
https://doi.org/10.1007/s00165-021-00544-5
BCS © 2021
Formal Aspects of Computing (2021) 33: 437–455

Formal Aspects
of Computing

Learning safe neural network controllers
with barrier certificates
Hengjun Zhao1,4, Xia Zeng1,4 , Taolue Chen3, Zhiming Liu2,4 and Jim Woodcock1,5

1School of Computer and Information Science, Southwest University, Chongqing, China
2Centre for Intelligent and Embedded Software, Northwestern Polytechnical University, Xi’an, China
3Department of Computer Science, University of Surrey, Guildford, UK
4Centre for Research and Innovation in Software Engineering, Southwest University, Chongqing, China
5Department of Computer Science, University of York, York, UK

Abstract. We provide a new approach to synthesize controllers for nonlinear continuous dynamical systems
with control against safety properties. The controllers are based on neural networks (NNs). To certify the safety
property we utilize barrier functions, which are represented by NNs as well. We train the controller-NN and
barrier-NN simultaneously, achieving a verification-in-the-loop synthesis. We provide a prototype tool nncon-
troller with a number of case studies. The experiment results confirm the feasibility and efficacy of our approach.

Keywords: Continuous dynamical systems; Controller synthesis; Neural networks; Safety verification; Barrier
certificates

1. Introduction

Controller design and synthesis is one of the most fundamental problems in control theory. In recent years,
especially with the boom of deep learning, there has been considerable research activities in the use of neural
networks (NNs) for control of nonlinear systems [LHP+16, DCH+16]. NNs feature the versatile representational
ability of nonlinear maps and fast computation, making them an ideal candidate for sophisticated control tasks
[PEY01]. Typical examples include self-driving cars, drones, and smart cities. It is noteworthy that many of these
applications are safety-critical systems, where safety refers to, in a basic form, that the system cannot reach a
dangerous or unwanted state. For control systems in a multitude of Cyber-Physical-System domains, designing
safe controllers which can guarantee safety behaviors of the controlled systems is of paramount importance
[BTSK17, RBK18, DJST18a, RAA19, TSYA19, COMB19, CCTS20, YFS20, ICW+20, TYML+20].

Typically, when a controller is given, formal verification is required to certify its safety. Our previous work
[ZZCL20] has dealt with the verification of continuous dynamical systems by the aid of neural networks. In a
nutshell, we follow a deductive verification methodology therein by synthesizing a barrier function, the existence
of which suffices to show the safety of the controlled dynamical system. The crux was to use neural networks
to represent the barrier functions, spurred by the well-known universal approximation theorem [LLPS93] which
assures the expressibility of NNs.

Correspondence to: Xia Zeng, E-mail: xzeng0712@swu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00544-5&domain=pdf
http://orcid.org/0000-0003-2575-7045

438 H. Zhao et al.

It is imperative to realize that verificationor certificationof an existing controller does not lend itself to effective
and efficient construction of controllers, which is the main focus of the current work. Following a correctness-by-
design methodology, we aim to synthesize controllers which can guarantee that the controlled system is safe. This
question is considerably more challenging and perhaps more interesting from a system engineering perspective.
To this end we adopt a data-driven approach for the design of controllers which are to be represented as an NN.
A key issue of controller synthesis is to provide a formal guarantee of the quality for the obtained controller,
of which safety is arguably the most fundamental. A common practice is to first come up with a controller and
then to verify it against desired properties. An interesting innovation of our work is, however, to integrate the
synthesis and verification in a unified, data-driven framework, which is enabled by our earlier work by using NNs
as a certification mechanism. At a high level, our approach for the controller synthesis will produce two neural
networks simultaneously, i.e., one is used to represent the controller (henceforth referred to as controller-NN),
and the other is used to represent the barrier function (henceforth referred to as barrier-NN). The synergy of
the two NNs, supported by an additional verification procedure to make sure the learned barrier-NN is indeed
a barrier certificate, provides the desired safety guarantee for the synthesized controller.

Our method follows a data-driven framework in the sense that both NNs are trained from datasets. For that
purpose, we generate training sets and propose specifically designed loss functions which are the key towards
the application of standard learning algorithms for NNs. In terms of the learned NN controllers, we find that
they usually respect safety constraints, but may exhibit poor performance in terms of, e.g., stability. To further
improve the synthesized controllers, we propose a number of approaches such as imposing a larger safety region,
stability-aware loss functions, and bounded control inputs (via the Hardtanh activation function).

In general, the advantages of our approach are threefold: (1) the approach is data-driven, requiring consider-
ably less control theory expertise; (2) the approach can support non-linear control systems and safety properties,
owing to the representation power of neural networks; and (3) the approach can achieve verification-in-the-loop
synthesis, owing to the co-synthesis of controller and barrier functions, which can be seamlessly integrated to
provide a correctness-by-design controller as well as its certification.

The main contributions of the paper are summarized as follows:

• We put forward a learning-based framework to synthesize controllers as well as the associated safety certifica-
tion. This is largely a data-driven approach, with little prior knowledge required, and enjoys great flexibility
to effectively handle nonlinear (beyond polynomial) dynamics of ODEs.

• We instantiate the framework by using new class of activation functions. Moreover, we demonstrate how to
generate training set, and to construct loss functions of neural networks. We also provide practical methods
to formally verify the learnt barrier certificates represented as neural networks.

• We carry out proof-of-concept case studies to showcase the efficacy of the approach.

1.1. Related work

Our work on learning and verifying NN controllers with barrier certificates is closely related to two categories
of research, i.e. safety critical control by machine learning and formal verification of neural networks. Note that
the discussions below are necessarily non-exhaustive as a reasonably detailed discussion requires an independent
survey.

Safety Critical Control by Machine Learning. Research work in this category has been emerging in the past
years. They differ in: (1) the overall learning framework, e.g., reinforcement learning (RL) or supervised learn-
ing; (2) the component to be learned (especially by NN), e.g., the system model, the feedback control policy,
or the safety certificate; (3) the type of safety certificate, e.g., control Lyapunov function (CLF) or control bar-
rier function (CBF) [ACE+19]. A verification-in-the-loop RL algorithm was proposed in [DKYP19] to learn
safe NN controllers for known system dynamics using CBFs; an end-to-end safe RL architecture was devel-
oped by combining model-free RL control, model-based CBF control, and model learning in [COMB19]; CLFs
and CBFs are integrated into the episodic learning framework and RL framework with an emphasis on model
uncertainties in [TDL+19, TSYA19, CCTS20]; CBFs are integrated with imitation learning to train safe NN con-
trollers in [YFS20]. For all the above work, CLFs or CBFs are assumed to be given, at least in a parametric form.

Learning safe NN-controllers with barrier certificates 439

For CLFs or CBFs synthesis, a demonstrator-learner-verifier framework was proposed in [RS19] to learn polyno-
mialCLFs for polynomial nonlinear dynamical systems; a special type of neural networkwas designed in [RBK18]
as candidates for learning Lyapunov functions; a supervised learning approach was proposed in [CRG19] to learn
neural network Lyapunov functions and linear control policies; data-driven model predictive control (MPC) ex-
ploiting neural Lyapunov function and neural network dynamics model was proposed in [DJST18a, MGQ+20].
Formulti-agent systems, barrier functions have recently been applied for safe policy synthesis on POMDPmodels
[ASBA19]. The computer science community has dealt with the issue of safe controller learning in different ways.
For example, a proof-based approach was proposed in [FP18] towards safe RL; a synthesis framework capable
of synthesizing deterministic programs from neural network policies was proposed in [ZXMJ19] which enables
application of formal verification techniques for traditional software systems. Compared with the above work,
our approach has the following distinguished features:

• the controller and safety certificate are both represented and learned by NNs of general structure; no prior
knowledge or initial guess is required;

• training data generation is based on state space sampling, and therefore trajectory simulation is not needed;

Formal Verification of Neural Networks. This has attracted considerable research efforts in recent years, and
the general problem is NP-hard [KBD+17]. A large body of research focuses on the robustness issue of neural
networks. In particular, given an input subject to (adversarial) perturbations, one intends to determine whether
the output of the neural network (e.g., the classification result) is invariant to these perturbations. Essentially, this
is to estimate the output range of a given neural network on a compact set. There are now awide range ofmethods
including constraint-solving based approaches [KBD+17], optimization based approaches [DJST18b, WZC+18,
XTJ18], abstract interpretation based approaches [PT10, LLY+19], etc. The underlying techniques have also been
adopted in the study of continuous or hybrid systems [SL20, RS10, RS07]. By combing the verification of neural
networks and continuous dynamical systems, work has been done recently for verification of control systems with
neural network feedback components [DCS19, IWA+19, SKS19, DFG+19, TYML+20]. The main technique is
reachability analysis of the closed-loop system, either by finite-state abstraction [SKS19], or by reachable set
approximation based on interval or other abstract domain [DCS19, IWA+19, TYML+20]. Usually the reachable
set computation can only verify safety up to a finite time horizon, and the approximation error of reachable set
may explode. In contrast, we adopt a deductive approach based on barrier certificate, following and improving
the line of work in [TKID18].

1.2. Outline

The rest of this paper is organized as follows: some preliminary knowledge is provided in Sect. 2 for self-
containedness; the main steps of our approach is presented in Sect. 3 with a running example for demonstration;
various improvements of the synthesized controllers are discussed in Sect. 4; implementation and experiment
details are given in Sect. 5; the paper is concluded by Sect. 6. We note that a preliminary version is accepted by
SETTA 2020 as a short paper under the same title [ZZC+20].

2. Preliminaries

Throughout this paper, R denotes the set of real numbers. For any natural number n, let [n] � {1, · · · ,n}.

2.1. Constrained continuous dynamical system

A continuous dynamical system is modeled by a system of first-order ordinary differential equations (ODEs)
ẋ � f (x), where

• x � (x1, x2, . . . , xn)T ∈ R
n is a column vector, ẋ denotes the derivative of x with respect to the time variable

t , and
• f (x) : � → R

n is a vector field f (x) � (f1(x), · · · , fn (x))T defined on an open subset � ⊆ R
n .

440 H. Zhao et al.

We assume that f satisfies the local Lipschitz condition, which ensures that, given x � x0 ∈ �, there exists a
time T > 0 and a unique time trajectory x(t) : [0, T) → R

n such that d(x(t))
dt � f (x(t)) for any t ∈ [0, T) and

x(0) � x0. In the sequel, the trajectory is denoted by x(t,x0).
A constrained continuous dynamical systems (CCDS) is represented by � � (f ,XD ,XI ,XU), where

• f : � → R
n is the vector field,

• XD ⊆ � is an evolution constraint (or system domain),
• XI ⊆ XD is the set of initial states, and
• XU ⊆ XD is the set of unsafe sates.

For CCDSs, the following problem is widely investigated in safety critical applications.

Definition 2.1 (Safety Verification) A CCDS � � (f ,XD ,XI ,XU) is safe if for all x0 ∈ XI , there does not exist
t1 > 0 such that

x(t1,x0) ∈ XU and ∀ t ∈ [0, t1].x(t,x0) ∈ XD ,

that is, the system’s trajectory never reaches XU from XI as long as it remains in XD .

Remark 2.1 According to Definition 2.1, the case that the system’s trajectory from XI can first leave XD and
then enter XU does not affect the safety property of the system.

2.2. Controlled CCDS

In this paper, we consider a controlled CCDS � � (f ,XD ,XI ,XU) with continuous dynamics defined by{
ẋ � f (x,u)
u � g(x) , (1)

where x ∈ XD ⊆ R
n is the system state, u ∈ U ⊆ R

m is the control input, and f : XD × U → R
n and

g : XD → U are the locally Lipschitz continuous vector field and feedback controller function, respectively. The
problem we considered in this paper is defined as follows.

Definition 2.2 (Safe Controller Synthesis) Given a controlled CCDS � � (f ,XD ,XI ,XU) with f defined by (1),
designa locallyLipschitz continuous feedback control lawg such that the closed-loop system�with f � f (x,g(x))
is safe as per Definition 2.1.

2.3. Barrier certificate

Given a system �, a barrier certificate is a real-valued function B (x) over the states of the system satisfying the
condition that B (x) ≤ 0 for any reachable state x and B (x) > 0 for any state in the unsafe set XU . If such a
function B (x) exists, one can easily deduce that the system can not reach a state in the unsafe set from the initial
set [PJP07]. In this paper, we will certify the safety of a synthesized controller by generating barrier certificates.

There are several different formulations of barrier certificates without explicit reference to the solutions of
the ODEs [PJP07, KHS+13, DGXZ17, SGTP18]. We will adopt what are called strict barrier certificate [SPW12]
conditions.

Theorem 2.1 (Strict barrier certificate) Given a system � � (f ,XD ,XI ,XU), if there exists a continuously differ-
entiable function B : XD → R s.t.

1. B (x) ≤ 0 for ∀x ∈ XI

2. B (x) > 0 for ∀x ∈ XU

3. LfB (x) < 0 for ∀x ∈ {x ∈ XD | B (x) � 0},
then the system � is safe, and such B is a barrier certificate.

Learning safe NN-controllers with barrier certificates 441

Fig. 1. The structure of a multilayer feed-forward artificial neural network

Note that in the above third condition, LfB is the Lie derivative of B w.r.t. f , that is, the inner product of f and
the gradient of B :

LfB (x) � (∇B) · f (x) �
n∑
i�1

(
∂B (x)
∂xi

· fi (x)
)

. (2)

Proof. We prove the theorem by contradiction. Suppose that the theorem does not hold, that is, there exists a
function B satisfying the three conditions in the premise but � is not safe. Then by Definition 2.1 there exists
x0 ∈ XI and t1 > 0 such that

x(t1,x0) ∈ XU and ∀ t ∈ [0, t1].x(t,x0) ∈ XD . (3)

Denote x(t,x0) by x(t) for short for any t ≥ 0. Then by Condition 1 and 2 of Theorem 2.1, we have B (x(0)) ≤ 0
and B (x(t1)) > 0. Noting that both B and x(t) are continuous, it follows from the Intermediate Value Theorem
that there exists t2 ∈ [0, t1] s.t. B (x(t2)) � 0. Let Z � {t ∈ [0, t1] | B (x(t)) � 0}. Then it is obvious that Z is a
nonempty bounded set since t2 ∈ Z. By the Completeness of Reals,Z has a supremum, denoted by tsup � supZ.
Again by the continuity ofB (x(t)), it is not difficult to show that tsup has the following properties: (i) tsup ∈ [0, t1);
(ii) B (x(tsup)) � 0; (iii) B (x(t)) > 0,∀ t ∈ (tsup, t1]. Then by (ii) and (iii) the right-hand derivative of B (x(t))
at tsup, i.e. limh→0+

B(x(tsup+h))−B(x(tsup))
h

, is non-negative. However, according to (i), (ii), (3) and Condition 3 of
Theorem 2.1, we have that the derivative of B (x(t)) at tsup equals LfB (x(tsup)) and thus is negative, which is a
contradiction. Therefore the theorem holds. �

Remark 2.2 The converse of Theorem 2.1 does not hold in general. However, under moderate assumptions,
various converse theoremshavebeen established [WS16,Rat18],which suggests that practically abarrier certificate
does exist for a broad class of safe controlled CCDSs. Thus the crux in applying Theorem 2.1 is to find the barrier
certificate effectively.

2.4. Neural networks

In this paper, both the synthesized control law g and the barrier certificate B are represented by (feed-forward)
neural networks (NNs). We introduce some basic notions here. A typical NN consists of a number of inter-
connected neurons which are organized in a layered structure. Each neuron is a single processing element that
responds to the weighted inputs received from other neurons (cf. Fig. 1.)

In general, an NN represents a function N (x) on the input x and can be represented as a composition of its
layers. We normally reserve 0 and L for the indices of the input and the output layer respectively, and all of the
other layers in between are hidden layers. In this paper, we use superscripts to index layer-specific variables. In
particular, the layer l comprises neurons n (l)

i for i ∈ [d (l)], where d (l) is the dimension of the layer l . Neuron n (l−1)
j

of the layer l −1 is connected with neuron n (l)
i of layer l by a directed edge with weight w (l)

ij ∈ R. Each neuron n (l)
i

of layer l ∈ [L] is associated with a bias b(l)i ∈ R and an activation function a (l)
i : R → R. Usually the neurons in

the same layer has identical activation functions, denoted by a (l). Commonly used activation functions include
ReLU (rectified linear unit, i.e., max(0, x) for x ∈ R), sigmoid, hyperbolic tangent, etc.

442 H. Zhao et al.

Fig. 2. The framework of safe neural network controller synthesis

Denote the input vector to the NN by x ∈ R
d (0)

. Let the output vector of the l -th layer be x(l). Then x(0) � x.
We introduce the vector variable z(l) to denote the input vector to the l -th layer for l ∈ [L]. Thus the forward
propagation equations of an NN can be defined as⎧⎪⎪⎨

⎪⎪⎩

x(0) � x
z(l) � W(l) · x(l−1) + b(l) for l ∈ [L]
x(l) � a (l)(z(l)) for l ∈ [L]
y � N (x) � x(L)

, (4)

whereW(l) is a matrix of dimension d (l) × d (l−1), b(l) is a d (l)-dimensional column vector, and a (l) is taken as an
element-wise function for a vector input.

Training of NNs is usually performed through backward propagation, during which the parameters W’s and
b’s are updated through an optimization algorithm (e.g., stochastic gradient descent, SGD for short) applied on
the training set [GBC16].

3. Methodology

The framework of our safe controller learning approach is demonstrated in Fig. 2. Given a controlled CCDS
� � (f ,XD ,XI ,XU), the basic idea of the proposed approach is to represent the controller function g as well as
the safety certificate functionB by twoNNs, i.e.Nc andNb respectively. Then we formulate the barrier certificate
conditions as per Theorem 2.1 w.r.t.Nb and the closed-loop dynamics f (x,Nc(x)) into a loss function, and then
train the two NNs simultaneously on a generated training data set until the loss is reduced to 0. The resulting
two NNs are the controller and barrier certificate candidates, which satisfy the conditions of Theorem 2.1 on the
sampled data set. To overcome the limitation of data-driven approaches, i.e., the generalization issue of the learned
NNs on non-sampled data, formal verification (by SMT solvers in this paper) is performed on the synthesized
candidates to show that the barrier certificate conditions are indeed satisfied. The blue (solid), red (dashed), and
green (dotted) arrows in Fig. 2 show the information flow of forward propagation, backward propagation, and
formal verification, respectively.

Next, before giving more detailed steps of our approach, we first introduce a running example.

Example 3.1 (Dubins’ Car [TKID18, DKYP19]) The control objective is to steer a car with constant velocity 1 to
track a path, here the X -axis in the positive direction. The states of the car are the x , y position and the driving
direction θ , which can be transformed to the distance error de and angle error θe between the current position
and the target path (cf. Fig. 3).

Learning safe NN-controllers with barrier certificates 443

Fig. 3. States of Dubins’ car: de � y , θe � π
2 − θ Fig. 4. Simulated car trajectories with learned NN controller

The controlled CCDS � � (f ,XD ,XI ,XU) is:

f :
[
ḋe
θ̇e

]
�

[
sin(θe)
−u

]
, where u is the scalar control input

• XD : {(de, θe) ∈ R
2 | −6 ≤ de ≤ 6,−7π/10 ≤ θe ≤ 7π/10};

• XI : {(de, θe) ∈ R
2 | −1 ≤ de ≤ 1,−π/16 ≤ θe ≤ π/16};

• XU : the complement of {(de, θe) ∈ R
2 | −5 ≤ de ≤ 5,−π/2 ≤ θe ≤ π/2} in XD .

Figure 4 shows 50 simulated trajectories on the x -y plane from random initial states inXI using our learned NN
controller u. The two red horizontal lines are the safety upper and lower bounds (±5) for y (the same bounds as
de). In the rest of this paper, we will use Example 3.1 to demonstrate our safe controller synthesis approach.

3.1. The structure of Nc and Nb

We first fix the structure ofNc andNb as follows, assuming that in the controlled CCDS �, x and u are of n and
m dimension respectively, e.g. n � 2,m � 1 for Example 3.1.

• Input layer has n neurons for both Nc and Nb;
• Output layer has m neurons for Nc and one single neuron for Nb;
• Hidden layer: there is no restriction on the number of hidden layers or the number of neurons in each hidden
layer; for Example 3.1, the structures are fixed such thatNc has one hidden layer with 5 neurons, andNb has
one hidden layer with 10 neurons;

• Activation function: considering the inherent requirement of local Lipschitz continuity forNc and the inherent
requirement of differentiability for Nb, and for ease of formal verification, we adopt ReLU, i.e. a(x) �
max(0, x), and Bent-ReLU [ZZCL20], i.e.,

a(x) � 0.5 · x +
√
0.25 · x 2 + 0.0001 (5)

as activation functions for hidden layers of Nc and Nb respectively. (The Lipschitz continuity of ReLU is by
[JD20].) The activation function of the output layer is the identity map for both Nc and Nb.

Remark 3.1 According to Remark 2.2, provided that the barrier certificate for the considered system exists, the
success of our approach relies on choosing NN architectures that are sufficiently expressive for representing the
sought controller and barrier functions. The relation between the NN architecture and its approximation ability
is a hard theoretical problem and there has been much recent progress. For example, it was shown [Tel17] that
for any rational function there is a ReLU network of size (number of neurons)O

(
poly log(1/ε)

)
which is ε-close.

444 H. Zhao et al.

3.2. Training data generation

In our training algorithm, training data are generated by sampling points from the domain XD , initial set XI ,
and unsafe region XU of the considered system �. No simulation of the continuous dynamics is needed. The
simplest sampling method is to grid the super-rectangles bounding XD , XI , XU with a fixed mesh size, and then
filter out those points not satisfying the constraints ofXD ,XI ,XU . For example, we generate a mesh with 28 ×28

points from XD for Example 3.1. The obtained three finite data sets are denoted by SD , SI , and SU .

3.3. Loss function encoding

Given SI , SU , and SD , the loss function for training Nc and Nb can be expressed as

L(SD ,SI ,SU) � c1 ·
∑
x∈SI

L1(x) + c2 ·
∑
x∈SU

L2(x) + c3 ·
∑
x∈SD

L3(x) (6)

with

L1(x) � ReLU(Nb(x) + ε1) for x ∈ SI ,
L2(x) � ReLU(−Nb(x) + ε2) for x ∈ SU ,

L3(x) � ReLU
(
LfNb(x) + ε3

)
for x ∈ {x ∈ SD :| Nb(x) |≤ ε4}

(7)

denoting the sub-loss functions encoding the three conditionsofTheorem2.1, and c1, c2, c3 three positive constant
weight coefficients for the sub-losses L1,L2,L3 respectively. The basic idea is to impose a positive (resp., zero)
penalty to those sampled points that violate (resp., satisfy) barrier certificate conditions. ε1, ε2, ε3 in (7) are three
small non-negative tolerances, the role of which is to increase the generalizability of the learned NNs, i.e., to
enforce zero loss on the non-sampled data points. ε4 in (7) is a small positive constant characterizing a narrow
tube around the zero-level set ofNb, since it is hard to sample data on the level set exactly. Note that in the above
expression L3, f is f (x,Nc(x)).

3.4. The training process

We adopt a modified SGD optimization technique for training the two NNsNc andNb. That is, we partition the
training data sets SD ,SI ,SU into mini-batches and shuffle the list of batches to gain some randomness effect,
rather than shuffling thewhole training data set. For eachmini-batch of data, the loss is calculated according to (6)
and the weights and biases of the twoNNs are updated by a gradient descent step through backward propagation.
To start the training, we must first specify the ε1 to ε4 in the loss function, as well as hyper-parameters such as
number of restarts nrestart, number of epoches nepoch, number of mini-batches nbatch, and learning rate lr , etc. For
Example 3.1, we set nrestart � 5, nepoch � 100, nbatch � 4096 and lr � 0.1. The choices of ε1 to ε4 will be presented
in the following subsection. The training process terminates when the loss is reduced to 0 on all mini-batches or
the number of restarts exceeds nrestart.

3.5. Formal verification

The rigorousness of the NNs resulted from 0 training loss is not guaranteed since our approach is data-driven
and the learned NNs may lack generalization property, that is, the three conditions in Theorem 2.1 are not
necessarily satisfied byNc andNb on non-sampled data. Therefore we resort to formal verification to guarantee
the correctness of our synthesized controllers. To conduct the verification, we replace the occurrences of f and
B in Theorem 2.1 by f (x,Nc(x)) and Nb, and try to show that the negation of the conjunction of the three
conditions, i.e.

∃x.x ∈ XI ∧ Nb(x) > 0
∨ ∃x.x ∈ XU ∧ Nb(x) ≤ 0
∨ ∃x.x ∈ XD ∧ Nb(x) � 0 ∧ Lf (x,Nc(x))Nb(x) ≥ 0

(8)

is UNSATISFIABLE.

Learning safe NN-controllers with barrier certificates 445

Fig. 5. Learned and verified NN controller and barrier certificate for Example 3.1: the inner (green) and outer (red) shaded areas are the
initial and unsafe regions, black arrows in the white area are the closed-loop vector fields f (x,Nc(x)), and the blue curve surrounding the
inner shaded box is the zero-level set of Nb

Due to the high degree of nonlinearity in f andNb of (8), its satisfiability is resolved by the interval-propagation
based nonlinear SMT solver iSAT3.1 To speed up the verification process, we compute piecewise linear approxi-
mations (with interval error bounds) of Bent-ReLU function and its derivative, and replace their occurrences in
Nb and LfNb by the linear approximations. In this way, the efficiency and effectiveness of formal verification are
relevant to the following three issues:

• The tolerances chosen for loss function encoding in (6) and (7);
• The piece-wise linear approximation error of Bent-ReLU function and its derivative;
• The interval splitting width for iSAT3.

For the third issue, we usually set the minimal splitting width option --msw to 0.001 for iSAT3. The first and
second issues are addressed in the following two sub-sections.

3.5.1. Pre-training and fine-tuning

The success of synthesis and formal verification heavily relies on the choices of the four constants ε1 to ε4 in
(6) and (7). Generally, small tolerances are preferred for faster training, while larger tolerances are preferred for
formal verification to compensate for the errors caused by activation function linearization and interval arithmetic
computation. In practice, we adopt a pre-training and fine-tuning combination strategy. That is, we start with
small positive ε4 and zero ε1 to ε3 to perform the initial training. If the pre-trained NNs failed formal verification,
they are iteratively refined by gradually increasing the tolerances. For Example 3.1, the first controller and barrier
certificate are synthesized with ε4 � 0.01 and ε1 � ε2 � ε3 � 0, for which the formal verification fails, while the
fine-tuned controller and barrier certificate are successfully verified when ε3 was increased to 0.01 (cf. Fig. 5).

3.5.2. Adding normalized Lie derivative in loss encoding

Larger tolerances in the loss function (6) and (7) are not always useful for formal verification. To see this, consider
checking unsatisfiability of the third condition of (8). Note that LfB � ∇B · f � ‖∇B‖‖f‖ cos θ∇B,f , where ‖ · ‖
denotes the Euclidean norm and θ∇B,f denotes the angle between ∇B and f . Figure 6a illustrates a situation that
a point x on the zero-level set of a barrier candidate B has negative Lie derivative, as θ∇B,f is slightly larger than
π
2 at x. Moreover, it can be concluded that LfB (x) < −ε3 for very large ε3 since ‖f ‖ is large. However, formal
verification of the negative Lie derivative condition would be very hard at x, where the direction of ∇B has a
large approximation error due to piecewise linearization. For instance, if the approximated ∇B (x) ranges from
∇̃B to ∇B , then formal verification becomes impossible since θ∇B,f < π

2 which makes the Lie derivative positive.

1https://projects.informatik.uni-freiburg.de/projects/isat3/.

https://projects.informatik.uni-freiburg.de/projects/isat3/

446 H. Zhao et al.

Fig. 6. The sign of normalized Lie derivative is robust to Bent-ReLU linearization errors

Fig. 7. Simulations of Dubins’ car from (−1, −0.19) with different NN controllers for comparison of stability performance

The reason for such a phenomenon is that negative LfB does not necessarily force the span angle of ∇B and
f to be large, so the sign of LfB is not robust to approximation noises of ∇B . The problem can be resolved by
introducing additional sub-loss function specifying normalized Lie derivative into the loss function (6) as follows:

L4(x) � ReLU
(LfNb(x)

‖∇Nb‖·‖f‖ + ε5
)
, for x ∈ {x ∈ SD :| Nb(x) |≤ ε4} (9)

where ε4 are defined in (7) and ε5 is a non-negative constant. By (9), if a barrier certificate is synthesized with
zero L4 value and sufficiently large ε5, then the angle between ∇Nb and f would be large enough to tolerant
approximation errors, which leads to successful verification (cf. Fig. 6b).

4. Improvement of the learned controllers

The controller synthesized and verified in the last section is guaranteed to be safe. However, it may perform
poorly regarding properties such as stability. As an illustration, we simulate the Dubins’ car system from initial
state de � −1, θe � −0.19 using the NN controller corresponding to Fig. 5. The changes of de and θe within 60
time units are shown in Fig. 7 by ∗-marked dashed (de) or solid (θe) lines. It is obvious that the car has a large
distance error although it is still within safety bounds (±5). We therefore propose a series of ways to improve the
performance of synthesized controllers in this section.

Learning safe NN-controllers with barrier certificates 447

Fig. 8. NN controller learned and verified for Example 3.1 with larger safety margin: ε1 � 0.02, ε2 � 0.8, ε3 � 0.01, ε4 � 0.05; the inner
(green) and outer (red) shaded areas are the initial and unsafe regions, black arrows in the white area are the closed-loop vector fields
f (x,Nc(x)), and the blue curve surrounding the inner shaded box is the zero-level set of Nb

4.1. Larger safety margin

The first improvement is to gradually increase the safety margin specified by the ε2 constant in the loss function
(6) and (7) by iterative fine-tuning. For example, when ε2 is increased to 0.8, an NN controller Nc and the
corresponding barrier certificate Nb are synthesized and shown in Fig. 8. The simulation performance of Nc
is shown in Fig. 7 by ◦-marked dashed (de) or solid (θe) lines. It is obvious that the distance error is reduced
compared to the controller of Fig. 5.

4.2. Asymptotic stability

Figure 7 shows that using the NN controller with larger safety margin, the distance error of the Dubins’ car
stabilizes at a value larger than 0.5, which is not desirable. To further reduce the distance error in the long run,
we introduce additional loss terms into the loss function to express asymptotic-stability-like properties. Suppose
that xo is an expected equilibrium point of the system, that is, f (xo,Nc(xo)) � 0. For example, the system in
Example 3.1 is expected to stabilize with 0 distance and angle errors and so xo is (0, 0). Then we define the
sub-loss functions for asymptotic stability as:

L5(x) � ReLU
(− ‖f (x,Nc(x))‖ + ε6

)
for x ∈ {x ∈ SD : ‖x − xo‖ > ε7} ,

L6(x) � ReLU
(‖f (x,Nc(x))‖ − ε8

)
for x � xo

(10)

where ε6, ε7, ε8 are three small positive constants. The basic idea of L5,L6 is to impose such constraints that
the closed-loop vector field f (x,Nc(x)) has negligible norm at the asymptotically stable point xo , and strictly
positive norm outside a neighborhood of xo with radius ε7. By choosing ε7 � 0.1, ε6 � 0.05, ε8 � 0.001 we
obtain a fine-tuned Nc whose simulation performance is shown in Fig. 7 by �-marked dashed (de) or solid (θe)
lines, which demonstrate good asymptotic stability property. We also fix ε8 � 0.001, ε6 � 0.05 and compare
the performances of Nc obtained from different ε7 values. The simulation results are shown in Fig. 9. It can be
roughly concluded that decreasing ε7 will have an effect of increasing the overshoot and decreasing the settling
time of the simulated traces. An intuitive explanation of such effects is that by L5, shrinking ε7 increases ‖f‖ near
xo , and thus trajectories approaches xo quickly but may overshoot.

Comparison with LQR Controllers. To further evaluate the performance of synthesized NN controllers, we lin-
earize the Dubins’ car system near xo � (0, 0) and then compute the classic LQR (linear quadratic regulator
[Hes18]) controllers for the linearized system. Preliminary experiment shows that for fixedQ andRmatrices in the
LQR controller computation, by tuning the values of ε6 and ε7, we can obtain NN controllers with comparable
performances to LQR controllers (cf. Fig. 10).

448 H. Zhao et al.

Fig. 9. Comparison of NN controllers learned using L5 and L6 losses with ε6 � 0.05, ε8 � 0.001 for Example 3.1: all simulations are from
initial state (−1,−0.19); dashed and solid lines represent de and θe traces respectively; simulations corresponding to controllers learned with
ε7 � 0.3, 0.1, 0.05 are marked by ∗, ◦, and � respectively

Fig. 10. Simulation of NN and LQR controllers with initial state (−1, −0.19) for Example 3.1: the NN controller is synthesized with
ε6 � ε7 � 0.05, ε8 � 0.001, and the LQR controller is synthesized with Q the 2-dimensional identity matrix and R � 1; dashed and solid
lines represent de and θe traces respectively, and traces simulated with LQR and NN controllers are marked by ∗ and ◦ respectively

Remark 4.1 NN controllers are in principle much more expressive than linear controllers such as LQR, and
so it is interesting to investigate better ways of loss function encoding and controller tuning to synthesize NN
controllers superior to linear controllers (e.g., LQR) in future.

4.3. Bounded control inputs

In practice, the control input u to system (1) cannot take arbitrary values (cf. Fig. 11a) but are bounded within
a compact set U . Therefore it is necessary to consider how to synthesize bounded NN controllers for practical
applications. Actually this can be achieved simply by replacing the identity activation function in the output layer
of Nc (cf. Sect. 3.1) by any activation with bounded range, say hyperbolic tangent function. For ease of formal
verification, we adopt a piece-wise linear activation Hardtanh for the output layer of Nc, that is,

a (L)(x) � c · max
(− 1,min(1, x)

)
with c a positive constant, which restricts the output of Nc to be within [−c, c] for each dimension. For Exam-
ple 3.1, by choosing c � 3 we obtained a bounded NN controller as shown in Fig. 11b. In our experiment, the
Hardtanh activation can either be applied in the pre-training or fine-tuning phase.

Learning safe NN-controllers with barrier certificates 449

5. Implementation and experiments
Given a controlled CCDS � � (f ,XD ,XI ,XU) and generated training data set SD ,SI ,SU , in the most general
form, the loss function we adopted for training safe NN controllers is:

L(SD ,SI ,SU) � c1
∑
x∈SI

L1(x) + c2
∑
x∈SU

L2(x) +
∑
x∈SD

(
c3L3(x) + c4L4(x) + c5L5(x)

)
+ c6L6(xo) (11)

where xo is the equilibrium point, L1,L2,L3,L4,L5,L6 are defined in (7), (9) and (10), c1, c2, c3 are defined in
(6), and c4, c5, c6 are non-negative constant sub-loss weights. Thus there are totally 6 sub-loss weights denoted
by c � (c1, c2, . . . , c6) for short; besides, there are 8 tolerances in (11) denoted by ε � (ε1, ε2, . . . , ε8) for short.
Our implementation and experiments are conducted based on (11) and related notations.

5.1. The training algorithm

The main algorithm for training a safe NN controller is presented in Algorithm 1, which can be explained as
follows:

Algorithm 1 Safe NN-Controller Training Algorithm
Input: � � (f ,XD ,XI ,XU), nrestart, nepoch, nbatch, lr , c, εεε;
Output: Nc, Nb;
1: Nc, Nb = nn construct(�);
2: data gen(�);
3: for i � 1 to nrestart do
4: initialize(Nc, Nb);
5: for j � 1 to nepoch do
6: Lepoch � 0;
7: for k � 1 to nbatch do
8: Lepoch += compute batch loss(c, εεε);
9: update(Nc, Nb, lr);

10: end for
11: if decide success(Lepoch) then
12: return Nc, Nb;
13: end if
14: end for
15: end for

• nrestart,nepoch,nbatch and lr are hyper-parameters for training (cf. Sect. 3.4); in all our case studies, nrestart and
nbatch are fixed at 5 and 4096 respectively;

• nn construct() in Line 1 is to construct the structure of Nc and Nb (cf. Sect. 3.1); in all our case studies, Nc
has one hidden layer with 5 neurons, and Nb has one hidden layer with 10 neurons;

• data gen() in Line 2 is to generate batches of training data (cf. Sect. 3.2);
• initialize() in Line 4 is to initialize weights and biases of Nc and Nb by Gaussian distribution;
• compute batch loss() in Line 8 is to compute the loss value on each batch of data using the input c, εεε

(
cf.

Sect. 3.3 and (11)
)
;

• update() in Line 9 is to update Nc and Nb using gradient descent with step size lr ;
• decide success() in Line 11 is to decide the termination condition, which involves checking whether the
epoch loss Lepoch reaches 0.
We have implemented a prototype tool nncontroller2 based on the Pytorch3 platform. Given a problem

description and a set of user-specified parameters (cf. Algorithm 1), nncontroller automatically learns a safe NN
controller candidate with an NN barrier certificate, and generates script files as the input to iSAT3 for formal
verification. We have applied nncontroller to a number of cases in the literature [TKID18, DKYP19, ZXMJ19].
All experiments are performed on a laptop workstation running Ubuntu 18.04 with Intel i7-8550u CPU and
32GB memory. The details of cases studies are presented in the following sub-section.

2Publicly available at: https://github.com/zhaohj2017/FAoC-tool.
3https://pytorch.org/.

https://github.com/zhaohj2017/FAoC-tool
https://pytorch.org/

450 H. Zhao et al.

Fig. 11. Plotting of surfaces of unbound or bounded NN controllers for Example 3.1 over XD

5.2. Experiment results

In addition to the running example, we have synthesized and verified NN controllers using nncontroller for the
following cases.

Example 5.1 (Inverted Pendulum [ZXMJ19]) The controlled CCDS � � (f ,XD ,XI ,XU) is:

f :
[

θ̇
ω̇

]
�

[
ω

g
l
(θ − θ3

6) +
1

ml2
u

]
,

wherem � 1and l � 1denote thependulummass and length respectively, g � 9.8 is the gravitational acceleration,
u is the scalar control input maintaining the pendulum upright, and

• XD : {(θ, ω) ∈ R
2 | −π/2 ≤ θ ≤ π/2, −π/2 ≤ ω ≤ π/2};

• XI : {(θ, ω) ∈ R
2 | −π/9 ≤ θ ≤ π/9, −π/9 ≤ ω ≤ π/9};

• XU : the complement of {(θ, ω) ∈ R
2 | −π/6 ≤ θ ≤ π/6, −π/6 ≤ ω ≤ π/6} in XD .

Example 5.2 (Duffing Oscillator [ZXMJ19]) The controlled CCDS � � (f ,XD ,XI ,XU) is:

f :
[
ẋ
ẏ

]
�

[
y

−0.6y − x − x 3 + u

]
,

where u is the scalar control input that regulates the system’s trajectories to (0, 0), and

• XD : {(x , y) ∈ R
2 | −6 ≤ x ≤ 6, −6 ≤ y ≤ 6};

• XI : {(x , y) ∈ R
2 | −2.5 ≤ x ≤ 2.5, −2 ≤ y ≤ 2};

• XU : the complement of {(x , y) ∈ R
2 | −5 ≤ x ≤ 5, −5 ≤ y ≤ 5} in XD .

Learning safe NN-controllers with barrier certificates 451

Fig. 12. Learned and verified NN controllers and barrier certificates for Example 5.3 and 5.4: for both cases, the innermost cube (green)
represents the initial set, the outermost cube (pink) represents the system domain, and the space between the outermost and the middle
cube (grey) is the unsafe region; the irregular surface (yellow) surrounding the innermost cube is the zero-level set of synthesized NN barrier
certificates; the curves (blue) approaching the origin are simulated system trajectories

Example 5.3 (Bicycle Steering [DKYP19]) The control objective is to balance a bicycle. The states of the bicycle
are (x1, x2, x3) which denote the tilt angle, the angular velocity of tilt, and the handle bar angle with body
respectively. The controlled CCDS � � (f ,XD ,XI ,XU) is:

f :

[ẋ1
ẋ2
ẋ3

]
�

⎡
⎣ x2

ml
J
(g sin x1 + v 2

b
cos x1 tan x3)

0

⎤
⎦ +

⎡
⎣ 0

amlv
Jb

· cos x1
cos2x3

1

⎤
⎦ u ,

where u is the scalar control input,m � 20 is the mass, l � 1 is the height, b � 1 is the wheel base, J � mb2

3 is the
moment of inertia, v � 10 is the velocity, g � 10 is the acceleration of gravity, a � 0.5 is the distance between
the rear wheel and the line passing through the center of mass, and

• XD : {(x1, x2, x3) ∈ R
3 | −π/2.5 ≤ x1 ≤ π/2.5,−π/2.5 ≤ x2 ≤ π/2.5,−π/2.5 ≤ x3 ≤ π/2.5};

• XI : {(x1, x2, x3) ∈ R
3 | −π/30 ≤ x1 ≤ π/30,−π/30 ≤ x2 ≤ π/30,−π/30 ≤ x3 ≤ π/30};

• XU : the complement of {(x1, x2, x3) ∈ R
3 | −π/3 ≤ x1 ≤ π/3,−π/3 ≤ x2 ≤ π/3,−π/3 ≤ x3 ≤ π/3} in XD .

By introducing ũ such that u � ũ cos2x3 − 20 cos x3 sin x3, the original f is transformed equivalently into

f̃ :

[ẋ1
ẋ2
ẋ3

]
�

⎡
⎣ x2

30 sin x1 + 15ũ cos x1
ũ cos2x3 − 20 cos x3 sin x3

⎤
⎦ .

An NN controller representing ũ was learned and verified for the transformed system (f̃ ,XD ,XI ,XU) (cf.
Fig. 12a).

Example 5.4 (Academic 3D [DKYP19]) The controlled CCDS � � (f ,XD ,XI ,XU) is:

f :

[ẋ1
ẋ2
ẋ3

]
�

⎡
⎣ x3 + 8x2

−x2 + x3
−x3 − x 2

1

⎤
⎦ +

[
0
0
1

]
u , where u is the scalar control input

• XD : {(x1, x2, x3) ∈ R
3 | −2.2 ≤ x1 ≤ 2.2,−2.2 ≤ x2 ≤ 2.2,−2.2 ≤ x3 ≤ 2.2};

• XI : {(x1, x2, x3) ∈ R
3 | −0.2 ≤ x1 ≤ 0.2,−0.2 ≤ x2 ≤ 0.2,−0.2 ≤ x3 ≤ 0.2};

• XU : the complement of {(x1, x2, x3) ∈ R
3 | −2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2,−2 ≤ x3 ≤ 2} in XD .

An NN controller was successfully learned and verified for � (cf. Fig. 12b).

452 H. Zhao et al.

Table 1. Key parameters for pre-training and fine-tuning using nncontroller (cf. Algorithm 1 and Remark 5.1)

E.g. ne lr c εεε cv εεεv

3.1 100 0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.01, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0, 0, 0.01, 0.01, ·, ·, ·, ·)
5.1 100 0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.01, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0.01, 0, 0.02, 0.01, ·, ·, ·, ·)
5.2 100 0.01�0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.05, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.05, ·, ·, ·, ·)
5.3 200 0.01�0.2 (1, 1, 0.1, 0.1, 0, 0) (0, 0, 0, 0.02, 0, ·, ·, ·) (1, 1, 0.1, 0.1, 0.01, 0.01) (0,0,0.35,0.02,0.35,0.1,0.1,0.01)

5.4 200 0.01�0.2 (1, 1, 0.1, 0.1, 0, 0) (0, 0, 0, 0.02, 0, ·, ·, ·) (1, 1, 0.1, 0.1, 0.01, 0.01) (0.01,0.01,0.15,0.02,0.1,0.1,0.2,0.01)

Table 2. Time costs of synthesis and verification by nncontroller and iSAT3 (cf. Remark 5.2)

E.g. run 1 run 2 run 3 run 4 run 5 learning avg. cost verification cost

time nr time nr time nr time nr time nr

3.1 21.11 0 15.04 0 14.98 0 65.25 0 15.37 0 26.35 8.27
5.1 478.29 1 168.75 0 292.96 0 111.55 0 43.89 0 219.09 15.24
5.2 60.59 0 72.47 0 64.64 0 48.08 0 851.49 1 219.45 4.71
5.3 752.63 1 1528.07 2 499.83 0 122.64 0 924.41 1 765.52 1344.50
5.4 240.94 0 301.22 0 2522.14 3 1001.66 1 390.25 0 891.24 6070.83

The key parameters used by nncontroller for our experiments are summarized in Table 1, and the time costs
of synthesis and verification by nncontroller and iSAT3 are summarized in Table 2.

Remark 5.1 In Table 1, ne is a shorthand for nepoch, · means the corresponding parameter is not applicable, �

means we adopt a self-adaptive learning rate scheduling strategy, and the superscript v means that the weight
coefficients cv and parameters εεεv are for the fine-tuned controllers, which are formally verified.

Remark 5.2 In Table 2, all time costs are measured in seconds; the time cost of NN controller training is not
deterministic since theNNmodels are initialized randomly and the batches of training data are shuffled during the
training process, and therefore we record the time costs of 5 separate runs of the training algorithm and compute
the averaged cost; nr denotes how many times we restart the algorithm when no NN controller is learned within
the specified number of training epochs, i.e. nepoch; the last column corresponds to time costs of formal verification
for the NN controllers and barrier certificates obtained with the cv and εεεv parameters in Table 1 for each case.

Remark 5.3 Comparison of time costs of our experiment with related work such as [DKYP19, ZXMJ19] is not
straightforward sincewe train twoNNs simultaneously, while [DKYP19] requires user-provided barrier functions
and [ZXMJ19] requires pre-trained NN controllers as their inputs. However, considering the number of layers
and neurons (we use one hidden layer with 5 neurons and ReLU activations forNc uniformly), it can be asserted
that our synthesized NN controllers have much simpler structure than [DKYP19, ZXMJ19].

6. Conclusion

We have proposed a new approach to synthesize neural network controllers for nonlinear continuous dynamical
systems with control against safety properties. Our approach features in verification-in-the-loop synthesis: we
simultaneously train the controller and its certificate, which we use barrier functions, represented by an NN as
well. We have provided a prototype tool nncontroller with a number of case studies. The experiment results have
confirmed the feasibility and efficacy of our approach.

Future work includes experimenting on different sampling and training strategies to reduce the data set size
and to improve the training efficiency, as well different verificationmethods/tools other than interval SMT solvers.
In particular, we plan to combine the counter-example-driven framework for program analysis [NARH17] with
our proposed approach. Recently, the counter-example-guided inductive synthesis procedure (CEGIS) has been
employed inNNbarrier certificates generation for continuous and hybrid systems with no control input [PAA20].

Learning safe NN-controllers with barrier certificates 453

We anticipate that these would potentially further improve the scalability of our approach.We also plan to extend
our approach to other properties such as reachability coupled with cost/reward based optimality as what has been
done in optimal control and reinforcement learning.

Acknowledgements

We thank the anonymous reviewers for their valuable comments on the earlier versions of this paper, and thank
Prof. Jyotirmoy V. Deshmukh for the explanation on the bicycle model of Example 5.3. H. Zhao was supported
partially by theNationalNatural ScienceFoundation ofChina (No. 61702425, 61972385);X. Zengwas supported
partially by the National Natural Science Foundation of China (No. 61902325), and “Fundamental Research
Funds for theCentralUniversities" (SWU117058); T. Chen is partially supported byNSFCgrant (No. 61872340),
and Guangdong Science and Technology Department grant (No. 2018B010107004), the Overseas Grant of the
State Key Laboratory of Novel Software Technology (No. KFKT2018A16), the Natural Science Foundation of
Guangdong Province of China (No. 2019A1515011689); Z. Liu was supported partially by the National Natural
Science Foundation of China (No. 62032019, 61672435, 61732019, 61811530327), and Capacity Development
Grant of Southwest University (SWU116007); J. Woodcock was partially supported by the research grant from
Southwest University.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

[ACE+19] Ames AD, Coogan S, Egerstedt M, Notomista G, Sreenath K, Tabuada P (2019) Control barrier functions: theory and
applications. In: 2019 18th European control conference (ECC), pp 3420–3431

[ASBA19] AhmadiM, Singletary A, Burdick JW, Ames AD (2019) Safe policy synthesis in multi-agent POMDPs via discrete-time barrier
functions. In: 2019 IEEE 58th conference on decision and control (CDC). IEEE, pp 4797–4803

[BTSK17] BerkenkampF, TurchettaM, Schoellig AP,Krause A (2017) Safemodel-based reinforcement learning with stability guarantees.
In: Proceedings of the 31st international conference on neural information processing systems, NIPS’17. Curran Associates
Inc., Red Hook, NY, USA, pp 908–919

[CCTS20] Choi J, Fernando C, Tomlin CJ, Sreenath K (2020) Reinforcement learning for safety-critical control under model uncertainty,
using control Lyapunov functions and control barrier functions. https://arxiv.org/abs/2004.07584

[COMB19] Cheng R, Orosz G, Murray RM, Burdick JW (2019) End-to-end safe reinforcement learning through barrier functions for
safety-critical continuous control tasks. In: The thirty-third AAAI conference on artificial intelligence, AAAI 2019. AAAI
Press, Honolulu, Hawaii, USA, January 27–February 1, 2019, pp 3387–3395

[CRG19] ChangY-C,RoohiN,Gao S (2019)Neural lyapunov control. In: Advances in neural information processing systems 32. Curran
Associates Inc., pp 3245–3254

[DCH+16] Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement learning for continuous
control. In: Proceedings of the 33nd international conference on machine learning, ICML 2016, New York City, NY, USA,
June 19–24, 2016, volume 48 of JMLR workshop and conference proceedings, pp 1329–1338. JMLR.org

[DCS19] Dutta S, Chen X, Sankaranarayanan S (2019) Reachability analysis for neural feedback systems using regressive polynomial
rule inference. In: Proceedings of the 22nd ACM international conference on hybrid systems: computation and control, HSCC,
pp 157–168

[DFG+19] Dreossi T, Fremont DJ, Ghosh S, Kim E, Ravanbakhsh H, Vazquez-Chanlatte M, Seshia SA (2019) VerifAI: a toolkit for
the formal design and analysis of artificial intelligence-based systems. In: Computer aided verification. Springer International
Publishing, pp 432–442

[DGXZ17] Dai L, Gan T, Xia B, Zhan N (2017) Barrier certificates revisited. J Symb Comput 80:62–86
[DJST18a] Dutta S, Jha S, Sankaranarayanan S, Tiwari A (2018) Learning and verification of feedback control systems using feedforward

neural networks. IFAC-PapersOnLine 51(16):151–156. 6th IFAC conference on analysis and design of hybrid systems ADHS
2018

[DJST18b] Dutta S, Jha S, Sankaranarayanan S, Tiwari A (2018) Output range analysis for deep feedforward neural networks. In: NASA
formal methods. Springer International Publishing, pp 121–138

[DKYP19] Deshmukh JV, Kapinski J, Yamaguchi T, Prokhorov D (2019) Learning deep neural network controllers for dynamical systems
with safety guarantees: Invited paper. In: 2019 IEEE/ACM international conference on computer-aided design (ICCAD), pp
1–7

[FP18] FultonN, Platzer A (2018) Safe reinforcement learning via formalmethods: toward safe control through proof and learning. In:
Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18). AAAI Press, New Orleans, Louisiana,
USA, February 2–7, 2018, pp 6485–6492

[GBC16] Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press
[Hes18] Hespanha JP (2018) Linear systems theory. Princeton University Press, second edition
[ICW+20] Ivanov R, Carpenter TJ, Weimer J, Alur R, Pappas GJ, Lee I (2020) Case study: verifying the safety of an autonomous racing

car with a neural network controller. In: HSCC ’20: 23rd ACM international conference on hybrid systems: computation and
control, Sydney, New South Wales, Australia, April 21–24, 2020. ACM, pp 28:1–28:7

https://arxiv.org/abs/2004.07584

454 H. Zhao et al.

[IWA+19] Ivanov R,Weimer J, Alur R, Pappas GJ, Lee I (2019) Verisig: verifying safety properties of hybrid systems with neural network
controllers. In: Proceedings of the 22nd ACM international conference on hybrid systems: computation and control, HSCC
2019. pp 169–178

[JD20] Jordan M, Dimakis AG (2020) Exactly computing the local Lipschitz constant of ReLU networks. https://arxiv.org/abs/2003.
01219

[KBD+17] Katz G, Barrett C, Dill DL, Julian K, Kochenderfer MJ (2017) Reluplex: an efficient smt solver for verifying deep neural
networks. In: International conference on computer aided verification. Springer, pp 97–117

[KHS+13] Kong H, He F, Song X, Hung WNN, Gu M (2013) Exponential-condition-based barrier certificate generation for safety
verification of hybrid systems. In: Proceedings of the 25th international conference on computer aided verification (CAV).
Springer, pp 242–257

[LHP+16] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2016) Continuous control with deep rein-
forcement learning. In: 4th International conference on learning representations, ICLR 2016, San Juan, Puerto Rico, May 2–4,
2016, Conference Track Proceedings

[LLPS93] Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function
can approximate any function. Neural Netw 6(6):861– 867

[LLY+19] Li J, Liu J, Yang P, Chen L, Huang X, Zhang L (2019) Analyzing deep neural networks with symbolic propagation: towards
higher precision and faster verification. In: Static analysis. Springer International Publishing, pp 296–319

[MGQ+20] Mittal M, Gallieri M, Quaglino A, Salehian SSM, Koutnı́k J (2020) Neural lyapunov model predictive control. https://arxiv.
org/abs/2002.10451

[NARH17] Nguyen T, Antonopoulos T, Ruef A, Hicks M (2017) Counterexample-guided approach to finding numerical invariants. In:
Proceedings of the 201711th jointmeetingon foundationsof software engineering,ESEC/FSE2017.Association forComputing
Machinery, New York, NY, USA, pp 605–615

[PAA20] Peruffo A, Ahmed D, Abate A (2020) Automated and formal synthesis of neural barrier certificates for dynamical models.
https://arxiv.org/abs/2007.03251

[PEY01] Poznyak A, Sanchez EN, Yu W (2001) Differential neural networks for robust nonlinear control. World Scientific
[PJP07] Prajna S, Jadbabaie A, PappasGJ (2007) A framework for worst-case and stochastic safety verification using barrier certificates.

IEEE Trans Autom Control 52(8):1415–1429
[PT10] Pulina L, Tacchella A (2010) An abstraction-refinement approach to verification of artificial neural networks. In: Computer

aided verification, pp 243–257
[RAA19] Ray A, Achiam J, Amodei D (2019) Benchmarking safe exploration in deep reinforcement learning. https://cdn.openai.com/

safexp-short.pdf
[Rat18] Ratschan S (2018) Converse theorems for safety and barrier certificates. IEEE Trans Autom Control 63(8):2628–2632
[RBK18] Richards SM, Berkenkamp F, Krause A (2018) The lyapunov neural network: adaptive stability certification for safe learning

of dynamic systems. http://arxiv.org/abs/1808.00924
[RS07] Ratschan S, She Z (2007) Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM

Trans Embed Comput Syst 6(1):1–23
[RS10] Ratschan S, She Z (2010) Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-

like functions. SIAM J Control Optim 48(7):4377–4394
[RS19] RavanbakhshH, Sankaranarayanan S (2019) Learning control Lyapunov functions from counterexamples and demonstrations.

Auton Robots 43(2):275–307
[SGTP18] Sogokon A, Ghorbal K, Tan YK, Platzer A (2018) Vector barrier certificates and comparison systems. In: Formal methods,

pp 418–437
[SKS19] Sun X, Khedr H, Shoukry Y (2019) Formal verification of neural network controlled autonomous systems. In: Proceedings of

the 22nd ACM international conference on hybrid systems: computation and control, HSCC 2019. pp 147–156
[SL20] She Z, Li M (2020) Over- and under-approximations of reachable sets with series representations of evolution functions. IEEE

Trans Autom Control
[SPW12] Sloth C, Pappas GJ, Wisniewski R (2012) Compositional safety analysis using barrier certificates. In: Proceedings of the hybrid

systems: computation and control (HSCC). ACM, pp 15–24
[TDL+19] Taylor AJ, Dorobantu VD, Le Hoang M, Yue Y, Ames AD (2019) Episodic learning with control Lyapunov functions for

uncertain robotic systems. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 6878–
6884

[Tel17] Telgarsky M (2017) Neural networks and rational functions. In: Proceedings of the 34th international conference on machine
learning—volume 70, ICML’17, pp 3387–3393. JMLR.org

[TKID18] Tuncali CE, Kapinski J, Ito H, Deshmukh JV (2018) Invited: Reasoning about safety of learning-enabled components in
autonomous cyber-physical systems. In: 2018 55th ACM/ESDA/IEEE design automation conference (DAC), pp 1–6

[TSYA19] Taylor A, Singletary A, Yue Y, Ames A (2019) Learning for safety-critical control with control barrier functions. https://arxiv.
org/abs/1912.10099

[TYML+20] Tran H-D, Yang X, Lopez DM, Musau P, Nguyen LV, Xiang W, Bak S, Johnson TT (2020) NNV: the neural network verifi-
cation tool for deep neural networks and learning-enabled cyber-physical systems. In: Computer aided verification. Springer
International Publishing, pp 3–17

https://arxiv.org/abs/2003.01219
https://arxiv.org/abs/2003.01219
https://arxiv.org/abs/2002.10451
https://arxiv.org/abs/2002.10451
https://arxiv.org/abs/2007.03251
https://cdn.openai.com/safexp-short.pdf
https://cdn.openai.com/safexp-short.pdf
http://arxiv.org/abs/1808.00924
https://arxiv.org/abs/1912.10099
https://arxiv.org/abs/1912.10099

Learning safe NN-controllers with barrier certificates 455

[WS16] Wisniewski R, Sloth C (2016) Converse barrier certificate theorems. IEEE Trans Autom Control 61(5):1356–1361
[WZC+18] Weng T-W, Zhang H, Chen H, Song Z, Hsieh C-J, Daniel L, Boning DS, Dhillon IS (2018) Towards fast computation of

certified robustness for relu networks. In: Proceedings of the 35th international conference on machine learning, ICML 2018,
pp 5273–5282

[XTJ18] XiangW, Tran H-D, Johnson TT (2018) Output reachable set estimation and verification for multilayer neural networks. IEEE
Trans Neural Netw Learn Syst 29(11):5777–5783

[YFS20] Yaghoubi S, Fainekos G, Sankaranarayanan S (2020) Training neural network controllers using control barrier functions in
the presence of disturbances. https://arxiv.org/abs/2001.08088

[ZXMJ19] Zhu H, Xiong Z, Magill S, Jagannathan S (2019) An inductive synthesis framework for verifiable reinforcement learning.
In: Proceedings of the 40th ACM SIGPLAN conference on programming language design and implementation, PLDI 2019.
Association for Computing Machinery, New York, NY, USA, pp 686–701

[ZZC+20] Zhao H, Zeng X, Chen T, Liu Z, Woodcock J (2020) Learning safe neural network controllers with barrier certificates. In:
Dependable software engineering. Theories, tools, and applications. Springer International Publishing, Cham, pp 177–185

[ZZCL20] Zhao H, Zeng X, Chen T, Liu Z (2020) Synthesizing barrier certificates using neural networks. In: HSCC ’20. ACM, pp
25:1–25:11

Received 14 September 2020
Accepted in revised form 1 March 2021 by Xiaoping Chen, Ji Wang and Cliff Jones
Published online 2 April 2021

https://arxiv.org/abs/2001.08088

	Learning safe neural network controllers with barrier certificates
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Outline

	2 Preliminaries
	2.1 Constrained continuous dynamical system
	2.2 Controlled CCDS
	2.3 Barrier certificate
	2.4 Neural networks

	3 Methodology
	3.1 The structure of mathcalNc and mathcalNb
	3.2 Training data generation
	3.3 Loss function encoding
	3.4 The training process
	3.5 Formal verification
	3.5.1 Pre-training and fine-tuning
	3.5.2 Adding normalized Lie derivative in loss encoding

	4 Improvement of the learned controllers
	4.1 Larger safety margin
	4.2 Asymptotic stability
	4.3 Bounded control inputs

	5 Implementation and experiments
	5.1 The training algorithm
	5.2 Experiment results

	6 Conclusion
	Acknowledgements
	References

