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Abstract
In 2011, Cook et al. showed that the satisfiability and entailment can be checked in polynomial
time for a fragment of separation logic that allows for reasoning about programs with pointers
and linked lists. In this paper, we investigate whether the tractability results can be extended to
more expressive fragments of separation logic that allow defining data structures beyond linked
lists. To this end, we introduce separation logic with a simply-nonlinear compositional inductive
predicate where source, destination, and static parameters are identified explicitly (SLIDSNC).
We show that if the inductive predicate has more than one source (destination) parameter, the
satisfiability problem for SLIDSNC becomes intractable in general. This is exemplified by an
inductive predicate for doubly linked list segments. By contrast, if the inductive predicate has
only one source (destination) parameter, the satisfiability and entailment problems for SLIDSNC
are tractable. In particular, the tractability results hold for inductive predicates that define list
segments with tail pointers and trees with one hole.
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1 Introduction

Separation Logic (SL, [23, 25]), an extension of Hoare logic, is a well-established formalism
for the verification of heap manipulating programs. SL features a separating conjunction
operator and inductive predicates, which allow to express how data structures are laid out
in memory in a succinct way. Since its introduction, various verification tools based on
separation logic have been developed. A notable one among them is the INFER tool [9], which
was acquired by Facebook in 2013 and has been actively used in its development process
[10]. To enable program verification with SL assertions in a Hoare-logic style, it is vital
to be able to check satisfiability and entailment of SL formulae. Unfortunately, entailment
checking in full SL is undecidable [11]. Thus one has to either resort to heuristics or consider
restricted, decidable fragments. We focus on the latter approach in this paper. Earlier efforts,
including the theoretical work [2] which leads to the tool SmallFoot [3], considered SL with
primitives of pointers and the hardwired singly linked list segments. A remarkable result on
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this fragment was given by Cook et al. [14], who developed a polynomial-time algorithm for
the satisfiability and entailment problems based on graph reasoning. This has also led to the
tool SeLoger [19].

Hardwired inductive predicates have obvious limitations. More recent research has been
focusing on automated reasoning about generic user-defined inductive predicates inside the
framework of SL. This class of logic is usually referred to as Separation Logic with Inductive
Definitions (SLID). Because of their generality, satisfiability and entailment checking are
usually much more difficult. Nevertheless, notable progress has been made in this direction.
For instance, Iosif et al. showed decidability of satisfiability and entailment for an expressive
fragment of SLID by a reduction to Monadic Second Order Logic on graphs with bounded
tree width [20]. Later on, they reduced the entailment problem to the language inclusion
problem of tree automata, and implemented the tool SLIDE [21]. Brotherston et al. showed
that the satisfiability problem (but not entailment) for a very expressive fragment of SLID is
ExpTime-complete [6]. In the same paper, they also proved that the satisfiability problem
becomes Np-complete if the arities of all predicates are bounded by a constant.

Contributions. We are mostly interested in tractable (polynomial-time) satisfiability and
entailment checking for SLID. Our strategy is to generalise the graph reasoning initiated in
[14], which currently is limited to singly linked lists only. To this end, we concentrate on a
class of simply-nonlinear compositional inductive predicates, where the source, destination,
and static parameters are identified explicitly. This class of inductive predicates enjoys some
nice compositional properties introduced in [17], which makes, for example, the entailment
problem easier to solve. The main question is whether the satisfiability and entailment
checking for the resulting SLID fragment, denoted by SLIDSNC, can be done in polynomial
time. We obtain both positive and negative results in this regard.

1. We show that, with an inductive predicate dllseg for doubly linked list segments, the
satisfiability problem for SLIDSNCrdllsegs is Np-complete. From the perspective of data
structures, doubly linked list segments are perhaps the minimal extension of singly linked
list segments, and thus one would have expected the tractability result for doubly linked
list segments by a straightforward adaptation of the method for singly linked list segments
by Cook et al. in [14]. Our result is among the strongest intractability results for the
satisfiability problem for SLID so far. Note that the Np-hardness reduction in [6] requires
four predicates, while our reduction uses only one predicate dllseg. However, it should
be noted that there are at most three parameters for predicates in [6], but dllseg has
four parameters (i.e., two source and destination parameters respectively). The result
suggests that SLIDSNC becomes intractable in general if inductive predicates with more
than one source (destination) parameter are allowed.

2. We show that both the satisfiability and the entailment checking can be done in polynomial
time if the inductive predicate has only one source (destination) parameter. Remarkably,
the fragment covers linear data structures (e.g., list segments with tail pointers), as well
as non-linear data structures (e.g., trees with one hole). To our best knowledge, this is
one of the first tractability results of SLID for a class of user-defined inductive predicates.
(Independently, [8] studied a different class mostly on the model checking problem; cf.
related work for comparison.)
To achieve this, we generalise the graph-theoretic techniques developed in [14], in particu-
lar, the concept of graph homomorphisms, to non-linear structures. Compared to [14],
the graph representations of the SLIDSNC formulae have a considerably more involved
structure, e.g., the unique simple path property between a pair of nodes in [14] is lost here.
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An additional intricacy is that we consider the classical semantics of SLIDSNC formulae
rather than the (less general)intuitionistic semantics in [14]. The authors of [14] did
briefly mention that, to tackle the classical semantics, extra conditions—although not
specified—should be added to ensure that all arcs are covered in the graph homomorphism.
They, however, suggested that “the details are messy and deferred to a full version.” We
concur with these insights. As singly linked list segments are a (very) special case of our
inductive predicates, the decision procedure in this paper provides a complete account
for the entailment checking under the classical semantics.

Related work. There is a vast literature on separation logic, and we will have to focus on
work which is the most relevant to us. In particular, we only cover the work on SLID, and
skip many results on, for instance, first-order separation logic (without inductive definitions)
[4, 15]. Antonopoulos et al. established some fundamental decidability and complexity
results for the entailment problem of SLID [1]. In particular, they showed that deciding
the entailment ϕ |ù ψ for SLID is intractable where ψ may contain existentially quantified
variables, even for a single predicate of list segments. This result is largely incomparable
to us, since existential quantified variables are disallowed in our setting. The work [5, 13]
took the cyclic-proof approach which is based on induction on the paths of proof trees, but
the decision procedures therein are incomplete in general. Brotherston et al. investigated
array separation logic and obtained some complexity results [7]: They showed that the
satisfiability is Np-complete, entailment is decidable with high complexity, and bi-abduction
is in Np. Recently, [8] gave another tractable fragment of SLID, but mostly focused on
the model checking problem. The tractable fragment of [8], defined by three constraints
MEM (“Memory-consuming”), CV (“Constructively valued”) and DET (“Deterministic”),
is incomparable to ours: “trees with one hole” is in our tractable fragment, while it does
not belong to MEM+CV+DET, as the DET constraint fails; however, an MEM+CV+DET
formula may contain several different inductive predicates, while an SLIDSNC formula allows
at most one inductive predicate. We also mention recent work considering decision procedures
for SLID extended with data and size constraints [12, 18, 26, 22, 24, 27].

In the sequel, we discuss [18] and [16] which are technically more related to this paper.
Strictly speaking, [18] considered SLID extended with data constraints, so here we limit the
comparison to the data-free part. First of all, [18] tackled linear structures, while here we
focus on more general non-linear structures (e.g., trees). More importantly, the decision
procedures in [18] are intractable, even when specialised to the data-free setting. Indeed,
for both satisfiability and entailment, only Np upper-bounds can be obtained. The current
work improves [18] by giving polynomial-time algorithms for even non-linear structures. In
particular, for satisfiability, we extend the graph-theoretic approach in [14]; for entailment,
we give a new definition of graph homomorphism, which is much more involved than that in
[18], but yields an efficient checking algorithm.

[16] considered a fragment of SLID where nested lists and skip lists are expressible, and
provided an incomplete decision procedure for the entailment problem by generalising the
graph homomorphism in [14]. A more technical comparison is deferred to Section 4.2.

2 Preliminaries

For n P N, rns :“ t1, . . . , nu. We assume a set of variables Vars ranged over by E,F,X, Y, ¨ ¨ ¨ ,
and a set of locations L typically ranged over by l, l1, ¨ ¨ ¨ . We assume a designated variable
nil P Vars (for the “null” value of pointers in programs) and L contains a special element null.
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Moreover, we assume a set of fields F ranged over by f, f 1, ¨ ¨ ¨ . We focus on separation logic
with a simply-nonlinear compositional inductive predicate (denoted by SLIDSNCrP s):

Π ::“ E “ F | E ‰ F | Π^Π,
Σ ::“ emp | E ÞÑ ρ | P pE,E1;F,F 1; Bq | Σ ˚ Σ,

where ρ is a tuple of elements from F ˆ Vars, and P pE,E1;F,F 1; Bq is a simply-nonlinear
compositional predicate whose definition will be specified shortly.

The formulae Π and Σ are called the pure and spatial formulae respectively. Atomic
formulae of the form E ÞÑ ρ and P pE,E1;F,F 1; Bq are called the points-to and predicate
atoms respectively. For an SLIDSNCrP s formula ϕ, we use Varspϕq to denote the set of variables
occurring in ϕ, in addition, we use Atomspϕq to denote the set of points-to or predicate
atoms occurring in ϕ. We require that the predicate P in SLIDSNCrP s is simply-nonlinear
compositional, that is, of the following form:
1. The parameters of P are divided into three categories: the source parameters E,E1, the

destination parameters F,F 1, and the static parameters B. (Note that E1,F 1,B denote
a vector of variables.) We require that the source and the destination parameters are
symmetric, in particular, they must be of the same length. A predicate P is usually
denoted by P pE,E1;F,F 1; Bq to highlight the parameters.

2. P pE,E1;F,F 1; Bq is defined by a set of rules including:
base rule: P pE,E1;F,F 1; Bq ::“ E “ F ^E1 “ F 1 ^ emp,
inductive rule:

P pE,E1;F,F 1; Bq ::“ DX. E ÞÑ rpf1, Y1q, . . . , pfk, Ykqs˚

P pX0,X
1
0;F,F 1; Bq ˚ P pX1,X

1
1; nil,nil; Bq ˚ ¨ ¨ ¨ ˚ P pXl,X

1
l; nil,nil; Bq,

such that
X0, . . . , Xl are mutually distinct variables and X “ tX0, . . . , Xlu,
Y1, . . . , Yk P E1 YB YX Y tnilu and each variable from E1 YB YX occurs exactly
once in E ÞÑ rpf1, Y1q, . . . , pfk, Ykqs,
for each i : 0 ď i ď l, X 1

i Ď tEu YX.
Note that above, in Y1, . . . , Yk P E1 Y B Y X Y tnilu or X 1

i Ď tEu Y X, E1 should be
interpreted as the set of variables occurring in E1, similarly for B,X,X 1

i. We assume that,
if there are multiple inductive rules, the same set of fields FldspP q is used. In addition, we
define the set PFldspP q of principal fields, as the set of fields f P FldspP q such that there is
an inductive rule of P where pf, Zq occurs for some Z P X, and the set AFldspP q of auxiliary
fields, as the set of fields f P FldspP q such that there is an inductive rule of P where pf, Z 1q
occurs for some Z 1 P E1 Y B Y tnilu. We assume that PFldspP q X AFldspP q “ H, which
implies that FldspP q “ PFldspP q Z AFldspP q.

In the base or inductive rule, the formula on the left (resp. right) of ::“ is called the
head (resp. body) of the rule. For each predicate P pE,E1;F,F 1; Bq, there is exactly one
base rule, and in each inductive rule, each destination parameter from F,F 1 occurs exactly
once in the body of the rule, namely, in P pX0,X

1
0;F,F 1; Bq. We use P to denote the set

of simply-nonlinear compositional inductive predicates. Moreover, we use P1 to denote the
set of inductive predicates P pE;F ; Bq P P, i.e., the set of inductive predicates with a single
source resp. destination parameter.

Semantics. Each SLIDSNCrP s formula is interpreted on states. Formally, given a finite set
of fields F Ď F , a state is a pair ps, hq, where
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s is a stack which is a partial function Vars á L such that dompsq is finite, nil P dompsq,
and spnilq “ null,
h is a heap which is a partial function Lˆ F á L such that domphq is finite, hpnull, fq
is undefined for each f P F, and for each l P L, if hpl, fq is defined for some f P F, then
hpl, f 1q is defined for each f 1 P F.

We use States to denote the set of states. For a heap h, we use ldomphq to denote the set
of locations l P L such that hpl, fq is defined for some f P F. Note that null R ldomphq. We
write h1#h2 if ldomph1q X ldomph2q “ H, in which case we write h1 Z h2 for the union of h1
and h2. A heap h1 is called a subheap of h2 if ldomph1q Ď ldomph2q and for each l P ldomph1q

and f P F, h1pl, fq “ h2pl, fq.
Let ps, hq P States and ϕ be an SLIDSNCrP s formula. Then the semantics of ϕ is defined

as follows,
ps, hq ( E “ F (resp. ps, hq ( E ‰ F ) if spEq “ spF q (resp. spEq ‰ spF q),
ps, hq ( Π1 ^Π2 if ps, hq ( Π1 and ps, hq ( Π2,
ps, hq ( emp if ldomphq “ H,
ps, hq ( E ÞÑ rpf1, X1q, ¨ ¨ ¨ , pfk, Xkqs if ldomphq “ spEq, and for each i : 1 ď i ď k,
hpspEq, fiq “ spXiq,
ps, hq ( P pE,E1;F,F 1; Bq if ps, hq P vP pE,E1;F,F 1; Bqw,
ps, hq ( Σ1 ˚ Σ2 if there are h1, h2 such that h “ h1 Z h2, ps, h1q ( Σ1 and ps, h2q ( Σ2,

where the semantics of predicate vP pE,E1;F,F 1; Bqw is given by the least fixepoint of a
monotone operator constructed from the body of rules for P . More concretely, assume
that P contains m inductive rules, each of which is denoted by Ri and is of the form
Ri : P pE,E1, F,F 1,Bq ::“ Θi (i.e., Θi is the body of Ri). For each Ri (where i P rms), we
define a monotone operator τi : 2States Ñ 2States as follows: τipSq :“ tps, hq | ps, hq |ùP,S Θiu,
where |ùP,S is the satisfaction relation defined above, except that P is interpreted by S, that
is, ps, hq ( P pE,E1;F,F 1; Bq if ps, hq P S. We finally define vP w :“ µS.

Ť

i τipSq.

I Example 1. We use predicates lseg, dllseg, tlseg, and th to exemplify our definitions, which
represent list segments, doubly linked list segments, list segments with tail pointers, and
binary trees with one hole, respectively.

lsegpE;F q ::“ E “ F ^ emp,
lsegpE;F q ::“ DX. E ÞÑ pnext, Xq ˚ lsegpX,F q.
dllsegpE,P ;F,Lq ::“ E “ F ^ P “ L^ emp,
dllsegpE,P ;F,Lq ::“ DX. E ÞÑ rpnext, Xq, pprev, P qs ˚ dllsegpX,E;F,Lq.
tlsegpE;F ;Bq ::“ E “ F ^ emp,
tlsegpE;F ;Bq ::“ DX. E ÞÑ rpnext, Xq, ptail, Bqs ˚ tlsegpX;F ;Bq.
thpE;F q ::“ E “ F ^ emp,
thpE;F q ::“ DX,Y. E ÞÑ rpleft, Xq, pright, Y qs ˚ thpX; nilq ˚ thpY ;F q,
thpE;F q ::“ DX,Y. E ÞÑ rpleft, Xq, pright, Y qs ˚ thpX;F q ˚ thpY ; nilq.

For P P P, we investigate the following two decision problems:
Satisfiability. Given an SLIDSNCrP s formula ϕ, decide whether there is a state ps, hq |ù ϕ.
Entailment. Given two SLIDSNCrP s formulae ϕ and ψ with Varspψq Ď Varspϕq, decide

whether ϕ |ù ψ, i.e., for every state ps, hq, ps, hq |ù ϕ implies ps, hq |ù ψ.
The inductive predicates defined above fall into the categy of compositional inductive predicates
[17] and admit the composition lemma, i.e., P pE1,E

1
1;E2,E

1
2; Bq ˚ P pE2,E

1
2;E3,E

1
3; Bq |ù

P pE1,E
1
1;E3,E

1
3; Bq holds, which is crucial for the decision procedure of entailment.
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In literature, there is usually a distinction of the classical semantics and the intuitionistic
semantics. The aforementioned semantics for SLIDSNCrP s formulae are called the classical
semantics. In the intuitionistic semantics, pure and spatial formulae are interpreted in the
same way as the classical one. The only difference is, in the intuitionistic semantics, we have,
for an SLIDSNCrP s formula ϕ “ Π^ Σ, ps, hq |ù ϕ iff there is a subheap h1 of h, ps, h1q ( Π
and ps, h1q |ù Σ. Henceforth, when necessary, we write |ùc to denote the satisfiability relation
under the classical semantics, and accordingly, |ùi to denote the satisfiability relation under
the intuitionistic semantics. The two semantics are equivalent for the satisfiability problem,
but differ in the entailment problem. For instance, lsegpE1;E2q˚ lsegpE2;E3q |ùc lsegpE1;E2q

does not hold, while lsegpE1;E2q ˚ lsegpE2;E3q |ùi lsegpE1;E2q does hold.

Graph-theoretic notions. We shall work extensively upon an arc-labeled directed graph
equipped with a symmetry relation. Here we collect some notations on this matter. For
simplicity, we ignore the arc-labels and symmetric relations here, since they are irrelevant
right now. In general, a directed graph in G is a pair pN , Eq, where N is a finite set of nodes,
E Ď N ˆ N is a set of directed arcs. For an arc e “ pv, wq P E , v and w are called the
source and destination node of e and sometimes w is called a successor of v and v is called a
predecessor of w.

A path in G is a sequence of consecutive directed arcs in G. A node w is reachable from v

if there is a path from v to w (note that v is reachable from v itself). In this case, we also
say that v is an ancestor of w. A cycle is a path where the starting node and the ending
node are equal. A path is simple if no nodes occur twice on the path. A cycle is simple if all
nodes are distinct, except the ending node. For a node v and a directed arc e “ pv1, w1q, e is
said to be reachable from v if v1 is reachable from v, and e is said to be co-reachable from v

if v is reachable from w1. We use RGpvq to denote the set of arcs that are reachable from v.
For a graph G, let N pGq denote the set of nodes in G. For a set of arcs E 1 Ď E , let N pE 1q

denote the set of all source or destination nodes of arcs in E 1. For N 1 Ď N , the subgraph of
G induced by N 1, denoted by GrN 1s, is pN 1, E X pN 1 ˆN 1qq. On the other hand, for E 1 Ď E ,
the subgraph of G induced by E 1, denoted by GrE 1s, is pN pE 1q, E 1q.

A connected component (CC) C (resp. strongly connected component, SCC, S) of G is
said to be nontrivial if C (resp. S) contains at least one arc.

3 Intractability: Doubly linked list segments

Let ϕ “ Π ^ Σ be an SLIDSNCrdllsegs formula, where dllseg is given in Example 1. We
shall show the intractability of deciding the satisfiability of SLIDSNCrdllsegs formulae. The
intractability is proved by a reduction from 3SAT. It turns out that the reduction works even
for a restricted class of SLIDSNCrdllsegs formulae Π^ Σ where Π only contains inequalities
and Σ only contains predicate atoms. To ease the presentation of the reduction, we will
introduce a graphical representation for this restricted class of SLIDSNCrdllsegs formulae. For
an SLIDSNCrdllsegs formula ϕ, recall that Varspϕq and Atomspϕq denote the set of variables
and atoms in ϕ. We construct a graph Gϕ “ pN ,A, E ,L, R‰q as follows.

N “ Varspϕq and A “ Atomspϕq.
E Ď N ˆAˆN is the set of arcs and L is the arc-labeling function, defined as: for each
predicate atom a “ dllsegpE,P ;F,Lq in Atomspϕq, there are two arcs e “ pE, a, F q P E
and e1 “ pL, a, P q with Lpeq “ pa,`q and Lpe1q “ pa,´q respectively.
R‰ “ tpE,F q, pF,Eq | Π |ù E ‰ F u.
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For convenience, we usually write E `
ÝÑ F for an arc pE,F q labeled by `. Clearly, E satisfies

that, for each predicate atom a, there are exactly two arcs in G, labeled by pa,`q and pa,´q
respectively. We usually say that these two arcs are dual and have the opposite poles. All
graphs for restricted SLIDSNCrdllsegs formulae defined as above form a class of (restricted)
SLIDSNCrdllsegs graphs.

From each restricted SLIDSNCrdllsegs graph Gϕ “ pN ,A, E ,L, R‰q, we can recover a (re-
stricted) SLIDSNCrdllsegs formula ϕG “ ΠG^ΣG , where ΠG “

Ź

pE,F qPR‰

E ‰ F and ΣG “

˚

aPA,
LppE,a,F qq“pa,`q
LppL,a,P qq“pa,´q

dllsegpE,P ;F,Lq. Since SLIDSNCrdllsegs formulae and SLIDSNCrdllsegs

graphs can be easily transformed to each other, we will use them interchangeably.
We are ready to present the reduction from the 3SAT Problem. Let Ψ be a CNF

formula with clauses C1, ¨ ¨ ¨ , Cm over a set of variables tx1, ¨ ¨ ¨ , xnu. For each j P rms,
Cj is a disjunction of at most three literals, that is, Cj “ lj,1, or Cj “ lj,1 _ lj,2, or
Cj “ lj,1 _ lj,2 _ lj,3, where for each k “ 1, 2, 3, lj,k “ xi or  xi for some i P rns. Without
loss of generality, we assume that for each i P rns and j P rms, xi occurs at most once in Cj .

We introduce a set of atoms AΨ “ txi,j , xi,j | xi occurs in Cju. Furthermore, for each
j P rms, each literal lj,k in Cj (k P t1, 2, 3u) is associated with an atom lj,k defined as follows:
if lj,k “ xi, then lj,k “ xi,j , otherwise, lj,k “ xi,j .

We then construct SLIDSNCrdllsegs-graphs for variables and clauses respectively.
For each variable xi, assume that xi appears in Cj1 , Cj2 , ¨ ¨ ¨ , Cjki

(where 1 ď j1 ă ¨ ¨ ¨ ă

jki
ď m), we have the following arcs: (1) Ei

pxi,j1 ,`q
ÝÝÝÝÝÑ X1

i , Ei
pxi,j1 ,`q
ÝÝÝÝÝÑ Y 1

i , and (2)

Xs
i

pxi,js`1 ,`q
ÝÝÝÝÝÝÝÑ Xs`1

i , Y si
pxi,js`1 ,`q
ÝÝÝÝÝÝÝÑ Y s`1

i for s : 1 ď s ă ki. Moreover, for convenience,
we write Fi for Xki

i and F 1i for Y
ki
i .Then we set pFi, F 1i q, pF 1i , Fiq P R‰.

For each clause Cj , if Cj “ lj,1 _ lj,2 _ lj,3, then we have arcs Gj
plj,1,´q
ÝÝÝÝÝÑ G1j

plj,2,´q
ÝÝÝÝÝÑ

G2j
plj,3,´q
ÝÝÝÝÝÑ Hj . In addition, we set pGj , Hjq, pHj , Gjq P R‰. The constructions for the

cases Cj “ lj,1 and Cj “ lj,2 _ lj,3 are similar.
Finally, GΨ comprises the collection of SLIDSNCrdllsegs-graphs for all variables xi (i P rns) and
all clauses Cj (j P rms). Roughly speaking, in GΨ, the semantics of separating conjunction ˚
and the variable inequalities ensure that each Boolean variable is assigned with exactly one
value from ttrue, falseu. Moreover, the synchronisation of the two arcs with opposite poles,
together with variable inequalities, guarantees that the assignment of Boolean variables
satisfies all clauses in Ψ.

It is easy to see that in GΨ, for each pair of atoms xi,j or xi,j , one of them appears twice,
but the other occurs exactly once. To make GΨ a (restricted) SLIDSNCrdllsegs-graph defined
above, we can simply add some additional isolated arcs. For instance, if pxi,j ,`q occurs, but
no pxi,j ,´q in GΨ (because  xi, but not xi, occurs in Cj), we add an arc G:j

pxi,j ,´q
ÝÝÝÝÝÑ H:j ,

where G:j , H
:

j are fresh variables.

I Example 2. The following example illustrates the intuition of the reduction. Suppose
Ψ “ px1 _ x2q ^ p x1 _ x2q and the graph GΨ is illustrated in Figure 1, where dashed lines
represent R‰. In a model ps, hq of GΨ, since pG1, H1q P R‰, at least one of x1,1, x2,1, say, x1,1,
must be assigned with a nonempty subheap. By the semantics of ˚, at least one of the two
paths from E1 to F1 and from E1 to F 11 must be empty. Since px1,1,`q appears in the path
from E1 to F1 and x1,1 is nonempty, we deduce that the path from E1 to F 11 has to be assigned
with an empty subheap. Accordingly, since px1,2,`q occurs in the path from E1 to F 11, the
atom x1,2 is assigned with an empty subheap. In addition, from G2

px1,2,´q
ÝÝÝÝÝÑ G12

px2,2,´q
ÝÝÝÝÝÑ H2
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Figure 1 GΨ for Ψ “ px1 _ x2q ^ p x1 _ x2q.

and pG2, H2q P R‰, we have that x2,2 has to be assigned with a nonempty subheap, which,
in turn, implies that the path from E2 to F2 is assigned with an empty subheap. Therefore,
x1,1 and x2,2 are assigned with a nonempty heap and they induce a satisfiable assignment θ
of Ψ with θpx1q “ true and θpx2q “ false.

The satisfiability of SLIDSNCrdllsegs can be checked easily in NP. Hence, we have:

I Theorem 3. The satisfiability problem for SLIDSNCrdllsegs is NP-complete.

4 Tractability: Beyond list segments

In this section, we show that if P P P1, then SLIDSNCrP s is tractable for both satisfiability
and entailment. We fix a predicate P pE;F ; Bq P P1.

4.1 Satisfiability
For an SLIDSNCrP s formula ϕ, we construct a graph Gϕ to represent ϕ. Specifically, Gϕ is a
tuple pVarspϕq, Atomspϕq,Nϕ, Eϕ,Lϕ, R‰q defined as follows.

Nϕ “ trEs | E P Varspϕqu such that rEs is the equivalence class of E under (the
equivalence relation) „Π where E1 „Π F 1 iff Π |ù E1 “ F 1.
Eϕ is the set of arcs, and Lϕ is the arc-labeling function, defined as follows:

for each points-to atom a “ E ÞÑ rpf1, F1q, . . . , pfk, Fkqs in Atomspϕq and each i P rks
with fi P PFldspP q, Eϕ contains a field-labeled arc e “ prEs, rFisq with Lϕpeq “ pfi, aq;
for each predicate atom a “ P pE;F ; Bq in Atomspϕq, Eϕ contains a predicate-labeled
arc e “ prEs, rF sq with Lϕpeq “ pP, aq;

In both cases, a is the atom associated with e, denoted by atompeq. In some places later
on, in order to emphasise that e is from Gϕ, we also use atomϕpeq, instead of atompeq.
R‰ “ tprEs, rF sq, prF s, rEsq | Π |ù E ‰ F u.

As a convention, K represents the graph for an unsatisfiable SLIDSNCrP s formula.
All graphs for SLIDSNCrP s formulae defined as above form a class of SLIDSNCrP s graphs,

whose formal definition is omitted here due to the page limit. It is easy to verify that
SLIDSNCrP s formulae and SLIDSNCrP s graphs are equivalent, namely, they can be transformed
into each other. Hence we will use them interchangeably.

I Example 4. An SLIDSNCrths-graph G is given in Figure 2, where each node is just one vari-
able. Labels of the arcs are abbreviated, e.g., the label pleft, E1 ÞÑ rpleft, E2q, pright, E3qsq

of the arc pE1, E2q is abbreviated as left.

Our decision procedure for satisfiability follows [14] closely. The underpinning idea is, on
a high level, to reduce the SLIDSNCrP s graph by exploiting that the subheaps represented
by different spatial atoms must be domain disjoint. The main difference to [14] will be
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Figure 2 An example of SLIDSNCrths graphs.

discussed when they appear. We start with some notion of persistent set of arcs, largely
from [14]. Intuitively, a set of arcs is persistent if in every model, a nonempty subheap has
to be assigned to it.

I Definition 5 (Persistent set of arcs [14]). Suppose G “ pV,A,N , E ,L, R‰q is an SLIDSNCrP s-
graph and E 1 Ď E . Then E 1 is said to be persistent in G if either E 1 contains a field-labeled
arc, or there are two nodes rEs, rF s in a connected component of GrE 1s (the subgraph of G
induced by E 1) such that prEs, rF sq P R‰.

For an SLIDSNCrP s-graph G “ pV,A,N , E ,L, R‰q and e P E , we use G´atompeq to denote
the graph obtained from G by removing all the arcs e1 P E such that atompe1q “ atompeq.

I Definition 6 (Reduced graphs). An SLIDSNCrP s-graph G “ pV,A,N , E ,L, R‰q is reduced
if G “ K, or otherwise if it satisfies the following conditions:
(C1) For each rEs P N , prEs, rEsq R R‰.
(C2) For each arc e out of rEs, RG´atompeqprEsq is not persistent.
(C3) For each arc e out of rEs, rnils is not reachable from rEs in RG´atompeqprEsq.
(C4) For each pair of distinct nodes rEs, rF s, there do not exist two predicate-labeled

arc-disjoint simple paths from rEs to rF s.

I Remark. We would like to remark that the arcs e in (C2) and (C3) may be field-labeled
arcs. Moreover, we would like to mention the connection of the aforementioned conditions
with those in [14, Table 2]: (C2) is adapted from conditions (i)—(iii) therein to deal with
nonlinear structures, and (C4) is adapted from condition (iv) therein. On the other hand,
(C3) is new to deal with the special variable nil ([14] did not consider nil).

I Example 7. The graph G in Figure 2 is not reduced, because it violates (C2): For the
arc e1 “ pE2, F4q, RG´atompe1qpE2q is persistent; (C3): For the arc e2 “ pF11, F12q, nil is
reachable from F11 in RG´atompe2qpF11q; and (C4): There are two arc-disjoint predicate-
labeled simple paths from F5 to F8. G can be transformed into a reduced graph, given as Gϕ
in Figure 3.

As in [14], deciding whether a non-K SLIDSNCrP s graph G is reduced can be done in
polynomial time in the size of G. To transform an arbitrary non-K SLIDSNCrP s graph in to a
reduced one, we provide a procedure which checks, for a given input non-K SLIDSNCrP s graph
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Figure 3 Gϕ and Gψ: Running example for the entailment problem.

G if any condition in Definition 6 is violated. If this is the case, the algorithm performs certain
operations (e.g., contract arcs, or merge nodes, or mark the graph to be K directly) depending
on which condition is violated, until G is reduced. Most of these are similar to [14]. However,
regarding the new condition (C3), if there is an arc e out of rEs and rnils is reachable from
rEs in RG´atompeqprEsq, then we contract the arc e in G if e is predicate-labeled, and mark G
to be K directly otherwise. The details of the procedure is omitted due to the page limit.

By Definition 6, when the graph G is reduced, there are only two possibilities: either
G “ K implying that the corresponding formula SLIDSNCrP s is unsatisfiable, or G ‰ K in
which case one can construct a model out of G. The similar result for linked lists is rather
straightforward [14]. However, it is a bit more involved in our setting, since we need to
construct a nonlinear structure to witness the satisfiability of G.

I Proposition 8. Given an SLIDSNCrP s graph G, one can construct, in polynomial time, a
reduced SLIDSNCrP s graph G1 such that G is satisfiable iff G1 ‰ K. In addition, if G1 ‰ K,
ps, hq |ù G iff ps, hq |ù G1 for each state ps, hq.

I Theorem 9. Suppose P P P1. Then the satisfiability for SLIDSNCrP s is in polynomial time.

4.2 Entailment
In this section, we consider the entailment problem, i.e., to decide whether ϕ |ù ψ for two
satisfiable SLIDSNCrP s formulae ϕ,ψ such that Varspψq Ď Varspϕq. Our goal is to provide a
polynomial time decision procedure for the entailment problem.

By Proposition 8, we assume that Gϕ “ pVarspϕq,Atomspϕq,Nϕ, Eϕ,Lϕ, R‰,ϕq and Gψ “
pVarspψq,Atomspψq,Nψ, Eψ,Lψ, R‰,ψq are reduced. For E P Varspϕq (resp. E P Varspψq), we
use rEsϕ (resp. rEsψ) to denote the node in Gϕ (resp. Gψ) that contains E. Moreover, we
assume that for each rEsϕ, rF sϕ P Nϕ (resp. rEsψ, rF sψ P Nψ), if E “ F ^ ϕ (resp. E “
F ^ψ) is unsatisfiable, then prEs, rF sq, prF s, rEsq P R‰,ϕ (resp. prEs, rF sq, prF s, rEsq P R‰,ψ).
According to Proposition 8, these (possibly implicit) inequalities can be added to Gϕ and
Gψ in polynomial time. Figure 3 depicts two graphs Gϕ and Gψ, which will be used as the
running example. (Gϕ is obtained from the graph G in Example 4.)

The main idea of our decision procedure is to utilise graph representations Gϕ and Gψ,
and to extend the concept of graph homomorphisms used in [14] to nonlinear structures and
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the classical semantics. Let us first briefly recall the decision procedure for the entailment
problem in [14]: As mentioned in the introduction, [14] focused on singly linked list segments
and the intuitionistic semantics. In [14], the entailment ϕ |ùi ψ is reduced to the existence
of a graph homomorphism from Gψ to some subgraph of Gϕ, that is, a mapping that assigns
to each arc e from rEsψ to rF sψ of Gψ a simple path from rEsϕ to rF sϕ of Gϕ, in addition,
these simple paths are mutually arc-disjoint. The arcs that belong to these simple paths are
called covered, and those that do not are called uncovered. As a result of the intuitionistic
semantics, the uncovered arcs of Gϕ can be ignored. The fact that the existence of a graph
homomorphism from Gψ to some subgraph of Gϕ can be decided in polynomial time is
attributed to the unique simple path property enjoyed by Gϕ, that is, for each pair of distinct
nodes, say rEsϕ and rF sϕ, there is at most one simple path from rEsϕ to rF sϕ. The unique
simple path property of Gϕ implies that the graph homomorphism from Gψ to some subgraph
of Gϕ is unique if it exists.

To deal with the entailment problem ϕ |ùc ψ for SLIDSNCrP s formulae ϕ and ψ in this
paper, we need to generalise the concept of graph homomorphisms in [14] to nonlinear
structures and deal with the classical semantics as follows:

Since the structures defined by the predicate atoms in SLIDSNCrP s are nonlinear in general,
a graph homomorphism should map each predicate-labeled arc e of Gψ to a potentially
nonlinear subgraph SubgraphepGϕq of Gϕ, instead of just a simple path. In addition,
for each predicate-labeled arc e of Gψ, SubgraphepGϕq should match atomψpeq, that is,
SubgraphepGϕq |ùc atomψpeq. (Recall that we assume that an SLIDSNCrP s formula and
its graph representation are interchangeable.) Actually, we will choose SubgraphepGϕq
to be the minimum subgraph of Gϕ that matches atomψpeq, in order to guarantee the
uniqueness of the graph homomorphism.
Because we are considering the classical semantics in this paper, those uncovered arcs of
Gϕ cannot be simply ignored. We need to guarantee that there is a way to dispatch the
uncovered arcs of Gϕ to the predicate-labeled arcs of Gψ so that for each predicate-labeled
arc e of Gψ, atomψpeq is matched by the graph consisting of SubgraphepGϕq and these
uncovered arcs of Gϕ which are dispatched to e.
Finally, we need to show that checking whether a subgraph of Gϕ matches atomψpeq for a
predicate-labeled arc e of Gψ can be done in polynomial time.

We shall use examples to illustrate the main ideas of our decision procedure. Let us first
demonstrate, for each predicate-labeled arc e of Gψ, how we choose the graph SubgraphepGϕq
to be the minimum subgraph of Gϕ that matches atomψpeq. The following example shows
that Gϕ for an SLIDSNCrP s formula ϕ does not enjoy the unique simple path property in
general.

I Example 10. Let us consider the SLIDSNCrP s formulae ϕ,ψ whose graph representations
are illustrated in Figure 3. The graph Gϕ does not satisfy the unique simple path property:
there are two arc-disjoint simple paths from E6 to E7 in Gϕ. Note that the subgraph
of Gϕ comprising all the arcs reachable from E6 does match thpE6;E7q. This follows
from the fact E6 ÞÑ rpleft, F13q, pright, F14qs ˚ thpF13;E7q ˚ thpF14; nilq |ù thpE6;E7q and
F14 ÞÑ ppleft, E7q, pright, nilqq ˚ E7 ÞÑ ppleft, nilq, pright, nilqq |ù thpF14, nilq.

Although the graph representations of SLIDSNCrP s formulae do not satisfy the unique
simple path property in general, we can still find a way to define SubgraphepGϕq as the
minimum subgraph of Gϕ that matches atomψpeq.

I Definition 11 (SubgraphepGϕq). Given a predicate-labeled arc e “ prEsψ, rF sψq in Gψ,
SubgraphepGϕq is defined as follows:
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Figure 4 Graph Gϕ and Gψ.
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Figure 5 Graph Gϕ and Gψ.

If rEsϕ “ rF sϕ, then SubgraphepGϕq is the empty graph.
Otherwise,

if rF sϕ “ rnilsϕ, then SubgraphepGϕq “ GϕrRGϕ
prEsϕqs, that is, the subgraph of Gϕ

comprising all the arcs reachable from rEsϕ,
if rF sϕ ‰ rnilsϕ,
∗ if there is a unique simple path from rEsϕ to rF sϕ, denoted by πe, then SubgraphepGϕq

is the subgraph of Gϕ comprising: (1) all the arcs in πe, (2) all field-labeled arcs
e1 “ prE1sϕ, rF

1sϕq such that rE1sϕ P N pπeq and rF 1sϕ R N pπeq, and (3) all arcs of
Gϕ that are reachable from rF 1sϕ,

∗ otherwise, SubgraphepGϕq “ GϕrRGϕ
prEsϕqs.

I Example 12. Let us consider the formulae ϕ,ψ illustrated in Figure 3. Let e1, e2, e3 be
the predicate-labeled arcs in Gψ, from E2 to E4, E3 to E5, and E6 to E7 respectively. Since
rE2sϕ ‰ rE4sϕ, rE4sϕ ‰ rnilsϕ, and there is a unique path from rE2sϕ to rE4sϕ, according to
Definition 11, Subgraphe1pGϕq comprises the unique simple path from rE2sϕ to rE4sϕ, the
arc from rE2sϕ to rF2sϕ, and all the arcs reachable from rF2sϕ. Similarly, Subgraphe2pGϕq
comprises the unique simple path from rE3sϕ to rE5sϕ in Gϕ, which is just the predicate-
labeled arc from rE3sϕ to rE5sϕ. Since rE6sϕ ‰ rE7sϕ, rE7sϕ ‰ rnilsϕ, and there are two
distinct simple paths from rE6sϕ to rE7sϕ, we have that Subgraphe3pGϕq “ GϕrRGϕ

prE6sϕqs,
that is, the subgraph of Gϕ comprising all the arcs reachable from rE6sϕ.

Example 13 illustrates the difference between the intuitionistic and classical semantics.

I Example 13. Let ϕ “ lsegpE1;E2q ˚ lsegpE2;E3q ˚ lsegpE3;E2q ˚ lsegpE3;E4q, ψ “

lsegpE1;E4q, and Gϕ and Gψ are depicted in Figure 4. (For simplicity, arc label plseg,
lsegpE1;E2qq is abbreviated as lseg, sic passim.) We claim ϕ ­|ù ψ. To see this, let ps, hq be
the state such that spE1q “ 1, spE2q “ 2, spE3q “ spE4q “ 3, hp1, nextq “ 2, hp2, nextq “ 3,
hp3, nextq “ 2. Then ps, hq |ù ϕ, but ps, hq ­|ù ψ under the classical semantics, although the
subheap h1 of h with ldomph1q “ t1, 2u satisfies ψ. This is in contrast to the intuitionistic
semantics, under which h |ù ψ follows from h1 |ù ψ.

Regarding the homomorphism [14], although the unique simple path from E1 to E4 in Gϕ
matches lsegpE1;E4q, the arc pE3, E2q in Gϕ is uncovered. This is the issue of using graph
homomorphism to entailment under the classical semantics, as also pointed out in [14]. On
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the other hand, let us assume another pair of graphs in Figure 5. It is not hard to see that
the entailment ϕ |ù ψ holds. Interestingly, in this case, all the arcs in the cycle E2 Ô E3 in
Gϕ are uncovered. J

As suggested in Example 13, to deal with the classical semantics, it is necessary to put
some proper constraints on the uncovered arcs of nontrivial SCCs in Gϕ. Let us introduce
some additional notations for Gϕ. An arc e1 in Gϕ is covered if

either e1 is an arc labeled by pf,´q from rEsϕ to rF sϕ and there is an arc e labeled by
pf,´q from rEsψ to rF sψ in Gψ, where E,F P Varspψq,
or e1 belongs to SubgraphepGϕq for some predicate-labeled arc e in Gψ.

A simple cycle C of Gϕ is covered if all arcs in C are covered; C is uncovered if none of the
arcs in C are covered. A nontrivial SCC S is said to be final w.r.t. covered arcs if there are
no covered arcs that are reachable from the nodes in S, moreover, one of the following holds:
1) there is a covered arc whose destination node belongs to S, 2) there is a predicate-labeled
arc e from rEsψ to rF sψ in Gψ such that rEsϕ “ rF sϕ is in S. A collection of simple cycles
S “ tC1, . . . , Cnu is said to be unentangled if Ci and Cj (i ‰ j) do not share any arc, and
share at most one node.

In the sequel, we first analyse the structure of nontrivial SCCs in Gϕ.

I Proposition 14. Suppose ϕ,ψ are two SLIDSNCrP s formulae such that ϕ |ùc ψ. Then the
nontrivial SCCs of Gϕ satisfy the following structural constraints.

If a nontrivial SCC S of Gϕ contains only predicate-labeled arcs, then S comprises a
collection of unentangled simple cycles tC1, . . . , Cnu.
If a nontrivial SCC S of Gϕ contains both an uncovered arc and a field-labeled arc, then
S is final w.r.t. covered arcs and is exactly a simple cycle.

A graph homomorphism from Gψ to Gϕ is required to satisfy that each simple cycle C
of Gϕ is either covered or uncovered. In addition, the uncovered simple cycles of Gϕ should
satisfy some additional constraint given below.

I Definition 15. Let S “ tC1, ¨ ¨ ¨ , Cnu be a nontrivial SCC of Gϕ with unentangled simple
cycles, where all Ci’s are either covered or uncovered, with at least one uncovered Ci.

An uncovered connected component (UCC) C of S is a connected component of the graph
obtained from S by removing all covered simple cycles.
Suppose S is not final w.r.t. covered arcs. Then S is indirectly covered if for each UCC
C of S and each simple cycle C in C, and there is an arc e “ prEsψ, rF sψq in Gψ with
atomψpeq “ P pE;F ; Bq, satisfying one of the following constraints:
1. rEsϕ “ rF sϕ P C, and for each arc e1 in C with atomϕpe

1q “ P pE1;F 1; B1q, it holds
that B „ϕ B1 (where „ϕ is extended to vectors of variables in an obvious way),

2. rEsϕ ‰ rF sϕ, there is a node belonging to both SubgraphepGϕq and C, and for each arc
e1 in C with atomϕpe

1q “ P pE1;F 1; B1q, it holds that B „ϕ B1.
Note that if the predicate P contains no static parameters, then the condition is simplified
as follows: for each UCC C of S, there is an arc e “ prEsψ, rF sψq in Gψ such that either
rEsϕ “ rF sϕ P C or there is a node belonging to both SubgraphepGϕq and C.
Suppose S is final w.r.t. covered arcs. Then S is indirectly covered if one of the
following holds: 1) there is a covered arc e1 in Gϕ with atomϕpe

1q “ P pE;F ; Bq such
that rF sϕ is in S and GϕrRGϕ

prF sϕqs matches P pF ;F ; Bq, 2) there is an arc e in Gψ
with atomψpeq “ P pE;F ; Bq such that rEsϕ “ rF sϕ is in S and GϕrRGϕprF sϕqs matches
P pF ;F ; Bq.
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I Definition 16 (Criteria of coverage of arcs). A graph homomorphism from Gψ to Gϕ is fully
covered, if
(I) for each nontrivial SCC S that is not final w.r.t. covered arcs and contains an uncovered

arc (which implies that S contains predicate-labeled arcs only by Proposition 14), each
simple cycle C in S is either covered or uncovered, and each UCC of S is indirectly
covered,

(II) for each nontrivial SCC S that is final w.r.t. covered arcs, S is indirectly covered,
(III) each uncovered arc of Gϕ either belongs to some nontrivial SCC or is reachable from a

node in some nontrivial SCC that is final w.r.t. covered arcs.

We now collate all the ingredients together and specify the formal definition of the graph
homomorphism from Gψ to Gϕ.

I Definition 17 (Graph homomorphism from Gψ to Gϕ). A homomorphism from Gψ to Gϕ is
a function θ : Nψ Ñ Nϕ satisfying the following constraints.

Variable subsumption: For each E P Varspψq, rEsψ Ď θprEsψq. In particular, we have
E P θprEsψq. This implies that θprEsψq has to be rEsϕ, and thus, for convenience, we
sometime use rEsϕ to denote θprEsψq.
Field-labeled arc: For each field-labeled arc e “ prEsψ, rF sψq in Gψ with Lψpeq “
pf,E ÞÑ ρq, there is a field-labeled arc e1 “ prEsϕ, rF sϕq in Gϕ with Lϕpe1q “ pf,E1 ÞÑ ρ1q,
and for each pf 1, F1q in ρ and pf 1, F 11q in ρ1, θprF1sψq “ rF

1
1sϕ.

Predicate-labeled arc: For each predicate-labeled arc e “ prEsψ,rF sψq in Gψ with
atomψpeq “ P pE;F ; Bq and rEsϕ ‰ rF sϕ, SubgraphepGϕq matches P pE;F ; Bq.
Inequality: For each prEsψ, rF sψq P R‰,ψ, prEsϕ, rF sϕq P R‰,ϕ.
Coverage: θ is fully covered (cf. Definition 16).
Separation constraint:

For each pair of distinct arcs e1, e2 in Gψ, the two subgraphs Subgraphe1pGϕq and
Subgraphe2pGϕq are arc-disjoint.
For every two distinct nontrivial SCCs S1,S2 of Gϕ that are final w.r.t. covered arcs,
the sets of arcs that are reachable from (nodes in) S1 and S2 respectively are disjoint.

I Proposition 18. ϕ |ùc ψ iff there is a graph homomorphism from Gψ to Gϕ.

I Example 19. Consider the graphs Gϕ,Gψ in Figure 3. The function θ : Nψ Ñ Nϕ can be
defined obviously, for instance θpE2q “ tE2, F4u. For the predicate-labeled arc e “ pE2, E4q

in Gψ, it is a routine to check that SubgraphepGϕq matches e. Similarly for the other predicate-
labeled arcs in Gψ. In addition, the homomorphism θ is fully covered. Let S1,S2 be the
uncovered nontrivial SCCs in Gϕ, which contain the node tF5, F7, F8u and E5 respectively.
S1 is not final w.r.t. covered arcs and contains only one uncovered connected component
(i.e., itself). Since th contains no static parameters and the arc from F1 to tF5, F7, F8u is
covered, according to Definition 15, we know that S1 is indirectly covered. Moreover, S2 is
final w.r.t. covered arcs. Because the arc from E3 to E5 is covered and GϕrRGϕ

pE5qs, which
comprises all the arcs reachable from E5 in Gϕ, matches thpE5;E5q, we deduce that S2 is
indirectly covered as well. Finally, it is easy to see that the separation constraint is satisfied.
Therefore, θ is a graph homomorphism, and we conclude that ϕ |ùc ψ.

Finally, in order to show that the existence of a graph homomorphism from Gϕ to Gψ can be
decided in polynomial time, it remains to show that checking that a subgraph of Gϕ matches
a predicate atom P pE;F ; Bq can be decided in polynomial time.

I Proposition 20. Given a subgraph G of Gϕ and a predicate atom P pE;F ; Bq, one can
decide whether G matches P pE;F ; Bq in polynomial time.
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The proof of Proposition 20 relies on the fact that the problem of whether G matches
P pE;F ; Bq can be reduced to checking some structural properties of G, which can be done
in polynomial time.

Combining Proposition 18 and Proposition 20, we conclude:

I Theorem 21. Let P P P1. The entailment problem for SLIDSNCrP s is in polynomial time.

A detailed comparison with [16].

Our polynomial-time decision procedure for SLIDSNCrP s formulae with P P P1 is related to
that in [16], since the parameters of an inductive predicate in [16] are also divided as source,
destination, and static parameters. Nevertheless, our decision procedure differs from that in
[16] in the following three aspects. (1) SLIDSNCrP s formulae with P P P1 and the fragment
of SL in [16] are incomparable: The latter allows nesting inductive predicates so that nested
lists and skip lists can be defined, while our fragment disallows this. On the other hand,
SLIDSNCrP s formulae with P P P1 allows defining tree structures, which are not supported
in [16]. (2) The inequality E ‰ F may appear in the inductive rules of predicates in [16],
but is excluded here. As a result, the fragment in [16] is precise in the sense that when
checking ϕ |ù ψ, for each arc e in Gψ, there is a unique subgraph of Gϕ that matches atomψpeq.
On the other hand, SLIDSNCrP s is not precise because of the uncovered simple cycles of
Gϕ. Some proper constraints on these uncovered simple cycles are necessary in the graph
homomorphism to achieve a complete decision procedure for the entailment problem. (3) In
[16], checking whether a subgraph of Gϕ matches a predicate atom P pE;F ; Bq is reduced
to the membership problem of a tree automaton constructed from the inductive definitions
of P , which is of exponential size in the worst case, due to the nested inductive predicates.
However, in our decision procedure, we simply check whether the subgraph satisfies some
structural properties in polynomial time.

5 Conclusion

We have provided polynomial-time satisfiability and entailment checking algorithms for
SLIDSNC with one source (destination) parameter. We have also shown that the satisfiability
problem is generally Np-complete if more than one source (destination) parameter is allowed,
particularly for an inductive predicate of doubly linked list segments.

For the future work, we strongly believe that our polynomial-time decision procedures
can be further generalised to handle inductive predicates with multiple source (destination)
parameters in a constrained form. Moreover, adding data constraints certainly is one of the
promising extensions of the current work.
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