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Abstract
Due to the development of pre-trained language models, automated code generation tech-
niques have shown great promise in recent years. However, the generated codewill not always
adhere to syntactic constraints of the target language, especially in the case of Turducken-
style code, where declarative code snippets are embeddedwithin imperative programs. In this
study, we summarize three significant challenges in regards to syntactic constraints: (1) the
efficient representation of syntactic constraints, (2) the effective integration of syntactic infor-
mation, and (3) the scalable syntax-first decoding algorithm. To address these challenges,
we propose a syntax-guided multi-task learning approach TurduckenGen. Specifically, we
first explicitly append the type information to the code tokens to capture the representation
of syntactic constraints. Then we formalize code generation with syntactic constraint rep-
resentation as an auxiliary task to enable the model to learn the syntactic constraints of the
code. Finally, the syntactically correct code is selected accurately from the multiple can-
didates with the help of the compiler feedback. Extensive experiments and comprehensive
analysis demonstrate the effectiveness and general applicability of our approach after being
compared with six state-of-the-art baselines on two Turducken-style code datasets. Finally,
we conducted a human study and found the code quality generated by our approach is better
than baselines in terms of code readability and semantic similarity.

Keywords Syntactically-constrained code generation · Turducken-style code ·
Multi-task learning · CodeT5 · Abstract syntax tree

1 Introduction

Contemporary society is dependent on intricate software applications, and the development
of such applications is a complex and prolonged process (Liu et al. 2023c). As the complexity
of software increases, the development process becomes increasingly time-consuming and
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susceptible to errors. Moreover, the demand for acquiring proficiency in multiple program-
ming languages is high, especially for novice developers, which further complicates software
development (Xu et al. 2022). To mitigate these challenges, neural code generation has been
proposed as a solution that aims to synthesize code snippets based on functional descriptions,
with the potential to alleviate the burden of programmers during the development process.

Based on the type of target programming languages, the existing code generation tasks
can be classified into imperative code generation and declarative code generation. Previous
studies have demonstrated that existing methods can generate code with an accuracy of
over 90% on datasets of declarative programs (Sun et al. 2020; Xuan et al. 2021), while the
accuracy on datasets of imperative programs is less than 35% (Ahmad et al. 2021;Wang et al.
2021b). However, large software systems are rarely developed exclusively in a declarative
language in practical software development. Instead, declarative programs are commonly
embedded within imperative programs, which are normally referred to as Turducken-style
programs (Liang et al. 2021). For example, in information management systems, developers
often includeSQLstatementswithin imperative programs; in datamining systems, developers
often incorporate regular expressionswithin imperative programs.A scientifically compelling
and engineering-significant question is how to bring the good performance of automatic
declarative program generation to real-world software development.

In general, automatic code generation can be beneficial in various aspects, such as
increasing development efficiency, reducing potential faults in code, and enhancing code
maintainability and readability. The automatic Turducken-style code generation method is
primarily intended to assist programmers who need to simultaneously write declarative and
imperative programs during the development process, thereby increasing development effi-
ciency and productivity.

Turducken-style code is prevalent in real-world software development. Allamanis and
Sutton (2013) observed that SQL is frequently used in conjunction with imperative pro-
gramming languages, such as Java and Python. Moreover, we have retrieved Q&A posts on
Stack Overflow with both keywords SQL and Java or SQL and Python in the past 10 years.
The statistics are shown in Fig. 1 where we can find that the number of posts tagged by
SQL and Java has been stable, while the number of posts tagged by SQL and Python has

Fig. 1 The number of related posts in Stack Overflow by year
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Table 1 A Post Related to Turducken-style Code Generation on Stack Overflow

Title Using Spring JdbcTemplate to extract one string

Can’t seem to find a way to get one string from table using JdbcTemplate query.

This is the table my sql returns:

Content

Now how am I supposed to get the value of STREET_NAME. SQL always returns one row,

so no need to worry about returning more than one row.

But how can I extract “Elm street" from it using JdbcTemplate?

Tags java, sql, hsqldb, jdbctemplate

increased steadily due to the growing popularity of Python. Table 1 presents a real-world post
from Stack Overflow1 In this post, the user had successfully constructed a SQL statement
query, but encountered difficulties in embedding it into a Java program. This illustrates the
challenges faced by developers who are not proficient in imperative programming languages
when attempting to write Turducken-style code in the software development process.

In previous studies (Ahmad et al. 2021; Wang et al. 2021b; Niu et al. 2022; Chakraborty
et al. 2022), a prevalent approach is to directly fine-tune pre-trained language models (PLMs)
to generate code. However, this approach has a severe limitation, i.e., the generated code may
not follow the syntactic rules of the targeted programming language (Dong et al. 2022), which
can result in the failed compilation. This issue is particularly serious for domain-specific
datasets. For example, in the field of exploit code generation, the two previous studies (Liguori
et al. 2021; Yang et al. 2023) both exhibited that even the most advanced pre-training models
can generate code that is lexically similar. Therefore, there is still room for improvement
in terms of grammatical accuracy. In data science code generation, (Huang et al. 2022)
found that about 8% of the errors in the generated code are due to syntax issues. Similarly,
(Liang et al. 2021) have demonstrated the feasibility of using pre-trained language models
to generate Turducken-style code but also admitted the less accurate syntactic conformation.
The purpose of the automatic code generation model is to improve the efficiency of software
development through automation and intelligent techniques. However, if the generated code
has syntax problems, developers may need to spend a lot of time fixing the defects in the
code. Therefore, generating code that conforms to syntactic constraints is still a significant
area of research within the field.
Proposed solution. To address these issues, we propose a novel approach, i.e., Turducken-
Gen, which is based on CodeT5 (Wang et al. 2021b) and multi-task learning. TurduckenGen
proposes corresponding solutions from three perspectives. (1) The efficient representation
of syntactic constraints. TurduckenGen uses the syntax rule description language to repre-
sent syntactic constraints. TurduckenGen first parses the code into an abstract syntax tree,
transforming it from a serialized text representation into a syntax tree with rich structural
information. Then TurduckenGen proposes the syntax augmented traversal (SAT) algorithm,
which can capture the representation of syntactic constraints by traversing the abstract syn-
tax tree of the original code and explicitly appending the type information of the parent
node to the code tokens. We refer to code with syntactically constrained representations as

1 https://stackoverflow.com/questions/29286725/
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syntax-guided code. (2)The effective integration of syntactic information. TurduckenGen
formalizes syntax-guided code generation as an auxiliary task to enable the model to learn
to generate code that adheres to syntactic constraints. Moreover, TurduckenGen employs
a hard prompt method to facilitate the model’s ability to distinguish the primary tasks and
the auxiliary tasks. TurduckenGen employs the pre-training model CodeT5 to understand
the user’s functional description and learn both the target code and its corresponding code
satisfying syntactic constraints. The encoder and decoder parameters are shared in the joint
learning process, and the task-specific layers are customized in the final stage of mapping the
semantic vector to the vocabulary. In order to incorporate the syntactic constraints learned
in the auxiliary task into the primary task, TurduckenGen utilizes a gated linear unit for
knowledge fusion. (3) The scalable syntax-first decoding algorithm. TurduckenGen pro-
poses the syntax-first beam search (SF-Beam Search) method to maximize the ability of the
model to generate syntax-correct code, where it can be easily integrated into existing pre-
trained models. Specifically, the syntactically correct code can be selected accurately from
the multiple candidates with the help of the compiler feedback.

To evaluate the effectiveness of TurduckenGen, we conduct experiments on two
Turducken-style code datasets Lyra and Pisces, where Lyra (Liang et al. 2021) is obtained
from GitHub repositories and annotated by human annotators, whereas Pisces is obtained
by manually translating the python code in Lyra into the corresponding Java code through
a crowd-sourcing approach. TurduckenGen is compared to six state-of-the-art baselines,
including Transformer (Vaswani et al. 2017), CodeBERT (Feng et al. 2020), Graph-
CodeBERT (Guo et al. 2021), GPT (Radford et al. 2019), CodeGPT (Lu et al. 2021a),
UniXcoder (Guo et al. 2022) and CodeT5 (Wang et al. 2021b), in terms of six automatic
performance metrics (i.e., BLEU (Papineni et al. 2002), Weighted BLEU (Ren et al. 2020),
Crystal BLEU (Eghbali and Pradel 2022), Code BLEU (Ren et al. 2020), SyntaxMatch (Ren
et al. 2020), SyntaxExactMatch (Liang et al. 2021), andCodeExecutable (Liang et al. 2021)).
The comparison results show that TurduckenGen outperforms these baselines. Moreover,
we design ablation studies to verify the effectiveness of multi-task learning and the method
SF-Beam Search. Finally, from practitioners’ perspectives on the generated Turducken-style
code, we conduct a human evaluation to evaluate the quality of the generated code in terms
of code readability and semantic similarity. The final results also show the competitiveness
of our proposed approach.

The main contributions of our study can be summarized as follows.

– We propose a novel approach TurduckenGen for generating syntax-guided Turducken-
style code. By utilizing CodeT5 and multi-task learning, we can effectively integrate
syntax knowledge into the generated code, while our proposed SAT algorithm and SF-
Beam Search method can improve the ability of the model to capture the representation
of syntactic constraints and generate syntax-correct code.

– We conduct comprehensive experiments using both automatic evaluation metrics and
human evaluation to assess the performance of TurduckenGen on two Turducken-style
code datasets. The results of the evaluation indicate that TurduckenGen outperforms the
state-of-the-art baselines.

– To facilitate the replication and reuse of TurduckenGen, we develop an Integrated Devel-
opment Environment (IDE) plug-in and make our source code, trained models, as well
as the datasets in the GitHub repository publicly available2.

Structure The rest of the paper is organized as follows. Section 2 introduces the background
of our work. Section 3 describes the framework of TurduckenGen and its key components.

2 https://github.com/NTDXYG/TurduckenGen
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Section 4 presents the experimental design and result analysis. Human Evaluation and poten-
tial threats to validity are given in Sections 6 and 7 respectively. Section 8 reviews the related
work and emphasize the novelty of our study, and Section 9 concludes the paper.

2 Background

In this section, we provide an overview of the background of Turducken-style code, CodeT5,
and multi-task learning.

2.1 Turducken-style Code

In the neural code generation task, programming languages are typically classified into two
categories: declarative and imperative programming languages.Declarative programming is a
paradigm that expresses the logic of a computation without describing its control flow (Lloyd
1994). It can simplify writing parallel programs (Bailey 2009). Examples of declarative lan-
guages include database query languages (e.g., SQL, XQuery), regular expressions, markup
languages (e.g., HTML, XAML), functional programming (e.g. Haskell, Scheme), and
configuration management systems (e.g., Json, YAML). On the other hand, imperative pro-
gramming is a paradigm that focuses on describing how a program should accomplish a
task without specifying all the details of how the program should achieve the result (Gifford
and Lucassen 1986). Imperative programming focuses on describing how a program runs
step-by-step, rather than on a high-level description of its intended outcome. Examples of
imperative languages include C, C++, Java, Python, and so on.

Turducken-style code, which was first proposed by Liang et al. (2021), refers to a style
of code where declarative programming is embedded within imperative programming. This
type of code can be commonly found in real-world software systems. For example, SQL
statements are often usedwith imperative programming in informationmanagement systems,
and regular expressions are commonly used with imperative programming in data mining
systems.

2.2 CodeT5

CodeT5 (Wang et al. 2021b) is an identifier-aware unified pre-trained encoder-decodermodel
for code understanding and generation, which is based on the Transformer architecture
(Vaswani et al. 2017). It is pre-trained on the large-scale dataset CodeSearchNet (Husain
et al. 2019) and BigQuery (Fernandes and Bernardino 2015), which includes eight program-
ming languages (i.e., Go, Java, Javascript, PHP, Python, Ruby, C, and CSharp). To address
out-of-vocabulary issues, CodeT5 utilizes a code-specific tokenizer based on the Byte-level
BPE method. To take advantage of both bimodal and unimodal large-scale data, CodeT5
proposes four pre-training tasks: Masked Span Prediction (MSP), Identifier Tagging (IT),
Masked Identifier Prediction (MIP), and Bimodal Dual Generation (BDG).

The MSP pre-training task takes a lexical perspective of the code, it utilizes a whole word
span masking objective that randomly masks spans of arbitrary lengths and then predicts
these masked spans combined with some sentinel tokens at the decoder. The IT and MIP
pre-training tasks take a syntactic perspective of the code. It aims to notify the model with
the knowledge of whether a code token is an identifier or not, and MIP masks all identifiers
in the program language segment, which is inspired by obfuscation in the field of software
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engineering. The BDG pre-training task treats code generation and code summarization as
dual tasks. To bridge the gap between the programming language and natural language, BDG
leverages bimodal data to train the model for bidirectional conversion.

2.3 Multi-task Learning

Multi-task learning (MTL) is a machine learning paradigm. MTL aims to leverage useful
information shared across multiple related tasks, which can improve the generalization per-
formance on all tasks or enhance the model performance for a specific task by using auxiliary
tasks (Liu et al. 2020a). MTL methods can be divided into hard or soft parameter sharing. In
hard parameter sharing, the hidden layer is shared between all tasks, while keeping the output
layer for several specific tasks. Intuitively, the more tasks that are learned simultaneously,
the more representation of the tasks can be captured by the model, resulting in less risk of
overfitting the primary task. In soft parameter sharing, each task has its own hidden layers
and output layer. To ensure that the parameters of each task are similar, the distance between
the parameters of each task is regularized.

In the Turducken-style code generation task, MTL has a natural advantage due to the
limited labeled data. From a data augmentation perspective, MTL aggregates training sam-
ples from datasets of multiple tasks, which is especially beneficial for low-resource tasks
whose labeled dataset is sometimes too small to sufficiently train a model. In most cases, the
augmented training dataset alleviates the risk of overfitting and leads to more robust mod-
els (Sánchez-Cartagena et al. 2021). Furthermore, MTL provides additional performance
gains compared to data augmentation approaches, due to the learned shared knowledge.

2.4 Prompt-based Learning

Prompt-based learning (Liu et al. 2023b) is a strategy to train large language models (LLMs)
so the samemodel can be used for different downstream tasks without re-training. Traditional
strategies for training large language models (such as GPT-3 and BERT) require the model
to be pre-trained with unlabeled data and then fine-tuned for specific tasks with labeled data.
In contrast, prompt-based learning models can autonomously tune themselves for different
tasks by transferring domain knowledge (Wang et al. 2022a) introduced through prompts.

In general, a prompt is a snippet of natural language text that is added to unlabeled
data during the pre-training phase (Gao et al. 2021). The art of writing useful prompts is
called prompt engineering. According to the flexibility of the inserted prompt, prompt tuning
techniques can be categorized into two types, i.e., hard prompt (Gu et al. 2022) and soft
prompt (Li and Liang 2021). The hard prompt is a technique that modifies the model input
by adding fixed natural language instruction (prompts), and the tokens in the soft prompt are
continuous vectors that can be learned during the tuning stage.

3 Approach

Figure 2 illustrates the overall framework of TurduckenGen. Itmainly consists of two phases:
Model Training Phase and Model Inference Phase. Model Training Phase mainly includes
prompt construction, syntax constraint representation, and syntax information integration.
Specifically, we build a prompt that consists of the task description. We also represent syntax
constraints using a syntax tree and integrate syntax information into the model, which is used

123



Empirical Software Engineering           (2023) 28:141 Page 7 of 35   141 

Fig. 2 Overview framework of our proposed approach

to guide the model to generate syntactically correct code. Model Inference Phase mainly
introduces the scalable syntax-first decoding algorithm SF-Beam Search. This algorithm is
used to generate code by considering the feedback provided by the compiler.

In the rest of this section, we provide more details on these two phases to better illustrate
the novelty of our approach.

3.1 Model Training Phase

To train the model, we input the natural language functional descriptions of both the primary
and auxiliary tasks. We use the template-based hard prompt method to allow the model to
recognize and learn different tasks. Compared to continuous-based soft prompt methods, our
method is prompted by a series of discrete tokens that are meaningful and understandable.
For our task, we design the template by appending task-specific instructions as follows:

f prompt ([T ASK ], [X ], [Y ]) = “Generate [T ASK ] code : [X ] [Y ]” (1)

This template explains that the model is to generate the code [Y] according to functional
description [X] under the task [TASK]. Specifically, the input of the auxiliary task is “Generate
syntax code: [X]", and the output is a sequence that contains syntax information, which is
referred to as “syntax-guided code". The input of the primary task is “Generate origin code:

Fig. 3 An example is used to illustrate how SAT traverses the AST of the source code
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[X]", and the output is code sequence, which is referred to as “original code". Both the
auxiliary task and the primary task use the model’s output and ground truth to calculate the
loss function, and the model parameters are updated through backward propagation.

Figure 3 provides the process of the representation of syntactic constraints, and Fig. 4
provides an overview of the proposed networkmodel architecture for the effective integration
of syntactic information. In the rest of this section, we show the details of the representation
of syntactic constraints (i.e., Syntax Augmented Traversal) and the integration of syntactic
information (i.e., Model Architecture).

3.1.1 Syntax Augmented Traversal

To facilitate the pre-trained language model to generate code that adheres to the target pro-
gramming language’s syntactic constraints, we propose a SyntaxAugmented Traversal (SAT)
algorithm for the efficient representation of syntactic constraints. This algorithm parses the
AST of the source code and then converts it into a sequence of tokens annotatedwith syntactic
information. The details of this algorithm can be found in Algorithm 1.

Step 1. From the root node, we use a pair of XML-like flags to annotate the syntax type.
Step 2. Then, we traverse the sub-trees of the root node by pre-order traversal. For a non-

leaf node, a determination is made as to whether the node is a string, in which case the label
‘STR’ is utilized for the node. Conversely, the token value to the current node is employed.
For a leaf node, its root node is incorporated into the XML-like flags.

Step 3. Traversing all sub-trees by recursion, this process continues until all nodes are
traversed. The result of this process is a syntax-guided code sequence.

An illustrative example is shown in Fig. 3. Different colors are assigned to the nodes in the
AST in the figure for illustrative purposes. Specifically, the red nodes indicate identifiers in
the code, which embody the lexical information of the code. For this type of nodes, their value
is retained. The blue nodes imply the type of these identifiers. For this type of nodes, their type
information is ignored. The green nodes represent the complete syntax constraint information
of the code (e.g., module, block, and return_statement), and the first three characters of its
type information are extracted as its syntactic information. SAT appends these green nodes’
type information to the red nodes’ tokens explicitly to incorporate syntactic constraints. This
approach enables the preservation of syntactic information and the ability to revert back to
the original code.

3.1.2 Model Architecture

The architecture of TurduckenGen adheres to the Transformer (Vaswani et al. 2017) and
pre-trainedmodelCodeT5 (Wang et al. 2021b),which have been successfully utilized in code-
related tasks. The architecture is primarily composed of three sub-modules. (1) Encoder. It
aims to encode the functional description and employs multi-head self-attention to learn

Fig. 4 The structure of the multi-task learning used in our neural network
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Algorithm 1 Syntax Augmented Traversal (SAT) Algorithm.
Input : AST tree of Source Code Parsed by Tree-Sitter;
Output : Syntax-guided Code syn_code;

1 syn_code ← ∅;
2 if ! tree.hasChild then
3 if tree.type == Identifier then
4 if tree.value is String then
5 syn_code ← STR;
6 else
7 syn_code ← tree.value;
8 else
9 syn_code ← tree.value;

10 else
11 syn_code ←< tree.type>;
12 for each c ∈ tree.getChilds do
13 syn_code ← syn_code + SAT (c)
14 syn_code ←</tree.type>;
15 return syn_code;

the sequential information of the functional description. (2) Decoder. It aims to generate
Turducken-style code through the use of the self-attention layer and the encoder-decoder
attention layer. (3) Task-specific Layers. They are designed to learn the mapping relation-
ships of various tasks separately and to integrate the knowledge of the auxiliary task into the
primary task using the Gated Linear Unit (GLU) network.
Encoder. TurduckenGen first generates embedding vectors that capture the semantic mean-
ing of tokens and their position within a functional description. For a functional description
X , TurduckenGen firstly tokenizes it into a sequence of sub-words (i.e., X = x1, · · · , xm)
by the BPE algorithm (Raffel et al. 2020), where m is the length of the tokenized sequence.
For each sub-word, TurduckenGen generates an [1x768] embedding vector and combines it
into a matrix to represent the meaningful relationship between a given token and the other
tokens. In addition, to capture the position of each token within a functional description,
TurduckenGen employs the relative position encoding technique (Raffel et al. 2020).

Encoder contains a stack of twelve layers of blocks, each block consists of two sub-
components: a multi-head self-attention layer with relative position encoding and a feed-
forward neural network. In contrast to the original Transformer, each sub-component in
TurduckenGen is followed by a layer normalization and has a residual connection behind it.
Given an input vector X , the first step is to create three main vectors (i.e., a query vector Q, a
key vector K , and a value vector V ). Further, TurduckenGen computes the relative positional
information P , where P is an edge representation for the two inputs in dot-product operation
to determine the positional information between tokens. P is supplied to the model as an
additional component to the K and V , and the final attention score is computed as follows:

Attention(Q, K , V ) = softmax

(
Q(K + P)T√

dk

)
(V + P) (2)

Thus, for the embedding vector X , TurduckenGen first uses a layer normalization step
and creates three vectors (Q, K , and V ), which are then fed into Multi-head Attention Layer.

Q,K,V = LayerNorm(X) (3)

Multi-head attention mechanisms obtain h different representations of (Q, K , and V ).
Then they concatenate the results and project the concatenation with a residual connection
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layer.

headi = Attention
(
QWQ

i , KWK
i , VWV

i

)
(4)

MultiHead(Q, K , V ) = Concat i (headi )W (5)

Xatten = X + MultiHead(Q, K , V ) (6)

Finally, TurduckenGen feeds Xatten into the feed-forward layer (FFN) to generate the
hidden state vector Xhidden.

Xhidden = LayerNorm(Xatten +FFN(X)) (7)

Decoder In the decoder part, TurduckenGen also contains a stack of twelve layers of blocks,
but each block consists of three sub-components: a masked multi-head self-attention layer
with relative position encoding, a multi-head encoder-decoder attention layer with relative
position encoding, and a feed-forward neural network. The feed-forward neural network
is as same as that in the Encoder component, while the self-attention layer is similar to
that in the encoder component except that it only deals with generated code tokens in the
output sequence. Different from the self-attention layer, the encoder-decoder attention layer
learns the relationship between the source functional description and the target code. The
calculation of Ycross-atten is similar to self-attention. The Queries matrix Q comes from the
output of the self-attention layer and the Key matrix K and Values matrix V from the output
of the encoder component Xhidden. Finally, TurduckenGen feeds Ycross-atten into the FFN to
generate the hidden state vector Yhidden.
Task-specific Layers Task-specific output layers are employed to generate task-specific
outputs, which contain Auxiliary LM layer, Primary LM layer, and GLU layer.

For the auxiliary task, we append the prompt ‘Generate syntax code:’ to the func-
tional description, denoted as Xaux. Its corresponding decoder output vector is denoted as
Yaux-hidden. The auxiliary LM layer is defined to produce the probability distribution of the
syntax-guided code.

Paux = Yaux-hiddenW
aux + bsyn (8)

For the primary task, we append the prompt ‘Generate origin code:’ to the functional
description, denoted as Xpri. Its corresponding decoder output vector is denoted as Ypri-hidden.
Both the Primary LM layer and the Gated Linear Unit (GLU) network are defined to generate
the probability distribution of the Turducken-style code.

Ppri =
(
Ypri-hiddenW

pri + bpri
)

⊗ σ
(
Ypri-hiddenW

aux + baux
)

(9)

The GLU employed here is intended to integrate the code syntax knowledge obtained
from the Auxiliary LM layer into the Primary LM layer for the purpose of enforcing syn-
tactic constraints. The GLU allows the network to selectively attend to the output of the
semantic vectors in the Auxiliary LM and Primary LM layers for the purpose of knowl-
edge interaction and selection. Furthermore, the GLU possesses non-linear characteristics
while also maintaining a linear path for the gradient, thereby reducing the issue of vanishing
gradients (Dauphin et al. 2017).

To learn these two tasks jointly, the parameters of TurduckenGen are trained to minimize
the sum of the cross-entropy losses of the two tasks. The final loss function is presented as
follows.

loss = min
θ

LPrimary(θ) + LAuxiliary(θ) (10)
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3.2 Model Inference Phase

During the model inference phase, the prompt template proposed in (1) is constructed to
direct the trained model to generate the original code.

The model output is the probability of each token. In the decoding phase, we propose a
scalable syntax-first beam search (SF-Beam Search) method to generate the Turducken-style
code.

Recall that the beam search algorithm (Wiseman and Rush 2016) maintains a beam of k
possible tokens

(
tokenit

)
i = 1k at each time step t , where k represents the beam size. The

possible tokens are updated as follows: for each token tokenit , it adds each of the correspond-
ing k most probable candidates, resulting in at most k Ã- k new tokens of size increased
by 1. Then among these tokens, the k tokens with the highest likelihood are selected, thus

obtaining the next step tokens
(
tokenit+1

)k
i=1. However, the beam search algorithm aims at

optimizing likelihood and ignores the code syntax, thus we cannot guarantee that the code
decoded by beam search can be compiled and executed correctly.

Our proposedSyntaxFirstBeamSearch (SF-BeamSearch)method is a simple yet effective
solution that can be easily integrated into existing models. The SF-Beam Search method is
based on our observation that there is a subtle gap between likelihood and code syntax. The
likelihood of a code sequence indicates the maximum probability between tokens, but it does
not ensure that the code is syntactically correct. To fill this gap, the SF-Beam Search method
takes the k candidate code generated by the beam search algorithm and feeds them into a
compiler tool in descending order of likelihood. If the current candidate code is executable,
the SF-Beam Search method outputs it and terminates the loop. If all k candidate code are
not executable, the SF-Beam Search method outputs the candidate code with the highest
likelihood.

4 Experimental Setup

4.1 Research Questions

To evaluate the effectiveness of our proposed approach TurduckenGen, wewant to investigate
the following four research questions (RQs).

– RQ1: Can our proposed approach TurduckenGen outperform the state-of-the-art base-
lines?

– RQ2:What is the contribution of the multi-task learning of TurduckenGen?
– RQ3:What is the benefit of using SF-Beam Search method of TurduckenGen?
– RQ4:What is the impact of different hard prompts of TurduckenGen?

In RQ1, we want to compare TurduckenGen with previous pre-trained code generation
methods in terms of automatic evaluation metrics. In RQ2, we want to adopt two variants of
the multi-task learning methods to investigate the impacts of the multi-task learning method
on TurduckenGen. In RQ3, we want to analyze the effectiveness between the SF-Beam
Search method in TurduckenGen and other different decoding methods to demonstrate its
benefit. In RQ4, we want to further explore the impact of different hard prompts on the
performance of TurduckenGen.
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Fig. 5 An example in the Lyra and Pisces datasets

4.2 Datasets

The Lyra dataset (Liang et al. 2021) which is for mapping functional descriptions to
Turducken-style code, only considers Python code with embedded SQL. To improve the
diversity of Turducken-style code generation, we used a crowd-sourcing approach to trans-
late the Python code in Lyra into its corresponding Java code and modified the functional
description.

Finally, we construct a new high-quality dataset Pisces. The corpus contains 2,000
Turducken-style code and corresponding functional descriptions, which are in Java with
embedded SQL.

In particular, the dataset Lyra is crawled from GitHub and rewritten code and comments
by manual filtering. For the dataset Pisces, we hired two Java programmers with 3-5 years of
development experience to label the dataset for 10 working days, with each of them spending
1-2 hours per day. They were paid a total of 1,200 Chinese yuan (CNY) as a reward. After
the label work was completed, we used Maven to compile and check all the code to ensure
the quality of the dataset. To ensure the quality of Lyra and Pisces, we also hired other
six graduate student volunteers to review this dataset and discuss and fix the disputed data.
Both Lyra and Pisces datasets have two different code styles (i.e., using native SQL and
using Object Relational Mapper SQL). To ensure data consistency, ORM in Python uses
SQLAlchemy3, and ORM in Java uses JPA4. Figure 5 shows an example to illustrate our
used datasets.

The statistical information (such as the count of code snippets, average tokens in the code,
and average tokens in the functional descriptions) of the Lyra and Pisces datasets is shown
in Table 2.

3 https://www.sqlalchemy.org
4 https://spring.io/projects/spring-data-jpa
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Table 2 Statistical information of
our used Lyra and Pisces datasets

Corpus Type Train Valid Test

Lyra Count 1,600 200 200

Avg. token in NL 47.18 47.42 47.27

Avg. token in CODE 57.94 58.51 57.66

Pisces Count 1,600 200 200

Avg. token in NL 46.73 45.66 46.57

Avg. token in CODE 79.15 89.20 84.93

4.3 EvaluationMetrics

To give a comprehensive evaluation, we use six metrics (i.e., BLEU,Weight-BLEU, Crystal-
BLEU, Syntax-Match, SyntaxExact-Match,Code-BLEU, andCode-Executable), which have
been widely used in previous related studies (Hussain et al. 2020,b, 2021; Yang et al. 2021b,
2022a), to automatically assess the quality of the generated code.

BLEU (Papineni et al. 2002),Weight-BLEU (Ren et al. 2020), andCrystal-BLEU (Eghbali
and Pradel 2022) perform code similarity computation from the lexical perspective. Specif-
ically, BLEU treats the generated code as the sentence in natural language, Weight-BLEU
considers keywords in programming languages on the basis of BLEU, and Crystal-BLEU
considers the inherent differences between source code and natural language, and optimizes
the computation of N-grams in BLEU. Syntax-Match (Ren et al. 2020) and SyntaxExact-
Match (Liang et al. 2021) perform code similarity computation from the syntax perspective.
Syntax-Match (Liang et al. 2021) obtains all the sub-tree of the AST and then calculates the
accuracy by comparing the candidate and reference sub-trees, while SyntaxExact-Match is
the exact match of both AST and SQL statement, which alsomeans the functional correctness
of the generated code. Code-BLEU (Ren et al. 2020) is the mixed evaluation metric, which
absorbs the strength of BLEU in the n-gram match and further injects code syntax via AST
and code semantics via data-flow analysis.

In addition,Code-Executable (Wang et al. 2022b;Liang et al. 2021) is designed to calculate
the executable rate of the generated code. Specially, for the Lyra dataset, we use Python 3.95

as the compiler and utilize theAPI provided by pylint6 for automated checking. For the Pisces
dataset, we use JDK 1.87 as compiler and utilize the command mvn compile provided

by Maven8 for automated checking.
To ensure the fairness of the experiment, we use the scripts provided by Ren et al. (2020)

and Liang et al. (2021) to calculate the value of these metrics. These performance metrics
range from 0 to 1, where larger values represent higher similarity.

4.4 Baselines

To our best knowledge, there are no models specifically designed for Turducken-style code
generation. There exists only an empirical study (Liang et al. 2021) on Turducken-style code
generation and we use their selected methods as our baselines. We evaluate the competi-

5 https://www.python.org/downloads/release/python-390/
6 https://github.com/PyCQA/pylint
7 https://www.oracle.com/java/technologies/downloads/#java8
8 https://maven.apache.org/
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Table 3 Hyperparameter settings Hyperparameter Value Hyperparameter Value

Optimizer AdamW Seed 1234

Learning Rate 5e-5 Training batch size 16

Beam size 10 Validation batch size 16

Max input length 150 Max output length 256

tiveness of our proposed approach against seven state-of-the-art pre-trained code generation
baselines. Specifically, we classify these baselines into four groups. The first group is the
original Transformer (Vaswani et al. 2017), which trains the model from the scratch. The
second group is Encoder-Only pre-trained models, including CodeBERT (Feng et al. 2020)
and GraphCodeBERT (Guo et al. 2021). The third group is Decoder-Only pre-trained mod-
els, including GPT (Radford et al. 2019) and CodeGPT (Lu et al. 2021a). The last group is
Encoder-Decoder pre-trained model, including UniXcoder (Guo et al. 2022), CodeT5 (Wang
et al. 2021b).

4.5 Experimental Settings

In our empirical study, Transformer is implemented by OpenNMT-py (Klein et al. 2017),
other pre-trainedmodels and corresponding tokenizers are loaded from the official repository
Huggingface9 and our used framework is Pytorch10. The hyper-parameters and their values
used in our empirical study are summarized in Table 3, where optimizer, learning rate, and
beam size are referenced to the parameters of CodeT5 (Wang et al. 2021b).

We implement TurduckenGen using PyTorch 1.8 and all the experiments run on a com-
puter with an Intel(R) Xeon(R) Silver 4210 CPU and the Tesla V100 SXM2 GPU with 32
GB memory. The running OS platform is Linux OS.

4.6 Tool Implementation

To help developers improve development efficiency, we have also developed an IDE plug-in
based on our proposed approach. Our developed plug-in can be integrated into a range of
IDEs under JetBrains11 products (e.g. IDEA and PyCharm). We show the screenshot of our
developed plug-in in Fig. 6. In our plug-in, developers first simply enter their functional
requirements. Then they select these requirements with the mouse and right-click ‘Turduck-
Gen’ in the shortcut menu. Finally, our plug-in can automatically generate the corresponding
code.

9 https://huggingface.co/models
10 https://pytorch.org/
11 https://www.jetbrains.com/

123

https://huggingface.co/models
https://pytorch.org/
https://www.jetbrains.com/


Empirical Software Engineering           (2023) 28:141 Page 15 of 35   141 

Fig. 6 The screenshot of our developed IDE plug-in

Table 4 The comparison results between our proposed TurduckenGen and baselines

Corpus Approach BLEU Weight-B Crystal-B Code-B S-M SE-M C-E

Lyra Transformer 38.97 39.52 10.00 46.46 48.46 0.00 15.00

CodeBERT 63.29 63.93 43.70 68.77 74.04 6.50 59.50

GraphCodeBERT 67.34 67.91 50.43 71.78 76.26 8.50 53.50

GPT 72.76 73.17 60.88 77.26 81.36 21.50 92.50

CodeGPT 73.23 73.65 63.51 77.41 80.37 24.00 96.00

UniXcoder 70.45 70.33 62.10 70.17 70.73 18.50 70.00

CodeT5 76.59 76.97 67.84 80.25 83.20 30.00 95.50

TurduckenGen 78.36 79.23 69.77 82.72 86.92 34.00 100.00

Pisces Transformer 41.66 42.12 10.91 49.35 52.86 1.00 74.00

CodeBERT 57.65 58.48 32.67 61.05 61.81 0.00 93.50

GraphCodeBERT 60.22 61.05 38.06 63.16 62.68 1.00 93.50

GPT 61.88 62.87 45.60 64.50 62.64 1.00 89.50

CodeGPT 62.75 63.64 47.28 65.32 63.08 1.50 89.50

UniXcoder 61.27 62.25 46.35 64.45 62.94 1.50 94.50

CodeT5 63.69 64.36 46.02 65.96 63.27 1.50 97.00

TurduckenGen 66.53 67.18 52.03 68.52 65.22 2.50 100.00
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5 Experimental Results

5.1 RQ1: Can our Proposed Approach TurduckenGenOutperform
the State-of-the-Art Baselines?

We first apply our approach TurduckenGen and the baseline methods (i.e., Transformer,
CodeBERT, GraphCodeBERT, GPT, CodeGPT, and CodeT5) on Lyra and Pisces, and com-
pare their performance in terms of six automatic evaluation metrics. Then we use Wilcoxon
signed-rank tests (Wilcoxon 1992) at the confidence level of 95% to check whether the per-
formance differences are significant. Moreover, we use two samples to perform a qualitative
analysis for our proposed approach.

Table 4 shows the comparison results between TurduckenGen and the baselines. For
both the Lyra and Pisces, TurduckenGen can achieve the best performance in terms of all
the performance metrics. Specifically, in terms of BLEU, Weight-BLEU, Crystal-BLEU,
and Code-BLEU, TurduckenGen can improve the performance by at least 2.31%, 2.94%,
2.84%, and 3.08% in Lyra, and by at least 4.46%, 4.38%, 10.05%, and 3.88% in Pisces.
This demonstrates that TurduckenGen can generate more precise code at the lexical level.
In terms of Syntax-Match and Syntax Exact-Match metrics, TurduckenGen can improve
the performance by at least 4.47% and 13.33% in Lyra, and 3.08% and 66.67% in Pisces.
This demonstrates that TurduckenGen is capable of generating code that not only matches
syntax more accurately, but also with more similar semantics. In terms of Code-Executable
metrics, TurduckenGen can achieve a 100% code execution rate on both Lyra and Pisces.
This demonstrates that TurduckenGen generates more syntactically correct code.

In addition, we conduct a Wilcoxon signed-rank test (Wilcoxon 1992) with a significance
level of 0.05 to assess the statistical significance of the performance differences between
TurduckenGen and the state-of-the-art baseline CodeT5. The Wilcoxon signed-rank test is
a two-sided test by default, which means that it tests the null hypothesis that there is no
significant difference in performance between TurduckenGen and CodeT5, regardless of the
direction of the difference. In our study, the null hypothesis is denoted as H0, i.e., there is no
significant difference between TurduckenGen and the state-of-the-art baseline in terms of
metrics BLEU,Weight-BLEU,Crystal-BLEU,Code-BLEU, and SyntaxMatch. The results
are shown in Table 5. In this table, we find all the p-values are smaller than 5e-2. These
statistical results lead to the rejection of the null hypothesis, which means that there exists
a significant difference between our approach and baseline. Note that the results in Table 4
show that TurduckenGen can outperform other baselines. Therefore we can conclude that
TurduckenGen achieves better performance than other baseline approaches significantly.

Finally, we show two examples with the ground-truth code and the code generated by
TurduckenGen and all baselines in the Lyra dataset and the Pisces dataset respectively.
As shown in Fig. 7, the code generated by CodeBERT contains syntax errors and fails to
compile successfully. Additionally, the code generated by GraphCodeBERT deviates from

Table 5 The p-value between our proposed TurduckenGen and CodeT5 by using the Wilcoxon signed-rank
test

Corpus BLEU Weight-BLEU Crystal-BLEU Code-BLEU Syntax-Match

Lyra 2.6e-3 1.7e-4 4.2e-2 5.8e-4 1.4e-3

Pisces 3.0e-10 6.5e-11 3.1e-16 4.3e-11 7.2e-5
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Fig. 7 The example of Turducken-style code generated by TurduckenGen and baselines in the Lyra dataset

the user’s specifications as indicated by error messages. An exception in the SQL statement
is present in the code generated by GPT, specifically an extraneous The . Furthermore, the
code generated byCodeGPT andCodeT5may contain a bug, i.e., the generated code lacks the
return branch of else , it will return jsonify(None) during code execution resulting
in an exception. In contrast, the code generated by TurduckenGen can accurately reflects
the functional requirements, though differing from the ground-truth code in terms of naming
identifiers.As shown inFig. 8, the code generated byCodeBERT,GraphCodeBERT,GPT, and
CodeGPT all have problems in their SQL statements. While the code generated by CodeT5
is semantically consistent with the ground-truth code, it diverges in terms of code style,
specifically in the utilization of native SQL statements as opposed to the ORM framework
employed by the ground-truth code. Therefore, the code generated by TurduckenGen shows
higher similarity to the ground-truth code, both in semantics and code style. Thus, we can
observe that TurduckenGen can generate higher-quality code compared to baselines (Fig. 9).

Summary for RQ1

TurduckenGen can significantly outperform the baselines in terms of six perfor-
mance metrics on both Lyra and Pisces.

123



  141 Page 18 of 35 Empirical Software Engineering           (2023) 28:141 

Fig. 8 The example of Turducken-style code generated by TurduckenGen and baselines in the Pisces dataset

5.2 RQ2:What is the Contribution of theMulti-task Learning of TurduckenGen?

To demonstrate the significance of each component in our proposed multi-task learning
framework, we conduct a comparison of our approach with three of its variants:

– Variant_1 does not introduce task-specific layers. This variant uses the same model and
learns different tasks according to the prompt.

– Variant_2 does not introduce additional GLU for knowledge interaction. In this variant,
the task-specific layers of the two tasks are separated and do not affect each other.

– Variant_3does not introduce the auxiliary task andonly consider the impact of the primary
task. This variant model only contains CodeT5 with prompt and SF-beam search.

In Table 6, We can verify the effectiveness of task-specific layers and GLU by comparing
TurduckenGen and variants. Similar to RQ1, we use BLEU,Weight-BLEU, Crystal-BLEU,
Code-BLEU, Syntax-Match, Syntax Exact-Match, and Code-Executable to evaluate the
effectiveness of our proposed approach and these three variants. As shown in Table 6, our
proposed approach TurduckenGen shows superior performance compared to the other three
variants on allmetrics. Specifically, we can notice thatwhen TurduckenGen removes only the
GLU, there is a decrease in both lexical and syntactic similaritywhen compared toVariant 2 in
Lyra and Pisces. On the contrary, Variant 1 shows comparable performance to that of Variant
2. When TurduckenGen removes the multitask learning framework and considers only the
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Fig. 9 The framework structure of the different variants

primary task, it can achieve lower performance than both variant 1 and variant 2 in terms
of most metrics, especially on Syntax-Match and Code-Executable. These findings suggest
that, within a multi-task learning framework, the inclusion or exclusion of task-specific
layers does not have a significant impact on performance if there is no additional semantic
interaction. Furthermore, we show the importance of multitask learning by comparing it with
variant 3, which retains only prompt and SF-beam search compared to TurduckenGen, but
is also can outperform CodeT5 with Code-Executable, which shows that the construction of
prompt and compiler-based SF-beam search are also beneficial for CodeT5. Moreover, these
results indicate that the incorporation of the GLU in TurduckenGen effectively embeds the
grammatical knowledge acquired through the auxiliary task into the primary task, thereby
improving the model’s performance.

Table 6 The comparison results between our proposed TurduckenGen and two variants

Corpus Approach BLEU Weight-B Crystal-B Code-B S-M SE-M C-E

Lyra Variant_1 77.67 78.86 69.11 80.96 85.45 29.00 99.00

Variant_2 77.93 78.70 68.37 81.21 84.95 30.50 100.00

Variant_3 76.97 77.32 68.10 81.03 84.25 30.50 97.50

TurduckenGen 78.36 79.23 69.77 82.72 86.92 34.00 100.00

Pisces Variant_1 64.84 66.51 50.74 66.48 64.52 2.00 99.50

Variant_2 65.85 65.95 51.59 67.24 64.48 2.00 100.00

Variant_3 64.04 65.29 49.75 66.30 63.86 2.00 98.00

TurduckenGen 66.53 67.18 52.03 68.52 65.22 2.50 100.00
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Table 7 The comparison results between SF-Beam Search and other decoding algorithms

Corpus Approach BLEU Weight-B Crystal-B Code-B S-M SE-M C-E

Lyra Sampling Search 76.26 76.91 65.38 79.55 83.23 29.00 94.50

Greedy Search 77.89 78.75 69.12 81.07 84.86 31.50 96.50

Beam Search 78.03 78.94 69.17 81.44 86.08 32.50 97.00

SF-Beam Search 78.36 79.23 69.77 82.72 86.92 34.00 100.00

Pisces Sampling Search 64.52 64.48 49.48 66.23 63.98 1.50 96.50

Greedy Search 65.12 66.04 50.98 66.94 64.50 2.00 97.00

Beam Search 66.05 66.15 51.86 67.36 64.98 2.00 98.00

SF-Beam Search 66.53 67.18 52.03 68.52 65.22 2.50 100.00

Summary for RQ2

Different from previous multi-task learning frameworks, we incorporate GLU after
task-specific layers, which enables the incorporation of knowledge acquired through
the auxiliary task into the primary task. Our study shows this setting can result in a
positive impact on the performance of TurduckenGen.

5.3 RQ3:What is the Benefit of Using the SF-Beam SearchMethod
of TurduckenGen?

To investigate how the SF-Beam Search method affects the performance of TurduckenGen,
we mainly consider three different decoding algorithms:

– Sampling Search. It is a sampling algorithmwith randomness. Compared to the algorithm
by probability, this sampling algorithm can introduce more randomness and is often
present in dialogue generation task (Liu et al. 2020b).

– Greedy Search. It is a simple yet effective sampling algorithm that directly selects the
token with the maximum probability for each output until a terminator appears or the
maximum sentence length is reached.

– Beam Search. It is a heuristic graph search algorithm that keeps top-k token nodes with
the highest probability at each step, which can reduce the space and time cost occupied
by the search.

We show the comparison results in Table 7 and we find that the SF-Beam Search method
works best both on Lyra and Pisces. Compared with Sampling Search, Greedy Search, and
Beam Search, our SF-Beam Search method outperforms them in all metrics, especially in
code execution rate. Therefore, the results show the effectiveness of our proposed GE-BS
method.

Furthermore, as our SF-Beam Search method employs the beam search technique, the
size of the beam size can have a direct impact on the performance of code generation. Thus,
we conduct a comparison of the BLEU metric trends for code generated by the SF-Beam
Search method and the beam search method for different beam sizes.

Later, we conduct a time cost analysis when considering program compiler cost during
beam search in our SF-Beam Search method. Specifically, we find that without optimization,
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(a) The hyper-parameter beam size in Lyra (b) The hyper-parameter beam size in Pisces

Fig. 10 The influence of the hyper-parameter beam size in Lyra and Pisces, where the horizontal axis denotes
beam size and the vertical axis denotes the value of BLEU

the average time required for the program compiler is approximately 1∼2 seconds. This
additional time cost resulted in a total time cost of approximately 15 seconds for each test
sample when the beam search is set to 10. However, by using the multi-threading technology,
the time cost for each test sample can be reduced to around 2∼3 seconds when the beam
search is 10.

Finally, we conduct a series of experiments for the influence of the hyper-parameter beam
size. As shown in Fig. 10, we can observe that the performance of code generated by the beam
search method exhibits fluctuations as the beam size increases, while the code generated by
the SF-Beam Search method demonstrates higher stability. Furthermore, the quality of code
generated by the SF-Beam Search method is higher than that of the beam search method
when analyzing all the results.

Summary for RQ3

In comparison to other decoding algorithms, the utilization of SF-Beam Search can
result in a positive impact on the performance of Turducken-style code generation
and demonstrates higher stability.

5.4 RQ4:What is the Impact of Different Prompt Methods of TurduckenGen?

In our study, we manually define the natural language tokens in hard prompt templates.
To explore the impact of hard prompts and other prompt methods on TurduckenGen, we
analyzed the performance of different hard prompts, soft prompts, and mixed prompts in
terms of seven automatic metrics in this RQ:

– [X] [Y] means that the hard prompt is not used and relies only on the final LM layer for
judgment.

– [TASK] : [X] [Y] means to use the name of the task as the hard prompt, without adding
any other prompt token.

– Generate Turducken-Style code under [TASK] : [X] [Y] has the same meaning as the
prompt used in TurduckenGen, but we add some tokens to make the prompt longer.

– [SOFT] ∗ n : [X] [Y] means to prepend several virtual tokens to the original input,
which is referred as prefix-tuning (Li and Liang 2021) and is a typical method of soft
prompt (Wang et al. 2022a).
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– [SOFT] ∗n+Generate [TASK] code : [X] [Y]means adding several virtual tokens before
the hard prompt, which is referred as mixed prompt (Longpre et al. 2023).

We follow the setting ofWang et al. (2022a) and set the value of the parameter n in the soft
prompts and mixed prompts to 4.We show the comparison results in Table 8. In this table, we
can find that the different prompts have a slight impact on the performance, and using hard
prompt templates for TurduckenGen can achieve the best performance on both Lyra and
Pisces in terms of most metrics. More importantly, a well-designed hard prompt template is
particularly important. A good prompt can stimulate the potential of the model, but this may
require the experts to rely on their own experience for tuning. Moreover, our results indicate
a similarity in the model performance between the incorporation of solely the soft prompt
and the absence of any prompt. However, the introduction of a mixed prompt can lead to
optimal model performance in several metrics. This result shows the significance of the hard
prompt and the possibility of improving model performance through the implementation of
the soft prompt as a precursor to a well-designed hard prompt.

Summary for RQ4

We demonstrate the importance of different prompt methods and find only well-
designed prompts can have a positive impact on the performance of TurduckenGen.

6 Human Evaluation

In RQ1, we conducted performance comparisons automatically in terms of six performance
metrics. However, in the absence of test cases, these automatic performance metrics may not
truly reflect the semantic similarity between different code snippets. To alleviate this issue,
we further conducted a human evaluation to verify the effectiveness of our proposed approach
TurduckenGen. In our human study, we only compare TurduckenGen with CodeT5, which
can achieve the best performance in all baselines.

We refer to the methodology used by Hu et al. (2022) and Yang et al. (2022c) to conduct
the human evaluation in the code generation task. In the human study, we evaluate the quality
of the generated code from three aspects:

– Code Readability. It evaluates the code readability of the generated code. For
example, Java code should follow DRAFT12 and Python code should follow PEP 813.

– Semantic Similarity. It evaluates the semantic similarity between the generated
code and the reference code since the code snippets with the same semantics may differ
at the lexical level.

– User Preference. It evaluates the users’ preference score between the reference
code and code generated by the two methods, which can represent the real preferences
of the users and avoid the bias caused by the provided ground truth.

The scores of Code Readability and Semantic Similarity range from 0
to 4 (the higher the better) and all these scores are integers. In consideration of User
Preference, we designed it as a choice question, where volunteers were asked to select
the one or more codes they think best from three candidate codes (i.e., the reference code,

12 http://cr.openjdk.java.net/~alundblad/styleguide/index-v6.html
13 https://peps.python.org/pep-0008
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Fig. 11 A questionnaire used to evaluate Code Readability and Semantic Similarity in our human evaluation

the code generated by CodeT5, and the code generated by TurduckenGen). We invite five
volunteers, who have 3∼5 years of Java and Python experience and have good English read-
ing ability. Then we paid a certain fee for each participant in their code evaluation work.
Due to the high cost of manually analyzing all these samples in the testing set, we randomly
select 100 Turducken-style code snippets and functional descriptions by following Hu et al.
(2021). Specifically, we randomly selected 50 samples from the Lyra and 50 samples from
the Pisces. To avoid any potential bias (i.e., answer leakage) caused by previously sampled
individuals in the Code Readability and Semantic Similarity stages, we randomly selected
new 50 samples for the User Preference questionnaire for the same group of volunteers.

For each code snippet, we generate a questionnaire for each participant, which is shown
in Figs. 11 and 12.

In the questionnaire used to evaluate Code Readability and Semantic Similarity, there are
two code snippets generated by TurduckenGen and the baseline CodeT5 respectively. Each
participant is asked to score each code in terms of code readability and semantic similarity
for two code snippets generated by TurduckenGen and the baseline CodeT5 respectively.
In the questionnaire used to evaluate user preference, there are three code snippets, which
contain the reference code, the code generated by TurduckenGen, and the code generated
by CodeT5 respectively. Since there is the possibility of the exact match between these three
code snippets, each participant is asked to choose one or more codes that best match the
functional description.
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Fig. 12 A questionnaire used to evaluate User Preference in our human evaluation

During the code quality evaluation process, the participants can discuss and resort to exter-
nal resources (e.g., Wikipedia and Q&Awebsites). To ensure the fairness of the comparison,
the participants do not know which code is generated by which approach, and the order of
questionnaires is different for different participants. To guarantee the code evaluation quality,
we need each participant to review only 25 code snippets in half a day to avoid fatigue.

Figures 13 and 14 show the statistical results of this feedback in terms of code readability
and semantic similarity. In these two figures, the left and right sub-figures show the votes
for the Turducken-style code generated by CodeT5 and TurduckenGen, respectively. In
terms of code readability, we find that 83% of the human ratings for the code generated
by TurduckenGen are not less than 3, which means that they are considered to have good
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Fig. 13 Rating distribution of human evaluation in terms of code readability

programming specifications and can be easily comprehended by the user. In terms of semantic
similarity, we find that 87% of the human ratings for the code generated by TurduckenGen
are not less than 3, which means they are considered to have good quality and can be used
as code without major modifications.

We also compute the average score of the participants’ feedback and the results are shown
in Table 9. In this table, values in parentheses indicate the degree of consistency of the
scores marked by the participants using Kendall’s coefficient of concordance (Legendre
2005). Notice the value of Kendall’s coefficient of concordance ranges from 0 to 1, with
larger values indicating higher concordance. Based on the results, we can find that for the
Lyra, TurduckenGen can outperform the approach CodeT5 by 0.340 and 0.516 respectively
in terms of code readability and semantic similarity. For example, in the corpus Pisces,
TurduckenGen can outperform the approach CodeT5 by 0.424 and 0.720 respectively in
terms of code readability and semantic similarity. In addition, all Kendall’s coefficient of
concordance in our human evaluation is larger than 0.5, which indicates their scores are
about the same degree of concentration.

As for user preference, we first calculate the score for each volunteer, which is the pro-
portion of times they chose the reference code, the code generated by CodeT5, and the code

Fig. 14 Rating distribution of human evaluation in terms of semantic similarity
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Table 9 Results of our human study in terms of code readability, semantic similarity (values in parentheses
indicate Kendall’s coefficient of concordance in our human evaluation), and user preference

Dataset Approach Code Readability Semantic Similarity User Preference

Lyra Reference - - 86.6%

CodeT5 3.152 (0.533) 3.136 (0.788) 52.4%

TurduckenGen 3.492 (0.553) 3.652 (0.843) 68.5%

Pisces Reference - - 90.4%

CodeT5 2.464 (0.771) 2.472 (0.884) 56.2%

TurduckenGen 2.888 (0.666) 3.192 (0.756) 64.7%

generated by TurduckenGen over all questionnaires. Then, we average the scores of all vol-
unteers to obtain the final score. Based on the results, we can find that regardless of Lyra or
Pisces, volunteers tend to prefer the reference code. Secondly, volunteers generally believe
that the code generated by TurduckenGen is better than the code generated by CodeT5,
indicating that volunteers are more inclined towards the code generated by TurduckenGen.
Therefore, our human study can further verify the competitiveness of TurduckenGen.

7 Threats to Validity

7.1 Construct Validity

Thefirst construct validity concerns the appropriateness of our evaluationmetrics. Tomitigate
this construct threat, we consider six evaluationmetrics. Additionally, we also compute the p-
value by utilizing the Wilcoxon signed-rank test to further verify the statistical significance
of our proposed approach. The second construct is the semantic correctness of the code
generated by TurduckenGen. Due to the lack of high-quality test cases, we mainly conduct
a human evaluation and assess the effectiveness of TurduckenGen by taking into account
the code readability and semantic similarity of the generated Turducken-style code.

7.2 Internal Validity

The first internal threat is the potential defects in the implementation of our proposedmethod.
To alleviate this threat, we first check the code carefully and use mature libraries, such as
PyTorch and Transformers. The second internal threat is the implementation of the baseline
methods. To alleviate this threat, we try our best to fine-tune the pre-trained models (i.e.,
CodeBERT14, GraphCodeBERT15, GPT16, CodeGPT1718, and CodeT519). Moreover, the
parameters for both CodeT5 and TurduckenGen are the same, as shown in Table 3. For
the other baseline models, we followed the parameter setting of the previous study (Liang

14 https://huggingface.co/microsoft/codebert-base
15 https://huggingface.co/microsoft/graphcodebert-base
16 https://huggingface.co/gpt2
17 https://huggingface.co/microsoft/CodeGPT-small-java
18 https://huggingface.co/microsoft/CodeGPT-small-py
19 https://huggingface.co/Salesforce/codet5-base
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et al. 2021). The third internal threat is that our proposed architecture is specifically designed
for pre-trained encoder-decoder models, such as CodeT5. Our approach is not applicable to
other pre-trained models, such as CodeBERT, GPT, GraphCodeBERT, etc. This is because
CodeBERT-likemodels are only pre-trained on the encoder side,while ourmulti-task learning
approach operates on the decoder side. On the other hand, GPT-like models are only pre-
trained on the decoder side, while the prompt method proposed by our approach relies more
heavily on the encoder side. Therefore, we believe that our method is only suitable for pre-
trained encoder-decoder models, such as CodeT5.

7.3 External Validity

External validity refers to the extent to which the findings of a study can be generalized to
other datasets. In our study,wemainly focused onTurducken-style code generation. Themain
difference between generating Turducken-style code and general code is the nested nature
of Turducken-style code (i.e. declarative programs are embedded in imperative programs).
In addition, it is more common for programmers to write Turducken-style code in real busi-
ness development scenarios. However, our approach is essentially independent of specific
programming languages, meaning that it has a certain degree of generality. By adjusting the
training data and fine-tuning the model, our proposed approach can be applied to general
code generation tasks. Meanwhile, the corresponding compiler needs to be replaced for a
specific programming language in order to parse the AST and perform the SF-Beam Search
decoding.

8 RelatedWork

In this section, we mainly summarize related studies for automatic code generation, multi-
task learning for code intelligence, and abstract syntax tree traversal methods. After related
work analysis, we emphasize the novelty of our study.

8.1 Automatic Code Generation

In the field of automatic code generation for declarative programming, most researchers
focused on the automatic generation of SQL statements. Dahl et al. (1994) were the first to
investigate this area and shared the ATIS dataset for the Airline Travel Query domain. Then,
a growing number of researchers explored and constructed various datasets for automatic
SQL generation. For example, some datasets (Zelle and Mooney 1996; Iyer et al. 2017)
focus on a single domain and other datasets (Zhong et al. 2017; Yu et al. 2018b, 2019b, a)
encompassmultiple domains and cover diverse SQL types. Early studies (Popescu et al. 2003;
Mahmud et al. 2015) primarily employed rule-based approaches. However, these methods
required pre-defined templates for SQL statements and had poor scalability. With the advent
of neural network models, the majority of work in this field has shifted towards generating
more flexible SQL statements with a wider range of styles. Yu et al. (2018b) modeled SQL
generation as a neural translation task and employed an RNN-based Seq2Seq model for this
purpose. Yu et al. (2018a) additionally incorporated Schema Linking in the encoder and
added Sketch information in the decoder. Bogin et al. (2019) then used GNN as the encoder
and LSTM as the decoder and incorporated grammar information. With the emergence of
Transformer (Vaswani et al. 2017), more researchers (Wang et al. 2020; Lin et al. 2020;
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Huang et al. 2021; Rubin and Berant 2021) applied this technique to SQL generation tasks
and considered domain-specific language information to improve performance. Recently,
inspired by pre-trained language models, (Scholak et al. 2021) applied the T5 model and
achieved state-of-the-art performance.

For the automatic code generation of imperative programming, (Mou et al. 2015) were
the first to propose the use of a standard encoder-decoder architecture based on RNN to
generate corresponding C++ code snippets from user functional descriptions. Ling et al.
(2016) proposed two new corpora for card games code and employed the LSTM to construct
the encoder-decoder architecture, which incorporates character-level softmax and pointer
networks. Yin and Neubig (2018) proposed TRANX, a model based on ASDL, LSTM, the
attention mechanism, and the copy mechanism for Python code generation. Hayati et al.
(2018) proposed RECODE, which is based on TRANX and integrates information retrieval
methods into the Seq2Seq model. Wei et al. (2019) and Yang et al. (2022b) formalized
the code generation task and code summarization task as dual tasks and improved model
performance through dual learning. Sun et al. (2019) designed a grammar-based structural
convolutional neural network for code generation that generated a program by predicting
the programming language’s grammar rules and subsequently proposed a novel tree-based
neural architecture TreeGen (Sun et al. 2020) based on Transformer. With the development
of pre-trained language models for code-related tasks, (Liguori et al. 2021) and (Yang et al.
2022c) applied CodeBERT to the exploit code generation task. Lu et al. (2021b) proposed
CodeGPT, (Ahmad et al. 2021) proposedPLBART, and (Wang et al. 2021b) proposedCodeT5
for improved Java code generation task. Recently, researchers (Wang et al. 2022b; Le et al.
2022) combined pre-trained language models and reinforcement learning to optimize pre-
trained language models from the perspective of code compilability.

For the automatic Turducken-style code generation, to our best knowledge, there was only
one study (Liang et al. 2021). They used Encoder-Only pre-trainedmodels andDecoder-Only
pre-trained models to conduct experiments on the Lyra dataset to demonstrate the potential
possibility of Turducken-style code generation.

In contrast to previous studies, our goal is to generate syntactically correct Turducken-style
code, and we consider the learning paradigm of multi-task learning to construct ingenious
auxiliary tasks. Moreover, we propose a syntax-first decoding algorithm to satisfy the syntax
of the generated code.

8.2 Multi-task Learning for Code Intelligence

Multi-task learning (MTL) is a machine learning technique that allows a model to learn mul-
tiple tasks simultaneously by sharing common features or representations. In the field of code
intelligence, multi-task learning has been applied to various tasks, such as code understand-
ing, code summarization, and code completion. Wang et al. (2021a) proposed a multi-task
learning approach MulCode for source code understanding. This approach learns unified
representation space for tasks, with the pre-trained BERT model for the token sequence and
the Tree-LSTM model for abstract syntax trees. MulCode achieves promising performance
on three downstream tasks: comment classification, author attribution, and duplicate func-
tion detection. For the code summarization task, (Xie et al. 2021) proposed a deliberation
multi-Task learning approach DMACOS by exploiting method names to improve code sum-
marization. They introduced the tasks of generation and informativeness prediction ofmethod
names as two auxiliary training objectives for code summarization. Then they incorporated a
novel two-pass deliberationmechanism into theirMTL architecture. For the code completion
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task, (Liu et al. 2020a) and (Liu et al. 2022) adopted multi-task learning to predict the token
and its type jointly and utilize the predicted type to assist the token prediction. In summary,
multi-task learning can be used to improve the performance of code intelligence tasks by
allowing models to learn multiple tasks and share common features or representations.

Compared with previous multi-task learning studies that were used for code intelligence,
our approach designs a syntax-guided auxiliary task using for code-based generation and
uses a GLU network to incorporate the syntax knowledge learned from the auxiliary task
into the primary task. Empirical results show the promising performance of our proposed
approach.

8.3 Abstract Syntax Tree Traversal Methods

An Abstract Syntax Tree (AST) is a tree representation of the abstract structure of source
code written in a programming language. Researchers usually use AST to extract syntactic
knowledge of the code. In the field of code comment generation, (Yang et al. 2021a) proposed
Sim_SBT, which uses pre-order traversal to flatten the type nodes of the AST. Hu et al. (2020)
and Niu et al. (2022) proposed SBT and X-SBT, respectively. They also used pre-order
traversal, along with brackets and xml-like tags to form structured data. In the field of code
translation, (Liu et al. 2023a) captured the structural information of the AST by modeling
the node distances and the node paths.

Different from previous AST traversal methods, our proposed SAT traversal method takes
into account both the type and value of nodes in the AST. By incorporating the type infor-
mation of the parent node into the code tokens explicitly, using our proposed SAT traversal
method can help to generate code, which satisfy syntactic constraints.

9 Conclusion and FutureWork

In this study, we propose a novel approach TurduckenGen for Turducken-style code gen-
eration, where TurduckenGen addresses the challenge of syntactic constraints on code
generation from three perspectives. The results of the automated evaluation show that our
proposed TurduckenGenoutperforms the state-of-the-art baselines onLyra andPisces.More-
over, we also verify our SF-BeamSearch decodingmethod andmodel components rationality
of TurduckenGen by designing a set of ablation studies. Finally,We conduct a human study to
evaluate the quality of the generated code in terms of code readability and semantic similarity
from the practitioner’s perspective.

In the future, we first want to further improve the performance of TurduckenGen by
considering advanced code representation methods. We second want to explore more types
of Turducken-style code generation tasks to promote the practical application of our study,
such as generating programs with regular expressions embedded in Java or Python and
JavaScript embedded in HTML.
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