
Beyond Sequences: Two-dimensional Representation and Dependency
Encoding for Code Generation

Xiangyu Zhang1, Yu Zhou1,*, Guang Yang1, Wei Cheng1, Taolue Chen2,*
1Nanjing University of Aeronautics and Astronautics, 2Birkbeck, University of London

{zhangx1angyu, zhouyu, yang.guang, chengweii}@nuaa.edu.cn
t.chen@bbk.ac.uk

Abstract

The advent of large language models has signif-
icantly advanced automatic code generation,
transforming the way programmers writing
code. Inspired by natural language processing,
mainstream code generation approaches repre-
sent code as a linear sequence of tokens. In
this paper, we propose to represent code snip-
pets as two-dimensional entities, where both
code lines and tokens within lines are explic-
itly modeled. This representation allows us to
capture the hierarchical and spatial structure
of code, especially the dependencies between
code lines. Our method CoDE introduces a de-
pendency encoding approach that leverages dic-
tionary learning to perform semantic matching
between code lines. As such, it avoids the re-
liance on strict position indices, leading to bet-
ter generalization to code with diverse context
and lengths. We thoroughly evaluate CoDE
based on four categories of tasks. The exper-
imental results showcase its generalizability,
context understanding and retrieval, as well as
interpretability in code generation.

1 Introduction

Fueled by the rapid advancement of natural lan-
guage processing (NLP), code language models
(CLMs, (Chen et al., 2021; Li et al., 2022; Roziere
et al., 2023)) have made impressive progress re-
cently. These models exhibit strong programming
capabilities, markedly enhancing developers’ pro-
ductivity (Xu et al., 2022).

As the backbone of most SOTA language mod-
els (LMs), the Transformer architecture (Vaswani,
2017) relies on the attention mechanism (Bahdanau,
2014) which, by design, cannot perceive positional
information within sequences, but treats tokens as
unordered sets. Clearly, the order between tokens,
to a certain extent, carries important information.
As such, positional encodings (Sukhbaatar et al.,

* Corresponding author.

2015) were thus introduced and incorporated in the
Transformer architecture.

Despite their ubiquity in LMs (Touvron et al.,
2023; Bai et al., 2023a; Bi et al., 2024), positional
encodings may compromise generalization. First,
explicit positional encodings inherently sacrifice
permutation invariance, as it imposes a strict or-
dering on the input sequence. While this design
choice is well-suited for some NLP tasks in which
token order carries semantic significance, it does
not generalize well for tasks involving more struc-
tured data, where the semantics is often invariant
to the input order. Second, positional encodings
are hard to generalize to longer sequences (Zhao
et al., 2023; Li et al., 2023b; Kazemnejad et al.,
2024), as the typically restrict position indices to a
fixed range during training. As a result, when en-
countering sequences exceeding the length of those
observed during training, the learned positional en-
codings often fail to generalize effectively (Huang
et al., 2023).

These two issues are more pronounced as far
as code generation is concerned. Many code frag-
ments, e.g., functions, classes or independent mod-
ules, exhibit semantic permutation invariance, i.e.,
reordering these elements within a codebase largely
leaves their underlying semantics unchanged. How-
ever, CLMs relying on fixed positional encodings
struggle to capture such invariances (Chen et al.,
2024a), making them ill-suited to accurately under-
stand the code semantics. That being said, tokens
within source code also exhibit sequential relation-
ships (e.g., variables must be defined before being
used), indicating that discarding positional encod-
ing entirely is not an ideal solution either. Rather,
it is necessary to take a more flexible, structured,
coarse-grained perspective on token relationship,
which can balance global invariances and local se-
quential constraints.

Moreover, positional information that lacks se-
mantic grounding is inherently non-robust. For



example, source code typically includes non-
functional elements such as comments and line
breaks, which enhance readability, but which in
most cases do not directly contribute to program
logic. Consequently, such elements may interfere
with the position indices, making positional encod-
ing more challenging and less reliable.

Another challenge arises from the high variabil-
ity in code lengths, particularly in repository-level
code generation (Zhang et al., 2023a; Pan et al.,
2024). In large-scale codebases, crucial context
is often fragmented and distributed across multi-
ple files, residing not only within the current file
but also in external files such as imported modules
or API documentation. Traditional positional en-
coding methods, which primarily focus on local
information within a sequence, are insufficient for
fusing long-range dependencies effectively.
Two-dimensional (2D) encoding for code. Cur-
rent CLMs predominately treat code snippets as
plain text (Jiang et al., 2024; Zhang et al., 2024a).
While this approach facilitates a more straightfor-
ward adaptation of techniques from NLP, it over-
looks the hierarchical and modular structure in
source code which is, arguably, “unnatural.” In pro-
gramming practice, when writing or understanding
code, developers focus more on the dependencies
between lines of code rather than the specific po-
sition of individual tokens. From this perspective,
representing code in two dimensions carries far
more significance than the one-dimensional posi-
tioning of tokens.

In this paper, we propose to represent code as
a two-dimensional structure, organized into lines
of code (the vertical dimension) and tokens within
each line (the horizontal dimension). Conceptually,
the vertical dimension encodes the logical flow of
the program across lines, such as control struc-
tures, function declarations, and inter-line depen-
dencies, while the horizontal dimension captures
fine-grained token-level operations and data manip-
ulations. This representation aligns closely with
how developers naturally read, comprehend and
write code, reflecting its structural organization.
From positional encoding to CoDE. The transi-
tion from a linear to a two-dimensional code rep-
resentation necessitates a rethinking of positional
encoding. While the explicit two-dimensional po-
sitional information can enhance structural aware-
ness, it does not address the generalization problem
rooted in its reliance on fixed positional indices. To
address this limitation, we prioritize the modeling

of line-wise dependencies in code snippets. More
concretely, we decompose a (multi-layer) Trans-
former model into two functional components. In
the shallower layers of the model, we extract se-
mantic representations for each code line. In the
deeper layers, these representations are integrated
by unifying the token embeddings within each line
based on their semantics. The unified embeddings
are then leveraged to model and capture the depen-
dencies between lines of code.

We draw inspiration from the recent advances in
mechanistic interpretability, e.g., techniques that
utilize Sparse Autoencoders (SAEs) (Ng et al.,
2011) to extract polysemantic and interpretable
features from the hidden states of LMs (Cunning-
ham et al., 2023; Gao et al., 2024; Lieberum et al.,
2024). These extracted features collectively form a
dictionary, which serves as a structured representa-
tion. In our approach, we harness SAE to identify
dependencies between code lines, which can cap-
ture a combination of distinct relational features
for programming, such as sequential dependencies,
conditional relationships and function calls.
Benefits. The lens of 2D structured code and the
associated SAE-based semantics matching gives
rise to a novel neural code generation method Code
Dependency Encoding (CoDE). By emphasizing
dependencies rather than explicit positional infor-
mation, CoDE mitigates the overly reliance on
actual positions within the current CLMs. First, it
achieves a form of “soft” permutation invariance
within code lines through in-line modeling, and
aligns line-wise dependencies based on semantic
matching. This enables the model to effectively
capture semantic relationships across code lines,
even when their positions differ from those encoun-
tered during training (e.g., being swapped). Second,
by incorporating dependency encoding between
code lines, CoDE avoids the use of fixed positional
indices, thereby facilitating extrapolation. Third,
CoDE demonstrates the capability to effectively
handle long-range dependencies in code genera-
tion tasks. Unlike traditional positional encodings,
which are primarily designed for NLP tasks and
tend to focus on local information, CoDE explic-
itly models inter-line relationships across the entire
context, hence can accurately capture dependencies
between code lines, even when they span diverse
and distributed parts of the codebase. This is cru-
cial for emerging repository-level code generation
(Zhang et al., 2023a; Wang et al., 2024a).
Experiments. We evaluate CoDE across four cat-



egories of tasks, viz. code modeling, long-context
understanding, functional correctness and context
retrieval. The experimental results have confirmed
the superiority of CoDE in various code-related
tasks. For instance, when trained with sequence
length 512 and tested on longer code snippets
(1,024–4,096 tokens) CoDE achieves lower per-
plexity and higher accuracy, highlighting its ex-
trapolation capability. For functional correctness
of the generated code, CoDE consistently show
the highest pass@1 and pass@10 rate on widely
adopted HumanEval/HumanEvalPlus benchmarks.
Furthermore, a context retrieval task designed to as-
sess long-context dependency utilization shows that
CoDE significantly outperforms baseline methods,
indicating its effectiveness in code-related tasks.
Structure. Section 2 presents the background. Sec-
tion 3 describes the proposed approach. Section 4
presents the experimental design and Section 5 re-
ports the results. Section 6 reviews the related work.
Section 7 concludes the paper.

2 Background

2.1 Attention and Positional Encodings
The Transformer model relies on self-attention
mechanisms, where positional encoding serves as a
crucial auxiliary component, enabling the model to
differentiate between tokens at various positions.

For a sequence T = t1, . . . , tm of tokens with
corresponding (column) vector embeddings X =
x1, . . . , xm where each xi ∈ Rd. For any xi, xj
with 1 ≤ i, j ≤ m, the raw attention score is
computed as

ai,j = qTi kj +Mi,j ,

where qi = WQxi and kj = WKxj are com-
monly referred to as the query and key projections
of xi and xj , respectively. Here, WQ,WK ∈
RH×d are learnable weight matrices, and Mi,j rep-
resents the entry of the attention mask M ∈ Rm×m,
which captures the constraints on attention com-
putation by specifying which tokens the model is
allowed to attend to.

To encode the sequential structure of the input,
the positional encoding pi is usually added to the
token embeddings xi ← xi + pi, for 1 ≤ i ≤ m.

2.2 Sparse Autoencoder
The Sparse Autoencoder (SAE) (Ng et al., 2011)
is an unsupervised learning algorithm designed to
extract explainable features from data, based on

Figure 1: Illustration of CoDE. The red arrows indicate
operations in the shallow layers, designed to indepen-
dently extract the semantic of individual lines of code.
The blue arrows in the deeper layers, use these semantic
to model the dependency between lines of code.

the principles of dictionary learning (Cunningham
et al., 2023; Gao et al., 2024). SAE comprises an
encoder that computes feature activation and an
overcomplete decoder, often referred to as a dic-
tionary.By imposing a sparsity constraint on the
feature activation, SAE learns interpretable, over-
complete and polysemantic feature representations.
Formally, given an input vector x, SAE generates a
reconstruction x′ via

c = ReLU(Ex+ b), x′ = Dc,

where c represents the feature activation, E ∈
RF×H is the encoder and D ∈ RH×F is the de-
coder (F and H denote the dimensions of features
and hidden states, respectively). Training of the
SAE involves minimizing the following loss func-
tion L = ∥x − x′∥22 + α∥c∥1, where α is a hy-
perparameter that regulates the sparsity level, and
the ℓ1 penalty term ∥c∥1 promotes sparsity in the
feature coefficients.

The effectiveness of SAE in extracting seman-
tic features from hidden states underscores its po-
tential for capturing dependencies between code
lines. Moreover, by leveraging a finite dictionary to
model the dependencies, SAE avoids the reliance
on unbounded positional indices, which gives a
more context-dependent, finite encoding with supe-
rior extrapolation capabilities.

3 Our Approach

CoDE is based on the Transformer architecture,
but it introduces two key modifications to mitigate
the issues discussed in Section 1.

Figure 1 provides an overview of CoDE. Intu-
itively, we decompose a multi-layer Transformer



into two functional stages, which focus on captur-
ing intra-line semantic and line-wise relationships,
respectively. In the shallow layers (e.g., layers
0–1 in our setup), the primary focus is on in-line
tokens modeling, which is designed to separately
extract the (semantic) representation of each line
of code. In contrast, the deeper layers (e.g., layers
3–7) model contextual dependencies by encoding
relationships between lines of code.1

To represent source code in two dimensions,
a naive approach would be based on grid simi-
lar to an image. However, as source code lines
normally exhibit a high variation of lengths, this
approach would introduce a substantial number
of padding tokens, reducing computational effi-
ciency. We instead adopt a one-dimensional se-
quence representation to process source code, but
highlight its line structure. Namely, source code
of length m is separated by the line break token
‘\n’ into different lines. Let the positions of ‘\n’ are
1 = b1 < b2 < · · · < bk = m. (Note that we
assume boundary conditions b0 = 1 and bk = m
for convenience.) Tokens ti and tj are in the same
line if there exists an index 1 < r < k such that
br−1 < i, j ≤ br.

3.1 In-line Tokens Modeling

The shallow layers of the model (cf. Figure 1) are
designed to extract the semantic representation of
each individual line. To this end, we constrain
the attention to operate within individual lines, for
which purpose we use mask matrix M where Mi,j

(1 ≤ i, j ≤ m) is defined as

Mi,j =

{
0, if br−1 < i, j ≤ br,

−∞, otherwise.

By decoupling intra-line dynamics from inter-line
relationships, the model achieves a more structured
understanding of every individual line of code, thus
achieve “soft” permutation invariance.

3.2 Line-wise Dependency Encoding

As mentioned before, we introduce line-wise de-
pendency encoding to capture the hierarchical rela-
tionships between lines of code.

SAE for Semantic Matching. As illustrated in
Figure 1, we employ the line break token ‘\n’ as

1Layer 2 is not subject to additional modifications and
employs full attention. Its primary purpose is to provide con-
textual information for each line of code for better dependency
modeling.

an “anchor” for extracting the dependency encod-
ing of the subsequent line of code. Prior research
on CLMs has highlighted the role of ‘\n’ function-
ing as a semantic anchor that compresses rich con-
textual information (Ge et al., 2023; Zhang et al.,
2024b; Pang et al., 2024). Consequently, it is par-
ticularly well-suited for the extraction of dependen-
cies for the following line of code. Specifically, for
the tokens tbr−1+1, . . . , tbr in code line r, we use
xbr−1 (i.e., the embedding of tbr−1) as the seman-
tic anchor representing the contextual information
required for dependency encoding.

Consequently, the dependency encoding dr for
tokens in line r can be derived using SAE as

cr = ReLU(Exbr−1 + b), dr = Dcr,

where E ∈ RF×H , D ∈ RH×F and b ∈ RF are
learnable parameters in SAE. Specifically, E en-
codes xbr−1 into feature activation cr. D serves as
a feature dictionary, with each column representing
a feature. The resulting dr serves as the line-wise
relation embedding for tokens in line r.

The learned dependency encoding dr is inte-
grated into the model by adding the token em-
beddings of each line with their corresponding de-
pendency encoding. Formally, for embeddings in
xbr−1+1, . . . , xbr , their dependency-encoded em-
beddings are defined as

xi ← xi + dr, ∀i ∈ [br−1 + 1, br]

During training we use the loss function L =
Lmodel + α∥c∥1, where Lmodel denotes the cross-
entropy loss function utilized for training LM, and
α controls the sparsity of the activation in SAE.
This not only improves the model’s generalization
capacity but also contributes to the interpretability
of the learned features, as will be analyzed in detail
in Section 5.4.
Concentrating Attention. In the context of long-
context tasks such as repository-level code gener-
ation, attention may become distracted in CoDE,
leading to a decline in model performance (Wang
et al., 2024b; Ding et al., 2024). This issue man-
ifests in two primary ways. (i) CoDE applies a
unified dependency encoding for tokens within
the same code line, which increases the number
of attended tokens as dependencies grow. (ii)
CoDE lacks so called position-based attention de-
cay which is adopted in most position encoding
strategies (Su et al., 2024; Press et al., 2021). As
the context length increases, the model’s attention



is distributed across more tokens, leading to a per-
formance decline (Wang et al., 2024b; Zhang et al.,
2024c).

To address issue (i), consider two embeddings
xi, xj ∈ X . Let pi and pj represent their corre-
sponding dependency encoding derived from SAE.
As in the vanilla Transformer, the pre-softmax
attention score between xi and xj is given by
ai,j = qTi kj , where

qi = WQ(xi + di), kj = WK(xj + dj).

Note that

qTi kj =xTi WQ
TWKxj︸ ︷︷ ︸

(a)

+xTi WQ
TWKdj︸ ︷︷ ︸

(b)

+ dTi WQ
TWKxj︸ ︷︷ ︸
(c)

+ dTi WQ
TWKdj︸ ︷︷ ︸

(d)

.

Intuitively, term (a) refers to semantic attention,
capturing the interaction between the semantics of
xi and xj , terms (b) and (c) refer to cross-attention
between semantic content and encodings, and term
(d) refers to dependency attention, representing the
direct interaction of line-wise dependencies. Prior
studies highlighted the significance of term (d) in
explicit modeling of positional interactions (Raf-
fel et al., 2020). However, in our setup tokens
within the same code line share identical depen-
dency encoding, which may result in uniformly el-
evated attention scores between tokens across lines
with strong dependency, inadvertently increasing
model’s attention on a larger set of tokens.

We suppress the direct positional attention (i.e.,
term (d)) and instead treat the attention scores cor-
responding to it as distinct features. Specifically,
we flatten the attention scores along the head di-
mension and concatenate the scores from the heads
for (a), (b), (c) and (d). These concatenated features
are then passed through an MLP, which alleviates
the attention distraction caused by (d). The final
attention score is computed as

qTi kj = (a) + (b) + (c)+

MLP(concat[(a), (b), (c), (d)]).

To address issue (ii), we introduce a position-
aware activation enhancement (PACE) mechanism.
Compared to the position-based attention decay
which restricts the model to focus more on local
information, this mechanism dynamically scales
the activation of features based on the length of

the context, thereby enabling the model to focus at-
tention on critical dependencies in longer contexts.
Formally, PACE is defined as

ĉr = logm
(
clip(l,m)

)
cr,

where m refers to the training length of the model,
l is the position of the current token, and clip(l,m)
ensures that the position value is capped at a maxi-
mum of m.

4 Experiment Setup

Implementation. We train CoDE (and baseline
models) using the Llama architecture (Touvron
et al., 2023) with next token prediction, a training
sequence length of 512, and reinitialized weights.
can be found in Appendix A.1. Datasets and met-
rics. We conduct experiments across four distinct
task categories.
Code Modeling. It is akin to language model-
ing in NLP (Golovneva et al., 2024; Chen et al.,
2024b), which refers to predicting the next token in
a programming-related context.For the experiment,
we extract 1,000 samples, each with a sequence
length of 4,096, from the StarCoder dataset (Li
et al., 2023a). We measure model’s performance
using language modeling perplexity which reflects
how well the model predicts the likelihood of se-
quences, and accuracy which evaluates the propor-
tion of correctly predicted tokens.
Long Context Understanding. This task is to pre-
dict the next line of code given the context, which
is to evaluate model’s generation capability in han-
dling long context. Our experiment utilizes two
code-related datasets, LCC (where the context con-
sists code lines only) and RepoBench (where the
context is at the repository level), from the Long-
Bench benchmark (Bai et al., 2023b). We use
BLEU (Papineni et al., 2002) and CodeBLEU (Ren
et al., 2020) metrics to quantify the similarity be-
tween generated code and reference code.
Functional Correctness. We use HumanEval (Chen
et al., 2021) and its improved version Hu-
manEvalPlus (Liu et al., 2023) to evaluate model’s
ability to generate functionally correct code. We
consider the pass@1 and pass@10 metrics, which
refer to the probability that the model produces a
correct solution within its top 1 and top 10 gener-
ated code, respectively.
Context Retrieval. To evaluate model’s ability to
retrieve and utilize contextual information, we de-
sign two experimental subtasks, namely Copy (Gu



and Dao, 2023; Golovneva et al., 2024; Lv et al.,
2024) and Counting (Golovneva et al., 2024). In
contrast to the Long Context Understanding task,
which primarily emphasizes generating code, the
Context Retrieval task shifts the focus to measuring
the model’s ability to accurately identify and utilize
dependencies within the given context.

Further details regarding the dataset implemen-
tation are provided in Appendix A.2.

Baselines. We compare CoDE against six base-
line methods RoPE (Su et al., 2024), NoPE (Ha-
viv et al., 2022), NoPEλ (Wang et al., 2024b),
FIRE (Li et al., 2023b), HoPE (Chen et al., 2024b)
and ALiBi (Press et al., 2021). A brief introduction
is given in Appendix A.3.

5 Experiment Results

5.1 Generalization

To evaluate the generalization capabilities of the
model, we consider the in-distribution and extrapo-
lation scenarios. The in-distribution scenario exam-
ines model’s ability to predict within the training
length (512 in our setup), while the extrapolation
scenario assesses its performance on sequences ex-
ceeding the training length.
In-distribution scenario. We evaluate CoDE on
the Code Modeling task under the in-distribution
setting, as highlighted in Table 1 marked blue. The
experimental results reveal that RoPE achieve the
lowest perplexity within the training length, but it is
fair to say that all methods exhibit comparable per-
formance in terms of both perplexity and accuracy
(usually with marginal differences). Notably, even
the NoPE method, which entirely omits positional
encoding, achieves competitive results. These re-
sults suggest that the evaluated encoding methods
are sufficiently effective for in-distribution Code
Modeling task.
Extrapolation scenario. The results are presented
in the remaining columns of Table 1. In the Code
Modeling task, CoDE achieves better performance
at sequence lengths of 1,024 and 2,048. However,
at sequence length 4,096, ALiBi achieves a lower
perplexity, outperforming CoDE. This is due to
ALiBi’s attention bias mechanism, which reduces
the model’s reliance on long-range dependencies
by progressively decreasing attention weights for
distant tokens. This mechanism stabilizes attention
entropy, aligning with the distribution seen during
training and ensuring consistent perplexity even for
longer sequences (Wang et al., 2024b; Zhang et al.,

2024c).
As highlighted in prior work (Chen et al., 2024b),

relying solely on perplexity to evaluate model’s ex-
trapolation ability can be misleading. For instance,
ALiBi, which disregards long-range dependencies
to maintain low perplexity, is unreliable in code
generation task, where long-range dependencies
are critical. Therefore, we further evaluate CoDE
and baseline methods on the Long Context Under-
standing task using two code generation datasets
(i.e., LCC and Repobench), where long-range con-
textual dependencies play a significant role. Exper-
imental results demonstrate that CoDE achieves
CodeBLEU scores of 27.86 and 17.35 on the LCC
and Repobench datasets, respectively, surpassing
baseline methods, highlighting its superior ability
to leverage long-range dependencies in extrapola-
tion tasks.

5.2 Functional Correctness
For code generation, perplexity/accuracy can be
considered as indirect measures of the model per-
formance. Functional correctness of the generated
code is arguable a more direct reflection of the qual-
ity of the model. We use two datasets, HumanEval
and HumanEvalPlus, which contain test cases for
assessing whether the generated code passes unit
tests. Experimental results in Table 3 demonstrate
that CoDE consistently outperforms baseline meth-
ods in both the pass@1 and pass@10 metrics. This
improvement is primarily attributed to its ability
to exploit permutation invariance of code, thereby
enhancing the model’s generalization capabilities.
Additionally, CoDE achieves superior performance
on the pass@10 metric, underscoring its capacity
to produce diverse and functionally correct code
solutions.

5.3 Context Retrieval
The Copy subtask aims to evaluate model’s po-
tential ability to accurately utilize predefined pa-
rameters, functions and imported APIs. Notably,
reordering the functions in the input does not affect
the output. Experimental results (Table 4) show the
accuracy with which the methods correctly copy
the specified context. These results reveal that
baseline models incorporating positional encodings
struggle to account for permutation invariance. For
instance, even the best-performing baseline, ALiBi,
achieves an average accuracy of only 0.25 across
various test sets. These models overly rely on po-
sitional information without semantic grounding,



Task Code Modeling
Perplexity Accuracy

Length 512 1,024 2,048 4,096 Avg. 512 1,024 2,048 4,096 Avg.
RoPE 4.37 25.21 >100 >100 91.31 0.69 0.39 0.17 0.13 0.35
NoPE 4.71 12.11 >100 >100 >100 0.68 0.51 0.16 0.04 0.35
NoPEλ 5.98 5.38 6.12 14.20 7.92 0.63 0.64 0.61 0.46 0.59
FIRE 4.39 3.46 4.78 17.63 7.57 0.69 0.72 0.67 0.47 0.64
HoPE 4.38 29.06 92.67 >100 64.46 0.69 0.37 0.21 0.18 0.36
ALiBi 4.68 3.81 3.84 3.85 4.15 0.67 0.71 0.71 0.71 0.70
CoDE 4.46 3.28 3.30 4.08 3.79 0.69 0.74 0.73 0.69 0.71

Table 1: Code Modeling task. We report in-distribution (marked blue) and extrapolation perplexity and accuracy.

Task
Long Context Understanding

LCC Repobench
BLEU CB BLEU CB

RoPE 0.03 0.78 0.02 1.66
NoPE 0.13 2.48 0.00 0.63
NoPEλ 14.78 18.31 8.48 12.73
FIRE 24.89 26.64 14.45 17.02
HoPE 0.41 2.35 0.07 2.58
ALiBi 22.10 24.22 12.10 16.90
CoDE 25.62 27.86 13.59 17.35

Table 2: Long Context Understanding task. CB
stands for the CodeBLEU metric.

Task
Functional Correctness

HumanEval HumanEvalPlus
pass@1 pass@10 pass@1 pass@10

RoPE 2.50 3.05 2.38 3.05
NoPE 1.65 3.05 1.65 3.05
NoPEλ 0.91 1.22 0.91 1.22
FIRE 1.89 3.05 1.89 3.05
HoPE 2.07 2.44 2.07 2.44
ALiBi 0.73 1.22 0.73 1.22
CoDE 2.69 4.27 2.56 4.27

Table 3: Functional Correctness task.

resulting in poor convergence in this task.
In our experiments, even after providing an ad-

ditional 3 million training samples, most baseline
models (except for ALiBi) struggled to converge
effectively (cf. Table 6). This conforms to the pre-
vious study which report models require extensive
training data to stimulate the model’s copy capabil-
ity. (Lv et al., 2024). In contrast, CoDE achieved
an average accuracy of 0.99 on the Copy dataset
using only 300K training samples, significantly
outperforming the baselines. This superior per-
formance can be attributed to CoDE’s ability to
naturally account for the permutation invariance of
code by contextual semantic matching. These prop-
erties enable the model to generalize effectively,
overcoming the limitations of baseline methods
that rely heavily on positional information.

The Counting subtask reflects real-world appli-
cations where programs must track values such as
loop iterations or the depth of nested function calls,
which demand precise positional awareness to en-

sure correctness. In this task, the model is required
to count the number of specific operations that oc-
cur after a given starting point. Therefore, these
operations are inherently permutation-variant, as
the order of operations affects the outputs. Experi-
mental results show that almost all methods can ac-
curately count in the in-distribution scenario. How-
ever, in extrapolation scenarios, baseline models ex-
perience a significant decline in performance, while
CoDE continues to accurately complete the task
with an average accuracy of 0.99. These results
highlight that CoDE has overcome the model’s
reliance on positional information, allowing it to
accurately count even over long spans.

These two datasets collectively validate our hy-
pothesis that while decaying attention over long-
distance tokens can improve metrics such as per-
plexity, such an approach often neglects critical
contextual information. In contrast, CoDE ef-
fectively balances extrapolation and contextual re-
trieval through its semantic matching, enabling it to
deliver consistent and contextually accurate results
across diverse tasks.

5.4 Interpretability

To investigate the interpretability of the features
learned by CoDE, we employ automated inter-
pretability methods introduced by Bills et al.
(2023). These methods aim to determine the activa-
tion conditions of each latent feature and leverage
an LLM to generate automated explanations for the
features. Additionally, the LLM produces simu-
lated activation values, which quantify the confi-
dence in these explanations.

We conduct a detailed analysis of the interpreted
features extracted by CoDE, leading to two key
findings. First, features with semantically similar
interpretations tend to be represented closely within
the high-dimensional space, forming distinct clus-
ters. For example, features associated with code ini-
tialization snippets naturally group into a cohesive



Task Context Retrieval
Copy Counting

Sequence 50 100 150 200 Avg. 100 200 300 400 Avg.
RoPE 0.13 0.18 0.10 0.14 0.14 1.00 0.31 0.13 0.17 0.40
NoPE 0.11 0.19 0.11 0.06 0.12 1.00 0.36 0.22 0.18 0.44
NoPEλ 0.14 0.16 0.08 0.14 0.13 0.30 0.82 0.68 0.42 0.56
FIRE 0.13 0.19 0.11 0.16 0.15 1.00 0.44 0.23 0.21 0.47
HoPE 0.15 0.21 0.10 0.11 0.14 1.00 0.35 0.20 0.19 0.44
ALiBi 0.33 0.22 0.24 0.20 0.25 1.00 0.57 0.39 0.36 0.58
CoDE 1.00 0.98 1.00 0.97 0.99 1.00 1.00 1.00 0.97 0.99

Table 4: Context Retrieval task. We report the prediction accuracy for both in-distribution (marked in blue) and
extrapolation scenarios.

cluster, reflecting their shared semantic properties.
Second, features that are functionally related ex-

hibit higher (d) scores. This suggests that attention
scores between the corresponding code lines are
also elevated. For instance, features related to the
import statements show high (d) score with features
related to function calls. This aligns with human
intuition, as these features are often functionally
and semantically interdependent.

These findings demonstrate that the learned
feature representations align well with human-
interpretable patterns, providing evidence of the
interpretability of CoDE. Further details are pre-
sented in Appendix B.

6 Related Work

Code Generation. Early code generation mod-
els (Jia and Liang, 2016; Ling et al., 2016) primar-
ily treated code as natural languages, applying stan-
dard NLP techniques without explicitly accounting
for the unique structural properties of code. Subse-
quently, a number of approaches sought to incorpo-
rate code-specific features, such as Abstract Syntax
Trees (ASTs) (Yin and Neubig, 2018; Sun et al.,
2020; Zhang et al., 2023b), to enhance model’s
understanding of code structure. With the advent
of LLMs, the exponential growth in the number
of model parameters has led to, as in other task, a
remarkable improvement of performance in code
generation (Chen et al., 2021; Li et al., 2022; Fried
et al., 2022; Roziere et al., 2023; Le et al., 2022;
Nijkamp et al., 2022). However, LLMs avoids
the adoption of approaches that explicitly integrate
code-specific features due to compatibility chal-
lenges and inefficiencies in training such models.

In contrast, our approach does not alter the over-
all architecture or incorporate explicit code-specific
representations. This design not only ensures com-
patibility with existing LLM architectures but also
demonstrates superior performance in capturing the

dependencies of code.
Positional Encoding. The vanilla Transformer
model (Vaswani, 2017) initially employed fixed ab-
solute positional encodings. However, subsequent
research demonstrated that relative positional en-
codings are more effective for modeling natural
language (Shaw et al., 2018; Dai, 2019). This
discovery has spurred significant interest in the
study of positional encoding. For instance, T5’s
bias (Raffel et al., 2020) and its derivatives, AL-
iBi (Press et al., 2021), Kerple (Chi et al., 2022)
and FIRE (Li et al., 2023b), introduced attention
bias scalars directly into the attention scores, pro-
viding an efficient mechanism for position encod-
ing. Furthermore, RoPE (Su et al., 2024) encodes
relative position information by rotating the query
and key vectors, and it has since become the most
widely adopted method in SOTA LLMs. Further
advancements such as YaRN (Peng et al., 2023),
NTK-RoPE (Chen et al., 2023) and HoPE (Chen
et al., 2024b) extend RoPE by focusing on improv-
ing its capability for length extrapolation, enabling
these models to generalize to significantly longer
contexts beyond their training sequences. In ad-
dition, HiRoPE (Zhang et al., 2024a), which is a
positional encoding designed for code, enhances
RoPE into a hierarchical format based on the hier-
archical structure of the source code.

Our approach replaces positional encoding with
dependency-based encoding, which focuses on the
relationships between code lines. This avoids ex-
plicit positional indices and demonstrates better
generalization across various contexts and lengths.

7 Conclusion

In this paper, we have introduced CoDE, a novel
method for neural source code generation. The
crux of our method is a two-dimensional perspec-
tive of the source code, naturally structured as code
lines, and line-wise dependency encoding in lieu of



explicit positional encoding in transformer models.
Experiments confirm its better generalizability, con-
textual understanding and interpretability. These
experiments further corroborate the robustness and
effectiveness of CoDE.

Limitations

Due to the constraints of computational resources,
we were unable to scale CoDE to LLMs. As a
result, its effectiveness in scenarios involving sig-
nificantly larger parameters and extensive datasets
remains unexplored. Future work should address
this limitation to assess the scalability and applica-
bility of CoDE in more demanding settings.

Another critical aspect lies in the sensitivity of
CoDE to two hyperparameters, namely F and α,
both of which significantly influence its perfor-
mance. Specifically, F governs the number of fea-
tures that the model can learn, while α determines
the number of features activated during inference.
We provide a detailed analysis of hyperparameter
selection in Appendix A.5. Increasing F allows
the model to capture finer-grained relationships,
which can potentially improve performance. How-
ever, this improvement comes at the cost of higher
computational and memory demands due to the
increased number of parameters. Conversely, α
controls the sparsity of feature activation within the
SAE. If α is set too low, the model may fail to learn
distinct and interpretable dependency features. On
the other hand, excessively high values of α can
result in no features being activated, which severely
compromises the model’s representational capac-
ity. Thus, the careful tuning of F and α is critical
to balancing performance and computational effi-
ciency. Identifying optimal configurations for these
hyperparameters requires additional experimental
effort, which we leave for future work.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China (No. 62372232), the
High Performance Computing Platform of Nanjing
University of Aeronautics and Astronautics, and
the Collaborative Innovation Center of Novel Soft-
ware Technology and Industrialization. T. Chen is
partially supported by an overseas grant from the
State Key Laboratory of Novel Software Technol-
ogy, Nanjing University (KFKT2023A04).

References
Dzmitry Bahdanau. 2014. Neural machine translation

by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023a. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023b. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-
ing open-source language models with longtermism.
arXiv preprint arXiv:2401.02954.

Steven Bills, Nick Cammarata, Dan Mossing, Henk
Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever, Jan
Leike, Jeff Wu, and William Saunders. 2023. Lan-
guage models can explain neurons in language mod-
els.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Pei Chen, Soumajyoti Sarkar, Leonard Lausen, Balasub-
ramaniam Srinivasan, Sheng Zha, Ruihong Huang,
and George Karypis. 2024a. Hytrel: Hypergraph-
enhanced tabular data representation learning. Ad-
vances in Neural Information Processing Systems,
36.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Yuhan Chen, Ang Lv, Jian Luan, Bin Wang, and Wei Liu.
2024b. Hope: A novel positional encoding without
long-term decay for enhanced context awareness and
extrapolation. arXiv preprint arXiv:2410.21216.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and
Alexander Rudnicky. 2022. Kerple: Kernelized rel-
ative positional embedding for length extrapolation.
Advances in Neural Information Processing Systems,
35:8386–8399.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert
Huben, and Lee Sharkey. 2023. Sparse autoencoders
find highly interpretable features in language models.
arXiv preprint arXiv:2309.08600.

Zihang Dai. 2019. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.



Yiran Ding, Li Lyna Zhang, Chengruidong Zhang,
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. 2024. Longrope: Extending llm con-
text window beyond 2 million tokens. arXiv preprint
arXiv:2402.13753.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. 2024. Scaling and
evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive kv cache compression for
llms. arXiv preprint arXiv:2310.01801.

Olga Golovneva, Tianlu Wang, Jason Weston, and Sain-
bayar Sukhbaatar. 2024. Contextual position en-
coding: Learning to count what’s important. arXiv
preprint arXiv:2405.18719.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer
Levy. 2022. Transformer language models without
positional encodings still learn positional information.
arXiv preprint arXiv:2203.16634.

Yunpeng Huang, Jingwei Xu, Zixu Jiang, Junyu Lai,
Zenan Li, Yuan Yao, Taolue Chen, Lijuan Yang, Zhou
Xin, and Xiaoxing Ma. 2023. Advancing transformer
architecture in long-context large language models:
A comprehensive survey. CoRR, abs/2311.12351.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan Ramamurthy, Payel Das, and Siva Reddy.
2024. The impact of positional encoding on length
generalization in transformers. Advances in Neural
Information Processing Systems, 36.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314–21328.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Shanda Li, Chong You, Guru Guruganesh, Joshua
Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh
Bhojanapalli. 2023b. Functional interpolation for rel-
ative positions improves long context transformers.
arXiv preprint arXiv:2310.04418.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Tom Lieberum, Senthooran Rajamanoharan, Arthur
Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah,
and Neel Nanda. 2024. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2.
arXiv preprint arXiv:2408.05147.

Wang Ling, Edward Grefenstette, Karl Moritz Hermann,
Tomáš Kočiskỳ, Andrew Senior, Fumin Wang, and
Phil Blunsom. 2016. Latent predictor networks for
code generation. arXiv preprint arXiv:1603.06744.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and
Rui Yan. 2024. Language models" grok" to copy.
arXiv preprint arXiv:2409.09281.

Leland McInnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Andrew Ng et al. 2011. Sparse autoencoder. CS294A
Lecture notes, 72(2011):1–19.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Zhiyuan Pan, Xing Hu, Xin Xia, and Xiaohu Yang. 2024.
Enhancing repository-level code generation with
integrated contextual information. arXiv preprint
arXiv:2406.03283.

Jianhui Pang, Fanghua Ye, Derek Fai Wong, Xin
He, Wanshun Chen, and Longyue Wang. 2024.
Anchor-based large language models. arXiv preprint
arXiv:2402.07616.

https://doi.org/10.48550/ARXIV.2311.12351
https://doi.org/10.48550/ARXIV.2311.12351
https://doi.org/10.48550/ARXIV.2311.12351


Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models. arXiv preprint
arXiv:2309.00071.

Ofir Press, Noah A Smith, and Mike Lewis. 2021.
Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint
arXiv:2108.12409.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. Advances in
neural information processing systems, 28.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili
Mou, and Lu Zhang. 2020. Treegen: A tree-based
transformer architecture for code generation. In Pro-
ceedings of the AAAI conference on artificial intelli-
gence, volume 34, pages 8984–8991.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Chong Wang, Jian Zhang, Yebo Feng, Tianlin Li,
Weisong Sun, Yang Liu, and Xin Peng. 2024a.
Teaching code llms to use autocompletion tools in
repository-level code generation. arXiv preprint
arXiv:2401.06391.

Jie Wang, Tao Ji, Yuanbin Wu, Hang Yan, Tao Gui,
Qi Zhang, Xuanjing Huang, and Xiaoling Wang.
2024b. Length generalization of causal transform-
ers without position encoding. arXiv preprint
arXiv:2404.12224.

Frank F Xu, Bogdan Vasilescu, and Graham Neubig.
2022. In-ide code generation from natural language:
Promise and challenges. ACM Transactions on
Software Engineering and Methodology (TOSEM),
31(2):1–47.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. arXiv preprint
arXiv:1810.02720.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023a. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. arXiv preprint arXiv:2303.12570.

Kechi Zhang, Ge Li, Huangzhao Zhang, and Zhi Jin.
2024a. Hirope: Length extrapolation for code mod-
els using hierarchical position. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
13615–13627.

Xiangyu Zhang, Yu Zhou, Guang Yang, and Taolue
Chen. 2023b. Syntax-aware retrieval augmented
code generation. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
1291–1302.

Xiangyu Zhang, Yu Zhou, Guang Yang, Harald C Gall,
and Taolue Chen. 2024b. Anchor attention, small
cache: Code generation with large language models.
arXiv preprint arXiv:2411.06680.

Zhisong Zhang, Yan Wang, Xinting Huang, Tianqing
Fang, Hongming Zhang, Chenlong Deng, Shuaiyi
Li, and Dong Yu. 2024c. Attention entropy is a
key factor: An analysis of parallel context encod-
ing with full-attention-based pre-trained language
models. arXiv preprint arXiv:2412.16545.

Liang Zhao, Xiaocheng Feng, Xiachong Feng, Bin Qin,
and Ting Liu. 2023. Length extrapolation of trans-
formers: A survey from the perspective of position
encoding. arXiv preprint arXiv:2312.17044.



A Appendix

A.1 Model Configuration

The model configurations for the various tasks
are detailed in Table 5. The 71M model is eval-
uated on three tasks including Code Modeling,
Functional Correctness, and Long Context Under-
standing. This model is trained on the StarCoder’s
Python dataset with a total of 5 billion tokens, utiliz-
ing 8 NVIDIA RTX A6000 GPUs. In contrast, the
smaller 10M parameter model is assessed on two
subtasks within the Context Retrieval task. Train-
ing for this model is conducted on a single NVIDIA
RTX 4090 GPU.

71M 10M
Training length 512 tokens (50) 100 lines
Batch size 32 × 8 16 × 1
Training data size 5B tokens 300K samples
Learning rate 5e-4 5e-5
Hidden size 512 256
Intermediate dimension 2,048 1,024
Number of layer 8 4
Number of head 8 4
In-line modeling layers 2 1
Line-wise embedding layers 5 3
Number of feature 512 32
Sparsity coefficient α 5e-5 2e-6
Precision bfloat16 bfloat16

Table 5: Model configurations. For the Context Re-
trieval task, the training setup varies across specific
sub-tasks. In the Copy sub-task, the training sequence
length is set to 50 lines of code, whereas in the Counting
sub-task, the training sequence length is configured to
100 lines of operation.

A.2 Dataset Construction

Figure 2: Specific example of Copy task.

Task Context Retrieval
Copy

Sequence 50 100 150 200 Avg.
RoPE 0.23 0.15 0.15 0.17 0.18
NoPE 0.15 0.18 0.11 0.09 0.13
NoPEλ 0.13 0.16 0.11 0.11 0.13
FIRE 0.16 0.20 0.11 0.11 0.15
HoPE 0.23 0.11 0.09 0.09 0.13
ALiBi 1.00 1.00 0.98 0.55 0.88
CoDE 1.00 0.98 1.00 0.97 0.99

Table 6: Copy task. Models except CoDE are trained
on 3M addtional samples. We report in-distribution
(marked blue) and extrapolation accuracy.

Figure 3: Specific example of Counting task.

Copy Subtask. Copying is a fundamental capa-
bility of CLMs, as it determines whether a model
can accurately invoke APIs or predefined functions.
Figure 2 presents an illustrative example from the
copy dataset. In this dataset, each sample con-
sists several functions, where each function name
is appended with a unique 4-character suffix, and
each function returns an integer within the range
of 0 to 9. The task requires the model to predict
the return value of a randomly selected function.
Importantly, since the order of functions is irrele-
vant to the output, the code snippets in this subtask
exhibits permutation invariance. To evaluate the
model’s performance on this subtask, we generated
a dataset of 300K training samples, each contain-
ing 50 functions. Additionally, we constructed four
test sets, each consisting of 100 samples, with the
number of functions per test set set to [50, 100,
150, 200], respectively. These test sets were specif-
ically designed to assess model performance in
both in-distribution and extrapolation settings. Ini-
tial experiments revealed that the baseline meth-
ods, trained on 300K samples, failed to predict
the correct return values consistently. Prior stud-
ies have indicated that the copying capability of
LMs with traditional positional encodings emerges
only when exposed to substantially large amounts
of training data (Lv et al., 2024). Motivated by
this observation, we augmented the training set
by providing the baseline methods with additional
3M samples. The results of this extended training
are summarized in Table 6. Experimental results
demonstrate that even with the expanded training
data, all baselines except ALiBi methods failed to
make accurate predictions. ALiBi is capable of cor-
rectly predicting return values within the training
sequence length (achieving 100% accuracy on test
samples with 50 functions). However, ALiBi still
exhibited significant performance degradation as
the sequence length in the test set increased, high-
lighting its limitations in extrapolation scenarios.
Counting Subtask, in contrast, require a more
uniform distribution of attention over a specific



span. For instance, in code-related tasks, count-
ing involves a model’s ability to comprehend and
track multiple elements across a sequence, such as
variables or operations, thereby demanding a more
global understanding. Figure 3 illustrates a specific
example from the counting dataset. The counting
dataset is composed of sequences of operations,
including: set (initialize a variable to zero), incre-
ment (increment the variable’s value by 1), and
pass (perform no operation). These operations are
randomly generated based on predefined weights:
wset = 1, wincr = 5, and wpass = 100. Unlike the
copy subtask, reordering operations in the counting
subtask directly affects the final result, making this
task sensitive to the order of code snippets. For
this subtask, we generated 300K training samples,
with each containing 100 operations. Similarly,
we created four test datasets, each consisting of
100 samples, where the number of operations per
test set is set to [100, 200, 300, 400]. To further
evaluate the model’s ability to handle long-range
dependencies, we varied the weights of the pass
operation (wpass) in the test datasets, setting them
to [100, 200, 300, 400], respectively.

A.3 Baselines
We compare CoDE against six baseline methods.
RoPE (Su et al., 2024) encodes positional informa-
tion by applying rotational transformations to input
embeddings, enabling better handling of sequence
order and relative positions.
NoPE (Haviv et al., 2022) has shown that LLMs
can achieve non-trivial performance without posi-
tional encodings, and exhibit stronger extrapolation
capabilities.
NoPEλ (Wang et al., 2024b) extends NoPE by in-
troducing a temperature scaling mechanism, which
improves model’s extrapolation ability.
FIRE (Li et al., 2023b) introduces a novel posi-
tional interpolation mechanism, which leverages
an MLP to map relative positional information into
a continuous space, thereby improving extrapola-
tion.
HoPE (Chen et al., 2024b) replaces specific com-
ponents of RoPE with position-independent ele-
ments, retaining only high-frequency signals which
enhances model’s context awareness and extrapola-
tion ability.
ALiBi (Press et al., 2021) introduces an attention
bias designed to emphasize tokens with closer rela-
tive distances while systematically down-weighting
contributions from tokens at greater distances. This

approach effectively prioritizes local dependencies
in the input sequence, thereby reducing the model’s
reliance on longer-range interactions.

Since CoDE uses additional parameters (related
to SAE), in order to ensure fairness in compari-
son, we add an additional Transformer layer to the
baseline models to ensure the consistency of total
model parameters.

A.4 Ablation Study
We conduct ablation studies to evaluate the contri-
bution of individual components in CoDE to its
performance. As shown in Table 7 8 9 10, we first
examine the impact of removing the in-line mod-
eling, which involves omitting additional attention
constraints at the shallow layers. This modifica-
tion leads to an increase in perplexity and a corre-
sponding decline in performance across other tasks,
underscoring the importance of capturing the se-
mantic information of independent code lines. By
capturing the permutation invariance of code, this
component proves essential for enhancing general-
ization.

To mitigate the issue of attention distraction dur-
ing extrapolation, we incorporate several key com-
ponents, including PACE, an MLP layer and re-
moving term (d). These modules are specifically
designed to enable the model to focus attention
on critical contextual information. Ablation exper-
iments on these components reveal a significant
increase in perplexity during extrapolation when
any of them is removed. This finding highlights
their roles in maintaining focused attention, which
is crucial for effective extrapolation.

A.5 Hyperparameter
The selection of the two hyperparameters, F and
α, in CoDE is critical as they determine the num-
ber of learned features and the sparsity of activated
features, respectively. The hyperparameter F con-
trols the total number of features that the model can
learn. As F increases, the model has the capacity
to capture a greater number of features. However,
studies in the field of mechanical interpretability
have demonstrated that increasing the number of
SAE features does not necessarily enable the model
to attend to a broader set of features; instead, it
leads to the learning of finer-grained features. As
shown in Table 11, our experiments indicate that
increasing F can improve the model’s performance
to some extent. However, this improvement comes
at the cost of increased model parameters and com-



Task Code Modeling
Perplexity Accuracy

Length 512 1,024 2,048 4,096 512 1,024 2,048 4,096
CoDE 4.46 3.28 3.30 4.08 0.69 0.74 0.73 0.69
w/o In-line Modeling 4.52 3.87 4.08 5.21 0.67 0.71 0.70 0.66
w/o PACE 4.46 3.31 3.47 4.33 0.69 0.73 0.71 0.67
w/o MLP 4.49 3.42 3.78 4.71 0.68 0.73 0.70 0.67
w (d) 4.45 3.58 3.72 4.87 0.69 0.72 0.70 0.67

Table 7: Code Modeling task for ablation study. We report in-distribution (marked blue) and extrapolation
perplexity and accuracy.

Task
Long Context Understanding

LCC Repobench
BLEU CB BLEU CB

CoDE 25.62 27.86 13.59 17.35
w/o In-line Modeling 22.87 24.68 12.01 14.80
w/o PACE 24.82 26.88 13.18 16.42
w/o MLP 23.61 23.86 12.88 16.07
w (d) 23.23 25.87 13.06 16.37

Table 8: Long Context Understanding task for abla-
tion study. CB stands for the CodeBLEU metric.

Task
Functional Correctness

HumanEval HumanEvalPlus
pass@1 pass@10 pass@1 pass@10

CoDE 2.69 4.27 2.56 4.27
w/o In-line Modeling 2.50 3.66 2.38 3.66
w/o PACE 2.69 4.27 2.56 4.27
w/o MLP 2.50 3.66 2.07 3.66
w (d) 2.69 4.27 2.56 4.27

Table 9: Functional Correctness task for ablation
study.

putational overhead. To balance performance and
efficiency, we set the number of features to 512,
aligning it with the dimensionality of the model.

The hyperparameter α governs the sparsity of
feature activation within the SAE. If α is set too
low, an excessive number of features will be acti-
vated, making it difficult for the model to focus on
key features. Conversely, if α is set too high, it may
result in no features being activated, thereby impair-
ing the model’s ability to understand long-range
contexts. Thus, careful tuning of α is essential to
strike a balance between sparsity and the model’s
contextual understanding capability.

B Details on Interpretability

In this section, we provide a detailed explanation
of the dependency features learned by CoDE, aim-
ing to analyze its underlying operational mecha-
nisms. We first employ the autointerpretation pro-
tocol (Bills et al., 2023) to interpret the features
within the dictionary. The autointerpretation pro-
cess is structured as follows:

1. We begin by sampling 10,000 samples from

Figure 4: The right part of presents a UMAP visualiza-
tion of the features in the SAE from the model’s 4th
layer, while the left side highlights a specific cluster
within this visualization, detailing the features it con-
tains along with their corresponding indices.

the StarCoder dataset and segmenting them
into code fragments of length 512. For each
line within these fragments, we measure the
activation of the features and rescale them to
integer values ranging from 0 to 10.

2. We identify the top 20 lines with the highest
activation scores for each feature. Along with
these lines, their rescaled activation, contexts
and the prompt we create are sent to GPT-
4o to generate an explanation for when the
feature activates, yielding an interpretation.

3. Using GPT-4o, we simulate each feature’s ac-
tivation for the activated lines, conditional on
the proposed explanations from step 2. We
prompt GPT-4o to output an integer from 0-10
as the simulated activation.

4. To score an explanation, we compare two lists
of values: the simulated activation values, and
the actual activation values to quantify the
alignment between the feature’s real behavior
and its simulated interpretation.

Next, we apply UMAP visualization (McInnes
et al., 2018) to visualize the features in two di-
mensions. Notably, we observe that features with
semantically similar explanations tend to form dis-
tinct clusters. For instance, Figure 4 shows a cluster
of features from the SAE in 4th layer of the model,



Task Context Retrieval
Copy Counting

Sequence 50 100 150 200 100 200 300 400
CoDE 1.00 0.98 1.00 0.97 1.00 1.00 1.00 0.97
w/o In-line Modeling 0.98 0.96 0.97 0.95 1.00 0.99 0.97 0.97
w/o PACE 1.00 0.98 1.00 0.97 1.00 1.00 1.00 0.96
w/o MLP 1.00 0.98 0.99 0.97 1.00 0.98 0.97 0.97
w (d) 1.00 0.99 0.99 0.96 1.00 1.00 0.98 0.96

Table 10: Context Retrieval task for ablation study. We report the prediction accuracy for both in-distribution
(marked in blue) and extrapolation scenarios.

Task Hyperparameter Selection
Perplexity

Length 512 1,024 2,048 4,096
F = 256 4.59 3.57 3.35 4.56
F = 512 4.46 3.28 3.30 4.08
F = 1024 4.39 3.29 3.26 4.06
α = 5e− 4 4.49 3.68 3.70 4.65
α = 5e− 5 4.46 3.28 3.30 4.08
α = 5e− 6 4.51 3.58 3.74 4.57

Table 11: Code Modeling task for Hyperparameter
Selection. We conducted experiments on hyperparame-
ter selection for both F and α.

Figure 5: To provide a clearer representation of the
relationships between features, we present a heatmap of
the (d) scores between features. For clarity, the values
are constrained to the range [0, 0.3].

with corresponding explanations provided in Ta-
ble 12. These features primarily activate in the
context of code related to initialization, configura-
tion, and setup processes. Combining the insights
from the figure and table, we find that features that
cluster together share similar functionalities, which
aligns with our intuition. Furthermore, this finding
supports the effectiveness of the autointerpretabil-
ity method in explaining these features. Addition-
ally, although these features serve similar purposes,
their usage scenarios differ. For example, feature
4-355 focuses on initialization in method defini-
tions, while features 4-441 and 4-428 are activated
in class-based structures and scripts, respectively.
This suggests that these features have more granu-
lar activation contexts.

Furthermore, we computed the (d) score between

features, which directly reflects the relationships
between code lines through dependency attention,
and visualized the results with a heatmap, as shown
in Figure 52. Our findings reveal that semantically
related features exhibit higher (d) scores, suggest-
ing that the attention scores between the code lines
activating these features are strengthened. For ex-
ample, as shown in Table 13, the (d) score between
Feature 4-72 and Feature 4-110 is particularly high,
as they are frequently activated together to repre-
sent the traversal between tuples and lists.

Similarly, Feature 4-73 and Feature 4-81 show
strong semantic correlations. Feature 4-73 focuses
on detecting import statements, while Feature 4-
233 is activated by function calls. The correlation
between these two features ensures that the model
can associate imported packages with correspond-
ing function calls, maintaining contextual consis-
tency during code generation.

Lastly, Feature 4-87 and Feature 4-94 demon-
strate notable semantic alignment. Feature 4-87
is sensitive to function definitions, whereas Fea-
ture 4-94 is activated by lines of code involving
return statements. This alignment highlights the
model’s ability to focus on function inputs and type
annotations when generating return values, ensur-
ing that the returned values are both semantically
and type-accurately consistent.

We further analyzed the dictionary learned in the
Counting task and observed that each operation cor-
responds to specific features within the model, as
illustrated in Table 14. This observation indicates
that the model is capable of accurately identifying
the position of each operation based on semantic
matching. Consequently, it can compute the results
of various combinations of operations over longer
contexts with high precision.

2Since we observed the feature correlations in isolation,
without context, the activation values for these features cannot
be obtained. For simplicity, we set these activation values to
1.



Feature id Score Description (Generated by GPT-4o)

4-355 0.30
Feature 355 activates for lines related to initializing, resetting, or configuring elements or
systems, with a specific focus on method definitions, initialization processes, and setting values
or constraints.

4-364 0.28 Feature 364 looks for lines of code related to either method definitions or inline documentation
within classes, particularly focusing on initialization and reset procedures.

4-441 0.27 Feature 441 is looking for code documentation comments, particularly those describing the
initialization and setup of class-based structures or functions.

4-293 0.14 Feature 293 is primarily looking for the initialization or setup processes in code, particularly
focusing on function or method comments detailing initial states or configurations.

4-178 0.25 Feature 174 is looking for code definitions or class initializations that involve setting or using
attributes within a defined structure or method.

4-428 0.06 Feature 428 is looking for code lines that involve initializing or assigning configuration from a
dictionary structure, often within context related to setup or configuration handling in Python
scripts.

4-83 0.46 Feature 83 is looking for code lines related to the initialization or definition of functions or
objects, particularly around quantile functions, data insertions, and password conditions.

Table 12: We offer an autointerpretation of the clusters illustrated in Figure 4. In the column titled “Feature ID”, the
first number represents the model layer, while the following numbers indicate the feature index. The “Score” column
displays the autointerpretation score assigned, and the “Description” column contains the explanation generated by
GPT-4o for the corresponding feature.

Feature id (d) Score Description (Generated by GPT-4o)

4-72
0.68

0.29 Feature 72 identifies code lines related to iteration settings or constants, often
involving numerical values.

4-110 0.19 Feature 110 is looking for structured data representations, specifically tuple and
list elements, often containing numeric values or identifiers.

4-73

0.38

0.72 Feature 73 is most strongly looking for import statements.

4-81 0.42
Feature 81 is looking for lines that involve function definitions or calls related to
processing or manipulating data, often involving operations or method invoca-
tions.

4-87
0.30

0.31 Feature 87 is looking for patterns associated with function definitions or initial-
izations within a code context.

4-94 0.12 Feature 94 activates for lines involving environment setup, return statements,
and comments in code.

Table 13: We present several sample feature pairs, where “(d)” denotes the (d) score in attention computation.

Feature id Score Description (Generated by GPT-4o)
2-9 0.54 Feature 9 is looking for the presence of the specific code line “pass .”
2-22 0.47 Feature 22 is looking for code lines that contain the pattern “var0 = 0 .”
2-26 0.69 Feature 26 is looking for code lines where the variable “var0” is being printed.
2-28 0.40 Feature 28 is looking for lines of code where a variable is incremented using the “++” operator.

Table 14: We provide four activated features associated with the Counting task.


	Introduction
	Background
	Attention and Positional Encodings
	Sparse Autoencoder

	Our Approach
	In-line Tokens Modeling
	Line-wise Dependency Encoding

	Experiment Setup
	Experiment Results
	Generalization
	Functional Correctness
	Context Retrieval
	Interpretability

	Related Work
	Conclusion
	Appendix
	Model Configuration
	Dataset Construction
	Baselines
	Ablation Study
	Hyperparameter

	Details on Interpretability

