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ABSTRACT
Effective quality assurance methods for autonomous driving sys-
tems ADS have attracted growing interests recently. In this pa-
per, we report a new testing platform ADEPT, aiming to provide
practically realistic and comprehensive testing facilities for DNN-
based ADS. ADEPT is based on the virtual simulator CARLA and
provides numerous testing facilities such as scene construction,
ADS importation, test execution and recording, etc. In particular,
ADEPT features two distinguished test scenario generation strate-
gies designed for autonomous driving. First, wemake use of real-life
accident reports from which we leverage natural language process-
ing to fabricate abundant driving scenarios. Second, we synthesize
physically-robust adversarial attacks by taking the feedback of ADS
into consideration and thus are able to generate closed-loop test
scenarios. The experiments confirm the efficacy of the platform.
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1 INTRODUCTION
There has been an increasing concern about the reliability and safety
of autonomous driving systems (ADS), especially with the use of
deep neural networks (DNN) as their core components. Testing,
as one of the most effective quality assurance methods of ADS, is
expected to play an indispensable role in ADS development. Testing
with physical autonomous vehicles is natural, but clearly is neither
cost-effective nor safe. In particular, it is usually challenging to
reproduce various types of accidents (e.g., those involving switching
between severe weather conditions) and its cost can be financially
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unaffordable. A realistic alternative and arguably more effective
strategy is to test ADS under a simulated environment, where
both driving scenes and physical logic (i.e., car dynamics, traffic
regulations, and weather conditions) are built in a virtual world.

In this paper, we present a platformADEPT (AutonomousDriving
tEsting PlaTform) to provide comprehensive testing for ADS which
are akin to real-world scenarios. Several virtual simulators including
CARLA [9] and AirSim [25] are available. We base our tool on
CARLA in light of its abundant APIs and community support.
ADEPT supports various functionalities, including scene construc-
tion, ADS importation, test execution and recording, etc. Of para-
mount importance for testing frameworks is test case generation,
which, in our setting, exhibits in the form of building up a specific
scene for ADS to react. The inherent complexity of ADS gives rise
to a tremendous search space of scenes for which exhaustive search
is clearly prohibitive. Moreover, ad-hoc testing case generation
methods are prone to yielding impractical and less meaningful
scenarios from the physical-world perspective. For example, the
scenario that an obstacle suddenly appears in the middle of the
road would be meaningless as it rarely happens.

In ADEPT, we introduce two strategies to enable effective gen-
eration of more realistic test cases. First, we observe a connection
between harmful circumstances and security breaches which we
use to direct the search toward a more security-sensitive area. To
this end, we extract potential ADS infractions from real-life accident
reports by leveraging natural language processing (NLP) techniques,
which are then used to fabricate testing scenarios. Second, we adapt
adversarial examples of DNNs to generate testing scenario. In view
of the central role of DNNs in ADS (e.g., in the decision-making
module) and their fragility to imperceptible malicious perturbations
known as adversarial examples, it is not difficult to generate test
scenarios based on these examples. However, the effectiveness of
adversarial examples are usually dependent on physical conditions
(e.g., illumination, blur, and angle of view), making the test scenarios
unrealistic. Moreover, an individual attack that tricks ADS into
making mistakes is usually insufficient as ADS can recover from
these one-time, sporadic mistakes. In ADEPT, we instead generate
a sequence of robust adversarial examples that takes the feedback
of ADS into account and thus form a closed-loop test scenario.

The code is available at https://github.com/shengzh-oOoO/ADEPT
and a video demo can be found at https://youtu.be/evMorf0uR_s.

2 THE TOOL ADEPT
Figure 1 depicts the three-layer architecture of ADEPT, i.e., Simula-
tor Kernel, ADS Testing Libraries, and Scenario Engine.

The Simulator Kernel layer includes several key components
directly built upon Unreal Engine and Carla to provide specific
operations for ADS testing, e.g., interactive camera. Note that all
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Figure 1: An overview of ADEPT.

modules in red boxes are developed by us, while those in blue boxes
are essentially from either CARLA or Unreal Engine.

The ADS Testing Libraries layer includes three key modules.
• the communication module, which is responsible for the interac-
tions between subjects (e.g., driving model or attack algorithm)
and objects in simulators (e.g., cars, humans, and electronic bill-
boards). This module is designed to encapsulate the basic CARLA
APIs for developing and recording specialized ADS testing sce-
narios, as data access and transmission between the subjects and
the simulator are inefficient via CARLA’s native APIs.

• the model management module, which is responsible for the
management of ADS and cars, e.g., connection of ADS to ADEPT
and to place the required sensors on the victim car.

• the control managementmodule, which deploys the generated sce-
nario online, e.g., it utilizes virtual camera redirected to platform
objects to adjust textures in real-time.
The Scenario Engine layer implements various methods for

effectively generating real-world scenarios that may trigger ADS
violations. Currently, there are two such methods, as detailed below.
Generation of Test Scenarios from Accident Reports. This
engine takes a traffic accident report and translates the accident
description (in natural language) to an intermediate representation
(in a scenario-description language) for which we use Scenic [11].
The Scenic-supplied tools can load the scene and connect to the
ADS for testing at the same time.

We leverage natural language processing aiming for automated
translation of the accident report. Technically, we utilise a question-
and-answer technique based on the question-answering system
GPT-3 [5]. We define a set of questions as well as Scenic code
templates. The report text and predefined questions are sent to GPT-
3. Upon the response, we choose the template that corresponds to
the accident report’s description from the predefined templates and
fill in the template’s important missing information. Specifically,
we inquire about the location of the collision (including whether it
occurred at a three-way, four-way, or non-intersection), the time,
the weather, and the relative position relationship between the two
cars involved (including the left-right relationship of the lane, the
front-to-back relationship of the distance, etc.).
Closed-loop Testing Based on Adversarial Attack. It is well-
known adversarial examples (AEs) reveal the weakness of DNNs
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Figure 2: The closed-loop practical hijacking.

which are widely adopted in contemporary ADS, so one can easily
utilize them to test ADS. In real-world conditions, however, several
physical conditions (such as illumination, blur, angle of vision, etc.)
may severely diminish the effectiveness of AEs, especially when
the car is in motion. Moreover, sophisticated ADS is able to recover
from the past deception, further undermining the effectiveness of a
single attack. We propose two strategies to address these issues.

(1) We generate AEs more robust in the physical sense. We find,
based on the observation of pixel shifts, that the color between
the real pixel and the illustrated pixel of an RGB-camera-captured
image can be captured by a nonlinear transformation. On the basis
of pixel data collected from the testing platform, we employ a
lightweight neural network to fit such a nonlinear transformation.
Since the car’s perspective does not change significantly during
the victim vehicle’s decision-making interval, factors caused by the
moving state on our testing platform consist primarily of blur and
minor changes in angle of view. Here, we resort to Expectation
Over Transformation (EOT) [3], which abstracts various transfor-
mations into distributions and embeds the transformations as the
parallel preprocess of the input, then regards the expectation over
all transformations as the ultimate optimized object, with each step
of iteration accepting the input updated in the previous step.

(2) We design a sequence of AEs to achieve continuous deception
for the vehicle by incorporating the feedback into successive attacks.
Figure 2 depicts the “practical AA-based testing” engine of Figure 1
where the feedback refers to the positional and postural changes of
the victim vehicle as observed by the Malicious Attacker Module
(MAM). MAM leverages the feedback to anchor itself from the view
of the victim vehicle in order to conduct tailored attacks. With
adversarial attack algorithms, MAM determines what to show in
the next frame attempting to fool the victim vehicle.

To this end,MAMconsiders the dynamicmodel of the vehicle, i.e.,
the actual steering radian and traveling distance at one frame. We
implement the Pure Pursuit (PP) [8] algorithm to force the victim
vehicle to pursue the goal moving point, thereby following the
prescribed trajectory. The target curve comprises multiple points,
and the PP algorithm calculates the curvature that will move a
vehicle from its current position to the goal position specified by the
closest point and the lookahead distance. Eventually, the estimated
curvature will serve as the attack target.

3 EVALUATION
In this section, we evaluate ADEPT with the two scenario engines.

Generation of Test Scenarios based on Accident Reports. To
select the adequate subject for evaluation, we choose the end-to-end
ADS, which is the winner of the Camera-Only track of the CARLA
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challenge 2020 [26], to be the subject, and the accident reports from
NHTSA Crash Viewer [22] for ADEPT.

We use 20 traffic accident reports to generate 365 test cases.
ADEPT first translates each accident report to the intermediate
Scenic code several times. Then, ADEPT generates multiple test
scenarios from each Scenic code with slight mutation in the unmen-
tioned description of the code. The test cases rely on the predefined
environment templates in Scenic. In the evaluation, we select two
typical accident locations, e.g., at crossroads or not, with different
vehicles’ directions. As shown in Table 1, 73 pieces of valid Scenic
code are used. Based on the criteria of risk levels for vehicle ac-
cidents, the 365 generated test cases trigger 133 accidents in the
simulated environment, of which 54 cases involve serious risks.

Figure 3 shows an example. A customized GPT-3 extracts valu-
able information (e.g., number of cars, the Vehicle brand, the posi-
tion, speed, and direction) from the accident description in natural
language to generate a Scenic code. Then, the ADS test case is
generated based on the Scenic code. Since Carla and Scenic do not
support Chevrolet Tahoe, the tool randomly selects an Audi Etron
as the vehicle 2 at this time.
Closed-loop Testing based on Adversarial Attacks. To evaluate
the testing for the closed-loop adversarial attack, we choose NVIDIA
CNN-based steering model [4] as the core decision-making module
of the victim vehicle, which receives a front-view RGB image as
input and outputs a floating number between -1.0 and 1.0 indicating
the steering angle (−90◦ to 90◦). The NVIDIA model is designed to
drive straight along the lane without committing violations such
as crossing the yellow line or entering the sidewalk. During the
experiment, the victim vehicle is set to maintain a constant speed
on a straight road. To exhibit the capability of ADEPT, we evaluate
two ADS testing scenarios, i.e., trajectory tracking and pedestrian
collision. Firstly, the control management module places a billboard
alongside the road. Multiple distributed locations in the form of
Cartesian coordinates are provided to predetermine a purported
trajectory. As shown in Figure 4, the red line represents the original
route, and the blue line represents the preset course, while the green
line represents the realistic trajectory the victim car follows during
the experiment. Our realistic hijacking successfully misleads the
victim vehicle to take a risky S-bend, and we notice that the green

(a) Manipulating the ADS via the
billboard to hit the pedestrian.

(b) Collision occurred after the
closed-loop manipulation.

Figure 5: The scenario of pedestrian collision.

line in the figure is a little later than anticipated, which is caused
by the fact that AA only operates on the current frame while the
actual attacked frame occurs later.

Secondly, as depicted in Figure 5, we install a billboard with
a pedestrian walking in front of the victim vehicle alongside the
road.Wewant to continuously deceive the automobile into colliding
with the pedestrian (note that the testing personnel manipulates the
pedestrian during the experiment). As shown in the accompanied
video, the victim vehicle is effectively hijacked to dynamically
misdirected to follow and finally hit the moving pedestrian.

4 RELATEDWORK
Abrecht et al. [1] classify all ADSs testing into four levels, i.e.,
directly test individual deep learning models (L1); hardware sen-
sors to the scope of co-testing (L2); continue to consider external
environmental factors on the basis of L2 (L3); and test ADS in the
closed-loop environment (L4). Our testing platform achieves L4
testing capabilities.

AC3R [12] is the first approach for testing ADS via automati-
cally reconstructed car crashes from accident reports. AC3R builds
the scene from an empty world and ignores the construction of
background entities, such as buildings, greenbelt, etc. It may not be
realistic for testing. Moreover, it cannot process long reports.

Besides generating test scenarios from accident report text, Nguyen
et al.[20] generated test scenarios from accident sketches, and
Xinxin et al.[28] generated test scenarios from accident videos.
In addition to generating 3D test scenarios, Holland et al.[15] and
Goss et al.[14] also generated 2D plane scenarios from accident
reports or data for testing the decision-and-control module of ADS.

Due to the complexity and unpredictability of autonomous driv-
ing, defining and finding critical scenarios becomes the key chal-
lenge [29]. Gladisch et al. [13] formulate the problem as a Search-
based Testing problem. To optimize the search process, Klischat et
al. [16] use evolutionary algorithms; Althoff et al. [2] reduce search
space by analyzing the reachability of scenarios; SAMOTA [27] com-
bines surrogate-assisted optimization and many-objective search
to generate test scenarios effectively and efficiently; SALVO [21]
reduces search space by generating test scenarios from existing
maps. In SBST Tool Competition 2021 [23], competitors competed
on how to search for road layouts that could lead to a vehicle acci-
dent. Gambi et al. [12] try to generate scenarios based on accident
databases. Scenic [11] and Paracosm [19] provide languages and
tools to define and build critical scenarios manually.

Adversarial examples of DNNs have been extensively studied in
literature. Typical generation algorithms include CW [6], PGD [18],
etc. Simple application of AEs for testing can be classified as L1
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Type of accident location Reports Scenic codes Scenarios Safety Risk
Light Risk Serious Risk

Non-Crossroads 11 46 230 153/66.52% 48/20.87% 29/12.61%
V1&V2 in same direction 8 40 200 130/65.00% 43/21.50% 27/13.50%
V1&V2 in opposite directions 3 6 30 23/76.67% 5/16.67% 2/6.67%

Crossroads 9 27 135 79/58.52% 31/22.96% 25/18.52%
Total 20 73 365 232/63.56% 79/21.64% 54/14.79%

Table 1: Results of ADS in test scenarios generated based on accident reports.

testing. RP2 [10] and Shapeshifter [7] implement adversarial at-
tacks by modifying the surface texture of objects instead of image
pixels. Deepbillboard [30] and PhysGAN [17] shoot videos with
billboards in the real world, which can be classified as L3 testing.
Patel et al. [24] implement pseudo-L4 testing of ADS in a close-loop
environment, but the AEs are crafted by modifying image pixels.

5 CONCLUSION
We present a new testing platform ADEPT for ADS, which conducts
testing based on a virtual environment and provides numerous
facilities. Distinguished features of ADEPT include deriving realistic
scenarios from accident reports and crafting physically-meaningful
closed-loop testing scenarios via adversarial examples of DNNs.
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