
exp

(
(f − f2)

2

2πc22

)
,

with means f1, f2, standard deviations c1, c2 and power σ2
1 ,

σ2
2 . Then the spectrum is mapped into the time domain by

inverse Fourier transform. More details on the construction
of the RR time series are given in [14].

In the sequel, we use the RR time series to create the
firing times for the events Vs? and Vs? corresponding to the
SA node cell (see Fig. 2). We define RR time series as a
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(a) LRI component (b) PVARP component (c) AVI component (d) URI and VRP
components

Figure 3: LRI, PVARP, AVI, URI and VRP components [6].

sequence {ri}i∈N. Intuitively, each ri denotes the period
of two consecutive SA node stimulations, i.e., it marks the
beginning and end of the stimulus. If the time interval ri is
small the SA node is not stimulated, i.e., the Vs? happens
before v ≥ VT . Otherwise, the SA node is stimulated and
the stimulus is propagated through the heart.

4. PACEMAKER MODEL
The basic pacemaker model in [6] consists of five timed

automata (TA) components: the lower rate interval (LRI)
component, the atrio-ventricular interval (AVI) component,
the upper rate interval (URI) component, the post ventric-
ular atrial refractory period (PVARP) component and the
ventricular refractory period (VRP) component. The LRI
component (see Fig. 3(a)) has the function to keep the heart
rate above a given minimum value. The AVI component (see
Fig. 3(c)) has the purpose to maintain the synchronisation
between the atrial and the ventricular events. An event is
when the pacemaker senses or generates an action. The AVI
component also defines the longest interval between an atrial
event and a ventricular event. The PVARP component (see
Fig. 3(b)) notifies all other components that an atrial event
has occurred. Notice that there is no AR signal as we are not
using the advanced algorithms given in [6]. The URI com-
ponent (see Fig. 3(d) top) sets a lower bound on the times
between consecutive ventricular events. The VRP compo-
nent (see Fig. 3(d) bottom) filters noise and early events
that may cause undesired behaviour.

There are four actions in the pacemaker model that are
used to communicate with the heart model. The input ac-
tions Aget and Vget will notify the pacemaker when there
is an action potential from the atrium or from the ventricle,
respectively. The output actions AP and VP are responsible
for pacing the atrium and the ventricle, respectively. Notice
that in a real pacemaker device the input will be a signal.
The pacemaker will have a voltage threshold that will be
used to decide whether the signal yields an Aget or a Vget
action. It is important to remark that all transitions from
the pacemaker model that are not labelled with an input or
output action are assumed to be labelled with the internal
action τ . The locations that have transitions labelled with
τ , as well as the locations labelled with C, do not allow the
time to elapse.

5. QUANTITATIVE VERIFICATION
In this section, we show how quantitative, probabilistic

verification can be performed for a given heart model and
the pacemaker model which exhibit real-time, hybrid and
stochastic features.

5.1 Generation of Abnormal Heart Behaviour
The heart exhibits abnormal behaviours due to many dif-

ferent reasons and in this paper we consider the malfunc-
tion of the SA node. Modelling this aspect plays a crucial
role in the verification of pacemakers, as the pacemaker’s
function is to correct the heart behaviour for such scenar-
ios. We now describe our approach. For the disease of SA

Figure 4: Markov
chain.

nodes, we consider a model
based on Markov chains. In
order to verify the pacemaker
we generate different behaviours,
including Bradycardia and Tachy-
cardia, as well as a normal
rhythm, and allow switching be-
tween them. To generate a be-
haviour where, for instance, the
SA node goes from Bradycardia
to Tachycardia, we construct a
Markov chain with three states
(modes) as shown in Fig. 4, labelled as Normal (N), Tachy-
cardia (T) and Bradycardia (B). An important observation
is that the probability to switch between states can be learnt
from patient data [2].

5.2 Property Specification
The composition of the heart and the pacemaker models

gives rise to a timed sequence which records the voltage of
certain cells of the heart, for which we need to specify a
property that checks whether the sequence corresponds to a
normal heart behaviour. Intuitively, we define as a “normal
path” any path for which there are between 60 and 100 heart
beats (ventricular events) in any interval of window time of
60 seconds.

5.3 Approximate Model Checking
Technically speaking, the composition of the heart model

introduced in Sect. 3 and the pacemaker model yields a
stochastic hybrid system. Automated verification of such
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systems presents significant research challenges. We exploit
techniques from approximate model checking (AMC) to de-
liver verification results with high confidence. AMC is an
approach to verify quantitative properties of stochastic sys-
tems by simulating the system for finitely many runs, and
then analysing the drawn samples (simulation trajectories)
to obtain statistical evidence for the satisfaction or viola-
tion of the specification. Note that it is closely related to
the statistical model checking technique [11], which relies on
hypothesis testing.

Let T be the time bound, h be the simulation step, and
k = T

h be the path length. To apply AMC, one selects two
parameters: 0 < ε < 1 and 0 < δ < 1. Intuitively, ε is the
error bound while 1−δ is the confidence level. We randomly
draw N = log( 2δ )/2ε

2 paths of length k. For each path, we
check whether it is “normal”. Suppose there are N ′ normal
paths. By the Chernoff bound, one can conclude that the

probability Prob
[∣∣∣N

′

N − p
∣∣∣ ≤ ε

]
≥ 1− δ, where p is what we

want to estimate, i.e., the probability of all “normal paths”
of length k. Intuitively this means that, with a very high
probability (i.e., 1 − δ), the ratio N′

N that we compute is
ε-close to the real probability p. We refer the readers to [10]
for further details.

6. EXPERIMENTAL RESULTS
We implement both the heart model and the pacemaker

model in Simulink. We run the experiments on a 2.83GHz
4 Core(TM)2 Quad CPU with 3.7GB of memory. All model
files can be accessed via http://www.veriware.org.
Fig. 5(a) shows the Simulink implementation of the SA

node. The cell is implemented by means of three Simulink
blocks: Event generator, Hybrid set and Subsystem. The
Event generator block is responsible to generate the input
events to the cell. The Hybrid set implements the cell hy-
brid automaton model described in Sec. 3.1. The Subsystem
block performs the integration procedure to compute the
voltage level of the cell. Fig. 5(b) shows a network of six
cells. Each cell block is composed from the three sub-blocks
shown in Fig. 5(a) and connected to other cells through de-
lay and gain components.

Basic Safety Analysis. In the first set of experiments we
induce Bradycardia from the SA node and verify that the
pacemaker corrects the faulty behaviour by restoring a nor-
mal heart beat. In Fig. 6(a) we depict two signals. The
first one (in blue) denotes the action potential generated by
the SA node which is running in Bradycardia mode. More
precisely, we have three beats in six seconds, which is ap-
proximately 30 beats per minute. The number of heart beats
is thus too slow and needs the intervention of the pacemaker.
The second signal (in red) denotes the action potential from
one of the cells of the His bundle situated in the ventricle.
This is the signal which is captured and paced by the pace-
maker. Note that the pacemaker increases the number of
beats per minute by first delivering a beat to the ventricle
after approximately one second.

Probabilistic Analysis. The second experiment depicts
the relation between the probability to generate Bradycar-
dia and the number of pacemaker beats to the ventricle. We
range probability from 0.05 to 0.95. The results are pre-
sented in Fig. 6(b). We run 40 experiments, each represent-
ing 8 minutes of the heart beat. As expected, by increasing

the probability, the pacemaker delivers more beats to the
ventricle.
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Figure 6: Experiments.

AV node block. In Fig. 6(c) we depict the case when the
ERP value of the AV node is long enough, so that it filters
out the signal from the SA node. Since a cell cannot be
stimulated during its ERP phase, increasing the ERP value
of the AV node results in filtering some of the signal that
comes from the atrium. In this case, the SA node signal (in
blue) is being blocked by a high ERP value of the AV node
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(a) Cell block (b) Cell connection

Figure 5: Simulink models

(signal in red). The factor is 2 : 1 (two beats in the atrium
result in one beat in the ventricle). A long ERP value for
the AV node induces Bradycardia in the ventricle.

7. CONCLUSION
In this paper we have proposed a model for the electri-

cal conduction system of the heart and performed quanti-
tative verification of pacemaker models composed with the
conduction system model. We worked directly with action
potential signals that the pacemaker sensor inputs from spe-
cific cardiac cells. We have implemented our heart model in
Simulink and evaluated it via approximate model checking
using the timed automata pacemaker models of Jiang et al,
with appropriate extensions.

There are several interesting directions for future work.
For instance, we plan to explore the parameter synthesis
problem of the pacemakers. Moreover, considering a failure
model for the pacemaker seems to be a promising direction.
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