
BDD4BNN: A BDD-based Quantitative Analysis
Framework for Binarized Neural Networks ?

Yedi Zhang1, Zhe Zhao1, Guangke Chen1, Fu Song1,2B, and Taolue Chen3

1 ShanghaiTech University, China
2 Shanghai Engineering Research Center of Intelligent Vision and Imaging, China

3 Birkbeck, University of London, UK

Abstract. Verifying and explaining the behavior of neural networks is becom-
ing increasingly important, especially when they are deployed in safety-critical
applications. In this paper, we study verification and interpretability problems
for Binarized Neural Networks (BNNs), the 1-bit quantization of general real-
numbered neural networks. Our approach is to encode BNNs into Binary Decision
Diagrams (BDDs), which is done by exploiting the internal structure of the BNNs.
In particular, we translate the input-output relation of blocks in BNNs to cardi-
nality constraints which are in turn encoded by BDDs. Based on the encoding,
we develop a quantitative framework for BNNs where precise and comprehensive
analysis of BNNs can be performed. We demonstrate the application of our frame-
work by providing quantitative robustness analysis and interpretability for BNNs.
We implement a prototype tool BDD4BNN and carry out extensive experiments,
confirming the effectiveness and efficiency of our approach.

1 Introduction

Deep neural networks (DNNs) have achieved human-level performance in several tasks,
and are increasingly being incorporated into various application domains such as au-
tonomous driving [4] and medical diagnostics [55]. Modern DNNs usually contain a
great many parameters which are typically stored as 32/64-bit floating-point numbers,
and require a massive amount of floating-point operations to compute the output for
a single input [62]. As a result, it is often challenging to deploy them on resource-
constrained, embedded devices. To mitigate the issue, quantization, which quantizes
32/64-bit floating-points to low bit-width fixed-points (e.g., 4-bits) with little accuracy
loss [24], emerges as a promising technique to reduce resource requirements. In par-
ticular, binarized neural networks (BNNs) [28] represent the case of 1-bit quantization
using the bipolar binaries ±1. BNNs can drastically reduce memory storage and exe-
cution time with bit-wise operations, hence substantially improve the time and energy
efficiency. BNNs have been demonstrated to achieve a high accuracy for a wide variety
of applications [35,54,43].

DNNs have been shown to lack robustness [61,51,36,19,11,38,14] and interpretabil-
ity of the predications they make [26,45]. Various formal techniques and heuristics have
? This work is supported by the National Natural Science Foundation of China (NSFC) under

Grants No.: 62072309, and an oversea grant from the State Key Laboratory of Novel Software
Technology, Nanjing University (KFKT2018A16).

2 Y. Zhang et al.

been proposed to analyze DNNs and interpret their behaviors, most of which focus on
real-numbered DNNs only. Verification of quantized DNNs has not been thoroughly
explored so far, although recent results have highlighted its importance: it was shown
that a quantized DNN does not necessarily preserve the properties satisfied by the real-
numbered DNN before quantization [14,23]. Indeed, the fixed-point number semantics
effectively yields a discrete state space for the verification of quantized DNNs whereas
real-numbered DNNs feature a continuous state space. The discrepancy could invalidate
current verification techniques for real-numbered DNNs when they are directly applied
to the quantized counterparts (e.g., both false negative and false positive could occur).
Therefore, specialized techniques are required for rigorously verifying quantized DNNs.

Broadly speaking, the existing techniques for quantized DNNs make use of con-
straint solving which is based on either SAT/SMT or (reduced, ordered) binary decision
diagrams (BDDs). A majority of work resorts to SAT/SMT solving. For the 1-bit quan-
tization (i.e., BNNs), typically BNNs are transformed into Boolean formulas where
SAT solving is harnessed [48,12,34,47]. Some recent work also studies variants of
BNNs [50,29], i.e., BNNs with ternary weights. For quantized DNNs with multiple bits
(i.e., fixed-points), it is natural to encode them as quantifier-free SMT formulas, e.g.,
using bit-vector and fixed-point theories [7,23,25], so that off-the-shelf SMT solvers can
be leveraged. In another direction, BDD-based approaches currently can tackle BNNs
only [56]. In a nutshell, they encode a BNN and an input region as a BDD, based on
which various analyses can be performed via queries on the BDD. The crux of the ap-
proach is how to generate the BDD efficiently. In the work [56], the BDD is constructed
by BDD learning [46], thus, currently limited to toy BNNs (e.g., 64 input size, 5 hidden
neurons, and 2 output size) with relatively small input regions.

On the other hand, existing work mostly focuses on qualitative verification, which
asks whether there exists an input x (in a specified region) for a neural network such that
a property (e.g., local robustness) is violated. In many practical applications, checking
only the existence is not sufficient. Indeed, for local robustness, such an (adversarial)
input almost surely exists which makes a qualitative answer less meaningful. Instead,
quantitative verification, which asks how often a property φ is satisfied or violated, is
far more useful yet more challenging as it could provide a probabilistic guarantee of
the behavior of neural networks. Such a quantitative guarantee is essential to certify, for
instance, certain implementations of neural network based perceptual components against
safety standards of autonomous vehicles [30,33]. Quantitative analysis of general neural
networks, however, is challenging, hence received little attention and for which the results
are rather limited so far. DeepSRGR [73] presented an abstract interpretation based
quantitative robustness verification approach for DNNs which is sound but incomplete.
For BNNs, approximate SAT model-counting solvers (]SAT) are leveraged [6,49] based
on the SAT encoding for the qualitative counterpart. Though probably approximately
correct (PAC) style guarantees can be provided, verification cost is usually prohibitively
high to achieve higher precision and confidence.

Main contributions. We propose a BDD-based framework BDD4BNN to support quan-
titative analysis of BNNs. The main challenge is how to efficiently build BDDs from
BNNs [49]. In contrast to previous work [56] which is learning-based and largely
treats the BNN as a blackbox, we directly encode a BNN and the associated input

BDD4BNN 3

region into BDDs. In a nutshell, a BNN is a sequential composition of multiple internal
blocks and one output block. Each block comprises 3 layers and captures a function
f : {+1,−1}n → {+1,−1}m, where n (resp. m) denotes the number of inputs (resp. out-
puts) of the block. Technically, the function f can be alternatively rewritten as a function
over the standard Boolean domain, i.e., f : {0, 1}n → {0, 1}m. A key stepping-stone
of our encoding is the observation that the i-th output yi of the block can be captured
by a cardinality constraint of the form

∑n
j=1 ` j ≥ k such that yi = 1 ⇔

∑n
j=1 ` j ≥ k,

where each literal ` j is either x j or ¬x j for the input variable x j, and k is a constant. We
then present an algorithm to encode a cardinality constraint

∑n
j=1 ` j ≥ k as a BDD with

O((n − k) · k) nodes in O((n − k) · k) time. As a result, the input-output relation of each
block can be encoded as a BDD, the composition of which yields the BDD for the entire
BNN. A distinguished advantage of our BDD encoding lies in its support of incremental
encoding. In particular, when different input regions are of interest, there is no need to
construct the BDD of the entire BNN from scratch.

Encoding BNNs as BDDs enables a wide variety of applications in security analysis
and decision explanation of BNNs. In this paper, we highlight two of them within our
framework, i.e., robustness analysis and interpretability. It was shown that DNNs have
been suffering from poor robustness to adversarial examples [61,52,51]. We consider
two quantitative variants of the problem: (1) how many adversarial examples does the
BNN have in the input region, and (2) how many of them are misclassified to each
class? We further provide an algorithm to incrementally compute the (locally) maximal
Hamming distance within which the BNN satisfies the desired robustness properties.

Interpretability is an issue arisen as a result of the blackbox nature of DNNs [26,45].
In application domains such as medical diagnosis, understanding the decisions made by
DNNs is a must. We consider two problems: (1) why some inputs are (mis)classified
into a class by the BNN and (2) are there any essential features in the input region that
are common for all samples classified into a class?

Experimental Results. We implement our framework as a prototype tool BDD4BNN
using the CUDD package [60], which scales to BNNs with up to 4 internal blocks,
200 hidden neurons, and 784 input size. To the best of our knowledge, it is the first
work to precisely and quantitatively analyze such large BNNs that go significantly
beyond the state-of-the-art. The experimental results show that BDD4BNN is significantly
more efficient and scalable than the learning-based technique [56]. Furthermore, we
demonstrate how BDD4BNN can be used in quantitative robustness analysis and decision
explanation of BNNs. For quantitative robustness analysis, our experimental results
show that BDD4BNN is considerably (5× to 1, 340×) faster and more accurate than the
state-of-the-art approximate]SAT-based approach [6]. It can also compute precisely
the distribution of predicated classes of the images in the input region as well as the
locally maximal Hamming distances on several BNNs. For decision explanation, we
show the effectiveness of BDD4BNN in computing prime-implicant explanations and
essential features of the given input region for some target classes. Note that this work
focuses on quantitative verification and interpretability of BNNs and may under-perform
SAT/SMT-based methods [48,12,34,47] for qualitative verification of BNNs.

In general, our main contributions can be summarized as follows.

4 Y. Zhang et al.

BNN
Block 1

LIN

BN

BIN

Block 2

LIN

BN

BIN

Block d

LIN

BN

BIN

Output

Block

LIN

ARGMAX

x

o

…

Fig. 1: Architecture of a BNN with d + 1 blocks

– We introduce a novel algorithmic approach for encoding BNNs into BDDs that
exactly preserves the semantics of BNNs and supports incremental encoding.

– We propose a framework for quantitative verification of BNNs and in particular, we
demonstrate the robustness analysis and interpretability of BNNs.

– We implement the framework as an end-to-end tool BDD4BNN and conduct thor-
ough experiments on various BNNs, demonstrating the efficiency and effectiveness
of BDD4BNN.

2 Preliminaries

In this section, we briefly introduce binarized neural networks (BNNs) and (reduced,
ordered) binary decision diagrams (BDDs).

We denote by R, N, B, and B±1 the set of real numbers, the set of natural numbers,
the standard Boolean domain {0, 1} and the integer set {+1,−1}. For n ∈ N, we denote
by [n] the set {1, · · · , n}. We will use ~W, ~W ′, . . . to denote (2-dimensional) matrices,
~x,~v, · · · to denote (row) vectors, and x, v, . . . to denote scalars. We denote by ~Wi,: and
~W:, j the i-th row and j-th column of the matrix ~W. Similarly, we denote by ~x j and ~Wi, j

the j-th entry of ~x and ~Wi,: respectively. In this work, Boolean values 1/0 will be used as
integers 1/0 in arithmetic computations without typecasting.

2.1 Binarized Neural Networks

A binarized neural network (BNN) [28] is a neural network where weights and activations
are predominantly binarized over the domain B±1. In this work, we consider feed-forward
BNNs. As shown in Figure 1, a BNN can be seen as a sequential composition of several
internal blocks and one output block. Each internal block comprises 3 layers: a linear
layer (LIN), a batch normalization layer (BN), and a binarization layer (BIN). The output
block comprises a linear layer and an ARGMAX layer. Note that the input/output of
internal blocks and the input of the output block are all vectors over B±1.

Definition 1. A BNN N : Bn1
±1 → Bs with s classes is given by a tuple of blocks

(t1, · · · , td, td+1) such that N = td+1 ◦ td ◦ · · · ◦ t1,

– for every i ∈ [d], ti : Bni
±1 → B

ni+1
±1 is an internal block comprising a LIN layer tlin

i , a
BN layer tbn

i and a BIN tbin
i with ti = tbin

i ◦ tbn
i ◦ tlin

i ,

BDD4BNN 5

Table 1: Definitions of layers in BNNs, where nd+2 = s and arg max(·) returns the index
of the largest entry which occurs first.

Layer Function Parameters Definition

LIN tlin
i : Bni

±1 → R
ni+1

Weight matrix: ~W ∈ Bni×ni+1
±1

Bias (row) vector: ~b ∈ Rni+1

tlin
i (~x) = ~y where ∀ j ∈ [ni+1],

~y j = 〈~x, ~W:, j〉 + ~b j

BN tbn
i : Rni+1 → Rni+1

Weight vectors: α ∈ Rni+1

Bias vector: γ ∈ Rni+1

Mean vector: µ ∈ Rni+1

Std. dev. vector: σ ∈ Rni+1

tbn
i (~x) = ~y where ∀ j ∈ [ni+1],
~y j = α j · (

~x j−µ j
σ j

) + γ j

BIN tbin
i : Rni+1 → B

ni+1
±1 -

tbin
i (~x) = ~y where ∀ j ∈ [ni+1],

~y j =

{
+1, if ~x j ≥ 0;
−1, otherwise.

ARGMAX tam
d+1 : Rs → Bs -

tam
d+1(~x) = ~y where ∀ j ∈ [s],
~y j = 1⇔ j = arg max(~x)

– td+1 : Bnd+1
±1 → B

s is the output block comprising a LIN layer tlin
d+1 and an ARGMAX

layer tam
d+1 with td+1 = tam

d+1 ◦ tlin
d+1,

where tbin
i , tbn

i , tlin
i for i ∈ [d], tlin

d+1 and tam
d+1 are given in Table 1.

Intuitively, a LIN layer is a linear transformation. A BN layer following a LIN layer
is used to standardize and normalize the output of the LIN layer. A BIN layer is used
to binarize the real-numbered output vector of the BN layer. In this work, we consider
the sign function which is widely used in BNNs to binarize real-numbered vectors. An
ARGMAX layer follows a LIN layer and outputs the index of the largest entry as the
predicted class which is represented by a one-hot vector. (In case there is more than one
such entry, the first one is returned.) Formally, given a BNN N = (t1, · · · , td, td+1) and
an input ~x ∈ Bn1

±1, N(~x) ∈ Bs is a one-hot vector in which the index of the non-zero entry
is the predicated class.

2.2 Binary Decision Diagrams

A BDD [9] is a rooted acyclic directed graph where non-terminal nodes v are labeled by
Boolean variables var(v) and terminal nodes (leaves) v are labeled with values val(v) ∈ B,
referred to as the 1-leaf and the 0-leaf respectively. Each non-terminal node v has two
outgoing edges: hi(v) meaning var(v) = 1 and lo(v) meaning var(v) = 0. We will also
refer to hi(v) and lo(v) as the hi and lo children of v respectively. Moreover, assuming
that x1, · · · , xm is the variable ordering, for each node v with var(v) = xi and each
v′ ∈ {hi(v), lo(v)} with var(v′) = x j, we have i < j. In the graphical representation of
BDDs, hi(v) and lo(v) are depicted by solid and dashed lines respectively. Multi-Terminal
Binary Decision Diagrams (MTBDDs) are a variant of BDDs in which the terminal
nodes are not restricted to be 0 or 1. A BDD is reduced if it (1) has only one 1-leaf and
one 0-leaf, (2) does not contain a node v such that hi(v) = lo(v), and (3) does not contain
two distinct non-terminal nodes v and v′ such that var(v) = var(v′), hi(v) = hi(v′) and

6 Y. Zhang et al.

x1

y1

x2

y2

y1

y2

01

Fig. 2: The reduced BDD for
f (x1, y1, x2, y2) = (x1 ⇔ y1) ∧ (x2 ⇔ y2)

Table 2: Some Basic BDD operations, where
op ∈ {And,Or,Xor,Xnor}

Operation Description
v = Var(x) fv(x) = x

v = Const(1) fv = 1
v = Const(0) fv = 0

Not(v) ¬ fv

Apply(v, v′, op) fv op fv′

Exists(v, X) ∃X. fv

SatAll(v) SatAll(fv)
RelProd(v, v′) fv ◦ fv′

ITE(x, v, v′) (x ∧ v) ∨ (¬x ∧ v′)

lo(v) = lo(v′). For example, Figure 2 shows the reduced BDD for the Boolean function
f (x1, y1, x2, y2) = (x1 ⇔ y1) ∧ (x2 ⇔ y2). Hereafter, we assume that BDDs are reduced.

Bryant [9] showed that BDDs can serve as a canonical form of Boolean functions.
Given a BDD over variables x1, · · · , xm, each non-terminal node v with var(v) = xi

represents a Boolean function fv = (xi ∧ fhi(v)) ∨ (¬xi ∧ flo(v)). Operations on Boolean
functions can usually be efficiently implemented via manipulating their BDD representa-
tions. A good variable ordering is crucial for the performance of BDD manipulations
while the problem of finding an optimal ordering for a function is NP-hard. To store
and manipulate BDDs efficiently, the nodes are stored in a hash table and the recent
computed results are stored in a cache to avoid duplicated computations. In this work, we
will use some basic BDD operations such as ITE for If-Then-Else, Xor for exclusive-OR,
Xnor for exclusive-NOR (i.e., a Xnor b = ¬(a Xor b)) and SatAll(fv) for the set of
all solutions of the Boolean formula fv. We denote by L(v) the set SatAll(fv). For easy
reference, more operations are given in Table 2. By op(v, v′) we denote the operation
Apply(v, v′, op).

3 BDD4BNN Design

3.1 BDD4BNN Overview

An overview of BDD4BNN is depicted in Figure 3. BDD4BNN comprises four main
components: Region2BDD, BNN2CC, BDD Model Builder, and Query Engine. For a
fixed BNN N = (t1, · · · , td, td+1) and a region R of the input space of N , BDD4BNN
constructs the BDDs (Gout

i)i∈[s] to encode the input-output relation of N in the region
R, where the BDD Gout

i corresponds to the class i ∈ [s]. Technically, the region R is
partitioned into s parts represented by (Gout

i)i∈[s]. For each property query, BDD4BNN
analyzes (Gout

i)i∈[s] and outputs the query result.
The general workflow of our approach is as follows. First, Region2BDD builds up a

BDD Gin
R from the region R which represents the desired input space of N for analysis.

Second, BNN2CC transforms each block of the BNN N into a set of cardinality con-
straints (CCs) similar to [48,6]. Third, BDD Model Builder builds the BDDs (Gout

i)i∈[s]

BDD4BNN 7

BDD4BNN

Region

BNN2CC
BNN

BDD Model

Builder

Region2BDD

CC

BDD
Query Engine

 Robustness

 Interpretability

BDD

Query

Result

Fig. 3: Overview of BDD4BNN

`1

`2

`k−1

`k

...

`2

`3

`k

`k+1

...

`3

`4

`k+1

`k+2

...

`4

`5

`k+2

`k+3

...

...

...

...

...

...

`n−k

`n−k+1

`n−2

`n−1

...

`n−k+1

`n−k+2

`n−1

`n

...

1

0

(a)
∑n

j=1 ` j ≥ k

x1

x2

x3

x2

x3

x4

x3

x4

x5

x4

x5

x6

1

0

(b) x1 + ¬x2 + x3 + ¬x4 + x5 + ¬x6 ≥ 3

Fig. 4: Graphic representation of BDDs using Algorithm 1

from all the cardinality constraints and the BDD Gin
R . Finally, Query Engine answers

queries by analyzing the BDDs (Gout
i)i∈[s]. Our Query Engine currently supports two

types of application queries: robustness analysis and interpretability.
In the rest of this section, we first introduce the key sub-component CC2BDD, which

provides encoding of cardinality constraints into BDDs. We then provide details of the
components Region2BDD, BNN2CC, and BDD Model Builder. The Query Engine will
be described in Section 4.

3.2 CC2BDD: Cardinality Constraints to BDDs

A cardinality constraint is a constraint of the form
∑n

j=1 ` j ≥ k over a vector ~x of Boolean
variables with length n, where the literal ` j is either ~x j or ¬~x j for each j ∈ [n]. Note
that constraints of the form

∑n
j=1 ` j > k,

∑n
j=1 ` j ≤ k and

∑n
j=1 ` j < k are equivalent to∑n

j=1 ` j ≥ k + 1,
∑n

j=1 ¬` j ≥ n − k and
∑n

j=1 ¬` j ≥ n − k + 1, respectively. We assume
that 1 (resp. 0) is a special cardinality constraint that always holds (resp. never holds).

To encode
∑n

j=1 ` j ≥ k as a BDD, we observe that all the possible solutions of∑n
j=1 ` j ≥ k can be compactly represented by a BDD-like graph shown in Figure 4(a),

where each node is labeled by a literal, and a solid (resp. dashed) edge from a node
labeled by ` j means that the value of the literal ` j is 1 (resp. 0). Thus, each path from the
`1-node to the 1-leaf through the ` j-node (where 1 ≤ j ≤ n) captures a set of valuations
where ` j followed by a (horizontal) dashed line is set to be 0 while ` j followed by a
(vertical) solid line is set to be 1, and all the other literals which are not along the path
can take arbitrary values. Clearly, for each of these valuations, there are at least k positive
literals, hence the constraint

∑n
j=1 ` j ≥ k holds.

Based on the above observation, we build the BDD for
∑n

j=1 ` j ≥ k using Algorithm 1.
It builds a BDD for each node in Figure 4(a), row-by-row (the index i in Algorithm 1)
and from right to left (the index j in Algorithm 1). For each node at the i-th row

8 Y. Zhang et al.

Algorithm 1: BDD Construction for cardinality constraints
1 Proc CC2BDD(CC :

∑n
j=1 ` j ≥ k)

2 Gk+1,1 = Gk+1,2 = · · · = Gk+1,n−k+1 = Const(1);
3 G1,n−k+2 = G2,n−k+2 = · · · = Gk,n−k+2 = Const(0);
4 for (i = k; i ≥ 1; i − −) do
5 for (j = n − k + 1; j ≥ 1; j − −) do
6 if (`i+ j−1 == ~xi+ j−1) then Gi, j = ITE(~xi+ j−1,Gi+1, j,Gi, j+1);
7 else Gi, j = ITE(~xi+ j−1,Gi, j+1,Gi+1, j);
8 return G1,1

and j-th column, the label of the node must be the literal `i+ j−1. We build the BDD
Gi, j = ITE(~xi+ j−1,Gi+1, j,Gi, j+1) if `i+ j−1 is of the form ~xi+ j−1 (Line 6), otherwise we
build the BDD Gi, j = ITE(~xi+ j−1,Gi, j+1,Gi+1, j) (Line 7). Finally, we obtain the BDD G1,1
that encodes the solutions of

∑n
j=1 ` j ≥ k. Consider x1 + ¬x2 + x3 + ¬x4 + x5 + ¬x6 ≥ 3,

Figure 4(b) shows its BDD by Algorithm 1.

Lemma 1. For each cardinality constraint
∑n

j=1 ` j ≥ k, a BDD G with O((n − k) · k)
nodes can be computed in O((n− k) · k) time such that L(G) is the set of all the solutions
of

∑n
j=1 ` j ≥ k.

Compared with prior works [44,8] which transform general arithmetic constraints
into BDDs, we devise a dedicated BDD encoding algorithm for the cardinality constraints
without applying reduction, hence it is more efficient.

3.3 Region2BDD: Input Regions to BDDs

In this paper, we consider the following two types of input regions.

– Input region based on Hamming distance. For an input ~u ∈ Bn1
±1 and an integer

r ≥ 0, R(~u, r) denotes the set {~x ∈ Bn1
±1 | HD(~x, ~u) ≤ r}, where HD(~x, ~u) denotes the

Hamming distance between ~x and ~u. Intuitively, R(~u, r) includes the input vectors
which differ from ~u by at most r positions.

– Input region with fixed indices. For an input ~u ∈ Bn1
±1 and a set of indices I ⊆ [n1],

R(~u, I) denotes the set {~x ∈ Bn1
±1 | ∀i ∈ [n1] \ I. ~ui = ~xi}. Intuitively, R(~u, I) includes

the input vectors which differ from ~u only at the indices from I.

Note that both R(~u, n1) and R(~u, [n1]) denote the entire input space Bn1
±1.

Recall that each input sample is an element from Bn1
±1. To represent the region R by a

BDD, we transform each value ±1 into a Boolean value 1/0. To this end, for each input
~u ∈ Bn1

±1, we create a new sample ~u(b) ∈ Bn1 such that for every i ∈ [n1], ~ui = 2~u(b)
i − 1.

Therefore, R(~u, r) and R(~u, I) will be represented by R(~u(b), r) and R(~u(b), I), respectively.
The transformation functions tlin

i , tbn
i , tbin

i and tam
d+1 of the LIN, BN, BIN, and ARGMAX

layers (cf. Table 1) will be handled accordingly. Note that for convenience, vectors over
the Boolean domain B may be directly given by ~u or ~x when it is clear from the context.
Region Encoding under Hamming distance. Given an input ~u ∈ Bn1 and an integer
r, the region R(~u, r) can be expressed by a cardinality constraint

∑n1
j=1 ` j ≤ r (which is

BDD4BNN 9

equivalent to
∑n1

j=1 ¬` j ≥ n1 − r), where for every j ∈ [n1], ` j = ~x j if ~u j = 0, otherwise
` j = ¬~x j. For instance, consider ~u = (1, 1, 1, 0, 0) and r = 2, we have:

HD(~u, ~x) = 1 ⊕ ~x1 + 1 ⊕ ~x2 + 1 ⊕ ~x3 + 0 ⊕ ~x4 + 0 ⊕ ~x5 = ¬~x1 + ¬~x2 + ¬~x3 + ~x4 + ~x5.

Thus, R((1, 1, 1, 0, 0), 2) can be expressed by the cardinality constraint ¬~x1 +¬~x2 +¬~x3 +

~x4 + ~x5 ≤ 2, or equivalently ~x1 + ~x2 + ~x3 + ¬~x4 + ¬~x5 ≥ 3.
By Algorithm 1, the cardinality constraint of R(~u, r) can be encoded by the BDD

Gin
~u,r, such that L(Gin

~u,r) = R(~u, r). Following Lemma 1, we get that:

Lemma 2. For an input region R given by an input ~u ∈ Bn1 and an integer r, a BDD Gin
~u,r

with O(r ·(n1−r)) nodes can be computed in O(r ·(n1−r)) time such thatL(Gin
~u,r) = R(~u, r).

Region Encoding under fixed indices. Given an input ~u ∈ Bn1 and a set of indices
I ⊆ [n1], the region R(~u, I) = {~x ∈ Bn1 | ∀i ∈ [n1] \ I. ~ui = ~xi} can be represented by the
BDD Gin

~u,I , Andi∈[n1]\I

(
(~ui == 1)?Var(~xi) : Not(Var(~xi))

)
. Intuitively, Gin

~u,I states that
the value at the index i ∈ [n1] \ I should be the same as the one in ~u while the value at the
index i ∈ I is unrestricted. For instance, consider ~u = (1, 0, 0, 0) and I = {3, 4}, we have:

R((1, 0, 0, 0), {3, 4}) = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)} = ~x1 ∧ ¬~x2.

Lemma 3. For an input region R given by an input ~u ∈ Bn1 and indices I ⊆ [n1], a BDD
Gin
~u,I with O(n1 − |I|) nodes can be computed in O(n1) time such that L(Gin

~u,I) = R(~u, I).

3.4 BNN2CC: BNNs to Cardinality Constraints

As mentioned before, to encode the BNN N = (t1, · · · , td, td+1) as BDDs, we transform
the BNN N into cardinality constraints from which the desired BDDs (Gout

i)i∈[s] are
constructed. To this end, we first transform each internal block ti : Bni

±1 → B
ni+1
±1 into ni+1

cardinality constraints, each of which corresponds to one of the outputs of ti. Then we
transform the output block td+1 : Bnd+1

±1 → B
s into s(s − 1) cardinality constraints, where

one output class yields (s − 1) cardinality constraints.
For each vector-valued function t, we denote by t↓ j the (scalar-valued) function

returning the j-th entry of the output of t.
Transformation for internal blocks. Consider the internal block ti : Bni

±1 → B
ni+1
±1 for

i ∈ [d]. Recall that for every j ∈ [ni+1] and ~x ∈ Bni
±1, ti↓ j(~x) = tbin

i (tbn
i (〈~x, ~W:, j〉 + ~b j)), and

each value ±1 of an input ~u ∈ Bn1
±1 is replaced by 1/0 (cf. Section 3.3). To be consistent,

the function ti↓ j : Bni
±1 → B±1 is reformulated as the function t(b)

i↓ j : Bni → B such that for

every ~x ∈ Bni , t(b)
i↓ j(~x) = tbin

i (tbn
i (〈2~x − ~1, ~W:, j〉 + ~b j)), where ~1 denotes the vector of 1’s

with the width ni.
Let Ci, j be the following cardinality constraint:

Ci, j ,

∑ni

k=1 `k ≥ d
1
2 · (ni + µ j − ~b j −

γ j·σ j

α j
)e, if α j > 0;

1, if α j = 0 ∧ γ j ≥ 0;
0, if α j = 0 ∧ γ j < 0;∑ni

k=1 ¬`k ≥ d
1
2 · (ni − µ j + ~b j +

γ j·σ j

α j
)e, if α j < 0;

where for every k ∈ [ni], `k is ~xk if ~Wk, j = +1, and `k is ¬~xk if ~Wk, j = −1.

10 Y. Zhang et al.

Proposition 1. t(b)
i↓ j ⇔ Ci, j.

Proof refers to [75].
Transformation for the output block. For the output block td+1 : Bnd+1

±1 → B
s, since

td+1 = tam
d+1 ◦ tlin

d+1, then for every j ∈ [s], we can reformulate td+1↓ j : Bnd+1
±1 → B as the

function t(b)
d+1↓ j : Bnd+1 → B such that for every ~x ∈ Bnd+1 , t(b)

d+1↓ j(~x) = td+1↓ j(2~x − ~1).
For every j′ ∈ [s] \ { j}, we define the cardinality constraint Cd+1, j′ as follows:

Cd+1, j′ ,

∑nd+1

k=1 `d+1,k ≥
1
4 (~b j′ − ~b j +

∑nd+1
k=1 (~Wk, j − ~Wk, j′)) + 1 +]Neg,

if j′ < j and 1
4 (~b j′ − ~b j +

∑nd+1
k=1 (~Wk, j − ~Wk, j′)) is an integer;

∑nd+1
k=1 `d+1,k ≥ d

1
4 (~b j′ − ~b j +

∑nd+1
k=1 (~Wk, j − ~Wk, j′))e +]Neg, otherwise;

where]Neg = |{k ∈ [nd+1] | ~Wk, j − ~Wk, j′ = −2}|, `d+1,k is ~xd+1,k if ~Wk, j − ~Wk, j′ = +2, `d+1,k

is ¬~xd+1,k if ~Wk, j − ~Wk, j′ = −2, and `d+1,k is 0 if ~Wk, j − ~Wk, j′ = 0.

Proposition 2. t(b)
d+1↓ j ⇔

∧
j′∈[s], j′, j Cd+1, j′ .

Proof refers to [75].
For each internal block ti : Bni

±1 → B
ni+1
±1 , we denote by BNN2CC(ti) the cardinality

constraints {Ci,1, · · · ,Ci,ni+1 }. For each output class j ∈ [s], we denote by BNN2CC j(td+1)
the cardinality constraints {Cd+1,1, · · ·Cd+1, j−1,Cd+1, j+1, · · · ,Cd+1,s}. By applying the
above transformation to all the blocks of the BNN N = (t1, · · · , td, td+1), we obtain
its cardinality constraint form N (b) = (t(b)

1 , · · · , t(b)
d , t(b)

d+1) such that for each i ∈ [d],
t(b)
i = BNN2CC(ti), and t(b)

d+1 = (BNN2CC1(td+1), · · · ,BNN2CCs(td+1)). Given an input
~u ∈ Bn1 , we denote by N (b)(~u) the index j ∈ [s] such that all the cardinality constraints
in BNN2CC j(td+1) hold under the valuation ~u. It is straightforward to verify:

Theorem 1. ~u ∈ Bn1
±1 is classified into the class j by the BNN N iff N (b)(~u(b)) = j.

Example 1. Consider the BNN N = (t1, t2) with one internal block t1 and one output
block t2 as shown in Figure 5 (left-bottom), where the elements of the Weight matrix
~W are associated to the edges, and the other parameters are given in the left-up table.
The transformation functions of blocks t1 and t2 are given in the right-up table, and their
cardinality constraints are given in the right-bottom table.

For instance, for each input ~x ∈ B3
±1, y1 = sign(−x1 + x2 + x3 + 2.7), i.e., y1 = 1⇔

−x1 + x2 + x3 + 2.7 ≥ 0. By replacing xi with 2× x(b)
i − 1 and x(b)

1 with 1−¬x(b)
1 , we have:

y1 = 1 ⇔ (−x(b)
1 + x(b)

2 + x(b)
3 + 0.85 ≥ 0) ⇔ (¬x(b)

1 + x(b)
2 + x(b)

3 ≥ 0.15). Thus we get
y1 = 1 ⇔ ¬x(b)

1 + x(b)
2 + x(b)

3 ≥ 1 (note that y1 = 0 ⇔ ¬x(b)
1 + x(b)

2 + x(b)
3 < 1). Similarly,

we can deduce that o1 = 1 ⇔ y1 − y2 ≥ 0.7 and thus o1 = 1 ⇔ y(b)
1 − y(b)

2 ≥ 0.35 ⇔
y(b)

1 + ¬y(b)
2 ≥ 2.

3.5 BDD Model Builder

The construction of the BDDs (Gout
i)i∈[s] from the BNN N (b) and the input region R is

done iteratively throughout the blocks. Initially, the BDD for the first block is built,

BDD4BNN 11

x1

x2

x3

y1

y2

o1

o2

b1 b2α1 µ1 γ1 σ1

0.2

−0.5

0.02

−0.03

−0.5 0.02 2 −0.8

0.63−0.031.5

N (x)

Cardinality Constraint Encoding

y1 = sign(−x1 + x2 + x3 + 2.7)

y2 = sign(−x1 − x2 + x3 − 1)

o1 = 1⇔ y1 − y2 ≥ 0.7

o2 = 1⇔ y1 − y2 < 0.7

y1 = 1⇔ ¬x(b)1 + x
(b)
2 + x

(b)
3 ≥ 1

y2 = 1⇔ ¬x(b)1 + ¬x(b)2 + x
(b)
3 ≥ 2

o1 = 1⇔ y
(b)
1 + ¬y(b)2 ≥ 2

o2 = 1⇔ y
(b)
1 + ¬y(b)2 < 2

−1

+1

−1

−1
−1

+1
+1 +1

+1

+1

Fig. 5: An illustrating example

which can be seen as the input-output relation for the first internal block. In the i-th
iteration, as the input-output relation of the first (i − 1) internal blocks has been encoded
into the BDD, we compose this BDD with the BDD for the block ti which is built from
its cardinality constraints t(b)

i , resulting in the BDD for the first i internal blocks. Finally,
we obtain the BDDs (Gout

i)i∈[s] of the BNN N , with respect to the input region R.

Design choice. There are several design choices for efficiency consideration which
we discuss as follows. First of all, to encode the input-output relation of an internal
block ti into BDD from its cardinality constraints t(b)

i = {Ci,1, · · · ,Ci,ni+1 }, it amounts to
compute And j∈[ni+1]CC2BDD(Ci, j). A simple and straightforward approach is to initially
compute a BDD G = CC2BDD(Ci,1) and then iteratively compute the conjunction
G = And(G,CC2BDD(Ci, j)) of G and CC2BDD(Ci, j) for 2 ≤ j ≤ ni+1.

Alternatively, we use a divide-and-conquer strategy to recursively compute the BDDs
for the first half and the second half of the cardinality constraints respectively, and then
apply the AND-operation. Our preliminary experimental results show that the latter
approach often performs better (about 2 times faster) than the former one, although they
generate the same BDD.

Second, constructing the BDD directly from the cardinality constraints t(b)
i =

{Ci,1, · · · ,Ci,ni+1 } becomes prohibitively costly when ni and ni+1 are large, as the BDDs
CC2BDD(Ci, j) for j ∈ [ni+1] need to consider all the inputs in Bni . To improve efficiency,
we apply feasible input propagation. Namely, when we construct the BDD for the block
ti+1, we only consider its possible inputs with respect to the output of the block ti. Our
preliminary experimental results show that the optimization could significantly improve
the efficiency of the BDD construction.

Third, instead of encoding the input-output relation of the BNN N as a sole BDD
or MTBDD, we opt to use a family of s BDDs (Gout

i)i∈[s], each of which corresponds
to one output class of N . Recall that each output class i ∈ [s] is represented by (s − 1)
cardinality constraints. Then, we can build a BDD Gi for the output class i, similar to
the BDD construction for internal blocks. By composing Gi with the BDD of the entire
internal blocks, we obtain the BDD Gout

i . Building a single BDD or MTBDD for the
BNN is possible from (Gout

i)i∈[s], but our approach gives the flexibility especially when a
specific target class is interested, which is common for robustness analysis.

12 Y. Zhang et al.

Algorithm 2: BDD Construction for BNNs
1 Proc BNN2BDD(BNN : N = (t1, · · · , td, td+1), Region : R(~u, τ))
2 Gin = Gin

~u,τ (cf. Section 3.3); N (b) = (t(b)
1 , · · · , t(b)

d , t(b)
d+1) (cf. Section 3.4);

3 for (i = 1; i ≤ d; i + +) do
4 G′ =Block2BDD(t(b)

i ,Gin, i);
5 Gin = Exists(G′, ~xi) ; // ~xi denote input variables of t(b)

i
6 G = (i == 1) ? G′ : RelProd(G,G′);
7 for (i = 1; i ≤ s; i + +) do
8 Gi =Block2BDD(t(b)

d+1↓i,G
in, d + 1);

9 Gout
i = RelProd(Gi,G);

10 return (Gout
i)i∈[s]

11 Proc Block2BDD(CCs : {Cm, · · · ,Cn}, InputSpace : Gin, BlkIndex : i)
12 if n == m then
13 G1 =CC2BDD(Cm) (cf. Algorithm 1);
14 G = And(G1,Gin);
15 if i , d + 1 then G = Xnor(~xi+1

m ,G);
16 else
17 G1 =Block2BDD({Cm, · · · ,Cb n−m

2 c+m},Gin, i);
18 G2 =Block2BDD({Cb n−m

2 c+m+1, · · · ,Cn},Gin, i);
19 G = And(G1,G2);
20 return G

Overall algorithm. The overall BDD construction procedure is shown in Algorithm 2.
Given a BNN N = (t1, · · · , td, td+1) with s output classes and an input region R(~u, τ), the
algorithm outputs the BDDs (Gout

i)i∈[s], encoding the input-output relation of the BNN
N with respect to the input region R(~u, τ).

The procedure BNN2BDD first builds the BDD representation Gin
~u,τ of the input

region R(~u, τ) and the cardinality constraints from BNN N (b) (Line 1). The first for-
loop builds a BDD encoding the input-output relation of the entire internal blocks
w.r.t. Gin

~u,τ. The second for-loop builds the BDDs (Gout
i)i∈[s], each of which encodes the

input-output relation of the entire BNN for a class i ∈ [s] w.r.t. Gin
~u,τ. The procedure

Block2BDD receives the cardinality constraints {Cm, · · · ,Cn}, a BDD Gin representing
the feasible inputs of the block and the block index i as inputs, and returns a BDD G. If
i = d + 1, namely, the cardinality constraints {Cm, · · · ,Cn} are from the output block, the
resulting BDD G encodes the subset of Gin

~u,τ that satisfy all the cardinality constraints
{Cm, · · · ,Cn}. If i , d + 1, then the BDD G encodes the input-output relation of the
Boolean function fm,n such that for every ~xi ∈ L(Gin), fm,n(~xi) is the truth vector of the
cardinality constraints {Cm, · · · ,Cn} under the valuation ~xi. When m = 1 and n = ni+1,
fm,n is the same as t(b)

i , hence L(G) = {~xi × ~xi+1 ∈ Gin × Bni+1 | t(d)
i (~xi) = ~xi+1}.

Theorem 2. Given a BNN N with s output classes and an input region R(~u, τ), we can
compute s BDDs (Gout

i)i∈[s] such that the BNN N classifies an input ~x ∈ R(~u, τ) into the
class i ∈ [s] iff ~x(b) ∈ L(Gout

i).

BDD4BNN 13

Algorithm 2 explicitly involves O(d + s) RelProd-operations, O(s2 +
∑

i∈[d] ni) And-
operations and O(d) Exists-operations.

4 Applications: Robustness Analysis and Interpretability

In this section, we present two applications within BDD4BNN, i.e., robustness analysis
and interpretability of BNNs.

4.1 Robustness Analysis

Definition 2. Given a BNN N and an input region R(~u, τ), the BNN is (locally) robust
w.r.t. the region R(~u, τ) if each sample ~x ∈ R(~u, τ) is classified into the same class as the
ground-truth class of ~u.

An adversarial example in the region R(~u, τ) is a sample ~x ∈ R(~u, τ) such that ~x is
classified into a class, that differs from the ground-truth class of ~u.

As mentioned in Section 1, qualitative verification which checks whether a BNN is
robust or not is insufficient in many practical applications. In this paper, we are interested
in quantitative verification of robustness which asks how many adversarial examples
are there in the input region of the BNN for each class. To answer this question, given
a BNN N and an input region R(~u, τ), we first obtain the BDDs (Gout

i)i∈[s] by applying
Algorithm 2 and then count the number of adversarial examples for each class in the
input region R(~u, τ). Note that counting adversarial examples amounts to computing
|R(~u, τ)| − |L(Gout

g)|, where g denotes the ground-truth class of ~u, and |L(Gout
g)| can be

computed in time O(|Gout
g |).

In some applications, more refined analysis is needed. For instance, it may be
acceptable to misclassify a dog as a cat, but unacceptable to misclassify a tree as a car.
This suggests that the robustness of BNNs may depend on the classes to which samples
are misclassified. To capture this, we consider the notion of targeted robustness.

Definition 3. Given a BNN N , an input region R(~u, τ), and the class t, the BNN is
t-target-robust w.r.t. the region R(~u, τ) if every sample ~x ∈ R(~u, τ) is never classified into
the class t. (Note that we assume that the ground-truth class of ~u differs from the class t.)

The quantitative verification problem of t-target-robustness of a BNN asks how many
adversarial examples in the input region R(~u, τ) are misclassified to the class t by the
BNN N . To answer this question, we first obtain the BDD Gout

t by applying Algorithm 2
and then count the number of adversarial examples by computing |L(Gout

t)|.
Note that, if one wants to compute the (locally) maximal safe Hamming distance that

satisfies a robustness property for an input sample (e.g., the proportion of adversarial
examples is below a threshold), our framework can incrementally compute such a
distance without constructing the BDD models of the entire BNN from scratch.

Definition 4. Given a BNNN , input region R(~u, r) and threshold ε ≥ 0, r1 is the (locally)
maximal safe Hamming distance of R(~u, τ), if one of the follows holds:

– if Pr(R(~u, r)) > ε, then Pr(R(~u, r1)) ≤ ε and Pr(R(~u, r′)) > ε for r′ : r1 < r′ < r;

14 Y. Zhang et al.

Algorithm 3: Compute the maximal safe Hamming distance
1 Proc MaxHD(BNN : N = (t1, · · · , td, td+1), Region : R(~u, r), Threshold : ε, Class : g)
2 (Gout

i)i∈[s] =BNN2BDD(N ,R(~u, r));

3 if (
∑

i∈[s].i,g |L(Gout
i)|

|R(~u,r)| > ε) then // decrease r
4 while (r ≥ 0) do
5 r = r − 1;
6 (Gout

i)i∈[s] = (And(Gin
~u,r,G

out
i))i∈[s];

7 if (
∑

i∈[s].i,g |L(Gout
i)|

|R(~u,r)| ≤ ε) then return r;
8 else // increase r
9 while (r ≤ n1) do // n1 is the input size of the BNN N

10 r = r + 1;
11 (Bout

i)i∈[s] =BNN2BDD(N ,R(~u, r) \ R(~u, r − 1));
12 (Gout

i)i∈[s] = (Or(Bout
i ,Gout

i))i∈[s];

13 if (
∑

i∈[s] |L(Gout
i .i,g)|

|R(~u,r)| > ε) then return r − 1;
14 return r

– if Pr(R(~u, r)) ≤ ε, then Pr(R(~u, r1 + 1)) > ε and Pr(R(~u, r′)) ≤ ε for r′ : r < r′ ≤ r1;

where Pr(R(~u, r)) is the probability
∑

i∈[s].i,g |L(Gout
i)|

|R(~u,r)| for g being the ground-truth class of ~u,
assuming a uniform distribution of adversarial samples.

Algorithm 3 shows the procedure to incrementally compute the maximal safe Ham-
ming distance for a given threshold ε ≥ 0, input region R(~u, r), and ground-truth class g
of ~u. Remark that Pr(R(~u, r)) may not be monotonic w.r.t. the Hamming distance r.

4.2 Interpretability

In general, interpretability addresses the question of why some inputs in the input region
are (mis)classified by the BNN into a specific class? We consider the interpretability of
BNNs using two complementary explanations, i.e., prime implicant explanations and
essential features.

Definition 5. Given a BNN N , an input region R(~u, τ) and a class g, a prime implicant
explanation (PI-explanation) of decisions made by the BNNN on the inputs L(Gout

g) is a
minimal set of literals {`1, · · · , `k} such that for every ~x ∈ R(~u, τ), if ~x satisfies `1∧· · ·∧`k,
then ~x is classified into the class g by the BNN N .

Intuitively, a PI-explanation {`1, · · · , `k} indicates that {var(`1), · · · , var(`k)} are key
features, namely, if fixed, the predication is guaranteed no matter how the remaining
features change. Remark that there may be more than one PI-explanation for a set of
inputs L(Gout

g). When g is set to be the class of the benign input ~u, a PI-explanation on
Gout

g suggests why these samples are classified into g by the BNN N .

Definition 6. Given a BNN N , an input region R(~u, τ) and a class g, the essential
features for the inputs L(Gout

g) are literals {`1, · · · , `k} such that every ~x ∈ R(~u, τ), if ~x is
classified into the class g by the BNN N , then ~x satisfies `1 ∧ · · · ∧ `k.

BDD4BNN 15

Intuitively, the essential features {`1, · · · , `k} denote the key features such that all
samples ~x ∈ R(~u, τ) that are classified into the class g by the BNNN must agree on these
features. Essential features differ from PI-explanations, where the former can be seen as
a necessary condition, while the latter can be seen as a sufficient condition.

BDD libraries (e.g., CUDD [60]) usually provide APIs to identify prime impli-
cants (e.g., Cudd bddPrintCover and Cudd FirstPrime) and essential variables (e.g.,
Cudd FindEssential). Therefore, prime implicants and essential features can be com-
puted via queries on the BDDs (Gout

i)i∈[s].

5 Evaluation

We have implemented our framework as a prototype tool BDD4BNN based on the CUDD
package [60]. BDD4BNN is implemented with Python as the front-end to pre-process
BNNs and C++ as the back-end to perform the BDD encoding and analysis. In this
section, we report the experimental results, including BDD encoding, robustness analysis
based on hamming distance, and interpretability.
Experimental Setup. The experiments were conducted on a machine with Intel Xeon
Gold 5118 2.3GHz CPU, 64-bit Ubuntu 20.04 LTS operating systems, 128G RAM. Each
BDD encoding executed on one core limited by 8-hour.
Benchmarks. We use the PyTorch (v1.0.1.post2) deep learning platform provided by
NPAQ [6] to train and test BNNs. We trained 12 BNN models (P1-P12) with varying
sizes using the MNIST dataset [37]. The MNIST dateset contains 70,000 gray-scale 28
× 28 images (60,000 for training and 10,000 for testing) of handwritten digits with 10
classes. In our experiments, we downscale the images (28 × 28) to some selected input
size n1 (i.e., the corresponding image is of the size

√
n1 ×

√
n1) and then binarize the

normalized pixels of the images.
Details of the BNN models are listed in Table 3, each of which has 10 classes (i.e.,

s = 10). Column 1 shows the name of the BNN model. Column 2 shows the architecture
of the BNN model, where n1 : · · · : nd+1 : s denotes that the BNN model has d +1 blocks,
n1 inputs and s outputs; the i-th block for i ∈ [d + 1] has ni inputs and ni+1 outputs with
nd+2 = s. Recall that each internal block has 3 layers while the output block has 2 layers.
Therefore, the number of layers ranges from 5 to 14, the dimension of inputs ranges
from 9 to 784, and the number of hidden neurons per linear layer ranges from 10 to 100.
Column 3 shows the accuracy of the BNN model on the test set of the MNIST dataset.
(We can observe that the accuracy increases with the size of inputs, the number of layers,
and the number of hidden neurons per layer.) We randomly choose 10 images from the
training set of the MNIST dataset (one image per class) to evaluate our approach.

5.1 Performance of BDD Encoding

We evaluate BDD4BNN on the BNNs listed in Table 3 using different input regions.
BDD encoding using full input space. We evaluate BDD4BNN on the BNNs (P1–P5),
where Bn1

±1 is used as the input region. The results are shown in Table 4, where |G| denotes
the number of BDD nodes in the BDD manager. We can observe that both the execution
time and the number of BDD nodes increase with the size of BNNs.

16 Y. Zhang et al.

Table 3: BNN benchmarks
Name Architecture Accuracy Name Architecture Accuracy

P1 9:20:10 12.23% P7 100:100:10 75.16%
P2 16:32:10 28.63% P8 100:50:20:10 71.1%
P3 16:64:32:10 25.14% P9 100:100:50:10 77.37%
P4 36:15:10:10 27.12% P10 100:50:30:30:10 80.63%
P5 64:10:10 49.16% P11 784:30:50:50:50:10 88.23%
P6 100:50:10 73.25% P12 784:50:50:50:50:10 86.95%

Table 4: BDD encoding using full input space
Name P1 P2 P3 P4 P5

Time (s) ≈0 0.78 28.21 10924.51 Timeout
|G| 288 18,864 17,636 152,830,875 -

BDD encoding under Hamming distance. We evaluate BDD4BNN on the BNNs (P5–
P12). In this case, an input region is given by one of the 10 images and a Hamming
distance r ranging from 2 to 6. The average results are shown in Table 5, where [i]
(resp. (i)) indicates the number of cases that BDD4BNN runs out of memory (resp. time).
Overall, the execution time and the number of BDD nodes increase with r. BDD4BNN
succeeded on all the cases when r ≤ 4, 75 cases out of 80 when r = 5, and 48 cases
out of 80 when r = 6. We observe that the execution time and number of BDD nodes
increase with the number of hidden neurons (P6 vs. P7, P8 vs. P9, and P11 vs. P12),
while the effect of the number of layers is diverse (P6 vs. P8 vs. P10, and P7 vs. P9).
From P9 and P10, we observe that the number of hidden neurons per layer is likely the
key impact factor of the efficiency of BDD4BNN. Interestingly, our tool BDD4BNN
works well on BNNs with large input sizes (i.e., on P11 and P12).

These results demonstrate the efficiency and scalability of BDD4BNN on BDD
encoding of BNNs. We remark that, compared with the learning-based approach [56],
our approach is considerably more efficient and scalable. For instance, the learning-based
approach takes 403 seconds to encode a BNN with 64 input size, 5 hidden neurons, and
2 output size when r = 6, while ours takes about 3 seconds even for a larger network P5.

5.2 Robustness Analysis

We evaluate BDD4BNN on the robustness of BNNs, including robustness analysis under
different input regions and maximal safe Hamming distance computing.

Robustness verification with Hamming distance. We evaluate BDD4BNN on BNNs
(P7, P8, P9, and P11) using the 10 images. The input regions are given by the Hamming
distance r ranging from 2 to 4, resulting in 120 instances. To the best of our knowledge,
NPAQ [6] is the only work that supports quantitative robustness verification of BNNs to
which we compare BDD4BNN. Recall that NPAQ only provides PAC-style guarantees.
Namely, it sets a tolerable error ε and a confidence parameter δ. The final estimated
results of NPAQ have the bounded error ε with confidence of at least 1 − δ, i.e.,

Pr[(1 + ε)−1RealNum ≤ EstimatedNum ≤ (1 + ε)RealNum] ≥ 1 − δ (1)

BDD4BNN 17

Table 5: BDD encoding under Hamming distance
r=2 r=3 r=4 r=5 r=6

Time(s) |G| Time(s) |G| Time(s) |G| Time(s) |G| Time(s) |G|

P5 0.01 1,559 0.03 9,795 0.11 36,796 0.74 176,107 2.94 592,104
P6 0.25 4,670 4.17 84,037 109.26 1,018,571 2,292.5 11,375,842 (5) 17,811 41,883,970
P7 0.65 5,295 22.70 106,754 652.78 1,575,722 (1) 17,399 16,163,078 [10] -
P8 0.14 6,147 1.95 125,226 44.51 1,668,027 1,146.8 20,519,582 (1) 12,491 172,369,297
P9 1.99 6,139 63.30 136,126 1,428.6 2,005,666 [1](3) 17,039 29,323,244 [10] -

P10 0.30 4,630 4.87 100,054 101.41 1,603,920 1,909.9 19,844,299 (5) 20,484 173,316,483
P11 5.52 3,128 5.73 22,120 6.60 86,413 11.63 556,774 238.2 2,881,468
P12 12.4 5,693 12.87 49,996 16.92 493,820 403.09 5,739,602 (1) 11,058 16,241,733

Table 6: Robustness verification under Hamming distance

r
NPAQ [6] BDD4BNN Diff

#(Adv) Time(s) Pr(adv) #(Adv) Time(s) Pr(adv) #(Adv) Speed Up

2 875 271.07 17.32% 1,806 0.65 35.76% 106.4% 416
P7 3 39,587 919.88 23.74% 65,054 22.71 39.01% 64.33% 40

4 1,023,798 3,862.0 25.04% 1,501,691 661.79 36.73% 46.68% 5

2 1,601 187.78 31.70% 2,261 0.14 44.76% 41.22% 1,340
P8 3 66,562 396.45 39.92% 64,372 1.96 38.60% -3.29% 201

4 1,636,070 1,861.7 40.02% 1,829,103 45.0 44.74% 11.80% 40

2 1,214 363.44 24.03% 1,406 1.99 27.84% 15.82% 182
P9 3 51,464 3,763.6 30.86% 42,901 63.31 25.73% -16.64% 58

4 1,316,181 (1) 9,007.8 32.20% 3,968,609 1,505.0 97.08% 201.5% 5

2 12,083 3,831.0 3.93% 28,736 5.52 9.34% 137.8% 693
P11 3 0 (2) 4,634.2 0% 0 5.68 0% - 815

4 0 (2) 7,979.1 0% 0 6.38 0% - 1,250

In our experiments, we set ε = 0.8 and δ = 0.2, as done in [6].
The results on the average of the images are shown in Table 6. NPAQ ran out of time

on 5 instances (which occur in P9 with r = 4 and P11 with r = 3 and r = 4), while
BDD4BNN successfully verified all the 120 instances. Table 6 only shows the results of
115 instances that can be solved by NPAQ. Columns 3, 4, and 5 (resp. 6, 7, and 8) show
the number of adversarial examples, the execution time, and the proportion of adversarial
examples in the input region. Column 9 shows the error rate RealNum−EstimatedNum

EstimatedNum
, where

RealNum is from our result, and EstimatedNum is from NPAQ. Column 10 shows the
speedup of BDD4BNN compared with NPAQ. Remark that the numbers of adversarial
examples are 0 for P11 on input regions with r = 3 and r = 4 that can be solved
by NPAQ. There do exist input regions for P11 that cannot be solved by NPAQ but
have adversarial examples (see below). On BNNs that were solved by both NPAQ and
BDD4BNN, BDD4BNN is significantly (5× to 1, 340×) faster and more accurate than
NPAQ. From Table 5 and Table 6, we also found that most of the verification time is
spent on BDD encoding while the rest is usually less than 10 seconds.

Details of robustness and targeted robustness. Figure 6(a) (resp. Figure 6(b) and
Figure 6(c)) depicts the distributions of classes on P8 with Hamming distance r = 2
(resp. P8 with r = 3 and P11 with r = 2), where on the x-axis i = 0, · · · , 9 denotes the
input region that is within the respective Hamming distance to the image of digit i (called
i-region). We can observe that P8 is robust for the 0-region when r = 2 and robust for

18 Y. Zhang et al.

0 1 2 3 4 5 6 7 8 9
Input region

0

1000

2000

3000

4000

5000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(a) P8 under Hamming distance with r = 2

0 1 2 3 4 5 6 7 8 9
Input region

0
20000
40000
60000
80000

100000
120000
140000
160000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(b) P8 under Hamming distance with r = 3

0 1 2 3 4 5 6 7 8 9
Input region

0

50000

100000

150000

200000

250000

300000

Cl
as

s d
ist

rib
ut

io
n

of
 sa

m
pl

es 0
1
2
3
4
5
6
7
8
9

(c) P11 under Hamming distance with r = 2

(-0.66, -0.445]

(-0.445,-0.3]

(-0.3,-0.2]

(-0.2,-0.1]

(-0.1,0]
(0,0.1]

(0.1,0.2]
(0.2,0.3]

(0.3,0.4]
(0.4,0.5]

(0.5,0.6]
(0.6,0.7]

(0.7,0.8]
(0.8, 158.6]

0

10

20

30

40

50

7
2 2

5

54

13
6

1 0 2 2 1 1

19

(d) Distribution of error rates of NPAQ

Fig. 6: Details of robustness verification with Hamming distance

the 6-region when r = 2 and r = 3, but is not robust for the other regions. (Note P8 is
not robust for 0-region when r = 3, which is hard to be visualized in Figure 6(b) due
to the small number of adversarial examples.) Most of the adversarial examples in the
1-region and 5-region are misclassified into the digit 3 by P8. P11 is not robust for the
1-region or the 5-region, but is robust for all the other regions. Though P8 and P11 are
not robust on some input regions, indeed they are t-target-robust for many target classes
t, e.g., P11 is t-target-robust for the 1-region when t , 2, and the 5-region when t , 3.
(The raw data are given in [75].)

Quality validation of NPAQ. Figure 6(d) shows the distribution of error rates of NPAQ,
where the x-axis is the range of the error rate and the y-axis is the corresponding number
of instances. There are 19 instances where the estimated number of adversarial examples
exceeds (1 + ε) of the real number of the adversarial examples and 7 instances where the
estimated number of adversarial examples is less than (1 + ε)−1 of the real number of
the adversarial examples. This means that out of 115 instances, only in 89 instances the
estimated number is within the allowed range, which is less than 1 − δ = 0.8.

Maximal safe Hamming distance. As a representative of such an analysis, we evaluate
BDD4BNN on 4 BNNs (P7, P8, P9, and P11) with 10 images for 2 robustness thresholds
(ε = 0 and ε = 0.03). The initial Hamming distance r is 3. Intuitively, ε = 0 (resp.
ε = 0.03) means that up to 0% (resp. 3%) samples in the input region can be adversarial.

Table 7 shows the results, where columns SD and Time give the maximal safe
Hamming distance and the execution time, respectively. BDD4BNN solved 74 out of
80 instances. (For the remaining 6 instances, BDD4BNN ran out of time or memory,
but it was still able to compute a larger safe Hamming distance.) We can observe that
the maximal safe Hamming distance increases with the threshold ε on several BNNs
and input regions. We can also observe that P11 is more robust than others, which is

BDD4BNN 19

Table 7: Maximal safe Hamming distance

Image
P7 P8 P9 P11

ε = 0 ε = 0.03 ε = 0 ε = 0.03 ε = 0 ε = 0.03 ε = 0 ε = 0.03
SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s)

0 1 15.09 4 10,845 2 0.51 6 Timeout 3 746.15 3 737.96 6 29.69 6 29.28
1 -1 19.96 -1 19.13 -1 2.84 -1 2.97 0 155.50 0 155.09 0 6.49 0 6.11
2 2 13.25 3 422.04 0 0.46 0 0.50 1 37.50 4 14,127 6 11,334 6 11,437
3 0 21.39 0 20.94 -1 1.92 -1 2.08 0 41.04 0 40.49 6 8,323.1 6 8,088.3
4 3 426.81 5 OOM -1 2.41 -1 2.61 2 8.08 5 OOM 6 30.85 6 30.74
5 -1 15.60 -1 15.92 -1 0.68 -1 0.74 -1 22.54 -1 21.54 -1 7.03 -1 6.72
6 4 7,990.6 5 OOM 3 5.69 4 198.26 1 57.37 4 Timeout 6 44.57 6 45.12
7 -1 16.08 -1 15.90 -1 2.49 -1 2.52 1 89.49 4 Timeout 6 89.38 6 88.39
8 -1 19.02 -1 19.28 -1 1.71 -1 1.80 -1 80.16 -1 79.91 6 43.95 6 43.30
9 0 26.82 0 27.69 0 5.09 1 5.39 -1 109.04 -1 107.24 6 338.73 6 327.48

0 5 10 15 20 25

0

5

10

15

20

25

(a) EFs for class 2

0 5 10 15 20 25

0

5

10

15

20

25

(b) EFs for class 5

0 5 10 15 20 25

0

5

10

15

20

25

(c) PI for class 2

0 5 10 15 20 25

0

5

10

15

20

25

(d) PI for class 5

Fig. 7: Graphic representation of essential features and PI-explanations

consistent with their accuracies (cf. Table 3). Remark that SD = −1 indicates that the
input image itself is misclassified.

5.3 Interpretability

To demonstrate the ability of BDD4BNN on interpretability, we consider the analysis of
the BNN P12 and the image ~u of digit 1.
Essential features. For the input region given by the Hamming distance r = 4, we
compute two sets of essential features for the inputs L(Gout

2) and L(Gout
5), i.e., the

adversarial examples in the region R(~u, 4) that are misclassified into the classes 2 and 5
respectively. The essential features are depicted in Figures 7(a) and 7(b), where black
(resp. blue) color means that the value of the corresponding pixel is 1 (resp. 0), and
yellow color means that the value of the corresponding pixel can take arbitrary values.
Figure 7(a) (resp. Figure 7(b)) indicates that the inputs L(Gout

2) (resp. L(Gout
5)) must

agree on these black- and blue-colored pixels.
PI-explanations. For demonstration, we assume that the input region is given by the
fixed set of indices I = {1, 2, · · · , 28} which denotes the first row of pixels of 28 × 28
images. We compute two PI-explanations of the inputs L(Gout

2) and L(Gout
5). The PI-

explanations are depicted in Figures 7(c) and 7(d). Figure 7(c) (resp. Figure 7(d)) suggests
that, by the definition of the PI-explanation, all the images in the region R(~u, I) obtained
by assigning arbitrary values to the yellow-colored pixels are always misclassified into
the class 2 (resp. class 5), while changing one black-colored or blue-colored pixel would
change the predication result since a PI-explanation is a minimal set of literals.

20 Y. Zhang et al.

6 Related Work

In this section, we discuss the related work on qualitative/quantitative analysis and
interpretability of DNNs. As there is a vast amount of literature regarding these topics,
we will only discuss the most related ones to BDD4BNN.
Qualitative analysis of DNNs. For real-numbered DNNs, various formal verification
approaches have been proposed. Typical examples include constraint solving based
approaches [53,27,31,17,32], optimization based approaches [42,13,15,63,10,70,16,72],
and program analysis based approaches [21,58,59,39,2,57,69,71,40,73,64,65,3,66,41,18].

Existing techniques for quantized DNNs are mostly based on constraint solving, in
particular, SAT/SMT solving [48,12,34,47]. Following this line, verification of BNNs
with ternary weights [50,29] and quantized DNNs with multiple bits [7,23,25] were also
studied. Recently, the SMT-based framework Marabou for real-numbered DNNs [32]
has also been extended to support BNNs [1].
Quantitative analysis of DNNs. Comparing to qualitative analysis, quantitative analy-
sis of neural networks is currently very limited. Two sampling-based approaches were
proposed to certify the robustness for both DNNs and BNNs [67,5]. Yang et al. [73]
proposed a spurious region-guided refinement approach for real-numbered DNN verifi-
cation, claiming to be the first work of the quantitative robustness verification of DNNs
with soundness guarantees.

Following the SAT-based qualitative analysis of BNNs [48,47], SAT-based quan-
titative analysis approaches were also proposed [6,49,22]. In particular, approximate
SAT model-counting solvers are utilized. Shih et al. [56] also proposed a BDD-based
approach to tackle BNNs, similar to our work in spirit. However, our approach is able to
handle BNNs of considerably larger sizes than their learning-based method.
Interpretability of DNNs. Though interpretability of DNNs is crucial for explaining
predictions, it is very challenging to tackle due to the blackbox nature of DNNs. There is
a large body of work on the interpretability of DNNs (cf. [26,45] for a survey). Almost
all the existing approaches are heuristic-based and restricted to finding explanations that
are local in an input region. Some of them tackle the interpretability of DNNs by learning
an interpretable model, such as binary decision trees [20,74] or finite-state automata [68].
In contrast to ours, they target at DNNs and only approximate the original model in the
input region. The BDD-based approach [56] mentioned above has been used to compute
the PI-explanation, but essential features were not considered therein.

7 Conclusion

In this paper, we have proposed a novel BDD-based framework for quantitative ver-
ification of BNNs. We implemented the framework as a prototype tool BDD4BNN
and conducted extensive experiments on 12 BNN models with varying sizes and input
regions. Experimental results demonstrated that BDD4BNN is more scalable than the
existing BDD-learning based approach, and significantly more efficient and accurate than
the existing SAT-based approach NPAQ. This work represents the first, but a key, step of
the long-term programme to develop an efficient and scalable BDD-based quantitative
analysis framework for BNNs.

BDD4BNN 21

References

1. Amir, G., Wu, H., Barrett, C.W., Katz, G.: An SMT-based approach for verifying binarized
neural networks. CoRR abs/2011.02948 (2020)

2. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a syner-
gistic approach for analyzing neural network robustness. In: Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation. pp. 731–744
(2019)

3. Ashok, P., Hashemi, V., Kretı́nský, J., Mohr, S.: Deepabstract: Neural network abstraction for
accelerating verification. In: Proceedings of the 18th International Symposium on Automated
Technology for Verification and Analysis. pp. 92–107 (2020)

4. Baidu: Apollo. https://apollo.auto (2021)
5. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification for deep

neural networks. CoRR abs/2002.06864 (2020)
6. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification of neural

networks and its security applications. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1249–1264 (2019)

7. Baranowski, M.S., He, S., Lechner, M., Nguyen, T.S., Rakamaric, Z.: An SMT theory of fixed-
point arithmetic. In: Proceedings of the 10th International Joint Conference on Automated
Reasoning. pp. 13–31 (2020)

8. Bartzis, C., Bultan, T.: Construction of efficient bdds for bounded arithmetic constraints.
In: International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. pp. 394–408. Springer (2003)

9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers 35(8), 677–691 (1986)

10. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and bound for
piecewise linear neural network verification. J. Mach. Learn. Res. 21, 42:1–42:39 (2020)

11. Chen, G., Chen, S., Fan, L., Du, X., Zhao, Z., Song, F., Liu, Y.: Who is real Bob? adversarial
attacks on speaker recognition systems. CoRR abs/1911.01840 (2019)

12. Cheng, C., Nührenberg, G., Huang, C., Ruess, H.: Verification of binarized neural networks
via inter-neuron factoring - (short paper). In: Proceedings of the 10th International Conference
on Verified Software. Theories, Tools, and Experiments. pp. 279–290 (2018)

13. Cheng, C., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks. In:
Proceedings of the 15th International Symposium on Automated Technology for Verification
and Analysis (ATVA). pp. 251–268 (2017)

14. Duan, Y., Zhao, Z., Bu, L., Song, F.: Things you may not know about adversarial example: A
black-box adversarial image attack. CoRR abs/1905.07672 (2019)

15. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedfor-
ward neural networks. In: Proceedings of the 10th International Symposium NASA Formal
Methods (NFM). pp. 121–138 (2018)

16. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach to scalable
verification of deep networks. In: Proceedings of the Thirty-Fourth Conference on Uncertainty
in Artificial Intelligence. pp. 550–559 (2018)

17. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: Pro-
ceedings of the 15th International Symposium on Automated Technology for Verification and
Analysis. pp. 269–286 (2017)

18. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural net-
work verification. In: Proceedings of the 32nd International Conference on Computer Aided
Verification. pp. 43–65 (2020)

https://apollo.auto

22 Y. Zhang et al.

19. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T.,
Song, D.: Robust physical-world attacks on deep learning visual classification. In: Proceedings
of 2018 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1625–1634 (2018)

20. Frosst, N., Hinton, G.E.: Distilling a neural network into a soft decision tree. In: Proceedings
of the 1st International Workshop on Comprehensibility and Explanation in AI and ML (2017)

21. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2:
safety and robustness certification of neural networks with abstract interpretation. In: Proceed-
ings of the 2018 IEEE Symposium on Security and Privacy. pp. 3–18 (2018)

22. Ghosh, B., Basu, D., Meel, K.S.: Justicia: A stochastic SAT approach to formally verify
fairness. CoRR abs/2009.06516 (2020)

23. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quantize your
neural network? In: Proceedings of the 26th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 79–97 (2020)

24. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited
numerical precision. In: Proceedings of the 32nd International Conference on Machine
Learning. pp. 1737–1746 (2015)

25. Henzinger, T.A., Lechner, M., Žikelić, D.: Scalable verification of quantized neural networks
(technical report). arXiv preprint arXiv:2012.08185 (2020)

26. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., Yi, X.: A survey
of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack
and defence, and interpretability. Computer Science Review 37, 100270 (2020)

27. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: Proceedings of the 29th International Conference on Computer Aided Verification (CAV).
pp. 3–29 (2017)

28. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks.
In: Proceedings of the Annual Conference on Neural Information Processing Systems. pp.
4107–4115 (2016)

29. Jia, K., Rinard, M.: Efficient exact verification of binarized neural networks. In: Proceedings
of the Annual Conference on Neural Information Processing Systems (2020)

30. Kalra, N., Paddock, S.M.: Driving to safety: How many miles of driving would it take to
demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and
Practice 94, 182–193 (2016)

31. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient
SMT solver for verifying deep neural networks. In: Proceedings of the 29th International
Conference on Computer Aided Verification. pp. 97–117 (2017)

32. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The marabou framework for
verification and analysis of deep neural networks. In: Proceedings of the 31st International
Conference on Computer Aided Verification. pp. 443–452 (2019)

33. Koopman, P., Osyk, B.: Safety argument considerations for public road testing of autonomous
vehicles. SAE International Journal of Advances and Current Practices in Mobility 1, 512–523
(2019)

34. Korneev, S., Narodytska, N., Pulina, L., Tacchella, A., Bjørner, N., Sagiv, M.: Constrained
image generation using binarized neural networks with decision procedures. In: Proceedings
of the 21st International Conference on Theory and Applications of Satisfiability Testing. pp.
438–449 (2018)

35. Kung, J., Zhang, D.C., van der Wal, G.S., Chai, S.M., Mukhopadhyay, S.: Efficient object
detection using embedded binarized neural networks. Journal of Signal Processing Systems
90(6), 877–890 (2018)

36. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. In:
Proceedings of International Conference on Learning Representations (2017)

BDD4BNN 23

37. LeCun, Y., Cortes, C.: Mnist handwritten digit database (2010)
38. Lei, Y., Chen, S., Fan, L., Song, F., Liu, Y.: Advanced evasion attacks and mitigations on

practical ML-based phishing website classifiers. CoRR abs/2004.06954 (2020)
39. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural networks with

symbolic propagation: Towards higher precision and faster verification. In: Proceedings of the
26th International Symposium on Static Analysis (SAS). pp. 296–319 (2019)

40. Li, R., Li, J., Huang, C., Yang, P., Huang, X., Zhang, L., Xue, B., Hermanns, H.: Prodeep:
a platform for robustness verification of deep neural networks. In: Proceedings of the 28th
ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 1630–1634 (2020)

41. Liu, W., Song, F., Zhang, T., Wang, J.: Verifying ReLU neural networks from a model checking
perspective. Journal of Computer Science and Technology 35(6), 1365–1381 (2020)

42. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU
neural networks. CoRR abs/1706.07351 (2017)

43. McDanel, B., Teerapittayanon, S., Kung, H.T.: Embedded binarized neural networks. In:
Proceedings of the 2017 International Conference on Embedded Wireless Systems and
Networks. pp. 168–173 (2017)

44. Minato, S.I., Somenzi, F.: Arithmetic boolean expression manipulator using bdds. Formal
methods in system design 10(2), 221–242 (1997)

45. Molnar, C., Casalicchio, G., Bischl, B.: Interpretable machine learning - A brief history,
state-of-the-art and challenges. CoRR abs/2010.09337 (2020)

46. Nakamura, A.: An efficient query learning algorithm for ordered binary decision diagrams.
Information and Computation 201(2), 178–198 (2005)

47. Narodytska, N.: Formal analysis of deep binarized neural networks. In: Proceedings of the
27th International Joint Conference on Artificial Intelligence. pp. 5692–5696 (2018)

48. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties
of binarized deep neural networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence. pp. 6615–6624 (2018)

49. Narodytska, N., Shrotri, A.A., Meel, K.S., Ignatiev, A., Marques-Silva, J.: Assessing heuristic
machine learning explanations with model counting. In: Proceedings of the 22nd International
Conference on Theory and Applications of Satisfiability Testing. pp. 267–278 (2019)

50. Narodytska, N., Zhang, H., Gupta, A., Walsh, T.: In search for a SAT-friendly binarized
neural network architecture. In: Proceedings of the 8th International Conference on Learning
Representations (2020)

51. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.: Practical
black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. pp. 506–519 (2017)

52. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations
of deep learning in adversarial settings. In: Proceedings of IEEE European Symposium on
Security and Privacy. pp. 372–387 (2016)

53. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial
neural networks. In: Proceedings of the 22nd International Conference on Computer Aided
Verification (CAV). pp. 243–257 (2010)

54. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification
using binary convolutional neural networks. In: Proceedings of the 14th European Conference
on Computer Vision. pp. 525–542 (2016)

55. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annual Review of
Biomedical Engineering 19, 221–248 (2017)

56. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by angluin-style
learning. In: Proceedings of the 2019 International Conference on Theory and Applications of
Satisfiability Testing. pp. 354–370 (2019)

24 Y. Zhang et al.

57. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex barrier for
neural network certification. In: Proceedings of the Annual Conference on Neural Information
Processing Systems. pp. 15072–15083 (2019)

58. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective robustness
certification. In: Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS). pp. 10825–10836 (2018)

59. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural
networks. Proceedings of the ACM on Programming Languages (POPL) 3, 41:1–41:30 (2019)

60. Somenzi, F.: Cudd: Cu decision diagram package (2015)
61. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:

Intriguing properties of neural networks. In: Proceedings of International Conference on
Learning Representations (2014)

62. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks.
In: Proceedings of the 36th International Conference on Machine Learning. pp. 6105–6114
(2019)

63. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed
integer programming. In: Proceedings of the 7th International Conference on Learning
Representations (2019)

64. Tran, H., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional neural networks
using imagestars. In: Proceedings of the 32nd International Conference on Computer Aided
Verification. pp. 18–42 (2020)

65. Tran, H., Lopez, D.M., Musau, P., Yang, X., Nguyen, L.V., Xiang, W., Johnson, T.T.: Star-
based reachability analysis of deep neural networks. In: Proceedings of the 3rd World Congress
on Formal Methods. pp. 670–686 (2019)

66. Wan, W., Zhang, Z., Zhu, Y., Zhang, M., Song, F.: Accelerating robustness verification of
deep neural networks guided by target labels. CoRR abs/2007.08520 (2020)

67. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to assessing neu-
ral network robustness. In: Proceedings of the 7th International Conference on Learning
Representations (2019)

68. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural networks
using queries and counterexamples. In: Proceedings of the 35th International Conference on
Machine Learning. pp. 5244–5253 (2018)

69. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing of deep
neural networks. In: Proceedings of the 24th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 408–426 (2018)

70. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer
adversarial polytope. In: Proceedings of the 35th International Conference on Machine
Learning. pp. 5283–5292 (2018)

71. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based approximate
verification of deep neural networks with provable guarantees. Theoretical Computer Science
807, 298–329 (2020)

72. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verification for
multilayer neural networks. IEEE Transactions on Neural Networks and Learning Systems
29(11), 5777–5783 (2018)

73. Yang, P., Li, R., Li, J., Huang, C., Wang, J., Sun, J., Xue, B., Zhang, L.: Improving neural
network verification through spurious region guided refinement. CoRR abs/2010.07722
(2020)

74. Zhang, Q., Yang, Y., Ma, H., Wu, Y.N.: Interpreting CNNs via decision trees. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6261–6270 (2019)

75. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: A BDD-based quantitative
analysis framework for binarized neural networks. CoRR abs/2103.07224 (2021)

	BDD4BNN: A BDD-based Quantitative Analysis Framework for Binarized Neural Networks

