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Abstract JavaScript has become one of the most
widely used languages for Web development. Its dy-
namic and event-driven features make it challenging to
ensure the correctness of Web applications written in
JavaScript. A variety of dynamic analysis techniques
have been proposed which are, however, limited in
either coverage or scalability. In this paper, we propose
a simple, yet effective, model-based automated testing
approach to achieve a high code-coverage within the
time budget via testing with longer event sequences.
We implement our approach as an open-source tool
LJS, and perform extensive experiments on 21 publicly
available benchmarks. On average, LJS is able to
achieve 86.5% line coverage in 10 minutes. Compared
with JSDep, a state-of-the-art breadth-first search
based automated testing tool enriched with partial order
reduction, the coverage of LJS is 11-19% higher than
that of JSDep on real-world large web applications.
Our empirical findings support that proper longer
test sequences can achieve a higher code coverage in
JavaScript Web Application testing.

Keywords Model-based Testing, Automated Testing,
JavaScript Web Applications

1 Introduction

JavaScript is a highly dynamic programming language
with first-class functions and “no crash” philosophy,
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which allows developers to write code without type an-
notations, and to generate and load code at runtime.
Partially because of these programming flexibilities, Web
applications based on JavaScript are gaining increasing
popularity. These features are, however, double-edged
sword, making Web applications prone to errors and in-
tractable to static analysis.

Dynamic analysis has proven to be an effective way
to test JavaScript Web applications [1–10]. Since it re-
quires testcases to explore the state space of the appli-
cation, various approaches for automated testcase gener-
ation have been developed in literature, which can gen-
erate event sequences and/or associated input data of
events. The event sequences concern the order in which
event handlers are executed (e.g., the order of clicking
buttons), while the input data concerns the choice of
values (e.g., strings, numbers and objects). Generation
of both event sequences and input data is important to
achieve a high code coverage, and has been extensively
studied.

In general, event sequences are generated by randomly
selecting event handlers with heuristic search strate-
gies [1–3, 7]. These approaches are able to analyze
large real-world applications, but are usually left with
a low code coverage. One possible reason, as mentioned
in [6, 11], is that the event sequences are insufficiently
long to explore parts of the code which may trigger the
error. For example, in an experiment of [6], the uncov-
ered code of the benchmark tetris is mainly due to the
function gameOver which will only be invoked after a
long event sequence. For traditional white-box testing
and GUI testing, it has been shown that increasing the
length of test sequences could improve coverage and fail-
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ure detection [12–15]. However, this has not been fully
exploited in testing JavaScript Web applications. One
of the reasons is that existing approaches usually gener-
ate event sequences from scratch by iteratively append-
ing events to the constructed sequences up to a max-
imum bound, and the number of event sequences may
blow up exponentially in terms of this bound. There-
fore, for efficiency consideration, the maximum bound
often has to be small (for instance, less than 6 [6]). To
mitigate these issues, pruning techniques (e.g. mutation
testing [5, 8] and partial order reduction [11]) were pro-
posed to remove redundant event sequences, which allow
to increase the length of sequences in a reasonable time.
On the other hand, the input data is generated by ei-
ther randomly choosing values with lightweight heuristic
strategies [2, 3], or using heavyweight techniques (e.g.,
symbolic/concolic execution) [1, 4, 6, 9]. These works ei-
ther consider unit testing or usually simply reuse the
aforementioned methods to generate event sequences.

In this work, we focus on the issue of event sequence
generation. In particular, we propose a novel model-
based automated testing approach to achieve a high code
coverage in a reasonable time by generating and execut-
ing long event sequences. Our approach mainly consists
of two key components: the model constructor and the
event sequence generator. The model constructor iter-
atively queries an execution engine to generate a finite-
state machine (FSM) model. It explores the state space
using long event sequences in a way to avoid prefix event
subsequences re-executing and backtracking. To improve
the scalability, we propose a state abstraction approach,
as well as a weighted event selection strategy, to con-
struct small-sized FSM models. The event sequence gen-
erator creates long event sequences by randomly travers-
ing the FSM model from the initial state. We imple-
ment our approach in a tool Longer JavaScript (LJS).
To compare with other methods, we also implemented
an event sequence generator from JSDep [11] based on
the FSM model. One of the distinguished features of
our approach is its simplicity; it turns out that one can
achieve a higher testing coverage for JavaScript Web ap-
plications by adopting a simple test strategy which is
easy to implement.

We demonstrate the efficiency and effectiveness of our
tool on 21 publicly available benchmarks taken from JS-
Dep [11], which includes 17 real-world Web applications,
ranging from hundreds to thousands of lines of code. On
average, our approach is able to achieve 86.5% line cov-
erage in 10 minutes. On large applications, the coverage
of LJS is 11-19% higher than that of JSDep. We find
that proper long event sequences can indeed improve the

coverage with respect to the application under test, and
we provide concrete, empirically validated approaches to
generate long event sequences.

In summary, the main contributions of this paper are
• We propose the first method to construct finite-

state machine models to represent the behaviors of
JavaScript Web applications, taking both the previ-
ously executed events and DOM event dependency
into account;

• We present a new automated testing approach
for generating longer event sequences of client-side
JavaScript Web applications by leveraging the pro-
posed finite-state machine models;

• We implement these new methods in an open-
sourced tool LJS (on GitHub) and evaluate them on
a large set of JavaScript Web applications to demon-
strate the efficiency and effectiveness.

Structure. The remainder of the paper is organized as
follows. In Section 2, we introduce basic notations and
a running example to motivate our work. In Section 3,
we first present an overview of our approach and then
elaborate the details of the FSM model construction and
testcase generation. We report the experimental results
and compare the performance of our tool LJS with that
of JSDep in Section 4. We review the related work in
Section 5. We finally conclude in Section 6.

2 Preliminaries and Running Example

In this section, we first briefly recap JavaScript Web ap-
plications, DOM event dependency and finite state ma-
chines. Then, we present a running example and discuss
limitations of existing approaches.

2.1 JavaScript Web Application

Client-side Web applications consist of script files exe-
cuted by Web browsers. When a browser loads a Web
page, it parses the script files, represents them as a Doc-
ument Object Model (DOM) tree, and then executes
the top-level script code. Each node in the DOM tree
represents an object on the Web page and may also be
associated with a set of events. Each event may have
some event handlers (e.g., callback functions such as on-
load and onclick) which are either statically registered
inside the HTML file or dynamically registered by exe-
cuting functions. When an event occurs (e.g., a button is
clicked), the corresponding event handlers are executed
sequentially. Although the browser ensures that each
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callback function is executed atomically, the execution
of the entire Web application exhibits nondeterminism
due to the interleaving of the executions of multiple call-
back functions.

2.2 DOM Event Dependency

Given a JavaScript Web application, let Rc and Rd re-
spectively denote the control and data dependency re-
lation over the functions of the application. For each
pair of the functions (usually event handlers) m1 and
m2, (m1,m2) ∈ Rc (resp. (m1,m2) ∈ Rd) if there are
two statements st1 and st2 in m1 and m2 respectively
such that the execution of st1 affects the control (resp.
data) flow of st2. Given two DOM events e1 and e2, e2
is dependent on e1, denoted by e1 → e2, if one of the
following conditions holds:

1. there are event handlers m1 and m2 of e1 and e2
respectively such that (m1,m2) ∈ (Rc ∪Rd)

∗,
2. the execution of m1 registers, removes, or modifies

m2.

Given two event sequences ρ1 and ρ2, ρ1 and ρ2 are equiv-
alent if ρ1 can be transformed from ρ2 by repeatedly
swapping adjacent and independent events of ρ2. More
details on control, data and DOM event dependencies
can be found in Sung et al. [11].

2.3 Finite State Machine

A (nondeterministic) Finite State Machine (FSM) is a
tuple

M = (S, I, δ, s0),

where S is a finite set of states with s0 ∈ S as the initial
state, I is a finite input alphabet, δ ⊆ S × I × S is the
transition relation. A transition (s1, e, s2) ∈ δ denotes
that, after reading the input symbol e at the state s1, the
FSM M can move from the state s1 to the state s2. We
denote by supp(s) the set {(e, s′) ∈ I ×S | (s, e, s′) ∈ δ}.
Given a word e1 · · · en ∈ I∗, a run of M on e1 · · · en is
a sequence of states s0s1 · · · sn such that for each 1 ≤
i ≤ n, (si−1, ei, si) ∈ δ. We denote by ϵ the empty word.
Note that, in this work, we will use an FSM to represent
the behaviors of a JavaScript Web application, rather
than to recognize regular languages. Because of this,
final states are not included in the definition of FSMs.

2.4 Running Example

Consider the running example in Figure 1, where the
HTML code defines DOM elements of three checkboxes

<!DOCTYPE html>
<html>
<head>

<p> Example with 3 checkboxes and 1 button </P>
</head>
<body>
<div id="checkboxes">

<input id="A" type="checkbox" onclick="FA(this)"> A
<input id="B" type="checkbox" onclick="FB(this)"> B
<input id="C" type="checkbox" onclick="FC(this)"> C

</div>
<button id="Submit" type="button" > Submit </button>
<script>

var count = 0;
function FA(node) {

if(node.checked == false) count = count - 1;
else count = count + 1;
CheckedEnough();

}
function FB(node) {

if(node.checked == false) count = count - 1;
else count = count + 1;
CheckedEnough();

}
function FC(node){

if(node.checked == false) count = count - 1;
else count = count + 1;
CheckedEnough();

}
function CheckedEnough() {

var b = document.getElementById("Submit");
if(count >= 3) b.onclick = FSubmit;
else b.onclick = null;

}
function FSubmit() {

alert("Submit successfully");
}

</script>
</body>
</html>

Fig. 1 Example HTML page and associated JavaScript code

and one button. The JavaScript code defines a global
variable count and five functions manipulating the global
variable count and DOM elements. Initially, the three
checkboxes, named A, B and C, are unchecked; the but-
ton, named Submit, does not have any onclick event han-
dler. The onclick event handlers of the three checkboxes
are the functions FA, FB and FC respectively. For each
X∈{A,B,C}, when the checkbox X is clicked (i.e., the cor-
responding event occurs), its state (checked/unchecked)
is switched, and then the onclick event handler (i.e., the
function FX) is executed. The function FX first deter-
mines whether the state of X is checked or not. If it
is checked, the global variable count is increased by
one; otherwise the global variable count is decreased
by one. Finally, the function FX invokes the function
CheckedEnough to verify whether the value of the global
variable count is no less than 3, i.e., whether there
are at least three checkboxes in the checked state. If
count>=3, then the function FSubmit is registered to
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Fig. 2 The search tree of our running example, where the missed labels of edges in black color are respectively A,B,C, and the missed
labels of edges in red color are Submit

the onclick event handler of the button Submit; other-
wise (i.e., count<3), the onclick event handler of the
button Submit is removed. If the button Submit is
clicked when the function FSubmit serves the onclick
event handler of Submit, the function FSubmit is exe-
cuted and prints a message to the console.

In this example, for X,Y∈{A,B,C}, the onclick event
of the checkbox X is dependent upon the onclick event
of the checkbox Y, and the onclick event of the button
Submit is dependent upon the onclick event of X.

2.5 Limitations of Existing Approaches

We now demonstrate why long event sequences are im-
portant for automated testing of JavaScript Web appli-
cations. Tools like Artemis [2] and JSDep [11] gen-
erate event sequences by systematically triggering vari-
ous DOM events up to a fixed depth. After loading the
Web page, these tools start by exploring all the available
events at the initial state. If a new state is reached by
executing a sequence of events, all the available events
at the new state are appended to the end of the event
sequence. The procedure is repeated until timeout or a
fixed depth is reached. The search tree of our running ex-
ample up to the depth four is depicted in Figure 2, where
the unshown labels of the edges in black are respectively
A,B,C, and those in red color are Submit. Each edge
labeled by X∈{A,B,C,Submit} denotes the execution of
the onclick event handler of X, and each node denotes
a state. For each event sequence ρ of length three, if ρ
is a permutation of A;B;C, then there are four available
events A,B,C,Submit after ρ; otherwise there are three
available events A,B,C.

A naïve algorithm (such as the default algorithm in
Artemis) would inefficiently explore the event space,
i.e., the full tree in Figure 2, and may generate 6 +∑4

i=1 3
i = 126 event sequences. However, many

of them are redundant. For instance, the sequences

A;B;C;Submit and B;A;C;Submit actually address the
same part of the code, hence one of them is unnecessary
for testing purposes. To remedy this issue, JSDep im-
plemented an approach based on partial-order reduction
in Artemis which prunes redundant event sequences by
leveraging DOM event dependencies.

To cover all code of the running example, each event
handler of all the three checkboxes has to be exe-
cuted at least two times (examining checked/unchecked
states). Therefore, a sequence of length seven (e.g.,
A;B;C;Submit;A;B;C) is sufficient to fully cover the
code. However, if one sets the depth bound of the test se-
quence to be seven for the full code coverage, the default
search algorithm in Artemis and JSDep may explore
at least

∑7
i=1 3

i = 3, 279 event sequences. Notice that
both Artemis and JSDep may re-execute previously ex-
ecuted test sequences in order to explore the event space
further, which is time-consuming. Partially because of
this, within a time limit these tools often generate and
execute short event sequences only. Similar to the classic
program analysis, it is not hard to envisage that short
event sequences would hamper testing coverage. Indeed,
in our running example, covering the function Submit
requires test sequences with length at least 4. Unfortu-
nately, existing approaches suffer from the “test sequence
explosion" problem when increasing the depth bound of
the testing sequences. In this work, we propose a model-
based, automated testing approach for JavaScript Web
applications, aiming to generate long event sequences to
improve the code coverage, but do so in a clever way
to alleviate the issue of exponential blowup of event se-
quences.

3 Methodology

In this section, we first present an overview of our ap-
proach and then elaborate the details of our FSM model
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Fig. 3 Framework overview of LJS

construction and testcase generation procedures.

3.1 Overview of Our Approach

Figure 3 presents an overview of our approach, which
consists of four components: static analysis, execu-
tion engine, model construction and testcase generation.
Given the HTML/JavaScript source file(s) of a (client-
side JavaScript Web) application, a length bound of
event sequences (Max. Length), and a bound of the num-
ber of event sequences to be generated (#Testcases) as
inputs, LJS outputs a (line) coverage report. Internally,
LJS goes through the following steps. (1) LJS first com-
putes the DOM event dependencies via static analysis.
(2) Then, LJS constructs an FSM model of the applica-
tion with a variant of depth-first search by leveraging an
execution engine and the DOM event dependencies. The
FSM model is used to generate long event sequences. (3)
Finally, all the generated event sequences are iteratively
executed on the execution engine and output the cov-
erage report. In the sequel we elaborate these steps in
more detail.
Static Analysis. Given the HTML/JavaScript source
file(s) of a Web application, this component computes
the DOM event dependencies. In our implementation,
we leverage JSdep to compute the DOM dependency.
It first constructs a control flow graph (CFG) of the
JavaScript code, and then traverses the CFG and en-
codes the control and data flows (i.e., the dependency
relations) in Datalog. The DOM event dependencies are
finally computed via a Datalog inference engine. More
details can be found in Sung et al. [11]. The analysis can
handle dynamic registration, triggering and removal of
event handlers, but not other dynamic features such as

dynamic code injection and obfuscation. Therefore, our
approach inherits both the advantage and disadvantage
of JSdep.

Execution Engine. The execution engine is used for
the FSM model construction and event sequence execu-
tion. It loads and parses the source file(s), and then exe-
cutes the top-level JavaScript code. For the FSM model
construction, the execution engine interacts with the
model constructor by iteratively receiving input events
and outputting an (abstract) successor state and a set
of available events at the successor after executing the
input event. For event sequence execution, the execu-
tion engine receives a set of event sequences, executes
them one by one and finally outputs a coverage re-
port. We implemented an execution engine by leveraging
Artemis [2] with its features such as the event-driven ex-
ecution model, interaction with DOM of web pages, and
dynamic event handler detection.

Model Construction. The model constructor interacts
with the execution engine by iteratively making queries
to generate an FSM model up to the given length bound
(i.e., Max. Length). The FSM model is intended to rep-
resent the behaviors of the application. A state of the
FSM model denotes an (abstract) state of the applica-
tion, and a transition (s, e, s′) denotes that after execut-
ing the event handler e at the state s, the application en-
ters the state s′. The model constructor starts with the
FSM containing only one initial state, explores new state
s′ by selecting one event e available at the current state
s, adds (s, e, s′) to the FSM model, and continues explor-
ing the state s′. To take previously executed events and
DOM event dependencies into account during the FSM
model construction, we propose a weighted event selec-
tion strategy where the selection of events is guided by
their weights. When the length bound is reached, LJS
allows to restart the exploration from the initial state
and adds new states and transitions to the FSM model,
in order to make the FSM model more complete.

Testcase Generation. The testcase generator tra-
verses the FSM model to generate event sequences. LJS
supports two event sequence generation algorithms: (1)
partial-order reduction (POR) based event sequence gen-
eration, and (2) random event sequence generation. The
first algorithm traverses the FSM model from the initial
state and covers all the paths up to a (usually small)
bound, while the redundant event sequences are pruned
based on the POR from JSDep [11]. It usually gen-
erates many short event sequences and is regarded as
the baseline algorithm. The second algorithm repeat-
edly and randomly traverses the FSM model from the
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Algorithm 1 Model Construction
Input: An application P and a Max. bound d
Output: An FSM model M = (S, I, δ, s0)
1: i := 0;
2: I := ∅;
3: δ := ∅;
4: cur := GetInitPage(P );
5: s0 := GetState(cur);
6: S := {s0};
7: while i < d do
8: e := GetEvent(cur);
9: suc := GetNextPage(e);

10: s′ := GetState(suc);
11: δ := δ ∪ {(s0, e, s′)};
12: I := I ∪ {e};
13: S := S ∪ {s′};
14: s0 := s′;
15: cur := suc;
16: i := i+ 1;
17: end while
18: return (S, I, δ, s0);

initial state to generate a small number of longer (up
to a usually large bound) event sequences, and, as such,
does not cover all possible paths, hence alleviates the
event sequence explosion problem.

To give a first impression of the performance of LJS,
we ran Artemis, JSDep and LJS on the running ex-
ample introduced in Section 2.4. LJS reached 100%
(line) coverage in 0.2s using one event sequence with
length 7, while Artemis executed 3,209 event sequences
in 10min and reached 86% coverage, and JSDep exe-
cuted 64 event sequences in 0.7s and reached 100% cov-
erage. We also ran JSDep and LJS on a variant of
the running example which contains 10 checkboxes and
where the condition count >= 3 is replaced by the con-
dition count >= 6. LJS reached 100% coverage in 0.4s
using one event sequence with length (10× 2 + 1) = 21,
while JSDep executed 462 event sequences in 27.4s and
reached 100% coverage. This suggests that a small num-
ber of longer event sequences could outperform a large
number of shorter event sequences for applications with
intensive DOM event dependency.

In the rest of this section, we will detail our FSM
model and testcase generation procedures.

3.2 Model Construction

Algorithm 1 presents the model construction procedure,
which takes an application P and a maximum bound d as
the input, and outputs an FSM model M = (S, I, δ, s0).
After initializing the counter i, the input alphabet I and

the set of transition relation δ (Lines 1–3), it first calls
the procedure GetInitPage which loads and parses P ,
executes the top-level JavaScript code, and finally re-
turns the initial Web page cur and the set of available
events on this page which are dynamically detected (Line
4). The initial state of the FSM model s0 is obtained
by calling the procedure GetState(cur) (Line 5). Intu-
itively, the procedure GetState computes a state from
the source code of the Web page cur (see below). After
the initialization, Algorithm 1 iteratively selects and ex-
ecutes events to explore the state space up to d rounds.
In each iteration (Lines 7–16), it selects one available
event e on the current Web page cur by invoking the
procedure GetEvent (Line 8), based on some event se-
lection strategy (see below). Then, it calls the procedure
GetNextPage to get the next Web page suc by execut-
ing e (Line 9). The state s′ of the new Web page suc is
also obtained by calling the procedure GetState (Line
10). Finally, the transition (s, e, s′), the event e and
the state s′ are added to the FSM M (Lines 11–13) re-
spectively, and the variables cur and i are updated ac-
cordingly (Lines 15 and 16). As mentioned before, LJS
allows to restart the exploration of the state space from
the initial state, so this process may be repeated many
times.

Overall, our model construction explores the state
space in a depth-first fashion with a large length bound
(Max. Length in Figure 3); we can avoid re-executing
previously executed event sequences, and do not track
state changes during execution.

3.2.1 State Abstraction

As mentioned before, the states of the FSM model are
used to represent those of the application and are com-
puted from the Web pages by invoking the procedure
GetState. We note that state abstraction is crucial to
describe the application states. On the one hand, the
states of the FSM model should contain enough data
to distinguish different application states, as unexplored
application states maybe be wrongly skipped if their ab-
stracted states were explored before, which may hap-
pen if a coarse-grained state abstraction is adopted. On
the other hand, overly fine-grained state abstraction may
generate states which are indistinguishable with respect
to some coverage criteria, resulting in an explosive or
even infinite state-space [16]. Therefore, the implemen-
tation of the procedure GetState requires a balance be-
tween the precision and the scalability.

In Artemis, the state abstraction is implemented by
computing the hash value of the Web page, which in-
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Fig. 4 The FSM models of the running example: the top FSM
is constructed using the state abstraction from Artemis and the
bottom FSM is constructed using our new state abstraction

cludes the Web page layout and the dynamically updated
DOM trees, but not the concrete values of CSS proper-
ties or application variables, nor the server-side states
(unless an initial server state is provided by the user). It
was demonstrated that this state abstraction is effective
and efficient [2].

However, in our experiments, we find it is still too
fine-grained. Artemis typically assigns random values
to the attributes of the DOM nodes which are taken into
account in the state abstraction of Artemis. In our run-
ning example, Artemis assigns a random Boolean value
to the implicit attribute Value of each checkbox, though
the value of this attribute does not affect the code cov-
erage. (Here, “implicit" means that the attribute is not
explicitly given in the source code, but the object has
such an attribute.) The FSM model constructed using
the state abstraction from Artemis is depicted in Fig-
ure 4(top-part). To avoid a prohibitively large (some-
times even infinite) state-space and improve efficiency,
we use a state abstraction based on the state abstraction
of Artemis, but discard the random values of the im-
plicit attributes in the DOM tree. This allows to focus on
the state changes made by executing events rather than
random value assignments. The FSM model constructed
by our state abstraction is depicted in Figure 4(bottom-
part), which is much smaller in size.

Experimental results have confirmed that our state
abstraction approach significantly reduces the size of the
FSM model with a comparable (or even better) line cov-
erage (cf. Section 4.2).

3.2.2 Weighted Event Selection

It is common that several events are available on a Web
page. Evidently, the selection of events will affect the
quality of the FSM model. To take both the previously
executed events and the DOM event dependency into
account, we propose a weighted event selection strategy
so that the selection of events is guided by their weights,

where the weights capture the impacts of both the previ-
ously executed events and the DOM event dependencies.
Technically, we focus on:

• Frequency of event execution. In principle, all
the events should be given opportunities to execute.
As a result, an event which has been executed would
have a lower priority to be selected in the subsequent
exploration.

• DOM event dependency. Some corner-case code
may be explored only by some specific event se-
quences due to their dependency. To expose the
corner code using long event sequences, the events
that depend upon the previous selected events war-
rant a higher chance to be selected.

In the weighted event selection strategy, each event e is
associated with a weight, which is adjusted dynamically
at runtime. The weight of the event e is defined as fol-
lows:

weight(e) =
αe × x+ βe × (1− x)

Ne + 1

where αe and βe are weight parameters, x is a Boolean
flag determined by the DOM event dependency (x = 1
if e depends upon the previous selected event; x = 0
otherwise), and Ne is the number of the times that e has
been executed.

With the weighted event selection strategy, the proce-
dure GetEvent(cur) randomly returns one of the events
which has the highest weight among all available events
on the Web page cur. In our experiments, αe and βe

are set to be 0.7 and 0.3 respectively, which are the best
configuration after tuning.

Recall the running example in Figure 1. At the initial
state, all the available onclick events of the checkboxes A,
B and C have the same weights 0.3 (note that the onclick
event of the button Submit is not available therein), i.e.,
they have the same chance to be selected. Suppose the
onclick event of the checkbox A is selected, the weights
of the onclick events of the checkboxes A, B and C are
updated to 0.7

2 , 0.7
1 , 0.7

1 respectively. LJS then randomly
chooses one of the onclick events of the checkboxes B and
C. Suppose the onclick event of the checkbox B is selected
on this occasion. The weights of all the available onclick
events of A,B,C become 0.7

2 , 0.7
2 , 0.7

1 , which imply that the
onclick event of the checkbox C will be selected at the
next step. After that, the weights of the onclick events
A,B,C,Submit are updated to 0.7

2 , 0.7
2 , 0.7

2 , 0.7
1 (note that

the onclick event of the button Submit now becomes
available).
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Algorithm 2 Baseline Event Sequence Generation with
POR

Input:
An FSM M = (S, I, δ, s0)
A bound d of the length of test sequences
The DOM event dependency relation →

Output: A set of test sequences T
1: T := ∅;
2: ss := NewStack();
3: ss.Push(s0);
4: Explore(ss);
5: return T ;
6: procedure Explore(Stack : ss)
7: s := ss.Top();
8: s.SelectedEvent := null;
9: if ss.Length() ≤ d then

10: s.done := ∅;
11: s.sleep := ∅;
12: E := {e ∈ I | ∃s.(e, s′) ∈ supp(s)};
13: while ∃e ∈ E \ (s.done ∪ s.sleep) do
14: s.done := s.done ∪ {e};
15: s.SelectedEvent := e;
16: for all s′ ∈ {s′ ∈ S | (e, s′) ∈ supp(s)} do
17: s′.sleep := {e′ ∈ s.sleep | e ̸→ e′ ∧ e′ ̸→ e};
18: ss.push(s′);
19: Explore(ss);
20: s.sleep := s.sleep ∪ {e};
21: end for
22: end while
23: end if
24: if s.SelectedEvent = null then
25: ρ := ϵ;
26: for all s′ ∈ ss from bottom to top do
27: ρ := ρ · s′.SelectedEvent;
28: end for
29: T := T ∪ {ρ};
30: end if
31: ss.Pop();
32: end procedure

3.3 Testcase Generation

In this work, as mentioned in the introduction, we focus
on the event sequence generation while the input data
is chosen randomly. We first present the baseline algo-
rithm for generating event sequences with partial-order
reduction (POR) which is inspired by [11, 17], and then
discuss how to generate long test sequences.

3.3.1 Baseline Event Sequence Generation

Assume the FSM model M = (S, I, δ, s0), a length bound
d, and the DOM event dependency relation →. Algo-
rithm 2 (excluding Lines 17 and 20) generates all possible

Algorithm 3 Long Event Sequence Generation

Input:
An FSM M = (S, I, δ, s0)
A bound d of the length of test sequences
A bound m of the number of test sequences

Output: A set of test sequences T
1: T := ∅;
2: while |T | < m do
3: ρ := ϵ;
4: s := s0;
5: while |ρ| < d do
6: (e, s) := RandomlySelectOnePair(supp(s));
7: ρ := ρ · e;
8: end while
9: T := T ∪ {ρ};

10: end while
11: return T ;

event sequences with length up to d stored in T .
After initialing the set T for storing test sequences

(Line 1) and the working stack ss for storing the event
sequence with the initial state s0 as the bottom element
(Lines 2–3), it invokes the procedure Explore to gen-
erate test sequences.

The procedure Explore traverses the FSM model M
in a depth-first manner, where E denotes the set of avail-
able events at the state s, s.SelectedEvent denotes the
selected event at the state s, and s.done denotes the set
of all previously selected events at the state s. The pro-
cedure Explore first obtains the top state s on the stack
ss which is achieved via replaying the recorded event se-
quence reaching s. Then, it checks whether the bound d
is reached (Line 14). If ss.Length() > d, then the while-
loop is skipped. After that, if s.SelectedEvent = null

(indicating that the sequence in ss has reached the maxi-
mum length d), the event sequence stored in the stack ss
is added to the set T . Otherwise, the while-loop will ex-
plore a previously unexplored event and invoke the pro-
cedure Explore recursively. The while-loop terminates
when all the available events at the state s have been ex-
plored. Note that in this case, s.SelectedEvent ̸= null,
hence the sequence in ss will not be added to T .

With Lines 17 and 20, Algorithm 2 implements the
partial-order reduction based on the notion of sleep-
set [18]. In principle, it first partitions the event se-
quences into equivalence classes, and then explores the
representative from each equivalence class. In detail,
each event e explored at the state s is inserted into its
sleep set s.sleep (Line 20). When another event e′ is
explored at s, the sleep set of the state s is copied to the
sleep set of the next state s′ (Line 15) if the DOM events
e and e′ are independent of each other. Later, each event
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at the state s will be skipped if it is in the sleep set of
state s (Line 13), because executing this event is guar-
anteed to reach a previously explored state.

3.3.2 Long Event Sequence Generation

Algorithm 3 shows the pseudocode of our random event
sequence generation. Given the FSM model M =
(S, I, δ, s0), a maximum length bound d and a maximum
bound m of the number of event sequences, Algorithm 3
randomly generates m number of event sequences with
length d. Each iteration of the outer while-loop com-
putes one event sequence with length d until the number
of event sequences reaches m. In the inner while-loop,
it starts from the initial state s0 and an empty sequence
ρ = ϵ. At each state s, the inner while-loop iteratively
and randomly selects a pair (e, s′) of event and state de-
noting that executing the event e at the state s moves
to the state s′, then appends e to the end of previously
computed sequence ρ. Algorithm 3 repeats this proce-
dure until the length of ρ reaches the maximum bound
d. At this moment, one event sequence is generated and
stored into the set T . The outer while-loop enters its
next iteration.

Algorithm 3 may not generate all the possible event
sequences, and may generate redundant event sequences,
but less often, due to the large maximum bound. We
remark that the POR technique cannot be integrated to
Algorithm 3.

4 Experiments

We have implemented our method as a software tool
LJS. It exploits JSDep for computing DOM event de-
pendency and a modified automated testing framework
Artemis as the execution engine. For comparison pur-
poses, we implemented LJS in such a way that individ-
ual techniques are modularized and can be enabled on
demand. This enables us to compare the performance of
various approaches with different configurations, in par-
ticular, (1) our state abstraction versus the state abstrac-
tion from [2], and (2) baseline event sequence generation
with POR (i.e., Algorithm 2) versus long event sequence
generation (i.e., Algorithm 3). To demonstrate the effi-
ciency and effectiveness of LJS, we compared LJS with
JSDep on same benchmarks. (We note that in the liter-
ature [11] JSDep was shown to be superior to Artemis,
so a direct comparison between LJS and Artemis is ex-
cluded.)

The experiments are designed to answer the following

research questions:

RQ1. How efficient and effective is LJS compared with
JSDep?

RQ2. How effective is our coarse-grained state ab-
straction compared with the state abstraction
from [2]?

RQ3. How effective is the long event sequence genera-
tion compared with the baseline algorithm?

To make the comparison on a fair basis, we evaluated
LJS on publicly available benchmarks of JSDep, which
consist of 21 client-side JavaScript Web applications with
18,559 lines of code in total. Columns 1-2 of Table 1 show
the name of the application and the number of lines of
code. We ran all experiments on a server with 64-bit
Ubuntu 12.04 OS, Intel Xeon(R) E5-2603v4 CPU (1.70
GHz, 6 Cores), and 32GB RAM. To answer RQ1-3, we
conducted three case studies. The time used to compute
the DOM event dependency is usually marginal and can
be safely ignored, so is not counted in line with [11].
The coverage measure is the aggregation of that from
model construction and testcase execution respectively
which are separated in the last experiment. For statis-
tics, we ran LJS on each application 21 times and took
the average as the result in order to alleviate random-
ness. As our approach is non-deterministic and involves
random choices, we conduct statistical analysis to show
the statistical significance of the differences. Note that
for statistical analysis, approximation using the normal
distribution is fairly good when sample sizes are greater
than 20 (see Mann-Whitney U-test on Wikipedia). Thus
we ran LJS on each application 21 times.

4.1 RQ1: LJS vs. JSDep

We study RQ1 by performing two experiments assessing
effectiveness and efficiency. For effectiveness, we com-
pare the (line) coverage of LJS with JSDep in 600 sec-
onds. For efficiency, we compare the time used by LJS
and JSDep to achieve the same coverage. The experi-
ments of LJS were performed with the following config-
urations: Max. Length=99, our new state abstraction,
running Algorithm 1 two times, and long event sequence
generation. Experiments of JSDep were performed with
the setting given in Sung et al. [11].

Following the suggestion [19], we perform the follow-
ing statistical analysis. The first one is a two-tailed non-
parametric One-Sample Wilcoxon test with the null hy-
pothesis H0: JSDep and LJS achieve the same coverage.
The second one is the one-tailed Wilcoxon signed-rank
test with the null hypothesis is that JSDep can achieve
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Table 1 Coverage of LJS and JSDep in 600 seconds

Name ♯Loc LJS JSDep p-value Effect sizeCoverage sd ♯Tests Max. length Coverage ♯Tests Max. length

case1 59 100.0% 0.000 4803 99 100.0% 1409 705 NA NA
case2 72 100.0% 0.000 4470 99 100.0% 3058 549 NA NA
case3 165 100.0% 0.000 2789 99 100.0% 7811 575 NA NA
case4 196 87.0% 0.000 2885 99 77.9% 8594 500 < 1× 10−5 1
frog 567 96.6% 0.006 10 99 84.6% 86 16 5× 10−5 1
cosmos 363 87.9% 0.059 268 99 79.5% 973 243 9.6× 10−4 0.71
hanoi 246 88.3% 0.013 1470 99 82.5% 902 225 1× 10−5 0.95
flipflop 525 97.1% 0.004 60 99 96.3% 284 71 1× 10−5 1
sokoban 3056 88.2% 0.027 55 99 77.6% 203 51 5× 10−5 1
wormy 570 44.2% 0.052 34 99 41.0% 323 18 0.70512 0.67
chinabox 338 83.7% 0.003 7 99 82.3% 92 9 2× 10−5 1
3dmodel 5414 85.0% 0.001 9 99 71.5% 66 10 1× 10−5 1
cubuild 1014 87.5% 0.035 8 99 72.8% 153 17 5× 10−5 1
pearlski 960 55.1% 0.000 82 99 54.9% 214 52 < 1× 10−5 1
speedyeater 784 90.0% 0.008 550 99 82.1% 1497 374 6× 10−5 1
gallony 300 94.5% 0.001 2395 99 94.5% 1611 95 2.4× 10−4 0.05
fullhouse 528 92.1% 0.012 1168 99 86.3% 889 222 3× 10−5 1
ball_pool 1745 93.2% 0.005 2 99 74.2% 18 3 6× 10−5 1
harehound 468 95.0% 0.004 498 99 94.5% 1224 116 1.3× 10−4 0.81
match 369 72.5% 0.002 1142 99 73.2% 4050 845 1× 10−5 0
lady 820 79.1% 0.002 0 99 75.7% 35 8 5× 10−5 1

Average 883.8 86.5% 0.011 1081 99 81.0% 1595 224 NA NA

Note: Name shows the name of the benchmark, ♯Loc shows number of lines of code, Coverage shows the line coverage, sd shows the
standard deviation (sd) of coverage obtained in 21 runs, ♯Tests shows the number of test cases, Max length shows the maximum length
of test sequences, and p-value is the two-tailed non-parametric One-Sample Wilcoxon test.
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Fig. 5 Coverage of LJS and JSDep, as a function of the execution time
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higher coverage than that of LJS on the benchmarks.
These tests provide an overall comparison of the two
tools. We also calculate the effect size using Vargha and
Delaney’s Â12 statistics, which measures the probabil-
ity that LJS yields higher coverage than that of JSDep.
For instance, Â12 = 0.8 entails one would obtain better
results 80% of the time with LJS.

Table 1 shows the results of LJS and JSDep in 600
seconds, where Columns 3-6 (resp. Columns 7-9) show
line coverage, standard deviation (sd) of coverage ob-
tained in 21 runs, number and length of event sequences
after running LJS (resp. JSDep) on average. Col-
umn 10 shows the relevant p-value of the two-tailed
non-parametric One-Sample Wilcoxon test. Column 11
shows effect size. Note that significant improvements are
highlighted in bold font.

Overall, we can observe an increase in the average
coverage from 81% by JSDep to 86.5% by LJS. (We re-
mark that the average coverage was increased from 67%
by Artemis to 80% by JSDep in 600s [11]. In our ex-
periment, JSDep performed slightly better.) Perhaps
more importantly, on large applications such as sokoban,
3dmodel, cubuild and ball_pool, the coverage of LJS is
11-19% higher than that of JSDep. We can also observe
that a small number of long event sequences could out-
perform a large number of short event sequences. For
instance, LJS achieves 93.2% coverage on ball_poll us-
ing only 2 test cases with length 99, while JSDep only
achieves 74.2% using 18 test cases with maximal length
3. Similar results can also be observed on frog, sokoban,
3dmodel, cubuild, etc. However, it should be empha-
sized that long event sequences, but of low quality, may
not improve the coverage, as observed from the results
of case4, speedyeater and fullhouse. This demonstrates
that our model-based testing improves the coverage.

Furthermore, we conduct case studies to under-
stand the experimental results. First, we investigate
why LJS outperforms JSDep on ball_pool, where LJS
achieves 19% higher than JSDep. We found that there
is a function, called getBodyAtMouse(), which is in-
voked only when the global variable isMouseDown is
true. While the global variable isMouseDown becomes
true only when three DOM events mousedown@body,
mousedown@document and click@document occur con-
secutively. A test sequence generated by our tool
LJS contains this subsequence, hence covers the func-
tion getBodyAtMouse(). However, the 18 test se-
quences generated by JSDep do not contain such subse-
quence. Consequently, JSDep fails to cover the function
getBodyAtMouse(). Second, we investigate why LJS
does not improve the coverage on pearlski and gallony.

For pearlski, both tools achieve only 55% code cover-
age. We found that pearlski contains a lot of unreachable
code, e.g., functions that are defined but never invoked.
Indeed, both tools covered almost all the reachable code.
For gallony, we found that one branching is not covered
by both tools, as the branching condition is too difficult
to be satisfied using random input data. Third, we inves-
tigate why JSDep achieves a higher coverage than LJS
on match. After a depth-analysis, we found that JSDep
covers one more line of code than LJS and this line is
guarded by a complicated branching condition. On these
benchmarks, the lengths of evert sequences generated by
JSDep are long enough.

According to the findings of our case studies, to further
improve the coverage, some path conditions should be
satisfied. One solution is to integrate symbolic execution
with our approach. We leave this as future work.

From the results of the two-tailed non-parametric
One-Sample Wilcoxon test, in all nontrivial benchmarks
the null hypothesis H0 is rejected with the p-values re-
ported in Column 10. In particular, 17 out of 18 bench-
marks have p-values less than 0.001, indicating the sta-
tistical significance of the differences. For the one-tailed
Wilcoxon signed-rank test, H0 is rejected with the p-
value is 2.3 × 10−4, which also indicates that LJS ob-
tains a higher coverage than JSDep. From Column 11,
we can observe that 16 out of 18 benchmarks have effect
size greater than 0.67, indicating that LJS has higher
probability to achieve a better coverage. Moreover, 12
out of 16 benchmarks have effect size 1 indicating that
LJS outperforms JSDep almost certainly.

Figure 5 shows the coverage that LJS and JSDep
achieved by running on the top 6 largest applications in
time ranging from 60 seconds to 600 seconds with step
size 60 seconds. (Note that the application lady is ex-
cluded in this experiments because its model construc-
tion takes more than 600 seconds; cf. Table 1.) The
x-axis and y-axis represent the execution time budget
and the achieved coverage respectively. Overall, as the
execution time budget increases, the coverage of LJS is
higher than that of JSDep and the coverage becomes
stable finally. Moreover, the rate of LJS to achieve a
higher coverage is, in most cases, slightly higher than
that of JSDep. For instance, on sokoban, ball_pool and
cubuild, LJS always achieves higher coverage than JS-
Dep with the increase of execution time. On 3dmodel
and speedyeater, though LJS achieves lower coverage
than JSDep at the beginning time, it finally achieves
higher coverage than JSDep. This is because at the
beginning time, our approach spends time on the FSM
model construction.
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Table 2 Comparison of state abstraction techniques

Name State abstraction from [2] Our state abstraction p-value of |S| p-value of |δ|Coverage |S| |δ| Time(s) Coverage |S| |δ| Time(s)

case1 98.6% 1.0 2.0 0.3 98.6% 1.0 2.0 0.2 NA NA
case2 98.3% 1.0 4.0 0.3 99.4% 1.0 4.0 0.3 NA NA
case3 99.3% 1.0 6.0 0.4 98.2% 1.0 6.0 0.4 NA NA
case4 85.6% 1.0 8.0 0.4 85.9% 1.0 8.0 0.4 NA NA
frog 95.9% 199.0 198.0 96.3 96.0% 27.6 102.0 120.7 < 1× 10−5 < 1× 10−5

cosmos 79.9% 127.1 196.5 4.8 78.7% 68.0 143.7 4.7 < 1× 10−5 < 1× 10−5

hanoi 88.6% 105.8 186.7 0.8 88.5% 105.9 185.7 0.7 0.96987 0.50301
flipflop 96.6% 30.6 113.9 17.5 97.1% 28.6 108.3 17.6 0.36409 0.33882
sokoban 86.5% 69.6 189.6 18.9 87.7% 31.2 126.5 21.0 < 1× 10−5 < 1× 10−5

wormy 42.0% 188.3 197.9 32.8 42.0% 131.0 186.1 31.8 < 1× 10−5 < 1× 10−5

chinabox 83.6% 63.1 154.3 132.1 83.7% 68.1 158.5 141.4 0.00052 0.08411
3dmodel 83.7% 3.0 25.0 96.7 83.3% 1.0 6.0 96.5 < 1× 10−5 < 1× 10−5

cubuild 85.0% 86.6 165.5 125.3 84.6% 83.4 163.1 121.6 0.14685 0.24113
pearlski 55.1% 138.7 196.0 13.5 55.1% 72.4 176.4 13.9 < 1× 10−5 < 1× 10−5

speedyeater 85.3% 168.0 198.0 1.6 84.4% 4.4 60.2 2.1 < 1× 10−5 < 1× 10−5

gallony 94.5% 64.8 171.6 0.5 94.5% 62.4 173.4 0.5 0.17342 0.39768
fullhouse 92.7% 167.4 197.8 0.8 92.2% 28.4 119.0 1.0 < 1× 10−5 < 1× 10−5

ball_pool 93.1% 42.4 143.0 283.5 93.2% 41.9 146.5 237.5 0.57851 0.2788
harehound 81.2% 188.6 198.0 0.9 87.2% 11.2 93.4 1.7 < 1× 10−5 < 1× 10−5

match 67.9% 15.2 176.0 1.0 70.3% 4.1 55.3 1.0 < 1× 10−5 < 1× 10−5

lady 79.1% 164.2 197.6 896.2 79.2% 86.5 174.2 856.1 < 1× 10−5 < 1× 10−5

Average 84.4% 87.0 139.3 82.1 84.8% 41.0 104.7 79.6 NA NA

|S| and δ show numbers of states and transitions of the FSM model, and p-values are the two-tailed non-parametric Mann-Whitney
U-test on the numbers of states and transitions.

4.2 RQ2: Comparison of State Abstraction Techniques

We study RQ2 by performing one experiment and com-
paring the obtained FSM model and coverage results us-
ing our coarse-grained state abstraction and the state
abstraction from [2] respectively. In this experiment,
LJS constructs the FSM model by running Algorithm 1
two times using Max. Length=99 and generates two
event sequences from the FSM model. Taking the time
into account, the experiment only generates two event
sequences. We perform the two-tailed non-parametric
Mann-Whitney U-test on each benchmark with the null
hypothesis H0: the two state abstractions obtain the
same numbers of states and transitions, as well as the
one-tailed Wilcoxon signed-rank test on the whole bench-
marks with the null hypothesis H0: the coarse-grained
state abstraction of LJS produces more states and tran-
sitions.

Table 2 shows the results in average, where Columns
2-5 (resp. Columns 6-9) show the coverage, numbers of
states and transitions of the FSM model (note that we
take the average of these numbers), and execution time
after running LJS with the state abstraction from [2]
(resp. our new state abstraction). For most benchmarks,
H0 is rejected, and Columns 10-11 respectively show

the p-values of the two-tailed non-parametric Mann-
Whitney U-test on the numbers of states and transitions.
For the one-tailed Wilcoxon signed-rank test, H0 is re-
jected with the p-values 5.9×10−4 and 9.6×10−4 on the
number of states and transitions respectively.

Overall, the numbers of states and transitions using
our state abstraction are much smaller, with a dramatic
decrease in some large applications such as sokoban,
3dmodel, pearlski, speedyeater and harehound, while the
performance of the two state abstractions in terms of av-
erage coverage remains comparable or even better. This
indicates that our coarse-grained state abstraction is able
to eliminate redundant states and transitions with high
statistical confidence.

4.3 RQ3: Comparison of Event Sequence Generations

We study RQ3 by performing two experiments and com-
paring quality of event sequences generated by the long
event sequence generation (Algorithm 3) and baseline
event sequence generation with POR (Algorithm 2). In
the first experiment, LJS constructs the FSM model by
running Algorithm 1 two times using our coarse-grained
state abstraction and generates two event sequences
from the FSM model, while the maximum bounds (i.e.,
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Max. Length) are 9, 39, 69, 99, 129 and 159. In the sec-
ond experiment, we first generate an FSM model using
the same configuration with a fixed maximum bound 99.
For each application, from the same FSM model, LJS
with Algorithm 3 enabled iteratively generates and ex-
ecutes event sequences with maximum bound 99 within
600 seconds time bound. Meanwhile, LJS with Algo-
rithm 2 enabled generates and executes all event se-
quences with redundant sequences pruned up to some
maximum bound so that the execution time exceeds
600 seconds. Moreover, the execution terminates when
the execution time reaches 1200s. We perform the two-
tailed non-parametric One-Sample Wilcoxon test on each
benchmark (with the null hypothesis H0: the two al-
gorithms obtain the same coverage) and the one-tailed
Wilcoxon signed-rank test on the whole benchmarks
(with the null hypothesis H0: Algorithm 1 produces a
lower coverage than Algorithm 2.

Figure 6 shows the results of the first experiment,
where the x-axis and y-axis represent the maximum
bound and the achieved coverage with that bound re-
spectively; the thick line (in boldface) shows the trend
of average coverage. Overall, the average coverage in-
creases quickly when the maximum bound increases from
9 to 39, but only slightly when it increases from 39 to
159.

Table 3 shows the results of the second experiment,
where Columns 2-5 (resp. Columns 6-9) show the cov-
erage (of testcase execution only), maximum sequence
length, execution time and number of event sequences
after running LJS with Algorithm 2 (resp. Algorithm 3)
enabled. For the two-tailed non-parametric One-Sample
Wilcoxon test, in most benchmarks, H0 is rejected where
Columns 10 shows the p-values. For the one-tailed
Wilcoxon signed-rank test, H0 is rejected with p-value
0.002.

Overall, the average coverage of Algorithm 3 (i.e.,
long event sequence generation) is 6.2% higher than that
of Algorithm 2 (i.e., baseline event sequence generation
with POR) with less execution time. In particular, the
coverage improvement of Algorithm 3 is more promi-
nent for the applications case2 -case4, chinabox, 3dmodel
and cubuild. These results also confirm that executing
fewer long event sequences could achieve a higher cov-
erage than executing more short event sequences. The
p-values of two statistical tests indicate that our long
event sequence generation has better performance than
Baseline with POR with high statistical confidence.

4.4 Discussion

LJS currently supports off-line testing (i.e., the source
code is available) when the DOM event dependency is en-
abled. Our approach is also applicable in on-line testing
if the DOM event dependency is computed dynamically,
as it does not need to record and replay.

In the sequel, we note some limitations of the experi-
ments. The experiments are based on the publicly avail-
able benchmarks that include only 4 large-scale Web ap-
plications (with more than 1k LOC, maximum 5k LOC).
For the future work, we plan to experiment on more
large-scale benchmarks. The main challenges include the
shortage of benchmarks and that JSdep [11] supports
limited JavaScript constructs amenable to DOM depen-
dency computing. Moreover, the current evaluation is
based on coverage, but it would also be interesting to
evaluate the fault detection, for which the test oracle
should be investigated, as JavaScript employs the “no
crash” philosophy. Furthermore, we note that there are
several ways to obtain long sequences based on FSM,
for instance, by following the dependency chains or giv-
ing the priority to novel states. These strategies deserve
further exploration on top of our current findings and
framework.

5 Related Work

We discuss the related work in the areas of model-
based testing and automated JavaScript Web application
testing.

5.1 Model-based Automated Testing

Model-based testing (MBT) has been widely used in soft-
ware testing (cf. [20–22] for surveys). Mainstream MBT
techniques differ mainly in three aspects: models of the
software under test, model construction, and testcase
generation. Several models, such as state-based (e.g.,
pre-/post-condition) and transition-based (e.g., UML
and I/O automata), have been proposed. The FSM
model used in this work is one of the transition-based
models. Model construction is one of the most important
tasks in MBT. It is usually time-consuming and error-
prone to manually construct models for GUI-based appli-
cations [23, 24]. Therefore, most works use static or dy-
namic analysis to construct models, for example, [15,25]
for mobile/GUI applications. However, it is rather dif-
ficult to statically construct models for JavaScript Web
applications due to their dynamic characteristics [3].
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Fig. 6 Coverage of LJS, as a function of the length bound

Table 3 Comparison of event sequence generation algorithms

Name Baseline with POR Long Sequence Generation p-valueCoverage Max. Length Time(s) ♯Tests Coverage Max. Length Time(s) ♯Tests

case1 100.0% 16 829 65504 100.0% 99 600 4796 NA
case2 87.8% 9 1125 87040 100.0% 99 600 4482 < 1× 10−5

case3 68.6% 7 931 54432 100.0% 99 600 2800 < 1× 10−5

case4 61.8% 6 674 32768 87.0% 99 600 2887 < 1× 10−5

frog 88.6% 4 664 592 95.1% 99 600 6 5× 10−5

cosmos 78.0% 5 1072 4415 88.2% 99 600 826 5× 10−5

hanoi 86.8% 6 889 4276 88.6% 99 600 1417 < 1× 10−5

flipflop 97.0% 6 1200 419 97.0% 99 600 23 < 1× 10−5

sokoban 88.6% 5 1200 1697 84.0% 99 600 66 1× 10−5

wormy 41.2% 13 657 317 49.7% 99 600 37 3.6× 10−4

chinabox 78.0% 8 729 64 83.7% 99 600 10 3× 10−5

3dmodel 72.0% 4 1200 93 85.0% 99 600 11 < 1× 10−5

cubuild 75.2% 6 1019 238 88.3% 99 600 10 5× 10−5

pearlski 52.1% 7 960 653 51.1% 99 600 78 2.4× 10−4

speedyeater 82.3% 5 1200 17106 88.0% 99 600 548 < 1× 10−5

gallony 94.5% 8 1200 9821 92.6% 99 600 2039 1× 10−5

fullhouse 79.2% 8 1200 12097 75.2% 99 600 757 1× 10−5

ball_pool 92.1% 6 1200 22 93.4% 99 600 3 5× 10−5

harehound 92.2% 4 1200 7949 95.5% 99 600 487 4× 10−5

match 73.2% 5 738 13341 72.1% 99 600 1172 < 1× 10−5

lady 73.2% 5 696 12 79.2% 99 600 2 5× 10−5

Average 79.2% 7 980 14898 85.4% 99 600 1069 NA

Coverage only includes that of event sequence execution, ♯Tests shows the number of event sequences and p-value is the two-tailed
non-parametric One-Sample Wilcoxon test.
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Regarding work on model construction for JavaScript
Web applications, [26] have to construct a model manu-
ally; [27] extracts the model via static analysis, but lacks
of considering dynamic nature of JavaScript; [3] con-
struct FSM models via dynamic analysis to crawl Web
applications. The main difference between our work and
theirs [3] is the way in which the model is constructed.
Our model construction pursues a larger depth with-
out backtracking, but does not cover all possible event
sequences, whereas [3] cover all the possible event se-
quences up to a length bound with backtracking. [28]
also reported FSM model constructions, but did not give
detail of their algorithm, nor included JavaScript cover-
age. Existing testcase generation algorithms mainly fo-
cus on the systematic generation of event sequences with
a rather limited length bound due to the “test sequence
explosion" problem. Our approach generates long event
sequences, but strategically avoid covering all possible
event sequences (up to a length bound) to mitigate the
exponential blowup problem.

5.2 JavaScript Web Application Automated Testing

Web application testing has been widely studied in the
past decade, differing mainly in targeted Web program-
ming languages (e.g., PHP [29] and JavaScript [2, 3]),
and testing techniques (e.g., model-based testing [20–22],
mutation testing [5,8], search-based testing [29] and sym-
bolic/concolic testing [1,4,6]; cf. [10,16] for surveys). We
mainly compare with the work on automated testing of
JavaScript Web Application.

Test sequences of JavaScript Web Applications consist
of event sequences and input data for each event. Exist-
ing work creates event sequences via exploring the state
space by randomly selecting events with heuristic search
strategies. For instance, Kudzu [1] and Crawljax [3]
randomly select available events. Moreover, Crawl-
jax relies on a heuristic approach for detecting event
handlers, hence may not be able to detect all of them.
Artemis [2] uses the heuristic strategy based on the ob-
served read and write operations by each event handler
in an attempt to exclude sequences of non-interacting
event handler executions. EventBreak [7] uses the heuris-
tic strategy based on performance costs in terms of the
number of conditions in event handlers in an attempt
to analyze responsiveness of the application. These ap-
proaches usually cover all the sequences up to a given,
usually small, length bound. In order to explore long
event sequences in limited time, delta-debugging based
method [30] and partial-order reduction [11] were pro-
posed for pruning redundant event sequences. Our ap-

proach does not cover all possible event sequences, hence
can create long event sequences within the time budget.
Experimental results show that our approach can achieve
a high line coverage than Artemis even with partial-
order reductions [11].

Another research line in automated testing of
JavaScript Web applications is to generate high qual-
ity input data of events using symbolic/concolic testing,
e.g., [1, 4, 6, 9]. These approaches are able to achieve a
high coverage, but rely heavily on the underlying con-
straint solver. They generally do not scale well for large,
realistic programs, because the number of the feasible
execution paths of a program often increases exponen-
tially in the length of the path. Our work focuses on
the generation of long event sequences, but choose the
input data randomly, which is orthogonal, and could be
complementary, to the more advanced input data gener-
ation methods. A transfer technique has been proposed
based on the automation engine framework Selenium
to transfer tests from one JavaScript Web application to
another [31]. This is orthogonal to our work.

6 Conclusion

We have proposed a model-based automated testing ap-
proach for JavaScript Web applications. Our approach
distinguishes from others in making use of long event se-
quences in both the FSM model construction and the
testcase generation from the FSM model. We have im-
plemented our approach in a tool LJS and evaluated it
on a selection of benchmarks. The experimental results
showed that our approach is more efficient and effective
than Artemis and JSdep. Furthermore, we empirically
found that proper longer test sequences can achieve a
high line coverage.
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