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Abstract. Secure multi-party computation (MPC) is a promising tech-
nique for privacy-persevering applications. A number of MPC frame-
works have been proposed to reduce the burden of designing customized
protocols, allowing non-experts to quickly develop and deploy MPC ap-
plications. To improve performance, recent MPC frameworks allow users
to declare variables secret only for these which are to be protected. How-
ever, in practice, it is usually highly non-trivial for non-experts to spec-
ify secret variables: declaring too many degrades the performance while
declaring too less compromises privacy. To address this problem, in this
work we propose an automated security policy synthesis approach to
declare as few secret variables as possible but without compromising se-
curity. Our approach is a synergistic integration of type inference and
symbolic reasoning. The former is able to quickly infer a sound—but
sometimes conservative—security policy, whereas the latter allows to
identify secret variables in a security policy that can be declassified in
a precise manner. Moreover, the results from symbolic reasoning are fed
back to type inference to refine the security types even further. We im-
plement our approach in a new tool PoS4MPC. Experimental results
on five typical MPC applications confirm the efficacy of our approach.

1 Introduction

Secure multi-party computation (MPC) is a powerful cryptographic paradigm,
allowing mutually distrusting parties to collaboratively compute a public func-
tion over their private data without a trusted third party and revealing nothing
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beyond the result of the computation and their own private data [43,14]. MPC
has potential for broader uses in practical applications, e.g., truthful auctions,
avoiding satellite collisions [22], private machine learning [41], and data anal-
ysis [35]. However, practical deployment of MPC has been limited due to its
computational and communication complexity.

To foster applications of MPC, a number of general-purpose MPC frameworks
have been proposed, e.g., [9,34,29,44,37,24]. These frameworks provide high-level
languages for specifying MPC applications as well as compilers for translating
them into executable implementations, thus drastically reduce the burden of
designing customized protocols and allow non-experts to quickly develop and
deploy MPC applications. To improve performance, many MPC frameworks pro-
vide features to declare secret variables so that only these variables are to be
protected. However, such frameworks usually do not verify rigorously whether
there is information leakage, or, on some occasions, provide only light-weighted
checking (via, e.g., information-flow analysis). Even though some frameworks
are equipped with formal security guarantees, it is challenging for non-experts
to develop an MPC program that simultaneously achieves good performance and
formal security guarantees [28,3]. A typical case for an user is to declare all vari-
ables secret while ideally one would declare as few secret variables as possible to
achieve a good performance without compromising security.

In this work, we propose an automated security policy synthesis approach for
MPC. We first formalize the leakage of an MPC application in the ideal-world
as a set of private inputs and define the notion of security policy, which assigns
each variable a security level. This can bridge the language-level and protocol-
level leakages, hence our approach is independent of the specific MPC protocols
being used. Based on the leakage characterization, we provide a type system
to infer security policies by tracking both control- and data-flow of informa-
tion from private inputs. While a security policy inferred from the type system
formally guarantees that the MPC application will not leak more information
than the result of the computation and participants’ own private data, it may
be too conservative. For instance, some variables could be declassified without
compromising security but with improved performance. Therefore, we propose a
symbolic reasoning approach to identify secret variables in security policies that
can be declassified without compromising security. We also feed back the results
from the symbolic reasoning to type inference to refine the security type further.

We implement our approach in a new tool PoS4MPC (Policy Synthesis
for MPC) based on the LLVM Compiler [1] and the KLEE symbolic execution
engine [10]. Experimental results on five typical MPC applications show that our
approach can generate less restrictive security policies than using the type system
solely. We also deploy the generated security policies in two MPC frameworks
Obliv-C [44] and MPyC [37]. The results show that, for instance, the security
policies generated by our approach can reduce the execution time by 31%–1.56×
105%, the circuit size by 38%–3.61 × 105%, and the communication traffic by
39%–4.17× 105% in Obliv-C.

To summarize, our main technical contributions are as follows.
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int demo(int a, int b, int c){

int r = 1; int max = a;

bool c1 = max < b;

if (c1){ max = b; r = 2; }

bool c2 = max < c;

if (c2){ r = 3; }

return r; }

Fig. 1: The richest one of three millionaires
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Fig. 2: Ideal-world vs. real-world

– A formalization of information leakage for MPC applications and the notion
of security policy to bridge the language-level and protocol-level leakages;

– An automated security policy synthesis approach that is able to generate
less restrictive security policies;

– An implementation of our approach for a real-world language and an evalu-
ation on challenging benchmarks from the literature.

Outline. Section 2 presents the motivation of this work and overview of our
approach. Section 3 gives the background of MPC. Section 4 introduces a simple
language on which we formalize the leakage of MPC applications. We propose
a type system for inferring security policies in Section 5 and a symbolic rea-
soning approach for declassification in Section 6. Implementation details and
experimental results are given in Section 7. Finally, we discuss related work in
Section 8 and conclude this paper in Section 9.

Missing proofs can be found in the full version of this paper [15].

2 Motivation

Fig. 1 shows a motivating example that computes the richest among three
millionaires. To preserve the privacy, the millionaires can privately send their
inputs to a trusted third party (TTP) as shown in Fig. 2 (ideal-world). This
reveals the richest millionaire with the least leakage of information. Table 1
shows the leakage for each result r = 1, 2, 3, as well as the leakage if the secret
branching variables c1 and c2 are declassified (i.e., from secret to public).

Table 1: Leakage from each result and declassified secret branching variables
Result Leakage of Result Leakage of c1 Leakage of c2

r = 1 a ≥ b ∧ a ≥ c a ≥ b a ≥ c

r = 2 a < b ∧ b ≥ c a < b b ≥ c

r = 3 c > max(a, b) a ≥ b ∨ a < b c > max(a, b)

To achieve the same functionality without TTP, secure multi-party compu-
tation (MPC) was proposed [43,14]. One can implement the computation using
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an MPC protocol π where all the parties collaboratively compute the result over
their private inputs via network communications (shown in Fig. 2 (real-world)).

To facilitate applications of MPC, various MPC frameworks, e.g., Obliv-
C [44], MP-SPDZ [24] and MPyC [37], have been proposed, which provide high-
level languages for specifying MPC applications, as well as compilers for trans-
lating them into executable implementations. To improve performance, these
frameworks often allow users to declare secret variables so that only the values
of secret variables are to be protected. However, in practice, it is usually quite
challenging for non-experts to specify secret variables properly: declaring too
many secret variables would degrade the performance, whereas declaring too
less secret variables risks compromising security and privacy.

In this work, we propose an automated synthesis approach, aiming to declare
as few secret variables as possible but without compromising security. To capture
privacy, we formalize the leakage of MPC applications in the ideal-world as a set
of private inputs. For instance, the leakage of the result r = 1 in the motivating
example is the set of inputs such that a ≥ b ∧ a ≥ c. We introduce the notion
of security policy, which assigns each variable a security level, to bridge the
language-level and protocol-level leakages, so that our approach is independent
of specific MPC protocols being used. The language-level leakage of a security
policy is characterized by a set of private inputs with respect to not only the
result but also the values of public variables in the intermediate computations.

Based on the leakage characterization, we propose a type system to auto-
matically infer security policies, inspired by the work of proving noninterference
of programs [40]. Our type system tracks both control-flow and data-flow of in-
formation from the private inputs, and infers a security policy. For instance, all
the variables in the motivating example are inferred as secret.

Although a security policy inferred by the type system formally guarantees
that the MPC application will not leak more information than that in the ideal-
world, it may be too conservative. For instance, declassifying the variable c2 in
the example would not compromise security. As shown in Table 1, the leakage
caused by declassifying c2 can be deduced from the leakage of the result. In
contrast, we cannot declassify c1, as neither a ≥ b nor a < b can be deduced
from the leakage c > max(a, b). Once c1 is declassified, the adversary would
learn if a ≥ b or a < b. This problem is akin to downgrading and declassification
of high security levels in information-flow analysis [27], and could be solved via
self-composition [39,42] that often require users to write annotations for proce-
dure contracts and loop invariants. In this work, for the sake of efficiency and
usability for non-experts, we propose an alternative approach based on symbolic
execution. We leverage symbolic execution to finitely represent a potentially in-
finite set of concrete executions, and propose an automated approach to infer
if a secret variable can be declassified by reasoning about pairs of symbolic ex-
ecutions. For instance, in Example 1, our approach is able to identify that c2

can be declassified without compromising security. In general, the experimental
results show that our approach is effective and the generated security policies
can significantly improve the performance of MPC applications.
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3 Secure MPC

Fix a set of variables X over a domain D. We write xn ∈ Xn and vn ∈ Dn

for tuples (x1, · · · , xn) and (v1, · · · , vn) respectively. (The subscript n may be
dropped when it is clear from the context.)

MPC in the ideal-world. An n-party MPC application f : Dn → D is to
confidentially compute a given function f(x), where each party Pi for 1 ≤ i ≤ n
sends her private input vi ∈ D to a TTP T which computes and returns the
result f(v) to all the parties. In the ideal world, an adversary that controls any
of the n parties learns no more than the output f(v) and the private inputs of
the corrupted (dishonest) parties.

We characterize the leakage of an MPC application f(x) by a set of private
inputs. Hereafter, we assume, w.l.o.g., the first k parties (i.e., P1, · · · ,Pk) are
corrupted by the adversary for some k ≥ 1. For a given output v ∈ D, let
≃f

v ⊆ Dn be the set {v ∈ Dn | f(v) = v}. Intuitively, ≃f
v is the set of the private

inputs v ∈ Dn under which f is evaluated to v. From the result v, the adversary
is able to learn the set ≃f

v , but cannot tell which one from ≃f
v given v. We refer

to ≃f
v as the indistinguishable space of the private inputs w.r.t. the result v. The

input domain Dn is then partitioned into indistinguishable spaces {≃f
v}v∈D.

When the adversary controls the parties P1, · · · ,Pk, she will learn the set
Leakfiw(v,vk) := {(v1, · · · , vn) ∈ Dn | vk = v1, · · · , vk}∩ ≃f

v , from the result v
and the adversary-chosen private inputs vk ∈ Dk.

Definition 1 (Leakage in the ideal-world). For an MPC application f(xn),

the leakage of computing v = f(vn) in the ideal-world is Leakfiw(v,vk), for the
adversary-chosen private inputs vk ∈ Dk and the result v ∈ D.

MPC in the real-world. An MPC application in the real-world is imple-
mented using some MPC protocol π (denoted by πf ) by which all the parties
collaboratively compute πf (x) over their private inputs v without any TTP T.
Introduction of MPC protocols can be found in [14].

There are generally two types of adversaries in the real world, i.e., semi-honest
and malicious. An adversary is semi-honest (a.k.a. passive) if the corrupted par-
ties run the protocol honestly as specified, but may try to learn private informa-
tion of other parties by observing the protocol execution (i.e., network messages
and program states). An adversary is malicious (a.k.a. active) if the corrupted
parties can deviate arbitrarily from the prescribed protocol (e.g., control, ma-
nipulate, and inject messages) in an attempt to learn private information of the
other parties. In this work, we consider semi-honest adversaries, which are sup-
ported by most MPC frameworks and often serve as a basis for MPC in more
robust settings with powerful adversaries.

A protocol π is (semi-honest) secure if what a (semi-honest) adversary can
achieve in the real-world can also be achieved by a corresponding adversary in
the ideal-world. Semi-honest security ensures that the corrupted parties learn
no more information from executing the protocol than what they can learn from
the result and the private inputs of the corrupted parties. Therefore, the leakage
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of an MPC application f(x) in the real-world against the semi-honest adversary
can also be characterized using the indistinguishability of private inputs.

Definition 2. An MPC protocol π is (semi-honest) secure if for any MPC ap-
plication f(xn), adversary-chosen private inputs vk ∈ Dk and result v ∈ D, the

leakage of computing v = πf (vn) is Leakfiw(v,vk).

4 Language-level Leakage Characterization

In this section, we characterize the leakage of MPC applications from the lan-
guage perspective.

4.1 A Language for MPC

We consider a simple language While for implementing MPC applications. The
syntax of While programs is defined as follows.

p ::=skip | x = e | p1; p2 | if x then p1 else p2 | return x

| while x do p | repeat n do p

where e is an expression defined as usual and n is a positive integer.
Despite its simplicity, While suffices to illustrate our approach and our tool

supports a real-world language. Note that we introduce two loop constructs.
The while loop can only be used with the secret-independent conditions while
the repeat loop (with a fixed number n of iterations) can have secret-dependent
conditions. The restriction of the while loop is necessary, as the adversary knows
when to terminate the loop, so secret information may be leaked if a secret-
dependent condition is used [44].

The operational semantics of the While program is defined in a standard
way (cf. [15]). In particular, repeat n do p means repeating the loop body p for
a fixed number n times. A configuration is a tuple ⟨p, σ⟩, where p denotes a
statement and σ : X → D denotes a state that maps variables to values. The
evaluation of an expression e under a state σ is denoted by σ(e). A transition
from ⟨p, σ⟩ to ⟨p′, σ′⟩ is denoted by ⟨p, σ⟩ → ⟨p′, σ′⟩ and→∗ denotes the transitive
closure of →. An execution starting from the configuration ⟨p, σ⟩ is a sequence of
configurations. We write ⟨p, σ⟩ ⇓ σ′ if ⟨p, σ⟩ →∗ ⟨skip, σ′⟩. We assume that each
execution ends in a return statement, i.e., all the while loops always terminate.
We denote by ⟨p, σ⟩ ⇓ σ′ : v the execution returning value v.

4.2 Leakage Characterization in Ideal/Real-World

An MPC application f(x) is implemented as a While program p. An execution
of the program p evaluates the computation f(x) as if a TTP directly executed
the program p on the private inputs. In this setting, the adversary cannot observe
any intermediate states of the execution other than the final result.
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Let X in = {x1, · · · , xn} ⊆ X be the set of private input variables. We denote
by State0 the set of the initial states. Given a tuple of values vk ∈ Dk and a
result v ∈ D, let Leakpiw(v,vk) denote the set of states σ ∈ State0 such that
⟨p, σ⟩ ⇓ σ′ : v for some state σ′ and σ(xi) = vi for 1 ≤ i ≤ k. Intuitively,
when the adversary controls the parties P1, · · · ,Pk, she learns the set of states
Leakpiw(v,vk) from the result v and the adversary-chosen private inputs vk ∈ Dk.
We can reformulate the leakage of an MPC application f(x) in the ideal-world
(cf. Definition 1) as follows.

Proposition 1. Given an MPC application f(xn) implemented by a program p,

v′
n ∈ Leakfiw(v,vk) iff there exists a state σ ∈ Leakpiw(v,vk) such that σ(xi) = v′i

for 1 ≤ i ≤ n.

We use security policies to characterize the leakage of MPC applications in
the real-world.
Security level. We consider a lattice of security levels L = {Sec, Pub} with
Pub ⊑ Pub, Pub ⊑ Sec, Sec ⊑ Sec and Sec ̸⊑ Pub. We denote by ℓ1⊔ ℓ2 the least
upper bound of two security levels ℓ1, ℓ2 ∈ L, namely, ℓ ⊔ Sec = Sec ⊔ ℓ = Sec

for ℓ ∈ L and Pub ⊔ Pub = Pub.

Definition 3. A security policy ϱ : X → L for the MPC application f(x) is a
function that associates each variable x ∈ X with a security level ℓ ∈ L.

Given a security policy ϱ and a security level ℓ ∈ L, let X ℓ := {x | ϱ(x) =
ℓ} ⊆ X , i.e., the set of variables with the security level ℓ under ϱ. We lift the
order ⊑ to security policies, namely, ϱ ⊑ ϱ′ if ϱ(x) ⊑ ϱ′(x) for each x ∈ X .
When executing the program p with a security policy ϱ using an MPC protocol
π, we assume that the adversary can observe the values of the public variables
x ∈ X Pub, but not that of the secret variables x ∈ X Sec.

This is a practical assumption and can be well-supported by the existing
approach. For instance, Obliv-C [44] allows developers to define an MPC appli-
cation in an extension of C language, when compiled and linked, the result will
be a concrete garbled circuit protocol πp whose computation does not reveal the
values of any oblivious-qualified variables. Thus, all the secret variables speci-
fied by the security policy ϱ can be declared as oblivious-qualified variables in
Obliv-C, while all the public variables specified by the security policy ϱ are de-
clared without oblivious-qualification. Similarly, MPyC [37] is a Python package
for implementing MPC applications that allows programmers to define instances
of secret-typed variable classes using Python’s class mechanism. When execut-
ing MPC applications, instances of secret-typed class variables are protected via
Shamir’s secret sharing protocol [38]. Thus, all the secret variables specified by
the security policy ϱ can be declared as instances of secret-typed variable classes
in MPyC, while all the public variables specified by the security policy ϱ are
declared as instances of Python’s standard classes.

Leakage under a security policy. Fix a security policy ϱ for the program
p. Remark that the values of the secret variables will not be known even at
runtime for each party, as they are encrypted. This means that, unlike the
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secret-independent conditions, the secret-dependent conditions cannot be ex-
ecuted normally, and thus should be removed using, e.g., multiplexers, before
transforming into circuits. We define the transformation Tϱ(·, ·), where c is the
selector of a multiplexer.

Tϱ(c, p1; p2) ≜ Tϱ(c, p1); Tϱ(c, p2) Tϱ(c, return x) ≜ return x

Tϱ(c, x = e) ≜ x = x+ c× (e− x) Tϱ(c, skip) ≜ skip

Tϱ(c, if x then p1 else p2) ≜

{
if x then Tϱ(1, p1) else Tϱ(1, p2), if c = 1 ∧ ϱ(x) = Pub;
Tϱ(c&x, p1); Tϱ(c&¬x, p2), otherwise.

Tϱ(c,while x do p) ≜

{
while x do Tϱ(1, p), if c = 1 ∧ ϱ(x) = Pub;
Error, otherwise.

Tϱ(c, repeat n do p) ≜ repeat n do Tϱ(c, p)

Intuitively, c in Tϱ(c, ·) indicates whether the statement is under some secret-
dependent branching statements. Initially, c = 1. During the transformation, c
will be conjuncted with the branching condition x or ¬x when transforming
if x then p1 else p2 if x is secret or c ̸= 1. The control flow inside should be
protected if c ̸= 1. If c = 1 and the condition variable x is public, the statement
needs not be protected. T (c, x = e) simulates a multiplexer with two different
values depending on whether the assignment x = e is in the scope of some
secret-dependent conditions. At runtime, the value e is assigned to x if c is 1,
otherwise x does not change. Tϱ(c,while x do p) enforces that the while loop
is used in secret-independent conditions and x is public in the security policy
ϱ otherwise throws an error. The other cases are trivial. We denote by p̂ϱ the
program Tϱ(1, p) on which we will define the leakage of p in the real-world.

For every state σ : X → D, let σPub : X Pub → D denote the state that is
the projection of the state σ onto the public variables X Pub. For each execution
⟨p̂ϱ, σ1⟩ ⇓ σ2, we denote by ⟨p̂ϱ, σ1⟩ ⇓Pub

ϱ σ2 the sequence of configurations where
each state σ is replaced by the state σPub.

Recall that the adversary can observe the values of public variables x ∈ X Pub

when executing the program p̂ϱ. Thus, from an execution ⟨p̂ϱ, σ1⟩ ⇓ σ2 : v, she
can observe the sequence ⟨p̂ϱ, σ1⟩ ⇓Pub

ϱ σ2 and the result v, written as ⟨p̂ϱ, σ1⟩ ⇓Pub
ϱ

σ2 : v. For every state σ ∈ Leakpiw(v,vk), we denote by Leakp,ϱrw (v, σ) the set of
states σ′ ∈ Leakpiw(v,vk) such that ⟨p̂ϱ, σ′⟩ ⇓Pub

ϱ σ′
1 : v and ⟨p̂ϱ, σ⟩ ⇓Pub

ϱ σ1 : v are
identical.

Definition 4. A security policy ϱ is perfect for a given MPC application f(xn)
implemented by the program p, denoted by ϱ |=p f(xn), if Tϱ(1, p) does not throw
any errors, and for adversary-chosen private inputs vk ∈ Dk, the result v ∈ D,
and the state σ ∈ Leakpiw(v,vk), we have that

Leakpiw(v,vk) = Leakp,ϱrw (v, σ).

Intuitively, a perfect security policy ϱ ensures that for every state σ ∈ Leakpiw(v,vk),
from the observation ⟨p̂ϱ, σ⟩ ⇓Pub

ϱ σ′ : v, the adversary only learns the same set
Leakpiw(v,vk) of initial states as that in the ideal-world.
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Our goal is to compute a perfect security policy ϱ for every program p that
implements the MPC f(x). A naive way is to assign the high security level Sec
to all the variables X , which may however suffer from a lower performance, as
all the intermediate computations have to be performed on encrypted data and
conditional statements have to removed. Ideally, a security policy ϱ should not
only be perfect but also annotate as few secret variables as possible.

5 Type System

In this section, we present a sound type system to automatically infer perfect
security policies. We first define noninterference of a program p w.r.t. a security
policy ϱ, which is shown to entail the perfectness of ϱ.

Definition 5. A program p is noninterfering w.r.t. a security policy ϱ, written
as ϱ-noninterfering, if Tϱ(1, p) does not throw any errors and ⟨p̂ϱ, σ1⟩ ⇓Pub

ϱ σ2 : v
and ⟨p̂ϱ, σ′

1⟩ ⇓Pub
ϱ σ′

2 : v′ are the same for each pair of states σ1, σ
′
1 ∈ State0.

Intuitively, the ϱ-noninterference ensures that for all private inputs of the
n parties (without the adversary-chosen private inputs), the adversary observes
the same sequence of the configurations from all the executions that return the
same value.

The ϱ-noninterference of p entails the perfectness of ϱ where the adver-
sary can choose arbitrary private inputs vk ∈ Dk of the corrupted participants
(P1, · · · ,Pk) for any k ≥ 1.

Proposition 2. If p is ϱ-noninterfering for a security policy ϱ, then ϱ |=p f(x).

Note that the converse of Proposition 2 does not necessarily hold due to the
adversary-chosen private inputs. For instance, suppose ⟨p̂ϱ, σ1⟩ ⇓Pub

ϱ σ2 : v and
⟨p̂ϱ, σ′

1⟩ ⇓Pub
ϱ σ′

2 : v are identical for every pair of states σ1, σ
′
1 ∈ Leakpiw(v, v1), and

⟨p̂ϱ, σ3⟩ ⇓Pub
ϱ σ4 : v and ⟨p̂ϱ, σ′

3⟩ ⇓Pub
ϱ σ′

4 : v are identical for every pair of states
σ3, σ

′
3 ∈ Leakpiw(v, v

′
1). If v1 ̸= v′1, then ⟨p̂ϱ, σ1⟩ ⇓Pub

ϱ σ2 : v and ⟨p̂ϱ, σ3⟩ ⇓Pub
ϱ σ4 : v

are different, implying that p is not ϱ-noninterfering.
Based on Proposition 2, we present a type system for inferring a perfect

security policy ϱ of a given program p such that p is ϱ-noninterfering. The typing
judgement is in the form of c ⊢ p : ϱ ⇒ ϱ′, where the type contexts ϱ, ϱ′ are
security policies, p is the program under typing, and c is the security level of the
current control flow. The typing judgement c ⊢ p : ϱ ⇒ ϱ′ states that given the
security level of the current control flow c and the type context ϱ, the statement
p is typable and yields a new updated type context ϱ′.

The type inference rules are shown in Fig. 3 which track the security levels
of both data- and control-flow of information from private inputs, where ϱ(e)
denotes the least upper bound of the security levels ϱ(x) of variables x used in
the expression e and ϱ1 ⊔ ϱ2 is the security policy such that for every variable
x ∈ X , (ϱ1 ⊔ ϱ2)(x) = ϱ1(x) ⊔ ϱ2(x). lfp(c, n, ϱ, p) is ϱ if n = 0 or ϱ′ = ϱ,
otherwise lfp(c, n− 1, ϱ′, p), where c ⊢ p : ϱ ⇒ ϱ′. Note that constants have the
security level Pub. Most of those rules are standard.
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c ⊢ skip : ϱ ⇒ ϱ
[T-Skip]

ϱ′ = ϱ[x 7→ c ⊔ ϱ(e)]

c ⊢ x = e : ϱ ⇒ ϱ′
[T-Assign]

c ⊢ p1 : ϱ ⇒ ϱ1
c ⊢ p2 : ϱ1 ⇒ ϱ2

c ⊢ p1; p2 : ϱ ⇒ ϱ2
[T-Seq]

c ⊔ ϱ(x) ⊢ p1 : ϱ ⇒ ϱ1
c ⊔ ϱ(x) ⊢ p2 : ϱ ⇒ ϱ2

ϱ′ = ϱ1 ⊔ ϱ2

c ⊢ if x then p1 else p2 : ϱ ⇒ ϱ′
[T-If]

c ⊢ return x : ϱ ⇒ ϱ
[T-Return]

ϱ′ = lfp(c, n, ϱ, p)

c ⊢ repeat n do p : ϱ ⇒ ϱ′
[T-Repeat]

ϱ(x) = Pub c = Pub ϱ′ = lfp(Pub,−1, ϱ, p)

c ⊢ while x do p : ϱ ⇒ ϱ′
[T-While]

Fig. 3: Type inference rules

Rule T-Assign disables the data-flow and control-flow of information from
the security level Sec to the security level Pub. To meet this constraint, the
security level of the variable x is updated to the least upper bound c ⊔ ϱ(e)
of the security levels of the current control flow c and variables used in the
expression e. Rule T-If passes the security level c of the current control flow into
both branches, preventing from assigning values to public variables in those two
branches when c = Sec. Rule T-While requires that the loop condition is public
and the loop is used with secret-independent conditions, ensuring that Tϱ(1, p)
does not throw any errors. Rule T-Return does not impose any constraints on
x, as the return value is observable to the adversary.

Let ϱ0 : X → L be the mapping such that ϱ0(x) = Sec for all x ∈ X Sec,
ϱ0(x) = Pub otherwise. If the typing judgement Pub ⊢ p : ϱ0 ⇒ ϱ is valid, then
the values of all the public variables specified by ϱ do not depend on any values
of private inputs. Thus, it is straightforward to get that:

Proposition 3. If the typing judgement Pub ⊢ p : ϱ0 ⇒ ϱ is valid, then the
program p is ϱ-noninterfering.

From Proposition 2 and Theorem 3, we have

Corollary 1. If Pub ⊢ p : ϱ0 ⇒ ϱ is valid, then ϱ is perfect, i.e., ϱ |=p f(x).

6 Degrading Security Levels

The type system allows to infer a security policy ϱ such that the type judgement
Pub ⊢ p : ϱ0 ⇒ ϱ is valid, from which we can deduce that ϱ |=p f(x), i.e., ϱ is
perfect for the MPC application f(x) implemented by the program p. However,
the security policy ϱ may be too conservative, i.e., some secret variables specified
by ϱ can be declassified without compromising the security. In this section, we
propose an automated approach to identify these variables. We mainly consider
minimizing the number of secret branching variables, viz., the secret variables
used in branching conditions, as they usually incur a high computation and
communication overhead. W.l.o.g., we assume that for each secret branching
variable x there is only one assignment to x and it is used only in one conditional
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⌈x = e, α, ϕ⌋ ↪→ ⌈skip, α[x 7→ α(e), ϕ]⌋ ⌈return x, α, ϕ⌋ ↪→ ⌈skip, α, ϕ⌋

⌈p1, α1, ϕ1⌋ ↪→ ⌈skip, α2, ϕ2⌋
⌈p2, α2, ϕ2⌋ ↪→ ⌈p′2, α3, ϕ3⌋
⌈p1; p2, α1, ϕ1⌋ ↪→ ⌈p′2, α3, ϕ3⌋

⌈p1, α1, ϕ1⌋ ↪→ ⌈p′1, α2, ϕ2⌋
p′1 ̸= skip

⌈p1; p2, α1, ϕ1⌋ ↪→ ⌈p′1; p2, α2, ϕ2⌋

SAT(ϕ′) ϕ′ = ϕ ∧ α(x)

⌈if x then p1 else p2, α, ϕ⌋ ↪→ ⌈p1, α, ϕ′⌋
SAT(ϕ′) ϕ′ = ϕ ∧ ¬α(x)

⌈if x then p1 else p2, α, ϕ⌋ ↪→ ⌈p2, α, ϕ′⌋

SAT(ϕ′) ϕ′ = ϕ ∧ α(x) p′ = p;while x do p

⌈while x do p, α, ϕ⌋ ↪→ ⌈p′, α, ϕ′⌋
SAT(ϕ′) ϕ′ = ϕ ∧ ¬α(x) p′ = skip

⌈while x do p, α, ϕ⌋ ↪→ ⌈p′, α, ϕ′⌋

p′ = (n ≥ 1) ? p; repeat n− 1 do p : skip

⌈repeat n do p, α, ϕ⌋ ↪→ ⌈p′, α, ϕ⌋

Fig. 4: The symbolic semantics of While programs

statement. (We can rename variables in p if this assumption does not hold,
where the named variables have the same security levels as their original names.)
With this assumption, whether x can be declassified depends only on the unique
conditional statement where it occurs.

Fix a security policy ϱ such that ϱ |=p f(x). Suppose that if x then p1 else p2 is
not used with secret-dependent conditions. Let ϱ′ be the security policy ϱ[x 7→
Pub]. It is easy to see that Tϱ′(1, p) does not raise any errors. Therefore, to
declassify x, we need to ensure that ⟨p̂ϱ′ , σ′⟩ ⇓Pub

ϱ′ σ′
1 : v and ⟨p̂ϱ′ , σ⟩ ⇓Pub

ϱ′ σ1 : v

are identical for every adversary-chosen private inputs vk ∈ Dk, result v ∈ D,
and states σ, σ′ ∈ Leakpiw(v,vk). However, as the number of the initial states may
be large and even infinite, it is infeasible to check all pairs of executions.

We propose to use symbolic executions to represent the potentially infinite
sets of (concrete) executions. Each symbolic execution t is associated with a path
condition ϕ which denotes the set of initial states satisfying ϕ, from each of which
the execution has the same sequence of statements. Thus, the conjunction ϕ∧e =
v, where e is the symbolic return value and v is concrete value, represents the set
of initial states from which the executions have the same sequence of statements
and returns the same result v. It is not difficult to observe that checking whether
x in if x then p1 else p2 can be declassified amounts to checking whether for every
pair of symbolic executions t1 and t2 that both include if x then p1 else p2, x
has the same truth value in t1 and t2 whenever t1 and t2 return the same value.
This can be solved by invoking off-the-shelf SMT solvers.

6.1 Symbolic Semantics

Let E denote the set of expressions over the private input variables x and con-
stants. A path condition ϕ ∈ E is a conjunction of Boolean expressions. A state
σ ∈ State0 satisfies ϕ, denoted by σ |= ϕ, if ϕ evaluates to True under σ. A
symbolic state α is a function X → E that maps variables to symbolic expres-
sions. α(e) denotes the symbolic value of the expression e under α, obtained
from e by replacing each occurrence of variable x by α(x). The initial symbolic
state, denoted by α0, is the identity function over the private input variables x.
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The symbolic semantics of While programs is defined by transitions be-
tween symbolic configurations, as shown in Fig. 4, where SAT(ϕ) is True iff the
constraint ϕ is satisfiable. A symbolic configuration is a tuple ⌈p, α, ϕ⌋, where p
is a statement, α is a symbolic state, and ϕ is the path condition that should
be satisfied to reach ⌈p, α, ϕ⌋. ⌈p, α, ϕ⌋ ↪→ ⌈p′, α′, ϕ′⌋ denotes a transition from
⌈p, α, ϕ⌋ to ⌈p′, α′, ϕ′⌋. The symbolic semantics is almost the same as the oper-
ational semantics except that (1) the path conditions are collected and checked
for conditional statements and while loops, and (2) the transition may be non-
deterministic if both ϕ ∧ α(x) and ϕ ∧ ¬α(x) are satisfiable.

We denote by ↪→∗ the transitive closure of ↪→, where its path condition is
the conjunction of that of each transition. An symbolic execution starting from
a symbolic configuration ⌈p, α, ϕ⌋ is a sequence of symbolic configurations, writ-
ten as ⌈p, α, ϕ⌋ ⇓ (α′, ϕ′), if ⌈p, α, ϕ⌋ ↪→∗ ⌈skip, α′, ϕ′⌋. Moreover, we denote by
⌈p, α, ϕ⌋ ⇓ (α′, ϕ′) : e the symbolic execution ⌈p, α, ϕ⌋ ⇓ (α′, ϕ′) with the sym-
bolic return value e. We denote by SymExe the set of all the symbolic executions
⌈p, α0, True⌋ ⇓ (α, ϕ) : e of the program p. Note that α0 is the initial symbolic
state. Recall that we assumed all the (concrete) executions always terminate,
thus SymExe is a finite set of finite sequence of symbolic configurations.

6.2 Relating Symbolic Executions to Concrete Executions

A symbolic execution t = ⌈p, α0, True⌋ ⇓ (α, ϕ) : e represents the set of (con-
crete) executions starting from the states σ ∈ State0 such that σ |= ϕ. Formally,
consider σ ∈ State0 such that σ |= ϕ, by concretizing all the symbolic values
of variables x in each symbolic state α′ with concrete values σ(α′(x)) and pro-
jecting out all the path conditions, the symbolic execution t is the execution
⟨p, σ⟩ ⇓ σ′ : σ(e), written as σ(t). For the execution ⟨p, σ⟩ ⇓ σ′ : v, there are a
unique symbolic execution t such that σ(t) = ⟨p, σ⟩ ⇓ σ′ : v and a unique exe-
cution ⟨p̂ϱ, σ⟩ ⇓ σ′ : v in the program p̂ϱ. We denote by RWϱ,σ(t) the execution
⟨p̂ϱ, σ⟩ ⇓ϱ σ′ : v and denote by RWPub

ϱ,σ(t) the sequence ⟨p̂ϱ, σ⟩ ⇓Pub
ϱ σ′ : v.

For every adversary-chosen private inputs vk ∈ Dk, result v ∈ D, and ini-
tial state σ ∈ Leakpiw(v,vk), we can reformulate the set Leakp,ϱrw (v, σ) as fol-
lows. (Recall that Leakp,ϱrw (v, σ) is the set of states σ′ ∈ Leakpiw(v,vk) such that
⟨p̂ϱ, σ′⟩ ⇓Pub

ϱ σ′
1 : v and ⟨p̂ϱ, σ⟩ ⇓Pub

ϱ σ1 : v are identical.)

Proposition 4. For each state σ′ ∈ Leakpiw(v,vk), σ′ ∈ Leakp,ϱrw (v, σ) iff for
every symbolic execution t′ = ⌈p, α0, True⌋ ⇓ (α′, ϕ′) : e′ ∈ SymExe such that
σ′ |= ϕ′ ∧ e′ = v, RWPub

ϱ,σ(t) and RWPub
ϱ,σ′(t′) are identical, where t is a symbolic

execution ⌈p, α0, True⌋ ⇓ (α, ϕ) : e such that σ |= ϕ ∧ e = v.

Proposition 4 allows to consider only the symbolic executions ⌈p, α0, True⌋ ⇓
(α, ϕ) : e ∈ SymExe such that σ |= ϕ∧ e = v when checking if ϱ is perfect or not.

6.3 Reasoning about Symbolic Executions

We leverage Proposition 4 to identify secret variables that can be declassified
without compromising the security by reasoning about symbolic executions. For
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each expression ϕ ∈ E , Primed(ϕ) denotes the “primed” expression ϕ where each
private input variable xi is replaced by x′

i (i.e., its primed version).

Consider two symbolic executions t = ⌈p, α0, True⌋ ⇓ (α, ϕ) : e and t′ =
⌈p, α0, True⌋ ⇓ (α′, ϕ′) : e′. Assume if x then p′ else p′′ is not used with any secret-
dependent conditions. Recall that we assumed x is used only in if x then p′ else p′′.
Then, t and t′ execute the same subsequence (say p1, · · · , pm) of the statements
that are if x then p′ else p′′. Let e1, · · · , em (resp. e′1, · · · , e′m) be symbolic values
of x when executing p1, · · · , pm in the symbolic execution t (resp. t′). Define the
constraint Ψx(t, t

′) as

Ψx(t, t
′) ≜

(
ϕ ∧ Primed(ϕ′) ∧ e = Primed(e′)

)
⇒

(∧m
i=1 ei = Primed(e′i)

)
Intuitively, Ψx(t, t

′) asserts that for every pair of states σ, σ′ ∈ State0 if σ
(resp. σ′ ) satisfies the path condition ϕ (resp. ϕ′), σ(e) and σ′(e′) are identical,
then for each 1 ≤ i ≤ m, the values of x are the same when executing the
conditional statement pi in both RWϱ,σ(t) and RWϱ,σ′(t′).

Proposition 5. For each pair of states σ, σ′ ∈ Leakpiw(v,vk) such that σ |=
ϕ∧e = v and σ′ |= ϕ′∧e′ = v, if Ψx(t, t

′) is valid and RWPub
ϱ,σ(t) and RWPub

ϱ,σ′(t′) are

identical, then RWPub
ϱ′,σ(t) and RWPub

ϱ′,σ′(t′) are identical, where ϱ′ = ϱ[x 7→ Pub].

Recall that x can be declassified in a perfect security policy ϱ if ϱ′ = ϱ[x 7→
Pub] is still perfect, namely, ⟨p̂ϱ′ , σ′⟩ ⇓Pub

ϱ′ σ′
1 : v and ⟨p̂ϱ′ , σ⟩ ⇓Pub

ϱ′ σ1 : v are

identical for every adversary-chosen private inputs vk ∈ Dk, result v ∈ D, and
states σ, σ′ ∈ Leakpiw(v,vk). By Proposition 5, if Ψx(t, t

′) is valid for each pair of
symbolic executions t, t′ ∈ SymExe, we can deduce that ϱ′ is still perfect.

Theorem 1. If ϱ |=p f(x) and Ψx(t, t
′) is valid for each pair of symbolic execu-

tions t, t′ ∈ SymExe, then ϱ[x 7→ Pub] |=p f(x).

Example 1. Consider two symbolic executions t and t′ in the motivating example
such that the path condition ϕ (resp. ϕ′) of t (resp. t′) is a ≥ b ∧ c > a (resp.
a < b ∧ c > b), and both return the result 3. The secret branching variable c2

has the symbolic values c > a (resp. c > b) in t and t′, respectively. Then

Ψc2(t, t
′) ≜ (a ≥ b ∧ c > a ∧ a′ < b′ ∧ c′ > b′ ∧ 3 = 3) ⇒ ((c > a) = (c′ > b′)).

Obviously, Ψc2(t, t
′) is valid. We can show that for any other pair (t, t′) of sym-

bolic executions, Ψc2(t, t
′) is always valid. Therefore, the secret branching vari-

able c2 can be declassified in any perfect security policy ϱ.

In contrast, the secret branching variable c1 has the symbolic value a < b in
both t and t′. Then,

Ψc1(t, t
′) ≜ (a ≥ b ∧ c > a ∧ a′ < b′ ∧ c′ > b′ ∧ 3 = 3) ⇒ ((a < b) = (a′ < b′)).

Ψc1(t, t
′) is not valid, thus the secret branching variable c1 cannot be declassified.
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Fig. 5: The workflow of our tool PoS4MPC

Refinement. Theorem 1 allows us to check if the secret branching variable
x of a conditional statement if x then p′ else p′′ that does not used with any
secret-dependent conditions can be declassified. After that, if x can be declas-
sified without compromising the security, we feed back the result to the type
system before checking the next secret branching variable. This allows us to re-
fine the security level of variables that are updated in branches, namely, the type
inference rule T-If is refined to the following one

c′ = (can x be declassified ? Pub : ϱ(x))
c ⊔ c′ ⊢ p1 : ϱ ⇒ ϱ1 c ⊔ c′ ⊢ p2 : ϱ ⇒ ϱ2 ϱ′ = ϱ1 ⊔ ϱ2

c ⊢ if x then p1 else p2 : ϱ ⇒ ϱ′
[T-If]

7 Implementation and Evaluation

We have implemented our approach in a tool, named PoS4MPC. The workflow
of PoS4MPC is shown in Fig. 5, The input is an MPC program in C, which
is parsed to an intermediate representation (IR) inside the LLVM Compiler [1]
where call graph and control flow graphs are constructed at the LLVM IR level.
We then perform the type inference which computes the a perfect security pol-
icy for the given program. To be accurate, we perform a field-sensitive pointer
analysis [6] and our type inference is also field-sensitive. As the next step, we
leverage the KLEE symbolic execution engine [10] to explore all the feasible sym-
bolic executions, as well as the symbolic values of the return variable and secret
branching variables of each symbolic execution. We fully explore loops since the
bounds of loops in MPC are public and decided by user-specified inputs. Based
on them, we iteratively check if a secret branching variable is degraded and the
result is fed back to the type inference to refine security levels before checking
the next secret branching variable. After that, we transform the program into
the input of Obliv-C [44] by which the program can be compiled into executable
implementations, one for each party. Obliv-C is an extension of C for imple-
menting 2-party MPC applications using Yao’s garbled circuit protocol [43]. For
experimental purposes, PoS4MPC also features the high-level MPC framework
MPyC [37], which is a Python package for implementing n-party MPC appli-
cations (n ≥ 1) using Shamir’s secret sharing protocol [38]. The C program is
transformed into Python by a translator.

We also implement an optimization in our tool to alleviate the path explosion
problem. Instead of directly checking the validity of Ψx(t, t

′) for each secret
branching variable x and pair of symbolic executions t and t′, we first check if
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Table 2: Number of (secret) branching variables

Name LOC #Branch var #Other var
#Secret branch var #Other secret var
After TS After Check Before refinement After refinement

QS 56 4 6 3 0 4 2

LinS 25 1 3 1 0 2 1

BinS 46 2 8 2 1 6 6

AlmS 73 6 10 6 4 8 8

PSI 34 1 5 1 0 3 1

the premise ϕ ∧ Primed(ϕ′) ∧ e = Primed(e′) of Ψx(t, t
′) is satisfiable. We can

conclude that Ψx(t, t
′) is valid for any secret branching variable x if the premise

ϕ∧Primed(ϕ′)∧ e = Primed(e′) is unsatisfiable. Furthermore, this yields a sound
compositional reasoning approach which allows to split a program into a sequence
of function calls. When each pair of the symbolic executions for each function
cannot result in the same return value, we can conclude that Ψx(t, t

′) is valid for
any secret branching variable x and any pair of symbolic executions t and t′ of
the entire program. This optimization reduces the evaluation time of symbolic
execution of PSI (resp. QS) from 95.9s–8.1h (resp. 504.6s) to 1.7s–79.6s (resp.
11.6s) in input array size varies from 10 to 100 (resp. 10).

7.1 Evaluation Setup

For an evaluation of our approach, we conduct experiments on five typical 2-
party MPC applications [2], i.e., quicksort (QS) [21], linear search (LinS) [13],
binary search (BinS) [13], almost search (AlmS), and private set intersection
(PSI) [5]. QS outputs the list of indices of a given integer array a in its ordered
version, where the first half of a is given by one party and the second half of a
is given by the another party. LinS (resp. BinS and AlmS) outputs the index of
an integer b in an array a if it exists, −1 otherwise, where the integer array a is
the input from one party and the integer b is the input from the another party.
LinS always scans the array from the start to the end even though it has found
the integer b. BinS is a standard iterative approach on a sorted array, where the
array index is protected via oblivious read access machine [20]. AlmS is a variant
of BinS, where the input array is almost sorted, namely, each element is at either
the correct position or the closest neighbour of the correct position. PSI outputs
the intersection of two integer sets, each of which is an input from one party.

All the experiments were conducted on a desktop with 64-bit Linux Mint
20.1, Intel Core i5-6300HQ CPU, 2.30 GHz and 8 GB RAM. When evaluating
MPC applications, the client of each party is executed with a single thread.

7.2 Performance of Security Policy Synthesis

Security policy. The results of our approach is shown in Table 2, where column
(LOC) shows the number of lines of code, column (#Branch var) shows the
number of branching variables while column (#Other var) shows the number
of other variables, columns (After TS) and (After Check) respectively show the
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Table 3: Execution time of our security policy synthesis approach

Name
Length

10 20 30 40 50 60 70 80 90 100
SE Check SE Check SE Check SE Check SE Check SE Check SE Check SE Check SE Check SE Check

QS 11.6 0.8 0.4h 304.2 2.0h 959.8 5.0h 0.6h 9.5h 0.9h 15.5h 1.3h 22.6h 1.6h 31.0h 2.0h 40.7h 2.3h 51.6h 2.7h

LinS 0.4 1.0 0.6 1.0 1.0 1.0 1.4 1.0 2.0 1.1 2.6 1.1 3.4 1.2 4.2 1.2 5.2 1.3 6.2 1.4

BinS 0.8 1.1 2.1 4.3 3.8 10.2 6.4 20.0 9.5 34.8 13.8 54.6 19.5 80.1 25.6 103.4 34.1 151.4 42.7 204.7

AlmS 1.3 0.8 4.3 3.5 7.7 10.0 14.1 18.6 20.6 32.3 28.9 51.0 40.7 77.4 55.1 110.3 74.9 148.2 94.4 200.0

PSI 1.7 0.5 4.3 1.0 8.0 1.5 13.2 2.1 20.0 2.8 28.6 3.5 39.3 4.3 50.9 5.3 63.0 6.4 79.6 7.8

number of secret branching variables after applying the type system and checking
if the secret branching variables can be declassified, columns (Before refinement)
and (After refinement) respectively show the number of other secret variables
before and after refining the type inference by feeding back the results of the
symbolic reasoning. (Note that the input variables are excluded in counting.)

We can observe that only few variables (2 for QS, 1 for LinS, 2 for BinS,
2 for AlmS and 2 for PSI) can be found to be public by solely using the type
system. With our symbolic reasoning approach, more secret branching variables
can be declassified without compromising the security (3 for QS, 1 for LinS, 1 for
BinS, 2 for AlmS and 1 for PSI). After refining the type inference using results
of the symbolic reasoning approach, more secret variables can be declassified (2
for QS, 1 for LinS and 2 for PSI). Overall, our approach annotates 2, 1, 7, 12 and
1 internal variables as secret out of 10, 4, 10, 16 and 6 variables for QS, LinS,
BinS, AlmS and PSI, respectively.

Execution time. The execution time of our approach is shown in Table 3, where
columns (SE) and (Check) respectively show the execution time (in second unless
indicated by h for hour) of collecting symbolic executions and checking if secret
branching variables can be declassified, by varying the size of the input array
for each program from 10 to 100 with step 10. We did not report the execution
time of our type system, as it is less than 0.1 second for each benchmark.

We can observe that our symbolic reasoning approach is able to check all
the secret branching variables in few minutes (up to 294.4s) except for QS. Af-
ter an in-depth analysis, we found that the number of symbolic executions is
exponential in the length of the input array for QS and PSI while it is linear
in the length of the input array for the other benchmarks. Our compositional
reasoning approach works very well on PSI, otherwise it would take similar ex-
ecution time as on QS. Indeed, a loop of PSI is implemented as a sequence of
function calls each of which has a fixed number of symbolic executions. Further-
more, each pair of symbolic executions in the called function cannot result in
the same return value. Therefore, the number of symbolic executions and the
execution time of our symbolic reasoning approach is reduced significantly. How-
ever, our compositional reasoning approach does not work on QS. Although the
number of symbolic executions grows exponentially on QS, the execution time of
checking if secret branching variables can be declassified is still reduced by our
optimization, which avoids the checking of the constraint Ψx(t, t

′) if its premise
ϕ ∧ Primed(ϕ′) ∧ e = Primed(e′) is unsatisfiable.
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7.3 Performance Improvement of MPC Applications

To evaluate the performance improvement of the MPC applications, we compare
the execution time (in second), the size of the circuits (in 106×gates), and the
volume of communication traffic (in MB) of each benchmark with the security
policies v1 and v2, where v1 is obtained by solely applying our type system and
v2 is obtained from v1 by degrading security levels and refinement without com-
promising the security. The measurement results are calculated by result of v1

result of v2−1,
taking the average of 10 times repetitions in order to minimize the noise.

Obliv-C. The results in Obliv-C are depicted in Fig. 6 (note the logarithmic
scale of the vertical coordinate), where the size of the random input array for each
benchmark varies from 10 to 100 with step size 10. Overall, we can observe that
the performance improvement is significant especially on QS. In detail, compared
with the security policy v1 on QS (resp. LinS, BinS, AlmS, and PSI), on average
the security policy v2 reduces (1) the execution time by 1.56×105% (resp. 45%,
38%, 31% and 36%), (2) the size of circuits by 3.61×105% (resp. 368%, 52%, 38%
and 275%), and (3) the volume of communication traffic by 4.17 × 105% (resp.
367%, 53%, 39% and 274%). This demonstrates the performance improvement
of the MPC applications in Obliv-C that uses Yao’s garbled circuit protocol.

MPyC. The results in MPyC are depicted in Fig. 7. Since MPyC does not
provide the size of circuits and the volume of communication traffic, we only
report execution time in Fig. 7. The results show that degrading security levels
also improves execution time in MPyC that uses Shamir’s secret sharing protocol.
Compared with the security policy v1 on benchmark QS (resp. LinS, BinS, AlmS,
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and PSI), on average the security policy v2 reduces the execution time by 2.5×
104% (resp. 64%, 23%, 17% and 996%).

We note the difference in improvements of Obliv-C and MPyC. It is because:
(1) Obliv-C and MPyC use different MPC protocols with varying improvements,
where Yao’s protocol (Obliv-C) is efficient for Boolean computations while the
secret-sharing protocol (MPyC) is efficient for arithmetic computations; and (2)
the proportion of downgrading variables is different where a larger proportion
of downgrading variables (in particular branching variables with large branches)
boosts performance more.

8 Related work

MPC Frameworks. Early efforts to MPC frameworks provide high-level lan-
guages for specifying MPC applications and compilers for translating them into
executable implementations [31,8,23,32]. For instance, Fairplay complies 2-party
MPC programs written in a domain-specific language into Yao’s garbled cir-
cuits [31]. FairplayMP [8] extends Fairplay to multi-party using a modified ver-
sion of the BMR protocol [7] with a Java interface. The others are aimed at
improving the efficiency of operations in circuits and size of circuits. Mixed MPC
protocols were also proposed to improve efficiency [26,9,34], as the efficiency of
MPC protocols vary in operations. These frameworks explore the implementa-
tion space of operations in specific MPC protocols (e.g., garbled circuits, secret
sharing and homomorphic encryption), as well as their conversions. However, all
these frameworks either entirely compile an MPC program or compile an MPC
program according to user-annotated secret variables to improve performance
without formal security guarantees. Our approach improves the performance of
MPC applications by declassifying secret variables without compromising secu-
rity, which is orthogonal to the above optimization work.

Security of MPC applications. Since MPC applications implemented in
MPC frameworks are not necessarily secure due to information leakage dur-
ing execution in the real-world. Therefore, information-flow type systems and
data-flow analysis have been adopted in the MPC frameworks, e.g., [44,37,24].
However, they only consider security verification but not automatic generation
of security policies as we did in the current paper. Moreover, these approaches
cannot identify some variables (e.g., c2 in our motivating example) that can ac-
tually be declassified without compromising security. Kerschbaum [25] proposed
to infer public intermediate values by reasoning about epistemic modal logic,
with a similar goal to ours for declassifying secret variables. However, it is un-
clear how efficient this approach is, as the performance of their approach was
not reported [25].

Alternatively, self-composition which reduces the security problem to the
safety problem on two copies of a program has been adopted by [3], where the
safety problem can be solved by safety verification tools. However, safety verifi-
cation remains challenging and these approaches often require user annotations
(e.g., procedure contracts and loop invariants) that are non-trivial for MPC
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practitioners. Our work is different from them in: (1) they only use the self-
composition reduction to verify security instead of automatically generating a
security policy; (2) they have to check almost all the program variables which
is computational expensive, while we first apply an efficient type system to in-
fer a security policy and then only check if the security branching variables in
the security policy can be declassified; and (3) we check if security branching
variables can be declassified by reasoning about pairs of symbolic executions
which can be seen as a divide-and-conquer approach without annotations, and
the results can be fed back to the type system to efficiently refine security levels.
We remark that the self-composition reduction could also be used to check if a
security branching variable could be declassified.

Information-flow analysis. A rich body of literature has studied verification
of information-flow security and noninterference in programs [12], which requires
that confidential data does not flow to outputs. This is too restrictive for pro-
grams which allow secret data to flow to some non-secret outputs, e.g., MPC ap-
plications, therefore the security notion is extended with declassification (a.k.a.
delimited release) later [27]. These security problems are verified by type sys-
tems (e.g. [27]) or self-composition (e.g., [39]) or relational reasoning (e.g., [4]).
Some of these techniques have been adapted to verify timing side-channel secu-
rity, e.g., [11,42,30]. However, as the usual notions of security in these settings
do not require reasoning about arbitrary leakage, these techniques are not di-
rectly applicable to our setting. Different from existing analysis using symbolic
execution[33], our approach takes advantage of the public outputs of MPC pro-
grams and regards the public outputs as a part of leakage to avoid false positive
of the noninterference approach and the quantification of information flow.

Finally, we remark that the leakage model considered in this work is different
from the ones used in power side-channel security [45,18,19,17,16] and timing
side-channel security [36,11,42,30] which leverage side-channel information while
ours assumes that the adversary is able to observe all the public information
during computation.

9 Conclusion

We have formalized the leakage of an MPC application which bridge the language-
level and protocol-level leakages via security policies. Based on the formalization,
we have presented an approach to automatically synthesize a security policy
which can improve the performance of MPC applications while not compro-
mising their privacy. Our approach is essentially a synergistic integration of
type inference and symbolic reasoning with security type refinement. We imple-
mented our approach in a tool PoS4MPC. The experimental results on five
typical MPC applications confirm that our approach can significantly improve
the performance of MPC applications.
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