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ABSTRACT
Efficient application programming interface (API) recommenda-
tion is one of the most desired features of modern integrated de-
velopment environments. A multitude of API recommendation
approaches have been proposed. However, most of the currently
available API recommenders do not support the effective integra-
tion of user feedback into the recommendation loop. In this pa-
per, we present BRAID (Boosting RecommendAtion with Implicit
FeeDback), a tool which leverages user feedback, and employs
learning-to-rank and active learning techniques to boost recommen-
dation performance. The implementation is based on the VSCode
plugin architecture, which provides an integrated user interface.
Essentially, BRAID is a general framework which can accommodate
existing query-based API recommendation approaches as compo-
nents. Comparative experiments with strong baselines demonstrate
the efficacy of the tool. A video demonstrating the usage of BRAID
can be found at https://youtu.be/naD0guvl8sE.
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1 INTRODUCTION
Application Programming Interfaces (APIs) are important building
blocks to construct large software systems. A lot of API recom-
mendation research work has been proposed to ease the burden on
developers and provide APIs for user reference. With the help of
APIs, developers can accomplish their programming tasks more ef-
ficiently. However, due to the huge number of APIs available for the
same tasks, it is impractical for developers to get familiar with all
of them and always select the correct ones for specific development
tasks.

To aid with this difficult task of choosing APIs, a lot of API rec-
ommendation approaches have been proposed. Based on different
input contexts, there are generally two types of recommendation
scenarios, i.e., recommendation with queries and recommendation
without queries. The first type requires developers to state their
desired task using natural language queries which are fed into the
recommendation system. For the second type, since there are no
explicit queries, the surrounding code snippets will be leveraged as
context, and the needed APIs will be inferred and recommended to
end users. A majority of related work employs text similarity-based
techniques. For example, some recommend APIs according to the
similarity between search queries and supplementary information
of APIs [4, 16]; some return API usages depending on how much
they are related to context information in source code [2, 9]. Gen-
erally, these approaches use keywords to narrow down the search
scale in massive target repositories and speed up recommenda-
tion efficiency. However, most of these approaches do not consider
user interaction information in the recommendation process, such
as the selection of certain APIs in the returned list. We believe
this information is crucial to improve the API recommendation
performance.

In this demo paper, we present BRAID1 (Boosting Recomm
endAtion with Implicit FeeDback), a tool that can recommend

1BRAID is open sourced at https://github.com/yyyxy/vscode-plugin-for-braid/
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APIs to users by integrating their feedback information. The feed-
back denotes users’ selection of returned APIs. The methodology
underpinning BRAID is based on our previous work [18].

Different from traditional approaches, in BRAID, API recommen-
dation is regarded as a ranking problem by optimizing an existing
recommendation result. To this end, BRAID employs learning-to-
rank (LTR) [5] and active learning techniques [13]. The key of LTR
in information retrieval is to train a ranking model by which a given
query can optimally order the relevant documents based on feed-
back. By viewing APIs as documents, we can apply LTR techniques
to API recommendation to boost its performance. In particular, we
leverage related information features and feedback features to train
the model. The former consists of API path features and API de-
scription features, representing the relevance of the recommended
APIs in relation to the user query and the associated document
descriptions respectively; the latter represents the relevance to the
APIs in the feedback repository.

Furthermore, to accelerate the feedback learning process, we
incorporate active learning which is to alleviate the “cold start"
problem. The active learning module can help achieve better per-
formance with a relatively small amount of tenuous feedback in-
formation at the beginning. To this end, we leverage crowdsourced
knowledge from Q&A websites, such as Stack Overflow2, to ex-
tract questions and their answers. Based on this information, we
can construct query-API pairs, where the query corresponds to
the question, and the APIs correspond to the ones in the accepted
answers. These pairs function as the oracle to provide the correct
labels, and are then put to the training set. By iterating this pro-
cess we can obtain a well-trained active learning model with the
expanded labeled set. Due to space limitation, interested readers
can refer to [18] for technical details.

As aforementioned, BRAID requires an initial recommendation
list. To be flexible, BRAID is designed as a framework, allowing
for third-party API recommenders to be plugged as a component.
Developers can benefit from such a design decision, which implies
BRAID is flexible and can be customized by different developers.

2 THE BRAID TOOL
BRAID is implemented as a VS Code3 plug-in. VS Code was the
most popular development environment as per a stack overflow
survey 4. Figure 1 illustrates the overview of the proposed approach.

The basic workflow of our approach is as follows.
(1) When a user makes a query Q to the system (in the form

of, for instance, a short sentence in a natural language), a
base API recommendation method is employed to provide
an initial API list LQ .

(2) The system looks up the feedback repository FR, checking
whether or not there is a query similar to the user query
Q . If this is the case, the system returns a set SP of query-
API pairs where the similarity score of each query with Q is
above a certain threshold. Otherwise, there is no available

2https://stackoverflow.com/
3https://code.visualstudio.com/
4https://insights.stackoverflow.com/survey/2019#development-environments-and-
tools
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Figure 1: The overview of BRAID

query in FR similar to Q (which is especially the case at the
initial stage of the interaction), and SP is simply an empty
set. The recommended APIs in LQ and SP are to be fed to
the feature extraction engine.

(3) The feature extraction engine, upon receiving LQ and SP ,
computes a composite feature vector FV . FV includes two
components, i.e., FF and RIF . The former corresponds to
the feedback features, while the latter corresponds to the
related information features, which are extracted from the
related API documentation and Q&A posts. (In case that SP
is empty, FV consists solely of related information features.)

(4) The ranking engine takes FV as input, and applies the trained
learning-to-rank model and active learning model to obtain
the prediction values. The system then calculates the API
scores based on the prediction values of these two models.
Afterwards LQ is re-ranked in descending order according
to the API scores, and new recommendations are presented
to the users.

Figure 2 and Figure 3 present the main user interfaces of BRAID.
In Figure 2, a user can initiate the recommendation by simply a
mouse right-click action in the edit area. Then a comprehensive
menu list will be displayed (A). The user can select the “Input your
query” item (B) on the menu to activate the query input dialog (C).
For example, the query could be “How to sort”. Given the input
query, BRAID conducts the API recommendation, the workflow of
which has been described as above. The result list (D) is displayed in
themain part of Figure 3. The list is composed of recommendedAPIs
and their associated descriptions. “Next” and “Previous” buttons
(E) are in the right part of the panel to help navigate the list, since
many APIs could be returned, and the number might exceed the
display limit of a single page.

In Figure 3, the user can select a specific API by a mouse left-
clicking the item on the returned list. A back-end daemon will
record the selection decision and the related query, and update
the feedback repository accordingly. The repository will provide
accumulated information for the LTR model and active learning
module, aiming to enhance recommendation experience for end
users. As one might expect, with the accumulation of feedback,
the performance of BRAID will become increasingly better (cf.
Section 3).
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Figure 2: Query input UI of BRAID

Figure 3: Recommendation result UI of BRAID

3 EVALUATION
In this section, we present the comparative experiment of BRAID
against three state-of-the-art baselines, i.e., BIKER [4], RACK [12],
and NLPAPI [10]. Due to space limitation, we mainly report our
empirical results of the following research question, i.e., how does
the accumulation of the feedback repository improve the perfor-
mance of recommendation? This is the most important research
question, since in real scenarios, the feedback repository is to be
updated and accumulated from developers during programming
over time. We are very interested in the contribution brought by
the feedback information in BRAID.

To be fair, we reuse the datasets to construct the query-answer
pairs, and the implementation to collect results, from the replication
packages of the baselines. We follow the standard 10-fold cross
validation and repeat the experiments 5 times. The average values
are calculated as the final results. The experiments are conducted
on a PC running Windows 10 OS with an AMD Ryzen 5 1600 CPU
(6 cores) of 3.2GHz and 8GB DDR4 RAM. We randomly select the
query-answer pairs from the training set to form the feedback
repository. The size of the feedback repository varies from 0% to
100% of the training set, with an increment of 10%. Note that the
baseline is represented by the case of size equal to 0%, where the
feedback repository is empty or disabled.

Table 1 presents the experimental results with the three baseline
recommenders as components in BRAID. The ‘original’ column lists

the results of these baseline recommenders without the augmenta-
tion of feedback information. We can observe that the performance
improves with the accumulation of the feedback repository. This is
consistent across all the three baselines. All the metrics have been
enhanced considerably. The MAP and MRR are 6% up for BIKER,
over 13% up for RACK and NLP2API when 100% of the feedback
repository is used.

Particularly, the most important indicator Hit@1 enjoys the
largest boosting. Hit@1 is increased by 9.44% for BIKER , by 18%
for RACK, and by 18.39% for NLP2API. Moreover, we use the Mann-
Whitney U test and Vargha and Delaney’s Â12 statistic to examine
these experimental results. Most p−values are in the range of 0.003
to 0.005, with effect size 1, indicating that the improvements are
statistically significant at the confidence level of 99%. However, for
BIKER there were 2 cases (metrics Hit@3 and hit@5 for 10% size of
feedback repository) out of 50 where the p−values were higher than
0.005 (i.e., the null hypothesis should be rejected). For NLP2API,
there was also one case (i.e., metrics Hit@5 for 10% size of feedback
repository) where the p-value is higher than 0.005. We suspect that,
when the feedback information is insufficient, our approach may
not bring significant improvement on certain occasions. However,
with the growth of feedback, our approach does show significant
improvement over the baselines.

To further demonstrate how the user is involved and the effec-
tiveness of our approach, we conduct an additional experiment
where we consider a pseudo-user. We randomly select 50 queries,
and the pseudo-user is programming during which the 50 queries
are to be made. During each query, BRAID recommends APIs based
on the feedback repository, and the pseudo-user selects API(s). The
query and selected API(s) are used to expand the feedback reposi-
tory. We train the models as soon as the feedback repository is not
empty. The model is not re-trained during the 50 queries. Table 2
shows the results for pseudo-user experiment. The conclusion is
consistent with other experiments that the results of Hit@1 metric
improve the most, i.e., Hit@1 increase for BIKER is around 6%, for
NLP2API is around 5%, and for RACK is over 9%.

4 RELATEDWORK
A majority of the relevant work rely on code searching techniques
to find themost similar ones and recommend to develoers. Examples
include Strathcona [3], Portfolio [7], SENSORY [1], and Aroma [6].
Strathcona recommends code examples for developers by compar-
ing structural similarity in the code repository; Portfolio mainly
combines NLP, and spreading activation network algorithms to find
the most relevant code for users; SENSORY considers the statement
sequence information and uses the Burrows-Wheeler Transform
algorithm to search in the code repository; Aroma takes a partial
code snippet as query input, and returns a set of code snippets
as recommendations. The above approaches mainly rely on code
information to perform recommendation.

Meanwhile, some approaches employ additional information
from other software artifacts or crowdsourced knowledge. Exam-
ples include BIKER [4], RACK [12], and NLP2API [10], all of which
serve as our baselines in this paper. These approaches leverage
Q&A posts from Stack Overflow website to find the most relevant
APIs. NLP2API also incorporates (pseudo-) feedback information
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Table 1: The effect of BRAID with accumulation of the feedback information

Baseline Metric Original 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

BIKER

Hit@1 0.4231 0.4418 0.4704 0.4931 0.4986 0.5020 0.5073 0.5112 0.5146 0.5170 0.5175
Hit@3 0.6607 0.6815 0.7018 0.7140 0.7178 0.7178 0.7193 0.7203 0.7203 0.7208 0.7213
Hit@5 0.7747 0.7825 0.7945 0.8024 0.8062 0.8067 0.8072 0.8077 0.8091 0.8096 0.8110
MAP 0.5534 0.5689 0.5919 0.6072 0.6106 0.6128 0.6155 0.6176 0.6205 0.6214 0.6223
MRR 0.5685 0.5816 0.6035 0.6189 0.6226 0.6252 0.6282 0.6308 0.6334 0.6346 0.6356

RACK

Hit@1 0.3267 0.4160 0.4587 0.4827 0.4840 0.4893 0.4907 0.4947 0.5000 0.5040 0.5067
Hit@3 0.5133 0.5680 0.5933 0.6013 0.6120 0.6133 0.6147 0.6173 0.6200 0.6360 0.6400
Hit@5 0.6267 0.6453 0.6640 0.6667 0.6720 0.6733 0.6733 0.6773 0.6813 0.6813 0.6867
MAP 0.4203 0.4789 0.5211 0.5345 0.5418 0.5434 0.5434 0.5490 0.5538 0.5588 0.5620
MRR 0.4506 0.5120 0.5455 0.5622 0.5654 0.5675 0.5692 0.5722 0.5765 0.5819 0.5852

NLP2API

Hit@1 0.3516 0.3871 0.4452 0.4761 0.4916 0.5181 0.5213 0.5226 0.5258 0.5310 0.5355
Hit@3 0.5323 0.5561 0.5877 0.6039 0.6187 0.6284 0.6316 0.6342 0.6348 0.6348 0.6355
Hit@5 0.6000 0.6187 0.6413 0.6426 0.6523 0.6555 0.6619 0.6626 0.6632 0.6645 0.6645
MAP 0.4111 0.4451 0.4851 0.5123 0.5249 0.5408 0.5450 0.5480 0.5482 0.5524 0.5549
MRR 0.4604 0.4885 0.5290 0.5502 0.5627 0.5807 0.5841 0.5867 0.5881 0.5912 0.5937

Table 2: Evaluation results for our framework pseudo-users
experiments comparing with baselines

Baseline Technique Hit@1 Hit@3 Hit@5 MAP MRR

BIKER
Original 0.4231 0.6607 0.7747 0.5534 0.5685

Avg. BRAID 0.4800 0.7000 0.8000 0.5924 0.5967
Abs. Imp. 5.69% 3.93% 2.53% 3.89% 2.82%
Rel. Imp. 13.44% 5.94% 3.26% 7.04% 4.96%

RACK
Original 0.3267 0.5133 0.6267 0.4203 0.4506

Avg. BRAID 0.4200 0.6000 0.6600 0.5155 0.5410
Abs. Imp. 9.33% 8.67% 3.33% 9.53% 9.04%
Rel. Imp. 28.57% 16.88% 5.32% 22.66% 20.06%

NLP2API
Original 0.3516 0.5323 0.6000 0.4111 0.4604

Avg. BRAID 0.4000 0.5600 0.6400 0.4643 0.5072
Abs. Imp. 4.84% 2.77% 4.00% 5.32% 4.68%
Rel. Imp. 13.76% 5.21% 6.67% 12.93% 10.16%

as our work, but its purpose is to reformulate the query. Similarly,
QUICKAR [11] also aims to automatically provide reformulation of
a given query.

Some approaches augmented with other information for rec-
ommendation are APIREC [8], FOCUS [9], and LibraryGURU [17].
APIREC leverages fine-grained change commit history from Github
to extract frequent change patterns to supplement the recommen-
dation process. FOCUS tackles the usage pattern recommendation
problem from the perspective of collaborative filtering, and similar
projects information is consulted during the recommendation pro-
cess. LibraryGURU combines code parsing and text processing on
Android tutorials and SDK documents to recommend functional
APIs in Android. However, none of these approaches consider ef-
fective integration of feedback into the recommendation.

There are a few work trying to leverage feedback into software
engineering tasks. Sivaraman et al. [14] employ user feedback to
express and refine search queries. Wang et al. [15] incorporate
the feedback into the code search process and propose an active
code search approach. However, both work address the code search
problem instead of API recommendation.

5 CONCLUSION
In this paper, we have demonstrated BRAID, the tool we designed
and implemented to automatically recommend APIs to developers.
The primary feature of BRAID is its ability to incorporate user
feedback information into the recommendation loop. We evaluated
BRAID against three strong baselines. The results indicate that
BRAID can effectively improve the performance of recommendation
by integrating user feedback. Currently, wemainly support Java API
recommendation, but extending to other programming languages
is included in our future plan.
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