
DeJITLeak: Eliminating JIT-Induced Timing Side-Channel Leaks
Qi Qin

qinqi@shanghaitech.edu.cn
ShanghaiTech University

Shanghai, China

JulianAndres JiYang
jlandres@shanghaitech.edu.cn

ShanghaiTech University
Shanghai, China

Fu Song∗
songfu@shanghaitech.edu.cn
ShanghaiTech University

Shanghai, China

Taolue Chen
t.chen@bbk.ac.uk

Birkbeck, University of London
London, UK

Xinyu Xing
xinyu.xing@northwestern.edu

Northwestern University
Evanston, Illinois, USA

ABSTRACT
Timing side-channels can be exploited to infer secret information
when the execution time of a program is correlated with secrets.
Recent work has shown that Just-In-Time (JIT) compilation can
introduce new timing side-channels in programs even if they are
time-balanced at the source code level. In this paper, we propose a
novel approach to eliminate JIT-induced leaks. We first formalise
timing side-channel security under JIT compilation via the notion of
time-balancing, laying the foundation for reasoning about programs
with JIT compilation. We then propose to eliminate JIT-induced
leaks via a fine-grained JIT compilation. To this end, we provide
an automated approach to generate compilation policies and a
novel type system to guarantee its soundness. We develop a tool
DeJITLeak for real-world Java and implement the fine-grained
JIT compilation in HotSpot JVM. Experimental results show that
DeJITLeak can effectively and efficiently eliminate JIT-induced
leaks on three widely adopted benchmarks in the setting of side-
channel detection.

CCS CONCEPTS
• Software and its engineering→ Formal software verifica-
tion; • Theory of computation→ Program analysis; • Security
and privacy → Formal security models; Logic and verifica-
tion.

KEYWORDS
JIT compilation, timing side-channel, formal semantics, type infer-
ence, detection, mitigation
ACM Reference Format:
Qi Qin, JulianAndres JiYang, Fu Song, Taolue Chen, and Xinyu Xing. 2022.
DeJITLeak: Eliminating JIT-Induced Timing Side-Channel Leaks. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),
November 14–18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3540250.3549150

∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549150

1 INTRODUCTION
Timing side-channel vulnerabilities in programs arise when the
execution time of a program is correlated with secrets, thus pose
a serious threat to secure systems. One notorious example is the
Lucky 13 attack that can remotely recover plaintext from the CBC-
mode encryption in TLS due to an unbalanced branch statement [3].

Constant-time and time-balancing are two programming princi-
ples to mitigate timing side-channel vulnerabilities [7]. The former
ensures that secrets do not influence control-flow paths, memory
access patterns, etc., thus requires significant changes to programs
(e.g., complicated bitwise-operations). The latter ensures that each
secret branching statement has balanced execution time, and is
much easier to achieve in practice. Developing constant-time and
time-balanced programs [2] is not easy. Even worse, in practice,
they may still be vulnerable if the runtime environment is not fully
captured by constant-time or time-balancing models. For instance,
static compilation from programs to low-level counterparts can
compromise constant-time security [11–13, 25]; constant-time exe-
cutable programs are vulnerable in modern processors due to, e.g.,
speculative or out-of-order execution [21, 26, 42, 46]; Just-In-Time
(JIT) compilation may undermine time-balanced programs [17, 19].

In this work, we focus on JIT compilation induced leaks (JIT-
induced leaks) which could be exploited remotely in real-world
applications [17], but currently no rigorous approach can eliminate
them other than tuning off JIT compilation [16].

We first lay the foundations for timing side-channel security
under JIT compilation by presenting a formal operational semantics.
With this, we present the first formalism of timing side-channel
security under JIT compilation via the notion of time-balancing. To
be generic, we do not model concrete JIT compilation as in [8, 31]
which aimed to prove the correctness of JIT compilation. Instead, we
leave JIT compilation abstract in our model, which is formalized via
compilation directives and allows to consider powerful attackers
who have control over JIT compilation. This approach can also
enable reasoning about bytecode running with JIT compilation
and uncover how code can leak secrets due to JIT compilation in
a principled way. We then propose to prevent JIT-induced leaks
via a fine-grained JIT compilation and present a type system for
statically inferring effective compilation policies.

Based on these results, we present DeJITLeak, a practical tool
for generating compilation policies of Java programs that can be
proven to completely eliminate JIT-induced leaks, while still bene-
fiting from the performance gains of JIT compilation; in addition,

https://doi.org/10.1145/3540250.3549150
https://doi.org/10.1145/3540250.3549150

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Qin et al.

a lightweight variant of DeJITLeak, DeJITLeaklight, can elimi-
nate most of the leaks with a low overhead for more performance-
conscious applications and is still sound if methods invoked in both
sides of each secret branching statement are the same. We also
implement the fine-grained JIT compilation in HotSpot JVM from
OpenJDK. We conduct extensive experiments on three widely used
datasets in recent side-channel detection: Blazer [6], Themis [23],
CoCo-Channel [18], DifFuzz [51], and JVMFuzz [19]. Experimental
results show that DeJITLeak significantly outperforms the strate-
gies proposed in [16]. We report interesting case studies which shed
light on further research. In summary, our contributions are:

• A formal treatment of JIT-induced leaks including an operational
semantics and a time-balancing notion under JIT compilation;

• A protection mechanism against JIT-induced leaks via a fine-
grained JIT compilation and an efficient approach to generate
JIT compilation policies for fine-grained JIT compilation with
security guarantees;

• A practical tool that implements our approach and extensive
experiments to demonstrate the efficacy of our approach.

Structure. Section 2 briefly introduces JIT-induced leaks and presents
an overview of our approach. Section 3 formalises timing side-
channel security under JIT compilation. In Section 4, we propose a
protection mechanism and a type system to guarantee its sound-
ness. Section 5 presents an implementation of our approach for
real-world Java. Section 6 reports an extensive evaluation. We dis-
cuss related work in Section 7 and conclude this work in Section 8.

To foster further research, benchmarks, experimental data and
the prototyping tool are released at https://github.com/DeJITLeak.

2 OVERVIEW
In this section, we first give a brief introduction of JIT-induced
leaks [17]. We will exemplify these leaks using the HotSpot JVM
(HotSpot for short) on OpenJDK 1.8. We then give an overview of
our approach to identify and eliminate the JIT-induced leaks.

2.1 JIT-Induced Leaks
JIT-induced leaks could be caused by at least the following three
JIT compilation techniques [17].
Optimistic compilation (Topti). Optimistic compilation is a
type of speculation optimizations [8]. During the JIT compilation
of a method, the compiler speculates on the most likely executed
branches by pruning rarely executed branches. As a result, it re-
duces the amount of time required to compile methods at runtime
and space to store the native code. However, there might be a sub-
sequent execution where the speculation fails and the execution
must fall back to bytecode in the interpreted mode. To handle this
issue, a deoptimization point (a.k.a. uncommon trap) is added to the
native code and, when encountered, deoptimization is performed
which recovers the program state and resumes execution using
bytecode. Clearly, executing the native code after compilation is
much more efficient if no deoptimization occurs. However, when
deoptimization occurs, it will take longer time to deoptimize and
roll back to the bytecode. This difference in execution time induces
a timing side-channel even if branches are balanced in bytecode.

As an example, consider the pwdEq method shown in Figure 1a,
which is extracted and simplified from the DARPA Space/TimeAnal-
ysis for Cybersecurity (STAC) engagement program gabfeed_1 [57].
It takes the strings 𝑎 and 𝑏 with length 8 as inputs denoting the
user-entered and correct passwords respectively. It checks if the
two strings are identical (the for loop). The flag equal is assigned by
false if two chars mismatch. To balance execution time, the dummy
flag shmequal is introduced.

The pwdEq method is marked as safe in STAC and would be ver-
ified as safe by the timing side-channel verification tools Blazer [6]
and Themis [23] which do not consider JIT compilation. However,
indeed it is vulnerable to Topti. To trigger Topti, we execute pwdEq
50,000 times using two strings “PASSWORD” and “password”. After
that, the else-branch is replaced by the corresponding uncommon
trap, so the costly deoptimization will perform later. To trigger this,
we use two strings 𝑥 and 𝑦 with length 8 such that 𝑥 [0] is ‘p’, 𝑦 [0]
is not ‘p’, and the rest is the same. We collect the execution time of
pwdEq with inputs (𝑥,“password”) and (𝑦,“password”) respectively.
The distribution of the execution time is shown in Figure 1b. In
comparison, Figure 1c shows the distribution of execution time with
JIT compilation disabled. We can observe that the difference in the
execution time between two branches is much larger when JIT com-
pilation is enabled, allowing an attacker to infer if the first char is
correctly guessed. Our approach prevents this leak by disabling the
optimistic compilation optimization of the conditional statement
in pwdEq rather than disabling JIT compilation. The effectiveness
is justified by the execution time depicted in Figure 1d. It is more
efficient than natively disabling JIT compilation (e.g., Figure 1c vs.
Figure 1d).
Branch prediction (Tbran). Branch prediction is a conservative
optimization of conditional statements. Instead of pruning rarely
executed branches, branch prediction generates native code by
reordering the basic blocks to avoid jumps over frequently executed
branches and thus improves the spatial locality of instruction cache.
However, the reordering of basic blocks unbalances the execution
time of branches even if it is balanced in bytecode. Although the
difference in the execution time between branches via Tbran is
small for a single conditional statement, it may be amplified by
repeated executions (e.g., enclosed in a loop).
Method compilation (Tmeth). The most fundamental feature
of JIT compilation is method compilation, which can be triggered
if a method is frequently invoked or some backward jumps are
frequently performed. Meanwhile, during compilation frequently
invoked small methods could be inlined to speed up execution. If an
attacker can enforce some methods in a branch to be frequently in-
voked in advance so that those methods are (re)compiled or inlined,
the execution time of this branch may be shortened. This differ-
ence in execution time between branches would induce a timing
side-channel.

Concrete demonstrations of Tbran and Tmeth refer to [55].

2.2 Eliminating JIT-induced Leaks
Assuming that a program in bytecode is time-balanced, our goal is
to automatically prevent it from the JIT-induced leaks. One possible
way is to adopt constant-time programming principle (e.g., [1, 6,

https://github.com/DeJITLeak

DeJITLeak: Eliminating JIT-induced Leaks ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

boo lean pwdEq (char [] a , char [] b) {
boo l ean equa l = t r u e ;
boo l ean shmequal = t r u e ;
f o r (i n t i = 0 ; i < 8 ; i ++) {

i f (a [i] != b [i])
equa l = f a l s e ;

e l s e shmequal = f a l s e ;
}
r e t u r n equa l ; }

(a) The pwdEq method

x[0] == 'p' y[0] != 'p'
0

10000

20000

30000

40000

E
xe

cu
tio

n
tim

e
(n

s)
(b) JIT enabled

x[0] == 'p' y[0] != 'p'

1500

2000

2500

3000

3500

E
xe

cu
tio

n
tim

e
(n

s)

(c) JIT disabled

x[0] == 'p' y[0] != 'p'
0

1000

2000

3000

E
xe

cu
tio

n
tim

e
(n

s)

(d) Mitigated

Figure 1: The pwdEq method and its execution time with JIT enabled and disabled under Topti

22, 22, 23, 49, 65]). However, there are two limitations: (i) signifi-
cant changes have to be made (e.g., complicated bitwise-operations),
making reasoning about functional-correctness harder. For instance,
OpenSSL applied a >500 LOC patch to perform constant-time ci-
pher block chaining (CBC) decoding, the complexity of which led
to subsequent issues [7]. To the best of our knowledge, no tool
can automatically rewrite a Java program to a constant-time one.
(ii) Different from programs written in static programming lan-
guages [22, 65] for which constant-time written is done once for
each program, for programs that can be JIT compiled, as compila-
tion may destruct constant-time security [11–13, 25], constant-time
security should be enforced during each JIT compilation, incurring
large overhead to JIT complication.

Another straightforward way to prevent JIT-induced leaks is
to simply disable JIT compilation completely or JIT compilation
of the chosen methods. Indeed, [16] proposed three compilation
strategies: NOJIT, DisableC2 and MExclude. (i) The NOJIT strategy
directly disables JIT compilation (e.g., both the C1 and C2 compilers
in HotSpot), so no method will be JIT compiled. This strategy is
effective and convenient to deploy, but could lead to significant
performance loss. (ii) The DisableC2 strategy only disables the C2
compiler instead of the entire JIT compilation, by which the leaks
induced by the C2 compiler (e.g., Topti) can be prevented, but not
for Tbran or Tmeth. This strategy also sacrifices the more ag-
gressive C2 optimization and hence may suffer from performance
loss. (iii) The MExclude strategy disables JIT compilation for the
user-chosen methods instead of the entire program. Its main short-
coming is that non-chosen methods may be still vulnerable, and it
is also unclear how to choose methods to disable. In [16], MExclude
is applied to the methods that contain secret branches which can
prevent Tbran and Topti leaks, but not Tmeth leaks. In summary,
these compilation strategies either incur a high performance cost
or fail to prevent all the known JIT-induced leaks.

In this work, we first lay the foundations for timing side-channel
security under JIT compilation by presenting a formal operational
semantics and defining a notion of time-balancing for a fragment
of the JVM under JIT compilation. It allows us to reason about
timing side-channel security of bytecode programs running with
JIT compilation in a principled way. Based on our formalism, we
observe that secret information can only be leaked when there is a
conditional statement whose condition relies on secret data, and at
least one of the following cases occurs, namely,

(1) (Tmeth leaks) a method invoked in a branch is JIT compiled or
inlined;

(2) (Tbran leaks) the conditional statement is optimized with the
branch prediction optimization;

(3) (Topti leaks) the conditional statement is optimized with the
optimistic optimization;

Therefore, disabling JIT compilation at the method level is indeed
unnecessary for preventing JIT-induced leaks, instead, we only
need to ensure that secret information will not be leaked when the
methods are JIT compiled or inlined.

Based on the above observation, we propose a novel approach
DeJITLeak to automatically eliminate JIT-induced leaks. To the
best of our knowledge, this is the first work to prevent all the above
JIT-induced leaks without disabling any compiler in HotSpot, which
is in a sharp contrast with the existing compilation strategies [16].

In a nutshell, DeJITLeak automatically locates secret branch
points (program points with conditional statements whose condi-
tions rely on secret data) by a flow-, object- and context-sensitive
information flow analysis of Java bytecode [61]. The conditional
statements at those secret branch points should not be optimized
via branch prediction or optimistic compilations. It then extracts all
the methods invoked in those conditional statements and identifies
those methods that should not be JIT compiled or inlined. Based on
these, we put forward a fine-grained JIT compilation and present a
type system to prove the soundness of the fine-grained JIT compi-
lation, i.e., a time-balanced program remains time-balanced under
our fine-grained JIT compilation if the program is well-typed under
our type system. Note that our approach does not guarantee that
all the identified branch points or methods are necessary, but the
precision of our approach is assured by the advanced information
flow analysis and is indeed validated by experiments in Section 6.

Finally, the fine-grained JIT compilation is implemented by mod-
ifying HotSpot. Our experimental results show that our approach
is significantly more effective than DisableC2 and MExclude, and
is significantly more efficient than NOJIT.

3 FORMALISM OF SECURITY
In this section, we present a fragment of JVM and formalize timing
side-channel security via the notion of time-balancing.

3.1 The JVM Submachine
We define a fragment JVMJIT of JVM with conditional and uncon-
ditional jumps, operations to manipulate the operand stack, and
method calls. For the sake of presentation, both bytecode and native
code are presented in JVMJIT. Note that our methodology is generic

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Qin et al.

𝑚 [pc] = push 𝑣

⟨pc,𝑚, 𝜌, os⟩ { ⟨pc + 1,𝑚, 𝜌, 𝑣 · os⟩
𝑚 [pc] = pop

⟨pc,𝑚, 𝜌, 𝑣 · os⟩ { ⟨pc + 1, 𝜌, os⟩
𝑚 [pc] = binop 𝑜𝑝 𝑣 = 𝑣1 𝑜𝑝 𝑣2

⟨pc,𝑚, 𝜌, 𝑣1 · 𝑣2 · os⟩ { ⟨pc + 1,𝑚, 𝜌, 𝑣 · os⟩
𝑚 [pc] = ifeq 𝑗 pc

′ = (𝑣 = 0)?𝑗 : pc + 1
⟨pc,𝑚, 𝜌, 𝑣 · os⟩ { ⟨pc′,𝑚, 𝜌, os⟩

𝑚 [pc] = ifneq 𝑗 pc
′ = (𝑣 ≠ 0)?𝑗 : pc + 1

⟨pc,𝑚, 𝜌, 𝑣 · os⟩ { ⟨pc′,𝑚, 𝜌, os⟩
𝑚 [pc] = swap

⟨pc,𝑚, 𝜌, 𝑣1 · 𝑣2 · os⟩ { ⟨pc + 1, 𝜌, 𝑣2 · 𝑣1 · os⟩
𝑚 [pc] = store 𝑥 𝑥 ∈ dom(𝜌)

⟨pc,𝑚, 𝜌, 𝑣 · os⟩ { ⟨pc + 1,𝑚, 𝜌 [𝑥 ↦→ 𝑣], os⟩
𝑚 [pc] = load 𝑥

⟨pc,𝑚, 𝜌, os⟩ { ⟨pc + 1,𝑚, 𝜌, 𝜌 (𝑥) · os⟩
𝑚 [pc] = goto 𝑗

⟨pc,𝑚, 𝜌, os⟩ { ⟨𝑗,𝑚, 𝜌, os⟩

𝑠 { 𝑠′

(ch, h, 𝑠, cs) → (ch, h, 𝑠′, cs)
𝑚 [pc] = put 𝑦 𝑦 ∈ dom(𝜌) 𝑠 = ⟨pc + 1,𝑚, 𝜌, os⟩

(ch, h, ⟨pc,𝑚, 𝜌, 𝑣 · os⟩, cs) → (ch, h[𝑦 ↦→ 𝑣], 𝑠, cs)
𝑚 [pc] = get 𝑦 𝑠 = ⟨pc + 1,𝑚, 𝜌, h(𝑦) · os⟩

(ch, h, ⟨pc,𝑚, 𝜌, os⟩, cs) → (ch, h, 𝑠, cs)
𝑚 [pc] = return 𝑠 = ⟨pc′,𝑚′, 𝜌′, 𝑣 · os′⟩

(ch, h, ⟨pc,𝑚, 𝜌, 𝑣 · os⟩, ⟨pc′,𝑚′, 𝜌′, os′⟩ · cs) → (ch, h, 𝑠, cs)
𝑚 [pc] = deopt md V𝑚 > 0 O((ch, h, ⟨pc,𝑚, 𝜌, os⟩, cs), md) = (h′, 𝑠, cs′)

(ch, h, ⟨pc,𝑚, 𝜌, os⟩, cs) → (ch[𝑚 ↦→ base_version(𝑚)], h′, 𝑠, cs′ · cs)
𝑚 [pc] = return

(ch, h, ⟨pc,𝑚, 𝜌, 𝑣 · os⟩, 𝜖) → (h, 𝑣)
𝑚 [pc] = invoke𝑚′

argv(𝑚′) = 𝑥0, · · · , 𝑥𝑘 d = d∅ 𝑠 = ⟨0, ch(𝑚′), [𝑥0 ↦→ 𝑣0, · · · , 𝑥𝑘 ↦→ 𝑣𝑘], 𝜖 ⟩
(ch, h, ⟨pc,𝑚, 𝜌, 𝑣𝑘 · · · · · 𝑣0 · os⟩, cs) →d (ch, h, 𝑠, ⟨pc + 1,𝑚, 𝜌, os⟩ · cs)

𝑚 [pc] = invoke𝑚′
argv(𝑚′) = 𝑥0, · · · , 𝑥𝑘 d ∈ D𝑚 d ≠ d∅ 𝑚′′ = d(𝑚′) V𝑚′′ > V𝑚′

(ch, h, ⟨pc,𝑚, 𝜌, 𝑣𝑘 · · · · · 𝑣0 · os⟩, cs) →d (ch[𝑚′ ↦→𝑚′′], h, ⟨0,𝑚′′, [𝑥0 ↦→ 𝑣0, · · · , 𝑥𝑘 ↦→ 𝑣𝑘], 𝜖 ⟩, ⟨pc + 1,𝑚, 𝜌, os⟩ · cs)

Figure 2: Operational semantics of JVMJIT, where dom(𝜌) denotes the domain of the partial function 𝜌

inst ::= binop 𝑜𝑝 binary operation on the operand stack
| push 𝑣 push value 𝑣 on top of the operand stack
| pop pop value from top of the operand stack
| swap swap the top two operand stack values
| load 𝑥 load value of 𝑥 onto the operand stack
| store 𝑥 pop and store top of the operand stack in 𝑥
| get 𝑦 load value of 𝑦 onto the operand stack
| put 𝑦 pop and store top of the operand stack in 𝑦
| ifeq 𝑗 conditional jump
| ifneq 𝑗 conditional jump
| goto 𝑗 unconditional jump
| invoke𝑚 invoke the method𝑚 ∈ M
| return return the top value of the operand stack
| deopt md deoptimize with meta data md

Figure 3: Instruction set of JVMJIT, where 𝑥 ∈ LVar is a local
variable and 𝑦 ∈ GVar is a global variable

and could be adapted to real instruction sets of bytecode and native
code.
Syntax. Let LVar (resp.GVar) be the finite set of local (resp. global)
variables, Val be the set of values, M be a finite set of methods.
A program 𝑃 comprises a set of methods and each method is a
list of instructions taken from the instruction set in Figure 3. All
these instructions are standard except for deopt md which models
uncommon traps (cf. Section 2).

For each method𝑚,𝑚[𝑖] denotes the instruction at the program
point 𝑖 and argv(𝑚) denotes the formal arguments of 𝑚. When
a method is invoked, the execution starts with the first instruc-
tion 𝑚[0]. We also denote by 𝑚[𝑖, 𝑗] for 𝑗 ≥ 𝑖 the sequence of
instructions𝑚[𝑖]𝑚[𝑖 + 1] · · ·𝑚[𝑗].
Compilation directive. To model method compilation with pro-
cedure inline, branch prediction and optimistic compilation opti-
mizations, we use (compilation) directives which specify how the
method should be (re)compiled and optimized at runtime. Let D𝑚

be the set of directives of the method𝑚, and d(𝑚) the method after
JIT compilation according to the directive d. In particular, we use
d∅ ∈ D𝑚 to denote no (re)compilation. The formal definition of
directives is given in the following subsection.

In general, a method in bytecode is compiled into native code
which may be iteratively recompiled later. Hence we assign to

each method𝑚 a version number V𝑚 , where the bytecode has the
version number 0, and Vmax > 0 is the highest version number. A
directive d ∈ D𝑚 is valid if𝑚′ = d(𝑚) andV𝑚′ > V𝑚 , otherwise d
is an invalid directive. Intuitively, the version numberV𝑚 indicates
the optimized level of the method𝑚. JIT recompilation only uses
increasingly aggressive optimization techniques, and rolls back to
the bytecode version otherwise.
State. A state is a tuple ⟨pc,𝑚, 𝜌, os⟩, where pc ∈ N is the program
counter pointing to the next instruction, 𝑚 ∈ M is the current
executing method, 𝜌 : LVar → Val is a partial function from local
variables to values, and os ∈ Val∗ is the operand stack. We denote
by States the set of states. For each function 𝑓 : 𝑋 → 𝑉 , variable
𝑥 ∈ 𝑋 and value 𝑣 ∈ 𝑉 , let 𝑓 [𝑥 ↦→ 𝑣] be the function where
𝑓 [𝑥 ↦→ 𝑣] (𝑥 ′) = 𝑓 (𝑥 ′) if 𝑥 ′ ≠ 𝑥 , and 𝑓 [𝑥 ↦→ 𝑣] (𝑥 ′) = 𝑣 otherwise.
For two operand stacks os1, os2 ∈ Val∗, let os1 · os2 denote their
concatenation. The empty operand stack is denoted by 𝜖 .
Configuration. A configuration is of the form (ch, h, 𝑠, cs) or (h, 𝑣),
where ch is a code heap storing the latest version of methods;
h : GVar → Val is a (data) heap, i.e., a partial function from global
variables to values; 𝑠 ∈ States is the current state; cs ∈ States∗ is
the call stack, and 𝑣 ∈ Val is a value. Configurations of the form
(h, 𝑣) are final configurations, reached after the return of the entry
point. A configuration (ch, h, ⟨pc,𝑚, 𝜌, os⟩, cs) is initial if pc = 0,𝑚
is the entry point of the program, and os = cs = 𝜖 . Conf denotes
the set of configurations; cs1 · cs2 denotes the concatenation of two
call stacks cs1 and cs2; 𝜖 denotes the empty call stack.
Operational semantics. The small-step operational semantics of
JVMJIT is given in Figure 2 as a relation →⊆ Conf × Conf , where
{⊆ States × States is an auxiliary relation. Note that the directive
d applies to method invocations only.

Instruction push 𝑣 , pushes the value 𝑣 on top of the operand stack.
Instruction pop, just pops the top of the operand stack. Instruction
binop 𝑜𝑝 pops the top two operands from the operand stack and
pushes the result of the binary operation 𝑜𝑝 using these operands.
Instruction ifeq 𝑗 (resp. ifneq 𝑗) pops the top 𝑣 of the operand
stack and transfers of control to the program point 𝑗 if 𝑣 = 0 (resp.
𝑣 ≠ 0), otherwise to the next instruction, i.e., the program point
𝑗 + 1. Instruction swap, swaps the top two values of the operand
stack. Instruction store 𝑥 (resp. put 𝑦) pops the top of the operand

DeJITLeak: Eliminating JIT-induced Leaks ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

stack and stores it in the local variable 𝑥 (resp. global variable 𝑦).
Instruction load 𝑥 (resp. get𝑦) pushes the value of the local variable
𝑥 (resp. global variable 𝑦), on top of the operand stack. Instruction
goto 𝑗 unconditionally jumps to program point 𝑗 .

Instruction return ends the execution of the current method and
returns the top value 𝑣 of the current operand stack. If the current
method is not the entry point, 𝑣 is pushed as the top of the operand
stack of the caller and the caller is resumed from the return site;
otherwise, the final configuration (h, 𝑣) is reached. We assume that
each method has a unique return instruction which does not appear
in conditional statements, as early return often introduces timing
side-channel leaks even without JIT compilation.

Instruction deopt md deoptimizes the current executing method
and rolls back to the bytecode in the interpreted mode. This instruc-
tion is only used in native code and inserted by JIT compilers. Our
semantics does not directly model a deoptimization implementa-
tion. Instead, we assume there is a deoptimization oracle O which
takes the current configuration and the meta data md as inputs,
and reconstructs the configuration (i.e., heap h

′, state 𝑠 and the
call stack cs

′). Furthermore, the bytecode version base_version(𝑚)
of the method𝑚 is restored into the code heap ch. The oracle O
results in the same heap h

′, state 𝑠 and call stack cs
′ · cs as if the

method𝑚 were not JIT compiled.
The semantics of invoke𝑚′ depends on the directive d. If d = d∅ ,

the version of𝑚′ in the code heap ch remains the same. If d is valid,
i.e., the version numberV𝑚′′ of the optimized version𝑚′′ = d(𝑚′)
is larger than that of the current one V𝑚′ ,𝑚′′ is stored in the code
heap ch. After that, it pops up the top |argv(𝑚′) | values from the
current operand stack, passes them as the formal arguments to𝑚′′,
pushes the calling context on top of the call stack and starts to
execute𝑚′′ in the code heap.

To define a JIT-execution, we introduce the notion of schedules.
A valid schedule d★ for a configuration 𝑐 is a sequence of valid
directives such that the program will not get stuck when starting
from 𝑐 and following d★ for method invocations. A valid schedule
d★ yields a JIT-execution 𝑐0 ⇓d★ 𝑐𝑛 that is a sequence 𝑐0𝑐1 · · · 𝑐𝑛
of configurations such that 𝑐0 is an initial configuration, 𝑐𝑛 is the
final configuration, and for every 0 ≤ 𝑖 < 𝑛, either 𝑐𝑖 → 𝑐𝑖+1
or 𝑐𝑖 →d𝑖 𝑐𝑖+1. We require that d★ is equal to the sequence of
directives along the JIT-execution, i.e., the concatenation of d𝑖 ’s. A
JIT-free execution is thus a JIT-execution 𝑐0 ⇓d★∅ 𝑐𝑛 . In this work,
we only consider programs that always terminate.

3.2 JIT Optimization of JVMJIT

We first define branch prediction and optimistic compilation, then
define method compilation as well as compilation directives.
Branch prediction. Fix a method 𝑚 and an instruction 𝑚[𝑖] =

ifeq 𝑗 . (ifneq is handled accordingly.) Let 𝐵t (resp. 𝐵f) be the in-
structions appearing in the if-(resp. else-)branch of𝑚[𝑖], and the
last instruction𝑚[𝑖 ′] of 𝐵f is goto 𝑗 ′. The first and last instructions
of 𝐵f are𝑚[𝑖 + 1] and𝑚[𝑗 − 1] respectively.

If the profiling data show that the program favors the else-branch,
the branch prediction optimization transforms the method𝑚 into a
newmethod𝑚1 for𝑚[𝑖] = ifeq 𝑗 (cf. Figure 4). The formal definition
and an illustrating example are given in the technical report [55].

…

i: ifeq j

i+1: …

j-1: goto j
j:

…

j-1: inst2

…j :

Method m

Bf

Bt

Method m1

’

’

’

…

i: ifeq |m|-j +j-1:

|m|-j +j-1:
…

i+1:
…

j-2: inst1

…j-1:

Bt

Bf

’

’

Branch
prediction

optimization
to i: ifeq j

j-2: inst1

|m|-2: inst2

’

|m|-1: |m|-1: goto j-1

’

Figure 4: Branch prediction optimization

Method m1

…

i: ifeq |m|-j +j-1:

|m|-j +j-1:

i+1:
…

j-2: inst1

…
j-1:

Bf
’

To if-branch of i: ifeq j

’ uncommon
 trap

’

Method m2

…

i: ifneq |m|-j +i-1:

|m|-j+i+1:

i+1:
…

j -j+i: inst2

…
j -j+i+1:

Bt
’

uncommon
 trap

To else-branch of i: ifeq j

’

’

Figure 5: Optimistic compilation optimization

If the profiling data show that the program favors the if-branch,
the branch prediction optimization transforms the method𝑚 into
a new method 𝑚2, similar to 𝑚1, except that (1) the conditional
instruction ifeq 𝑗 is replaced by ifneq |𝑚 | − 𝑗 + 𝑖 − 1 which is
immediately followed by the if-branch 𝐵𝑡 ; (2) the else-branch 𝐵𝑓 is
moved to the end of the method starting at the point |𝑚 | − 𝑗 + 𝑖 − 1
and the target point of the last instruction goto 𝑗 ′ is revised to
𝑗 ′ − 𝑗 + 𝑖 + 1.

We denote by Tbp (𝑚, 𝑖, else-b) and Tbp (𝑚, 𝑖, if-b) the methods𝑚1
and𝑚2 respectively. Obviously, the branch prediction optimization
transforms the original program to a semantically equivalent one.
Optimistic compilation. Again, consider the conditional instruc-
tion𝑚[𝑖] = ifeq 𝑗 with the if-branch 𝐵t and else-branch 𝐵f. (ifneq
can be dealt with accordingly.)

If the profiling data show that the if-branch rarely gets executed,
the optimistic compilation optimization transforms the method𝑚
into a new method𝑚1 in a similar way to Tbp (𝑚, 𝑖, else-b) except
that the if-branch 𝐵t is replaced by an uncommon trap, as shown
in Figure 5 (left-part). The method 𝑚2 is defined similarly if the
else-branch rarely gets executed, as shown in Figure 5 (right-part).

We denote by Toc (𝑚, 𝑖, else-b) and Toc (𝑚, 𝑖, if-b) the new meth-
ods𝑚1 and𝑚2 after transformation. It is easy to see that the op-
timistic compilation optimization is an equivalent program trans-
formation under the inputs that does not trigger any uncommon
traps.
Method compilation. At runtime, frequently executed, small
methods may be inlined to reduce the time required for method
invocations. After that, both branch prediction and optimistic com-
pilation optimizations could be performed. Thus, a compilation

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Qin et al.

directive of a method should take into account procedure inline,
branch prediction and optimistic compilation optimizations.

We define a compilation directive d of a method 𝑚 as a pair
(𝑡, 𝜔), where 𝑡 is a labeled tree specifying the method invocations
to be inlined, and 𝜔 is a sequence specifying the optimizations of
branches. Formally, the labeled tree 𝑡 is a tuple (𝑉 , 𝐸, 𝐿), where𝑉 is
a finite set of nodes such that each node𝑛 ∈ 𝑉 is labeled by amethod
𝐿(𝑛) and the root is labeled by𝑚; 𝐸 is a set of edges of the form
(𝑛1, 𝑖, 𝑛2) denoting that the method 𝐿(𝑛2) is invoked at the call site
𝑖 of the method 𝐿(𝑛1). We denote by 𝑡 (𝑚) the new method obtained
from𝑚 by iteratively inlining method invocations in 𝑡 . We assume
the operand stack of each inlined method is balanced, otherwise
the additional pop instructions are inserted. The sequence 𝜔 is of
the form (T1, 𝑖1, 𝑏1), · · · , (T𝑘 , 𝑖𝑘 , 𝑏𝑘), where for every 1 ≤ 𝑗 ≤ 𝑘 ,
T𝑗 ∈ {Tbp, Toc} denotes the optimization to be applied to the branch
point 𝑖 𝑗 in the method 𝑡 (𝑚) with the branch preference 𝑏 𝑗 . We
assume that an index 𝑖 𝑗 occurs at most once in 𝜔 , as at most one
optimization can be applied to one branch point.

3.3 Consistency and Time-Balancing
As usual, we assume that each program is annotated with a set of
public input variables, while the other inputs are regarded as secret
input variables. We denote by 𝑐0 ≃pub 𝑐

′
0 if two configurations 𝑐0

and 𝑐 ′0 agree on the public input variables, and denote by 𝑐0 ≃ch 𝑐
′
0

if 𝑐0 and 𝑐 ′0 have the same code heap.
Consistency. It is easy to deduce the following theorem which
ensures the equivalence of the final memory store and return value
from the JIT-free execution and JIT-execution.

Theorem 3.1. For each initial configuration 𝑐0 of the program 𝑃

and each valid schedule d★ for 𝑐0, we have: 𝑐0 ⇓d★∅ 𝑐 iff 𝑐0 ⇓d★ 𝑐
′.

If the output variables are partitioned into public and secret, we
denote by 𝑐 ≃pub 𝑐

′ that two configurations 𝑐 and 𝑐 ′ agree on the
public output variables.

Theorem 3.2. For each pair of initial configurations (𝑐0, 𝑐 ′0) of the
program 𝑃 with 𝑐0 ≃pub 𝑐

′
0 and each pair of valid schedules d★1 and

d★2 for 𝑐0 and 𝑐 ′0 respectively, we have: 𝑐0 ⇓ 𝑐 , 𝑐
′
0 ⇓ 𝑐

′ and 𝑐 ≃pub 𝑐
′

iff 𝑐0 ⇓d★1 𝑐 , 𝑐
′
0 ⇓d★2 𝑐

′ and 𝑐 ≃pub 𝑐
′.

The theorem states that observing public output variables cannot
distinguish secret inputs without JIT compilation iff observing
public output variables cannot distinguish secret inputs with JIT
compilation.
Time-balancing. To model execution time, we define cost func-
tions for bytecode and native code. Let cfbc and cfnc be the cost
functions for instructions from the bytecode and native code, re-
spectively. We denote by cf(inst) the cost of the instruction inst,
which is cfbc (inst) if it is running in bytecode mode, otherwise
cfnc (inst). We lift the function cf to states and configurations as
usual, e.g., cf(⟨pc,𝑚, 𝜌, os⟩) = cf(𝑚[pc]). The cost cf(𝑐0 ⇓d★ 𝑐𝑛) of
a JIT-execution 𝑐0 ⇓d★ 𝑐𝑛 is the sum of all the costs of the executed
instructions, i.e.,

∑𝑛−1
𝑖=0 cf(𝑐𝑖).

Definition 3.3. A program 𝑃 is time-balanced (without JIT compi-
lation) if for each pair of initial configurations (𝑐0, 𝑐 ′0) of 𝑃 such that
𝑐0 ≃pub 𝑐

′
0 and the code heaps of 𝑐0 and 𝑐 ′0 have the same bytecode

instructions, we have: cf(𝑐0 ⇓d★∅ 𝑐) = cf(𝑐 ′0 ⇓d★∅ 𝑐
′).

Intuitively, the time-balancing requires that two JIT-free execu-
tions have the same cost if their public inputs are the same and
code heaps have the same bytecode instructions, thus preventing
timing side-channel leaks when JIT compilation is disabled.
JIT-time-balancing. To define time-balancing under JIT compila-
tion, called JIT-time-balancing, we first introduce some notations.

Consider a JIT-execution 𝑐0 ⇓d★ 𝑐𝑛 and a method𝑚. We denote
by proj𝑚 (𝑐0 ⇓d★ 𝑐𝑛) the projection of the sequence of executed in-
structions in 𝑐0 ⇓d★ 𝑐𝑛 onto the pairs (𝑖,𝑚′) each of which consists
of a program point 𝑖 and a version𝑚′ of the method𝑚. A proper
prefix 𝜋 of proj𝑚 (𝑐0 ⇓d★ 𝑐𝑛) can be seen as the profiling data of the
method𝑚 after executing these instructions, which determines a
unique compilation directive of the method𝑚 after executed 𝜋 . We
leave runtime profiling abstract in order to model a large variety of
JIT compilations and use 𝜋 to denote the profiling data of𝑚 after
executed instructions 𝜋 of𝑚 or its compiled versions.

Fix a profiler pf that provides one compilation directive pf𝑚 (𝜋) of
amethod𝑚 using the profiling data 𝜋 . The schedule d★ is called a pf-
schedule if, for each method𝑚 and proper prefix 𝜋 of proj𝑚 (𝑐0 ⇓d★
𝑐𝑛), the next compilation directive of𝑚 in d★ after 𝜋 is pf𝑚 (𝜋).

Lemma 3.4. For each pair of initial configurations (𝑐0, 𝑐 ′0) of 𝑃 with
𝑐0 ≃ch 𝑐

′
0, and each pair of valid pf-schedules d★1 and d★2 for 𝑐0 and

𝑐 ′0 respectively, we have: for every method𝑚, every pair (𝜋1, 𝜋2) of
proper prefixes of proj𝑚 (𝑐0 ⇓d★1 𝑐) and proj𝑚 (𝑐 ′0 ⇓d★2 𝑐

′) respectively,
if 𝜋1 = 𝜋2 then pf𝑚 (𝜋1) = pf𝑚 (𝜋2).

The lemma ensures that the compilation directives of eachmethod
in JIT-executions are the same under the same profiling data.

We assume that, for each time-balanced branching statement in
bytecode, the corresponding branching statement in native code is
still time-balanced if no JIT optimization is applied. This assumption
is reasonable in practice, as both sides of a time-balanced branching
statement in bytecode tend to have similar functionality and in-
struction sequences, thus, time-balanced branches are often nearly
balanced after compilation if no JIT optimization is applied. Remark
that our formalism is general in principle, as suitable cost functions
could be adopted if one prefers to model them precisely.

Definition 3.5. A program 𝑃 is JIT-time-balanced if, for every pair
of initial configurations (𝑐0, 𝑐 ′0) of 𝑃 with 𝑐0 ≃pub 𝑐

′
0 and 𝑐0 ≃ch 𝑐

′
0,

every pair of valid pf-schedules d★1 and d★2 for 𝑐0 and 𝑐 ′0 respectively
satisfies cf(𝑐0 ⇓d★1 𝑐) = cf(𝑐 ′0 ⇓d★2 𝑐

′) .

Intuitively, the JIT-time-balancing ensures that two JIT-executions
have the same cost if their public inputs and initial code heap are
the same and the valid schedules have the same profiler pf for
JIT compilation, so it prevents JIT-induced leaks even if the JIT
compilation is enabled. Remark that our definition considers pow-
erful attackers who can control executing instructions with chosen
inputs before launching attacks so that the code heaps in 𝑐0 and
𝑐 ′0 may be mixed with bytecode and native code and compilation
directives are controlled during attacking, which is common in
the study of detection and mitigation. In practice, the feasibility of
compilation directives depends on various parameters in VM, e.g.,
whether a method invocation should be inlined depends on its code
size, invocation frequency, method modifier, etc.

DeJITLeak: Eliminating JIT-induced Leaks ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

𝑚 [𝑖] = push 𝑣 st
′ = pt · st

𝑚, 𝑖 ⊢ (pt, ht, lt, st) ⇒ (pt, ht, lt, st′) T-Push
𝑚 [𝑖] = binop 𝑜𝑝 st

′ = (𝜏1 ⊔ 𝜏2 ⊔ pt) · st
𝑚, 𝑖 ⊢ (pt, ht, lt, 𝜏1 · 𝜏2 · st) ⇒ (pt, ht, lt, st′) T-Bop

𝑚 [𝑖] = store 𝑥 lt
′ = lt[𝑥 ↦→ 𝜏 ⊔ pt]

𝑚, 𝑖 ⊢ (pt, ht, lt, 𝜏 · st) ⇒ (pt, ht, lt′, st) T-Str

𝑚 [𝑖] = pop st = 𝜏 · st′

𝑚, 𝑖 ⊢ (pt, ht, lt, st) ⇒ (pt, ht, lt, st′) T-Pop
𝑚 [𝑖] = swap 𝜏′1 = 𝜏1 ⊔ pt 𝜏 ′2 = 𝜏2 ⊔ pt

𝑚, 𝑖 ⊢ (pt, ht, lt, 𝜏1 · 𝜏2 · st) ⇒ (pt, ht, lt, 𝜏 ′2 · 𝜏′1 · st)
T-Swap

𝑚 [𝑖] = load 𝑥 st
′ = (lt(𝑥) ⊔ pt) · st

𝑚, 𝑖 ⊢ (pt, ht, lt, st) ⇒ (pt, ht, lt, st′) T-Load

𝑚 [𝑖] = put 𝑦 ht
′ = ht[𝑦 ↦→ 𝜏 ⊔ pt]

𝑚, 𝑖 ⊢ (pt, ht, lt, 𝜏 · st) ⇒ (pt, ht′, lt, st) T-Put
𝑚 [𝑖] = ifeq 𝑗 pt

′ = 𝜏 ⊔ pt pt
′ = H → 𝑖 ∈ PM2 (𝑚)

𝑚, 𝑖 ⊢ (pt, ht, lt, 𝜏 · st) ⇒ (pt′, ht, lt, st) T-If
𝑚 [𝑖] = goto 𝑗

𝑚, 𝑖 ⊢ (pt, ht, lt, st) ⇒ (pt, ht, lt, st) T-Goto

𝑚 [𝑖] = get 𝑦 st
′ = (ht(𝑥) ⊔ pt) · st

𝑚, 𝑖 ⊢ (pt, ht, lt, st) ⇒ (pt, ht, lt, st′) T-Get
𝑚 [𝑖] = ifneq 𝑗 pt

′ = 𝜏 ⊔ pt pt
′ = H → 𝑖 ∈ PM2 (𝑚)

𝑚, 𝑖 ⊢ (pt, ht, lt, 𝜏 · st) ⇒ (pt′, ht, lt, st) T-Ifn
𝑚 [𝑖] = return (ht, 𝜏) |= sig𝑃 (𝑚)
𝑚, 𝑖 ⊢ (pt, ht, lt, 𝜏 · st) ⇒ (ht, 𝜏) T-Ret

𝑚 [𝑖] = invoke𝑚′
argv(𝑚′) = 𝑥0, · · · , 𝑥𝑘 (pt1, ht1, lt1) ↩→𝑚′ (ht2, 𝜏) pt ⊑ pt1 ht ⊑ ht1 𝜏0 ⊑ lt1 (𝑥0) · · · 𝜏𝑘 ⊑ lt1 (𝑥𝑘) 𝜏 ′ = 𝜏 ⊔ pt

𝑚, 𝑖 ⊢ (pt, ht, lt, 𝜏𝑘 · · · · · 𝜏0 · st) ⇒ (pt, ht2, lt, 𝜏 ′ · st)
T-Call

Figure 6: Typing rules

4 PROTECT MECHANISM AND TYPE SYSTEM
In this section, based on the above formalism, we first propose a
two-level protection mechanism to prevent JIT-induced leaks and
then present an information-flow type system for proving JIT-time-
balancing under our protected JIT compilation.

4.1 Protection Mechanism
The first level of our protection mechanism is to disable JIT com-
pilation and inlining of methods which potentially induce leaks.
We denote by PM1 the set of methods that cannot be JIT compiled
or inlined, while methods 𝑚′ ∈ M \ PM1 can be JIT compiled or
inlined. The second level is to disable JIT optimization of branch
points in methods M \ PM1, whose optimization will potentially
induce leaks. We denote by PM2 the mapping fromM \ PM1 to sets
of branch points that cannot be JIT optimized. When the method
𝑚 is JIT compiled, PM2 (𝑚) will be updated accordingly.

From the perspective of JVMJIT semantics, the compilation direc-
tive of any method from PM1 is limited to d∅ , and the compilation
directives of any method𝑚′ ∈ M \ PM1 can neither inline a method
from PM1 nor optimize the branch at a program point in PM2 (𝑚′).

A compilation policy of a program 𝑃 is given by a pair (PM1, PM2).
A pf-schedule d★ that is compliant to the compilation policy (PM1, PM2)
is called a (PM1, PM2)-schedule.

4.2 Type System and Inference
We propose an information-flow type system for proving that time-
balanced programs are JIT-time-balanced under a fine-grained JIT
compilation with a compilation policy (PM1, PM2).
Lattice for security levels.We consider a lattice of security levels
L = {H, L} with L ⊑ L, L ⊑ H, H ⊑ H and H @ L. Initially, all the
public inputs have the low security level L and the other inputs
have the high security level H. We denote by 𝜏1 ⊔𝜏2 the least upper
bound of two security levels 𝜏1, 𝜏2 ∈ L, namely, 𝜏 ⊔ H = H ⊔ 𝜏 = H

for 𝜏 ∈ L and L ⊔ L = L.
Typing judgments. Our type system supports programs whose
control flow depends on secrets. Thus, the typing rules for in-
structions rely on its path context pt, which indicates whether
an instruction is contained in a secret branch. We use functions
ht : GVar → L and lt : LVar → L which map global and local
variables to security levels. We also use a stack type (i.e., a stack
of security levels) st for typing operand stack. The order ⊑ is lifted

to the functions and the stack type as usual, e.g., ht1 ⊑ ht2 if
ht1 (𝑦) ⊑ ht2 (𝑦) for each 𝑦 ∈ GVar.

A typing judgment for non-return instructions is of the form
𝑚, 𝑖 ⊢ (pt1, ht1, lt1, st1) ⇒ (pt2, ht2, lt2, st2),where𝑚 is the method
under typing, 𝑖 is a program point in𝑚. This judgment states that,
given the typing context (pt1, ht1, lt1, st1), the instruction 𝑚[𝑖]
yields a new typing context (pt2, ht2, lt2, st2). A typing judgment of
the return is of the form𝑚, 𝑖 ⊢ (pt, ht, lt, st) ⇒ (ht, 𝜏), where ht is
the security levels of the global variables and 𝜏 is the security level
of the return value.

A security environment se𝑚 of a method𝑚 is a function where
for every program point 𝑖 of𝑚, se𝑚 (𝑖) is a typing context (ht, 𝜏) if
𝑚[𝑖] is a return instruction, and (pt, ht, lt, st) otherwise.
Method signature. A (security) signature of a method𝑚 is of the
form (pt, ht1, lt1) ↩→𝑚 (ht2, 𝜏), which states that, given the typing
context (pt, ht1, lt1), each global variable 𝑦 ∈ GVar has the security
level ht2 (𝑦) and the return value of the method𝑚 has the security
level 𝜏 . Each invocation of𝑚 should respect the signature of𝑚. The
signature of the program 𝑃 , denoted by sig𝑃 , is a mapping from
the methods of the program 𝑃 to their signatures. Since a method
invoked in any secret branch cannot be JIT compiled or inlined,
we require that, for any𝑚 ∈ M,𝑚 ∈ PM1 if the path context pt in
sig𝑃 (𝑚) is the high security level H.
Typing rules. The typing rules are shown in Figure 6, where the
key premises are highlighted and (ht, 𝜏) |= sig𝑃 (𝑚) means that
ht ⊑ ht

′ and 𝜏 ⊑ 𝜏 ′ for sig𝑃 (𝑚) = (pt, ht1, lt1) ↩→𝑚 (ht′, 𝜏 ′).
The type system only checks bytecode programs, thus there is

no typing rule for the deoptimization instruction deopt md. Rules
(T-Push), (T-Pop), (T-Bop) and (T-Swap) track the flow of the secret
data via the operand stack. Rules (T-Str), (T-Load), (T-Put) and (T-
Get) track the flow of the secret data via local and global variables.
Rule (T-Goto) does not change the typing context.

Rules (T-If) and (T-Ifn) require that the path context pt′ of each
branch has a security level no less than the current path context
and the security level of the branching condition on top of the stack.
This allows us to track implicit flows during typing. Furthermore,
the branch point 𝑖 should not be optimized by requiring 𝑖 ∈ PM2 (𝑚)
if pt′ has the high security level H, otherwise the branches may
become unbalanced, resulting in JIT-induced leaks.

Rule (T-Ret) requires (ht, 𝜏) |= sig𝑃 (𝑚) that avoids the security
levels of the global variables in ht and the security level 𝜏 of the
return value are greater than these in the method signature sig𝑃 (𝑚).

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Qin et al.

Rule (T-Call) ensures that the context of invoke𝑚′ meets the
signature sig𝑃 (𝑚′) = (pt1, ht1, lt1) ↩→𝑚′ (ht2, 𝜏), e.g., pt ⊑ pt1
avoiding that the current path context pt has a security level greater
than the excepted one pt1, and 𝜏0 ⊑ lt1 (𝑥0) · · · 𝜏𝑘 ⊑ lt1 (𝑥𝑘) avoid-
ing that actual arguments have the security levels greater than that
of formal arguments.
Typable methods. The JIT-time-balancing is verified by type in-
ference. To formalize this, we first introduce some notations [14].

Let us fix amethod𝑚. For each program point 𝑖 , let nxt𝑚 (𝑖) be the
set of successors of 𝑖 w.r.t. the control flow. Formally, nxt𝑚 (𝑖) = { 𝑗}
if 𝑚[𝑖] is goto 𝑗 , nxt𝑚 (𝑖) = {𝑖 + 1, 𝑗} if 𝑚[𝑖] is ifeq 𝑗 or ifneq 𝑗 ,
nxt𝑚 (𝑖) = ∅ if𝑚[𝑖] is return, and nxt𝑚 (𝑖) = {𝑖 + 1} otherwise.

For each branch point 𝑖 , let junc(𝑖) denote its junction point, i.e.,
the immediate post-dominator of 𝑖 . (Recall that we assumed there
is no early return in branches, thus junc(𝑖) is well-defined.) We
denote by region(𝑖) the set of program points 𝑗 that can be reached
from the branch point 𝑖 and are post-dominated by junc(𝑖). We
denote bymaxBP(𝑗) the set of branch points 𝑖 such that 𝑗 = junc(𝑖)
and region(𝑖) ⊄ region(𝑖 ′) for any 𝑖 ′ ∈ maxBP(𝑗). Intuitively,
maxBP(𝑗) contains the branch points 𝑖 with the junction point
𝑗 and region(𝑖) is not contained by region(𝑖 ′) of any other branch
point 𝑖 ′ with the same junction point 𝑗 , namely, nested branch
points 𝑖 ′ of the branch point 𝑖 are excluded.

The method𝑚 is typable w.r.t. sig𝑃 and (PM1, PM2), denoted by
(PM1, PM2, sig𝑃)▷𝑚, if there exists a security environment se𝑚 such
that se𝑚 (0) = (pt, ht, lt, 𝜖) for sig𝑃 (𝑚) = (pt, ht, lt) ↩→𝑚 (ht′, 𝜏)
and one of the following conditions holds for each program point 𝑖:

• if 𝑖 is not a junction point, then𝑚, 𝑗 ⊢ se𝑚 (𝑗) ⇒ se𝑚 (𝑖) for the
program point 𝑗 such that nxt𝑚 (𝑗) = {𝑖};

• if 𝑖 is a junction point, suppose se𝑚 (𝑖) = (pt, ht, lt, st), then the
following two conditions hold:
– there exists some 𝑗 ∈ maxBP(𝑖) with pt

′ ⊑ pt and se𝑚 (𝑗) =
(pt′, ht′, lt′, st′);

– ht ⊑ ht
′, lt ⊑ lt

′ and st ⊑ st
′ for nxt(𝑗) = 𝑖 and se𝑚 (𝑗) =

(pt′, ht′, lt′, st′).
Intuitively, (PM1, PM2, sig𝑃) ▷𝑚 requires that (i) secret branches

are forbidden to be optimized by PM2 and (ii) methods𝑚′ invoked
in region(𝑖) of any secret branches 𝑚[𝑖] are forbidden to be JIT
compiled and inlined. Recall that we have assumed𝑚′ ∈ PM1 if the
path context pt in sig𝑃 (𝑚′) has the high security level H.

A program 𝑃 is typable w.r.t. sig𝑃 and (PM1, PM2), denoted by
(PM1, PM2, sig𝑃) ▷ 𝑃 , if (i) the signature sig𝑚 of the entry point𝑚 is
(L, ht, lt) ↩→𝑚 (ht′, 𝜏) such that ht(𝑦) = H and lt(𝑥) = H for any
secret inputs 𝑥,𝑦; and (ii) (PM1, PM2, sig𝑃) ▷𝑚 for every𝑚 ∈ M.

Theorem 4.1. If program 𝑃 is time-balanced and (PM1, PM2, sig𝑃)▷
𝑃 , then 𝑃 is JIT-time-balanced under (PM1, PM2)-schedules.

The proof is provided in the technical report [55]. Note that the
native code in the code heap of each initial configuration can only
be complied from bytecode following the policy (PM1, PM2).

5 IMPLEMENTATION FOR PRACTICAL JAVA
We have implemented our approach as a tool DeJITLeak for real-
world Java bytecode (Jar packages). DeJITLeak consists of twomain
components: type inference for computing a signature sig𝑃 and

a policy (PM1, PM2) such that (PM1, PM2, sig𝑃) ▷ 𝑃 , and a protection
mechanism in HotSpot from OpenJDK [53].

5.1 Type Inference
Our type inference is built on JOANA [40], a sound, flow-, context-,
and object-sensitive information flow framework based on program
dependence graphs (PDGs). Given a program 𝑃 annotated with
public inputs, we first identify secret inputs and then leverage
JOANA to compute a security environment se𝑚 and a signature
sig𝑃 (𝑚) for each method𝑚 via solving flow equations. We then
locate all the branch points in each method𝑚 whose path context
or branching condition has the high security levelH, namely, all the
secret branches. These branch points are added in PM2 (𝑚), as they
can potentially induce Topti and Tbran leaks when JIT optimized.

From the branch points PM2 (𝑚), we identify and extract all the
methods invoked within region(𝑖) for all the branch points 𝑖 ∈
PM2 (𝑚). These methods can potentially induce Tmeth leaks when
JIT compiled or inlined, thus, are added in PM1. According to our
type system and the soundness of JOANA, the program 𝑃 is typable
w.r.t. sig𝑃 and (PM1, PM2), i.e., (PM1, PM2, sig𝑃) ▷ 𝑃 holds.

5.2 Protection Mechanism in HotSpot
To enforce a compilation policy (PM1, PM2) during JIT compilation,
we modify HotSpot to demonstrate our approach. To prevent a
method 𝑚 ∈ PM1 from being compiled and inlined, we use the
option CompileCommand supported by HotSpot [52], namely,

-XX:CompileCommand=exclude, signature_of_the_method
-XX:CompileCommand=dontinline, signature_of_the_method

where the option exclude disables JIT compilation of the method
signature_of_the_method, and dontinline prevents themethod
signature_of_the_method from procedure inline.

Unfortunately, HotSpot does not provide any option that can
be used to specify branch points where branch prediction and/or
optimistic compilation can be disabled. Therefore, we modified
HotSpot to support an additional command dontprune that allows
us to specify branch points. The command dontprune is used sim-
ilar to exclude, but with an additional list of branch points for
the specified method. During JIT compilation, both branch predic-
tion and optimistic compilation are prohibited for all these branch
points, even if the method is recompiled.

5.3 DeJITLeaklight

To reduce performance overhead, we also propose and implement
an alternative protection mechanism DeJITLeaklight. It only dis-
ables the inlining of the methods 𝑚 ∈ PM1 whereas DeJITLeak
disables both JIT compilation and inlining of the methods𝑚 ∈ PM1.
This weaker protection mechanism is still sound under the assump-
tion that the methods invoked on both sides of each secret branch
point are the same. This assumption is reasonable in practice, as it
is a straightforward for developers to implement a time-balanced
program by invoking same methods in both sides of each secret
branch point. Remark that inlining method should be disabled even
if a method is invoked on both sides of a secret branch point, as the
method may be inlined only in one branch, inducing leaks.

DeJITLeak: Eliminating JIT-induced Leaks ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

6 EVALUATION
We first evaluate the efficiency of the type inference and then
compare our approach with other strategies: NOJIT, DisableC2,
and MExclude (cf. Section 2.2). According to [16], we only disable
JIT compilation of the methods that contain some secret branch
points for MExclude. Finally, we conduct a case study.
Experiment setup. We evaluate DeJITLeak and DeJITLeaklight
on the benchmarks used in recent side-channel detection: Blazer [6],
Themis [23], CoCo-Channel [18], DifFuzz [51], and JVMFuzz [19],
including real-world programs from well-known Java applications
such as Apache FtpServer, micro-benchmarks from DARPA STAC
and classic examples from the literature [36, 43, 54]. Recall that we
target time-balanced Java bytecode. Thus, we only consider the
“safe" versions, i.e., programs that are leakage-free or only have
slight leaks under their leakage models without JIT compilation.
We also exclude the benchmarks tomcat, pac4j, and tourplanner
from Themis, as tomcat and pac4j have significant leakages [19]
while tourplanner is time-consuming (0.5 hour per execution andwe
shall run each benchmark 1,000 times per branch). The remaining
benchmarks are shown in Table 1, where ♯LOC shows the number
of lines in the Java source code counted by cloc [24]. Note that for
the purpose of experiments, k96*, modpow1* and modpow2* are
patched versions of k96, modpow1 and modpow2, and unixlogin is
a patched version by DifFuzz to resolve the NullPointerException
error in its original version from Blazer.

All experiments are conducted on an Intel NUC running Ubuntu
18.04 with Intel Core I5-8259U CPU @ 2.30GHz and 16GB of mem-
ory. To be practical, we do not disable CPU-level and other JIT
optimizations when JIT compilation is enabled.

In summary, the results show that (1) DeJITLeak ismore effective
than DisableC2 and MExclude on almost all the benchmarks, and
(2) DeJITLeaklight is able to achieve comparable effectiveness as
DeJITLeak and induces significantly less performance loss.

6.1 Results of Type Inference
Table 1 shows the results, where columns ♯Node and ♯Edge show
the number of nodes and edges in the corresponding PDG on which
type inference is performed, column 𝑇𝑡𝑎𝑖𝑛𝑡 (ms) shows the exe-
cution time of type inference, column 𝑇𝑡𝑜𝑡𝑎𝑙 (s) gives the overall
execution time and column Mem (Mb) gives the overall memory
consumption. We observe that these benchmarks can be solved
efficiently. It takes 1.99 seconds on average (up to 5.52 seconds) and
254 Mb for one benchmark. Note that the overall time and memory
consumption does not necessarily correlate with ♯LOC (e.g., on
gpt14 vs. k96), because we only counted the number of lines in
the Java source code but excluded the code of invoked methods
from libraries which were also analyzed during type inference. We
note that the time and memory of analyzing a hello world program
without taint source is 0.93 seconds and 161 Mb.

6.2 Effectiveness and Efficiency
We evaluate the effectiveness by quantifying the amount of leak-
ages in practice using mutual information [47], a widely used met-
ric for side channel analysis [44, 45, 48, 58]. The mutual informa-
tion of a program containing a vulnerable conditional statement
with the secret condition 𝐾 and execution time 𝑇 is defined as

Table 1: Results of type inference

Name ♯LOC ♯Node ♯Edge 𝑇𝑡𝑎𝑖𝑛𝑡 (ms) 𝑇𝑡𝑜𝑡𝑎𝑙 (s) Mem (Mb)

clear 13 11 20 20.24 1.63 242
md5 13 46 67 24.47 2.58 249
salted 13 51 82 26.13 2.59 259

stringutils 194 15 25 21.52 1.66 244D
if
Fu

zz

authmreloaded 19 45 62 23.91 4.02 396

array 35 2 1 16.21 1.00 164
gpt14 51 17 22 38.15 2.01 317
k96 40 21 33 51.43 2.16 331
login 53 2 1 17.33 0.99 164

loopbranch 48 2 1 16.55 0.97 160
modpow1 141 23 35 49.54 2.13 294
modpow2 106 14 23 31.80 2.00 312
passwordEq 38 5 6 18.81 1.55 237

sanity 30 2 1 16.36 0.96 160
straightline 32 2 1 16.72 1.01 163

Bl
az
er

unixlogin 45 21 29 22.65 1.26 193

bootauth 125 21 34 23.89 3.80 340
jdk 23 2 1 16.66 0.99 164
jetty 32 4 5 18.40 1.54 233

orientdb 211 61 97 39.01 5.52 453
picketbox 47 6 7 18.57 1.58 238Th

em
is

spring 39 7 7 19.90 1.75 277

I(𝐾 ;𝑇) = H(𝐾)−H(𝐾 |𝑇), where H(𝐾) is classical Shannon entropy
measuring uncertainty about𝐾 , andH(𝐾 |𝑇) is the conditional Shan-
non entropy of𝐾 given𝑇 . I(𝐾 ;𝑇) measures the uncertainty about𝐾
after an attacker has learned the execution time𝑇 . We create attacks
to explore the maximum amount of leakages according to [17]. To
discretize the execution time 𝑇 , we split it into a 20 bins. Note that
the closer the mutual information value is to 1, the stronger the
relationship between the branch condition 𝐾 and execution time 𝑇 .

The results are reported in Table 2 in the average of 1,000 exper-
iments for each benchmark, where the best results among different
methods are in bold face. The second and third columns show the
leakage and execution time without any defense. The other columns
show the leakage with the corresponding defense and the overhead
(calculated as the ratio: execution time with the defense/execution
time without defense) induced by the defense.
Effectiveness. Overall, we can observe that (1) all these “safe"
programs are vulnerable (i.e., nonnegligible leakage) due to JIT
compilation; (2) disabling JIT compilation (NOJIT) can effectively
reduce JIT-induced leakages for most programs except for array,
login, loopbranch, straightline and unixlogin; (3) DeJITLeak and
DeJITLeaklight perform significantly better than DisableC2 and
MExculde, even better than NOJIT on some benchmarks (e.g., md5,
array, login, loopbranch, sanityjdk and jetty); (4) DeJITLeak and
DeJITLeaklight are almost comparable.
Efficiency. We measure the efficiency of respective approach by
the times the execution time is increased. In general, (1) NOJIT
incurs the highest performance cost; (2) DisableC2 and MExclude
lead to nearly 2–7 times runtime overhead; (3) DeJITLeak incurs
more overhead than DisableC2 and MExclude, but still outperforms
DisableC2 andMExclude onmany benchmarks; (4) DeJITLeaklight
brings the least runtime overhead (up to 1.82 times).

On some benchmarks (e.g., authmreloaded, array, login, loop-
branch, sanity and jdk), DeJITLeak performs better than DisableC2.
It is because DisableC2 completely disables C2 mode compilation
for all the methods, whereas DeJITLeak disables JIT compilation
and procedure inline of methods invoked in secret branches. Thus,

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Qin et al.

Table 2: Evaluation results of DeJITLeak and DeJITLeaklight

Benchmark NOJIT DisableC2 MExclude DeJITLeak DeJITLeaklight

Name Leakage Time (µs) Leakage Overhead Leakage Overhead Leakage Overhead Leakage Overhead Leakage Overhead

clear 1.00 4.846 0.02 49.40 0.02 3.47 0.02 12.95 0.01 25.22 1.00 1.00
md5 1.00 6.526 0.19 47.81 0.09 4.13 0.01 10.00 0.01 19.51 0.01 1.82
salted 1.00 6.711 0.02 47.80 0.17 3.93 0.20 9.69 0.03 18.99 0.17 1.77

stringutils 0.97 0.559 0.10 11.90 0.59 1.57 1.00 2.64 0.77 8.92 1.00 1.35
authmreloaded 1.00 8.696 0.01 34.89 0.05 4.46 0.03 1.28 0.03 1.00 0.03 1.00D

if
Fu

zz

Average 0.99 5.468 0.07 38.36 0.18 3.51 0.25 7.31 0.17 14.73 0.44 1.39

array 1.00 0.229 1.00 2.00 0.64 1.21 1.00 2.61 0.23 1.00 0.25 1.00
gpt14 1.00 2.157 0.01 45.11 0.01 3.06 0.20 1.80 0.01 15.95 0.01 1.47
k96 1.00 2.414 0.02 42.69 1.00 3.04 0.79 1.83 1.00 18.50 1.00 1.46
k96* 1.00 2.372 0.02 42.93 0.02 3.09 0.59 1.90 0.02 18.99 0.52 1.48
login 1.00 0.266 0.79 2.05 0.67 1.17 0.91 2.68 0.54 1.05 0.54 1.05

loopbranch 1.00 0.243 0.86 5.57 0.80 3.15 0.33 15.34 0.01 0.98 0.01 0.98
modpow1 1.00 78.615 0.02 0.36 1.00 0.21 1.00 0.65 1.00 0.16 1.00 0.95
modpow1* 1.00 78.542 0.01 0.36 0.02 0.23 1.00 0.65 0.01 0.16 0.01 0.94
modpow2 1.00 0.789 0.01 36.92 1.00 2.78 1.00 2.27 1.00 15.61 1.00 1.57
modpow2* 1.00 0.945 0.01 42.15 0.07 2.93 1.00 2.12 0.01 17.55 0.00 1.55
passwordEq 1.00 0.262 0.13 6.61 0.17 1.53 0.56 3.74 0.01 5.39 0.01 1.15

sanity 1.00 0.234 0.25 5.83 0.97 2.82 0.07 16.02 0.01 0.99 0.01 1.00
straightline 1.00 0.231 0.80 2.03 0.07 1.07 0.90 2.16 0.00 1.00 0.01 1.00
unixlogin 1.00 0.316 1.00 8.51 1.00 1.96 1.00 3.03 1.00 10.09 1.00 1.37

Bl
az
er

Average 1.00 11.973 0.35 17.37 0.53 2.02 0.74 4.06 0.35 7.67 0.38 1.21

bootauth 1.00 2.793 0.02 106.98 0.01 4.53 0.03 1.53 0.84 1.47 0.04 1.05
jdk 1.00 0.236 0.16 2.15 0.05 1.14 0.19 2.68 0.01 1.01 0.01 1.01
jetty 1.00 0.254 0.11 6.49 0.17 1.51 0.50 3.51 0.01 5.48 0.01 1.14

orientdb 0.99 1.942 0.01 78.48 0.01 3.47 0.33 1.39 0.01 1.28 0.01 0.99
picketbox 1.00 0.252 0.04 7.23 0.02 1.54 1.00 1.82 0.06 7.85 0.01 1.30
spring 1.00 0.509 0.01 14.16 0.02 2.10 0.04 2.63 0.01 1.71 0.01 1.06

Th
em

is

Average 1.00 0.998 0.06 35.92 0.05 2.38 0.35 2.26 0.16 3.13 0.02 1.09

DeJITLeak performs better than DisableC2 when many methods
can be compiled in the C2 mode at runtime. We note that MExclude
allows JIT compilation and inlining of methods invoked in secret
branches, thus outperforms DeJITLeak in general. When many
methods contain secret branches but few methods are invoked
therein, DeJITLeak performs better than MExclude.

6.3 Case Study
We discuss some interesting case studies below.
array, login, loopbranch, straightline, unixlogin: Results show
that their leakages are significant in practice, although they are
“safe" benchmarkswithout JIT compilation [6, 23, 51].We found that
array, login, loopbranch, and straightline have balanced branches
in terms of the number of instructions at the source code level.
However, a branch with a balanced number of instructions does
not necessarily have balanced execution time even if JIT is disabled.
This indicates that modeling time-balancing using the number of
instructions may not be precise. Interestingly, both DeJITLeak
and DeJITLeaklight are able to significantly reduce the leakage
of array, login, loopbranch, and straightline. This is because the
percentage of timing difference is fixed, the program speeds up
with the JIT compilation (i.e., lower overhead), making side channel-
unstable and difficult to observe due to the fixed noise. The case
for unixlogin is slightly different. Recall that unixlogin is a patched
version by DifFuzz to resolve the NullPointerException error in
its original version from Blazer. However, this patch introduced a
leakage which is always significantly observable.

stringutils: We observe that only NOJIT effectively reduces the
JIT-induced leakage of stringutils. We found that stringutils evalu-
ates a method in Apache FtpServer that pads a string to a specified
length, where an insecure version would leak information about the
original string’s length. DeJITLeak and DeJITLeaklight success-
fully eliminated the JIT-induced leak in this method, guaranteeing
the balance of secret branches in the native code. However, due to
CPU-level optimizations (e.g., speculative execution), the execution
time of different branches varies with secret inputs.
k96, modpow1, modpow2: Similar to stringutils, we observe that
only NOJIT effectively reduces their JIT-induced leakages. These
programs implement various components of the RSA cryptosys-
tem’smodular exponentiation using the classic square-and-multiply
algorithm, thus their leakages would result in key recovery at-
tacks [43]. DeJITLeak and DeJITLeaklight indeed can guarantee
that no leaks are induced by JIT compilation in the native code.
However, due to CPU-level optimizations, the execution time of
the branches varies with secret inputs. To reduce such noise, we
created patched versions k96*,modpow1* andmodpow2* by moving
the time-consuming operations from branches to outside of their
branching point. After patching, most defense solutions are able to
reduce the JIT induced leakages.
bootauth: DeJITLeak is not effective on bootauth, due to an unbal-
anced branching statement in bytecode. According to our policy,
we need to disable JIT compilation for methods (i.e., fromJSON,
getTime and getExpires) invoked in secret-dependent branches, but
other methods can be JIT complied including the C2 mode com-
pilation. But this unfortunately amplifies the timing difference of

DeJITLeak: Eliminating JIT-induced Leaks ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

the existing leak, compared over the entire execution time. Remark
that our approach is designed for programs that are time-balanced
at the bytecode level.

6.4 Discussion
Limitations. First, the execution of JVM profiling, JIT compila-
tion and garbage collection that may affect the overall execution
time. We did not formalize them, as they are often executed asyn-
chronously in different threads and are difficult to be exploited.
To our knowledge, no attack leverages them. Second, we did not
formalism CPU-level (such as speculative execution and cache) and
other JIT optimizations (e.g., constant propagation, loop unfolding
and dead elimination) that may induce timing side-channel leaks.
Such leaks have been considered for statically compiled binary
code [25]. To our knowledge, no existing attack leverages those
optimizations for Java programs. JIT-induced leaks are significant
to be exploited remotely in real-world applications, thus, for the
sake of separating concerns, we do not consider other leakages. To
detect and mitigate timing side-channel leaks induced by CPU-level
optimizations, one may combine our approach with existing ones,
e.g., [25, 26, 41, 60, 62, 67, 68]. This is a future work to be explored.
Threats. The first main threat to our evaluation is the noise of
execution time introduced by the compiler (e.g., JVM profiling, JIT
compilation, and garbage collection) and hardware (e.g., CPU-level
optimizations). To mitigate the threat, we run each benchmark 1,000
times per branch in real-world JVM HotSpot without disabling
CPU-level and other JIT optimizations. The second main threat
to our evaluation is the small benchmarks and non-interference
from other users. In this setting, the attacks are more powerful,
namely, the adversary is able to measure and prime accurately, and
thus are more difficult to defeat. We do not impose a bound on the
attacker’s ability, therefore provide theoretic security guarantees. In
practice, the timing measurement would be less undistinguishable
and the primewould be more difficult due to significant interference
from other users or the JIT itself on large programs. Therefore, the
evaluation results in such a setting should be validated in future.

7 RELATEDWORK
Timing side-channel attacks have attracted many attentions, with
a significant amount of work devoted to its detection [18, 48, 51,
54], verification [4, 6, 10, 15, 23, 25, 27, 28] and mitigation [1, 22,
27, 49, 64, 65], which vary in targeted programs, leakage models,
techniques, efficiency and precision, etc.

More recentwork focuses on other sources of timing side-channels,
induced by micro-architectural features (e.g., Spectre [42] and Melt-
down [46]) or compilation (e.g., JIT-induced leaks [17]) where prov-
ably leakage-free programs (or with slight leakages) may become
vulnerable when they are taken into account. Our work is within
this category.

Micro-architectural features allow new timing side-channel at-
tacks such as Spectre, Meltdown and variants thereof [20, 21, 50,
56, 59]. This problem has been recently studied [21, 26, 37–39, 41,
60, 62, 66–68], where speculative execution semantics, notions of
constant-time under the new semantics, detection and mitigation
approaches, etc, have been proposed. Among them, Blade [60] is
the closest to our work, which aims to ensure that constant-time

programs are leakage-free under speculative and out-of-order ex-
ecution. Our work is similar in spirit, but as the leaks induced by
JIT compilation and micro-architecture features are different, the
concrete technology (e.g., security notions, detection and mitiga-
tion approaches) in this paper is new. Moreover, as discussed in our
experiments, native code compiled from bytecode may suffer from
leakages induced by micro-architectural features. Such leakages
could potentially be eliminated by integrating existing mitigation
approaches (e.g., Blade) into JIT compilation.

Besides JIT compilation, static compilation can also introduce
timing leakages. To address this problem, constant-time preserving
compilation has been studied [13] and subsequently implemented in
the verified compiler CompCert [11]. However, they disallow secret
branches, increasing the difficulty of implementing constant-time
programs. Follow-up work includes constant-resource preserving
compilation [12] and timing side-channel security analysis of binary
code [25]. However, none of them considered JIT compilation which
is far more complex than the static compilation.

The work on JIT-induced timing channel is currently very lim-
ited. The work close to ours is [16, 17, 19]. The JIT-induced leaks
proposed in [17] demonstrated how JIT compilation can be lever-
aged to mount timing side-channel attacks. A fuzzing approach was
proposed to detect JIT-induced leaks [19]. However, it may report
false negatives and cannot mitigate JIT-induced leaks. The three
strategies (i.e., NOJIT, DisableC2 and MExclude) proposed in [16]
have been discussed and compared in Section 2.2 and Section 6.2.

In addition to detecting and mitigating timing side-channel at-
tacks, there are techniques for detecting and mitigating power
side-channel attacks [9, 29, 32–35, 63, 69] and attacks against se-
cure multi-party computation [5, 30] where the adversary is able
to observe all the public information during computation. Each
type of attack has unique characteristics, in general, these existing
techniques are orthogonal to our work.

8 CONCLUSION
In this paper, we formalized time-balancing under JIT compilation,
based on which we proposed an automated approach to eliminate
JIT-induced leaks. Our approach systematically detects potential
leaks via a precise information flow analysis and eliminates poten-
tial leaks via a fine-grained JIT compilation. We implemented our
approach in the tool DeJITLeak for real-world Java programs. The
evaluation showed that DeJITLeak is more effective than existing
solutions and provides a trade-off between security and perfor-
mance. The lightweight variant DeJITLeaklight of DeJITLeak
further reduces the overhead but with comparable effectiveness.

In future, we plan to improve our approach by taking into ac-
count other JIT optimizations and CPU-level optimizations that
also introduce timing side-channels in practice.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (NSFC) under Grants No. 62072309 and No. 61872340, an
oversea grant from the State Key Laboratory of Novel Software
Technology, Nanjing University (KFKT2018A16), and Birkbeck BEI
School Project (EFFECT).

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Qin et al.

REFERENCES
[1] Johan Agat. 2000. Transforming Out Timing Leaks. In Proceedings of the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).
40–53. https://doi.org/10.1145/325694.325702

[2] Martin R. Albrecht and Kenneth G. Paterson. 2016. Lucky Microseconds: A
Timing Attack on Amazon’s s2n Implementation of TLS. In Proceedings of the 35th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT). 622–643. https://doi.org/10.1007/978-3-662-49890-
3_24

[3] Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (S&P). 526–540. https://doi.org/10.1109/SP.2013.42

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. 2016. Verifying Constant-Time Implementations. In Proceedings
of the 25th USENIX Security Symposium (USENIX Security). 53–70.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Hugo Pacheco, Vitor Pereira,
and Bernardo Portela. 2018. Enforcing Ideal-World Leakage Bounds in Real-World
Secret SharingMPC Frameworks. In Proceedings of the 31st IEEE Computer Security
Foundations Symposium (CSF). 132–146.

[6] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and Shiyi Wei. 2017. Decomposition Instead of Self-Composition for
Proving the Absence of Timing Channels. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).
362–375. https://doi.org/10.1145/3062341.3062378

[7] Konstantinos Athanasiou, Byron Cook, Michael Emmi, Colm MacCárthaigh,
Daniel Schwartz-Narbonne, and Serdar Tasiran. 2018. SideTrail: Verifying Time-
Balancing of Cryptosystems. In Proceedings of the 10th International Conference
on Verified Software. Theories, Tools, and Experiments -. 215–228. https://doi.org/
10.1007/978-3-030-03592-1_12

[8] Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, and Jan
Vitek. 2021. Formally Verified Speculation and Deoptimization in a JIT Compiler.
Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–26. https:
//doi.org/10.1145/3434327

[9] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. 2016. Strong Non-Interference
and Type-Directed Higher-OrderMasking. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS). 116–129.

[10] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David
Pichardie. 2014. System-Level Non-Interference for Constant-Time Cryptography.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS). 1267–1279. https://doi.org/10.1145/2660267.2660283

[11] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte,
David Pichardie, and Alix Trieu. 2020. Formal Verification of a Constant-Time
Preserving C Compiler. Proceedings of the ACM on Programming Languages 4,
POPL (2020), 7:1–7:30. https://doi.org/10.1145/3371075

[12] Gilles Barthe, Sandrine Blazy, Rémi Hutin, and David Pichardie. 2021. Secure
Compilation of Constant-Resource Programs. In Proceedings of the 34th IEEE
Computer Security Foundations Symposium (CSF). 1–12. https://doi.org/10.1109/
CSF51468.2021.00020

[13] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure Compilation
of Side-Channel Countermeasures: The Case of Cryptographic "Constant-Time".
In Proceedings of the 31st IEEE Computer Security Foundations Symposium (CSF).
328–343. https://doi.org/10.1109/CSF.2018.00031

[14] Gilles Barthe, David Pichardie, and Tamara Rezk. 2013. A Certified Lightweight
Non-Interference Java Bytecode Verifier. Mathematical Structures in Computer
Science 23, 5 (2013), 1032–1081. https://doi.org/10.1017/S0960129512000850

[15] Sandrine Blazy, David Pichardie, and Alix Trieu. 2019. Verifying Constant-Time
Implementations by Abstract Interpretation. Journal of Computer Security 27, 1
(2019), 137–163. https://doi.org/10.3233/JCS-181136

[16] Tegan Brennan. 2020. Static and Dynamic Side Channels in Software. Ph. D.
Dissertation. UC Santa Barbara.

[17] Tegan Brennan, Nicolás Rosner, and Tevfik Bultan. 2020. JIT Leaks: Inducing
Timing Side Channels through Just-In-Time Compilation. In Proceedings of the
2020 IEEE Symposium on Security and Privacy (S&P). 1207–1222. https://doi.org/
10.1109/SP40000.2020.00007

[18] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2018. Symbolic Path Cost
Analysis for Side-channel Detection. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings (ICSE). 424–425.
https://doi.org/10.1145/3183440.3195039

[19] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2020. JVM Fuzzing for JIT-
induced Side-Channel Detection. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering (ICSE). 1011–1023. https://doi.org/10.
1145/3377811.3380432

[20] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security). 991–1008.

[21] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M. Tullsen,
Deian Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time Foundations
for the New Spectre Era. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation (PLDI). 913–926.
https://doi.org/10.1145/3385412.3385970

[22] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby,
John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan.
2019. FaCT: a DSL for Timing-Sensitive Computation. In Proceedings of the 40th
ACM SIGPLAN International Conference on Programming Language Design and
Implementation (PLDI). 174–189. https://doi.org/10.1145/3314221.3314605

[23] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel
Vulnerabilities using Quantitative Cartesian Hoare Logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security (CCS).
875–890. https://doi.org/10.1145/3133956.3134058

[24] Al Danial. 2021. Count Lines of Code. https://github.com/AlDanial/cloc.
[25] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2020. Binsec/Rel: Efficient

Relational Symbolic Execution for Constant-Time at Binary-Level. In Proceedings
of the 2020 IEEE Symposium on Security and Privacy. 1021–1038. https://doi.org/
10.1109/SP40000.2020.00074

[26] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting the Haunter
- Efficient Relational Symbolic Execution for Spectre with Haunted RelSE. In Pro-
ceedings of the 28th Annual Network and Distributed System Security Symposium.

[27] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke.
2013. CacheAudit: A Tool for the Static Analysis of Cache Side Channels. In
Proceedings of the 22th USENIX Security Symposium (USENIX Security). 431–446.

[28] Goran Doychev and Boris Köpf. 2017. Rigorous Analysis of Software Coun-
termeasures against Cache Attacks. In Proceedings of the 38th ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(PLDI). 406–421. https://doi.org/10.1145/3062341.3062388

[29] Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. Formal Verification
of Software Countermeasures against Side-Channel Attacks. ACM Trans. Softw.
Eng. Methodol. 24, 2 (2014), 11:1–11:24.

[30] Yuxin Fan, Fu Song, Taolue Chen, Liangfeng Zhang, and Wanwei Liu. 2022.
PoS4MPC: Automated Security Policy Synthesis for Secure Multi-Party Com-
putation. In Proceedings of the 34th International Conference on Computer Aided
Verification (CAV).

[31] Olivier Flückiger, Gabriel Scherer, Ming-Ho Yee, Aviral Goel, Amal Ahmed,
and Jan Vitek. 2018. Correctness of Speculative Optimizations with Dynamic
Deoptimization. Proceedings of the ACM on Programming Languages 2, POPL
(2018), 49:1–49:28. https://doi.org/10.1145/3158137

[32] Pengfei Gao, Hongyi Xie, Fu Song, and Taolue Chen. 2021. A Hybrid Approach to
Formal Verification of Higher-Order Masked Arithmetic Programs. ACM Trans.
Softw. Eng. Methodol. 30, 3 (2021), 26:1–26:42.

[33] Pengfei Gao, Hongyi Xie, Pu Sun, Jun Zhang, Fu Song, and Taolue Chen. 2022.
Formal Verification of Masking Countermeasures for Arithmetic Programs. IEEE
Trans. Software Eng. 48, 3 (2022), 973–1000.

[34] Pengfei Gao, Hongyi Xie, Jun Zhang, Fu Song, and Taolue Chen. 2019. Quantita-
tive Verification of Masked Arithmetic Programs Against Side-Channel Attacks.
In Proceedings of the 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software (TACAS). 155–173.

[35] Pengfei Gao, Jun Zhang, Fu Song, and Chao Wang. 2019. Verifying and Quantify-
ing Side-channel Resistance of Masked Software Implementations. ACM Trans.
Softw. Eng. Methodol. 28, 3 (2019), 16:1–16:32.

[36] Daniel Genkin, Itamar Pipman, and Eran Tromer. 2014. Get Your Hands Off My
Laptop: Physical Side-Channel Key-Extraction Attacks on PCs. In Proceedings
of the 16th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), Vol. 8731. 242–260. https://doi.org/10.1007/978-3-662-44709-
3_14

[37] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.
2020. Spectector: Principled Detection of Speculative Information Flows. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (S&P). 1–19.
https://doi.org/10.1109/SP40000.2020.00011

[38] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu,
and Zhiqiang Zuo. 2020. SpecuSym: Speculative Symbolic Execution for Cache
Timing Leak Detection. In Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering (ICSE). 1235–1247. https://doi.org/10.1145/3377811.
3380428

[39] Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yue-
qiang Cheng, and HuiboWang. 2020. Exposing Cache Timing Side-Channel Leaks
Through Out-Of-Order Symbolic Execution. Proceedings of the ACM on Program-
ming Languages 4, OOPSLA (2020), 147:1–147:32. https://doi.org/10.1145/3428215

[40] Christian Hammer and Gregor Snelting. 2009. Flow-Sensitive, Context-Sensitive,
and Object-Sensitive Information Flow Control Based on Program Dependence
Graphs. International Journal of Information Security 8, 6 (2009), 399–422. https:
//doi.org/10.1007/s10207-009-0086-1

[41] Zecheng He, Guangyuan Hu, and Ruby B. Lee. 2021. New Models for Under-
standing and Reasoning about Speculative Execution Attacks. In Proceedings of

https://doi.org/10.1145/325694.325702
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1007/978-3-030-03592-1_12
https://doi.org/10.1007/978-3-030-03592-1_12
https://doi.org/10.1145/3434327
https://doi.org/10.1145/3434327
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/3371075
https://doi.org/10.1109/CSF51468.2021.00020
https://doi.org/10.1109/CSF51468.2021.00020
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1017/S0960129512000850
https://doi.org/10.3233/JCS-181136
https://doi.org/10.1109/SP40000.2020.00007
https://doi.org/10.1109/SP40000.2020.00007
https://doi.org/10.1145/3183440.3195039
https://doi.org/10.1145/3377811.3380432
https://doi.org/10.1145/3377811.3380432
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3133956.3134058
https://github.com/AlDanial/cloc
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1145/3158137
https://doi.org/10.1007/978-3-662-44709-3_14
https://doi.org/10.1007/978-3-662-44709-3_14
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/3377811.3380428
https://doi.org/10.1145/3377811.3380428
https://doi.org/10.1145/3428215
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1

DeJITLeak: Eliminating JIT-induced Leaks ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

the IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 40–53. https://doi.org/10.1109/HPCA51647.2021.00014

[42] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
Proceedings of the 2019 IEEE Symposium on Security and Privacy (S&P). 1–19.
https://doi.org/10.1109/SP.2019.00002

[43] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO). 104–113. https:
//doi.org/10.1007/3-540-68697-5_9

[44] Boris Köpf and David A. Basin. 2007. An Information-Theoretic Model for
Adaptive Side-Channel Attacks. In Proceedings of the 2007 ACM Conference on
Computer and Communications Security (CCS). 286–296. https://doi.org/10.1145/
1315245.1315282

[45] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. 2012. Automatic Quantifi-
cation of Cache Side-Channels. In Proceedings of the 24th International Con-
ference on Computer Aided Verification (CAV), Vol. 7358. 564–580. https:
//doi.org/10.1007/978-3-642-31424-7_40

[46] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In Proceedings of the 27th USENIX Security Symposium (USENIX Security).
973–990.

[47] PasqualeMalacaria and JonathanHeusser. 2010. Information Theory and Security:
Quantitative Information Flow. In The 10th International School on Formal Methods
for the Design of Computer, Communication and Software Systems (SFM). 87–134.
https://doi.org/10.1007/978-3-642-13678-8_3

[48] Pasquale Malacaria, M. H. R. Khouzani, Corina S. Pasareanu, Quoc-Sang Phan,
and Kasper Søe Luckow. 2018. Symbolic Side-Channel Analysis for Probabilistic
Programs. In Proceedings of the 31st IEEE Computer Security Foundations Sympo-
sium (CSF). 313–327. https://doi.org/10.1109/CSF.2018.00030

[49] Heiko Mantel and Artem Starostin. 2015. Transforming Out Timing Leaks, More
or Less. In Proceedings of the 20th European Symposium on Research in Computer
Security (ESORICS). 447–467. https://doi.org/10.1007/978-3-319-24174-6_23

[50] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck,
Daniel Genkin, Daniel Gruss, Frank Piessens, Berk Sunar, and Yuval Yarom. 2019.
Fallout: Reading Kernel Writes From User Space. CoRR abs/1905.12701 (2019).
http://arxiv.org/abs/1905.12701

[51] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. 2019. DifFuzz: Dif-
ferential Fuzzing for Side-Channel Analysis. In Proceedings of the ACM/IEEE
41st International Conference on Software Engineering (ICSE). 176–187. https:
//doi.org/10.1109/ICSE.2019.00034

[52] Oracle. 2021. HotSpot VM. https://docs.oracle.com/javase/8/docs/technotes/
tools/unix/java.html.

[53] Oracle. 2021. OpenJDK: JDK 8 source code (Mercurial repository), tag jdk8u292-ga.
https://hg.openjdk.java.net/jdk8u/jdk8u/jdk.

[54] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run
Side-Channel Analysis Using Symbolic Execution and Max-SMT. In Proceedings
of the 29th IEEE Computer Security Foundations Symposium (CSF). 387–400. https:
//doi.org/10.1109/CSF.2016.34

[55] Qi Qin, JulianAndres JiYang, Fu Song, Taolue Chen, and Xinyu Xing. 2022. Pre-
venting Timing Side-Channels via Security-Aware Just-In-Time Compilation.
CoRR abs/2202.13134 (2022).

[56] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS). ACM, 753–768. https:
//doi.org/10.1145/3319535.3354252

[57] STAC. 2017. DARPA space/time analysis for cybersecurity (STAC) program.
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity.

[58] François-Xavier Standaert, TalMalkin, andMoti Yung. 2009. AUnified Framework
for the Analysis of Side-Channel Key Recovery Attacks. In Proceedings of the 28th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), Vol. 5479. 443–461. https://doi.org/10.1007/978-3-642-
01001-9_26

[59] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-Flight Data Load. In Proceedings of the 2019 IEEE Symposium on Security
and Privacy (S&P). 88–105. https://doi.org/10.1109/SP.2019.00087

[60] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kici, Ranjit Jhala, Dean M. Tullsen, and Deian Stefan. 2021. Au-
tomatically eliminating speculative leaks from cryptographic code with blade.
Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–30. https:
//doi.org/10.1145/3434330

[61] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type
System for Secure Flow Analysis. Journal of Computer Security 4, 2/3 (1996),
167–188. https://doi.org/10.3233/JCS-1996-42-304

[62] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2019. oo7: Low-overhead Defense against Spectre Attacks
via Program Analysis. IEEE Transactions on Software Engineering (2019), 1–1.
https://doi.org/10.1109/TSE.2019.2953709

[63] Jingbo Wang, Chungha Sung, and Chao Wang. 2019. Mitigating power side
channels during compilation. In Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 590–601.

[64] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan.
2019. CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem.
Proceedings of the ACM on Programming Languages 3, POPL (2019), 77:1–77:29.
https://doi.org/10.1145/3290390

[65] MengWu, Shengjian Guo, Patrick Schaumont, and ChaoWang. 2018. Eliminating
Timing Side-Channel Leaks using Program Repair. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 15–26.
https://doi.org/10.1145/3213846.3213851

[66] Meng Wu and Chao Wang. 2019. Abstract Interpretation under Speculative
Execution. In Proceedings of the 40th ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI). 802–815. https:
//doi.org/10.1145/3314221.3314647

[67] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W.
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 428–441. https://doi.org/
10.1109/MICRO.2018.00042

[68] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2020. Speculative Taint Tracking (STT): A Comprehen-
sive Protection for Speculatively Accessed Data. IEEE Micro 40, 3 (2020), 81–90.
https://doi.org/10.1109/MM.2020.2985359

[69] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-
Based Verification of Software Countermeasures Against Side-Channel Attacks.
In Proceedings of the 30th International Conference on Computer Aided Verification
(CAV). 157–177.

https://doi.org/10.1109/HPCA51647.2021.00014
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1145/1315245.1315282
https://doi.org/10.1145/1315245.1315282
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-13678-8_3
https://doi.org/10.1109/CSF.2018.00030
https://doi.org/10.1007/978-3-319-24174-6_23
http://arxiv.org/abs/1905.12701
https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.1109/ICSE.2019.00034
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://hg.openjdk.java.net/jdk8u/jdk8u/jdk
https://doi.org/10.1109/CSF.2016.34
https://doi.org/10.1109/CSF.2016.34
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3434330
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1109/TSE.2019.2953709
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3314221.3314647
https://doi.org/10.1145/3314221.3314647
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MM.2020.2985359

	Abstract
	1 Introduction
	2 Overview
	2.1 JIT-Induced Leaks
	2.2 Eliminating JIT-induced Leaks

	3 Formalism of Security
	3.1 The JVM Submachine
	3.2 JIT Optimization of JVMJIT
	3.3 Consistency and Time-Balancing

	4 Protect Mechanism and Type System
	4.1 Protection Mechanism
	4.2 Type System and Inference

	5 Implementation for Practical Java
	5.1 Type Inference
	5.2 Protection Mechanism in HotSpot
	5.3 DeJITLeaklight

	6 Evaluation
	6.1 Results of Type Inference
	6.2 Effectiveness and Efficiency
	6.3 Case Study
	6.4 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

