
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Making Agents’ Abilities Explicit
YEDI ZHANG1,2,3, FU SONG1, TAOLUE CHEN4
1School of Information Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
3University of Chinese Academy of Sciences, Beijing, China
4Department of Computer Science and Information Systems, Birkbeck, University of London, London, UK

Corresponding author: FU SONG (e-mail: songfu@shanghaitech.edu.cn).

Y. Zhang and F. Song were partially supported by the National Natural Science Foundation of China (NSFC) grants (Nos.: 61532019 and
61761136011), and T. Chen was partially supported by UK EPSRC grant (No. EP/P00430X/1), NSFC grant (No. 61662035), Guangdong
Science and Technology Department grant (No. 2018B010107004) and Birkbeck BEI School Project (ARTEFACT).

ABSTRACT Alternating-time temporal logics (ATL/ATL∗) represent a family of modal and temporal logics
for reasoning about strategic abilities of agents in multiagent systems. These logics are usually interpreted
over concurrent game structures (CGSs), and their interpretations may vary depending on the abilities of
agents, such as perfect versus imperfect information, perfect versus imperfect recall. These different abilities
lead to a variety of variants that have been studied extensively in literature. However, all of these variants
are defined at the semantic level, which may restrict modeling flexibility, or even give counter-intuitive
interpretations. For example, an agent may have different abilities when achieving two different goals on
the same CGS. To mitigate these issues, in this paper we propose to extend CGSs with agents’ abilities,
resulting in Abilities Augmented CGSs where concrete abilities can be defined at the syntactic level. We
study ATL/ATL∗ over this new model. We give formal definitions of the new semantics and present model-
checking algorithms for ATL/ATL∗. We also identify the computational complexity of ATL/ATL∗ model
checking problem, i.e., ∆P

3 -/2EXPTIME-complete. The model-checking algorithms are implemented in a
prototype tool. Experimental results show the practical feasibility and effectiveness of our approach.

INDEX TERMS Model-checking, Multi-agent systems, Alternating-time temporal logics, Agents’ abilities

I. INTRODUCTION

MULTIAGENT systems (MASs) comprising multiple
autonomous agents have become a widely adopted

paradigm of intelligent systems. Game-based models and
associated logics, as the foundation of MASs, have received
tremendous attentions in recent years. The seminar work [1]
proposed concurrent game structures (CGSs) as the model
of MASs and alternating-time temporal logics (typically ATL
and ATL∗) as specification languages for expressing temporal
goals. In a nutshell, a CGS consists of multiple players which
are used to represent autonomous agents, components and
the environment. The model describes how the MAS evolves
according to the collective behavior of agents. ATL/ATL∗,
an extension of the Computational Tree Logic (CTL/CTL∗),
features coalition modalities 〈〈A〉〉, each of which is parame-
terized with a set of agents A. The formula 〈〈A〉〉ϕ expresses
the property that the coalition A has a collective strategy to
achieve a certain goal specified by ϕ.

A series of extensions of ATL-like logics have been studied
which take different agents’ abilities into account. These abil-
ities typically include whether agents can identify the current

state of the system completely or only partially (perfect vs.
imperfect information), and whether agents can memorize
the whole history of observations or simply part of them (per-
fect vs. imperfect recall). Different abilities usually induce
distinct semantics, which are indeed necessary because of the
versatility of problem domains. These semantic variants and
their model-checking problems comprise subjects of active
research for almost two decades, to cite a few [2]–[7].

While agents’ abilities play a prominent role [8], the
semantics of ATL-like logics only refers to them implicitly.
In other words, the logic per se does not specify what ability
an agent has; instead one could infer the ability an agent re-
quires by examining the specification expressed in the logic.
This approach, being elegant and valuable to understand the
relationship between different abilities, suffers from a few
shortcomings: (1) From the modeling perspective, it is com-
mon in practice that agents in a MAS vary in their abilities
(for instance, agents modeling sensors may not identify the
complete state of the system so can only use strategies with
imperfect information). When constructing a model, these
abilities ought to be encoded explicitly. Such modeling flex-

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ibility is not supported by the existing formalisms. (2) From
the semantic perspective, ATL-like logics may exhibit some
counter-intuitive semantics. Using the core modality 〈〈A〉〉 of
ATL, the formula 〈〈A〉〉ϕ, is interpreted as that the coalition A
has a collective strategy to achieve the goal ϕ “no matter what
the other agents do” rather than “no matter which strategies
the other agents choose”. The delicate difference suggests
that the (multi-player) game nature in the evolution of MASs
is not fully captured by ATL. For instance, in the imperfect
information/recall setting, only agents that are quantified in
〈〈A〉〉 are assumed to use imperfect information/recall strate-
gies, while the other agents not in 〈〈A〉〉 may still use perfect
information and perfect recall strategies. Even worse, if the
coalition modalities are nested, the same agent may have
different abilities to fulfill the objectives specified in different
subformulae, resulting in inconsistency in the strategies it
uses. This phenomenon has also been mentioned, e.g., in [9],
which proposed a strategic logic making explicit references
to strategies of all agents (including those not in 〈〈A〉〉),
though all agents should have same abilities therein.

To summarize, it occurs to us that the current approach in
which temporal formulae are with implicit agents’ abilities at
the semantic level impedes necessary modeling flexibilities
and often yields unpleasant (even weird) semantics. Instead,
we argue that coupling agents’ abilities at the syntactic level
of system models would deliver a potentially better approach
to overcome the aforementioned limitations. Bearing the
rationale in mind, we propose a new MAS model: Abilities
Augmented Concurrent Game Structures (ACGSs), which
encompass agents’ abilities explicitly.

We investigate ATL and ATL∗ over ACGSs. We give
formal definitions of the new semantics and show that in
general the new semantics of ATL/ATL∗ over ACGSs is in-
comparable with others even if the underlying CGSs models
are the same. We also study the model-checking problem
of ATL/ATL∗ over ACGSs. We show that this problem is
generally undecidable. However, we manage to show that the
model-checking problem for ATL∗ (resp. ATL) on ACGSs is
2EXPTIME-complete (resp. ∆P

3 -complete) when the imper-
fect information and perfect recall strategies are disallowed.
We implement our algorithms in a prototype tool MCMAS-
ACGS1 and conduct experiments on some standard applica-
tions from the literature. The results confirm the feasibility
and effectiveness of our approach.

Organization. The rest of the paper is organized as fol-
lows. Section II and Section III recap CGSs and ATL/ATL∗.
Section IV introduces ACGSs on which the semantics of
ATL/ATL∗ are revised. Section V discusses the effects of
strategy types. Section VI gives the undecidable results of
the ATL/ATL∗ model-checking problem on ACGSs. Sec-
tion VII and Section VIII respectively study the model-
checking problem of ATL and ATL∗ on ACGSs by disal-
lowing imperfect information and perfect recall strategies.
Section IX reports experimental results. Section X discusses

1Available at https://github.com/MCMAS-ACGS.

related work. Section XI concludes with a summary and
future work.

II. CONCURRENT GAME STRUCTURES
We fix a finite set AP of atomic propositions. Given an
infinite word ρ = s0s1 · · · , we denote by ρ j the symbol s j, by
ρ[0.. j] the prefix s0s1 · · · s j, and by ρ[j..∞] the suffix s js j+1 · · · .
Similarly, for a finite word ρ = s0s1 · · · sm, we denote by ρ j

the symbol s j for 0 ≤ j ≤ m, and by lst(ρ) the symbol sm.
A concurrent game structure (CGS) G is a tuple

G , (S , S 0, Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,∆, λ),

where
• S is a finite set of states;
• S 0 ⊆ S is a set of designated initial states;
• Ag = {1, ..., n} is a finite set of agents;
• Aci for i ∈ Ag is a finite set of local actions of agent i;
• ∼i⊆ S × S for i ∈ Ag is an epistemic accessibility

relation (i.e., an equivalence relation), which is used
to characterize observable abilities of agent i, namely,
agent i cannot distinguish equivalent states;

• Pi : S → 2Aci is a protocol function, which specifies
the set of available local actions of agent i at the each
state. We assume that Pi(s) = Pi(s′) for every s ∼i s′, as
agent i should have the same available local actions at
two indistinguishable states;

• ∆ : S × Ac → S is a transition function in which Ac =∏
i∈Ag Aci is a set of joint actions;

• λ : S → 2AP is a labeling function which assigns each
state a set of atomic propositions.

Given a joint action ~a = 〈a1, ..., an〉 ∈ Ac, we use ~a(i) to
denote the local action of agent i in ~a. For each state s ∈ S , a
joint action ~a uniquely determines the successor state ∆(s, ~a)
of s. A path is an infinite sequence ρ = s0s1 · · · of states such
that for every j ≥ 0, s j+1 = ∆(s j, ~a j) for some joint action
~a j ∈

∏
i∈Ag Pi(s j). A path ρ yields a trace τ(ρ) = α0α1 · · ·

over the alphabet 2AP, where for every j ≥ 0, α j = λ(ρ j). Two
finite sequences ρ = s0 . . . sm ∈ S + and ρ′ = s′0 . . . s′m ∈ S +

are indistinguishable for agent i, denoted by ρ ∼i ρ
′, if for

every j : 0 ≤ j ≤ m, s j ∼i s′j.

A. STRATEGIES
A strategy of an agent i ∈ Ag specifies what the agent i plans
to do at each state. Typical agents’ abilities are captured by
the following types of strategies [2]. For i ∈ Ag,
• Ir-strategy θi : S → Ac such that for every s ∈ S ,
θi(s) ∈ Pi(s), i.e., the local action chosen by agent i
depends only on the current state of the system.

• IR-strategy θi : S + → Ac such that for every finite
sequence ρ ∈ S +, θi(ρ) ∈ Pi(lst(ρ)), i.e., the local
action chosen by agent i depends on the whole history
of the game so far, instead of only the last state.

• ir-strategy θi : S → Ac, the same as Ir-strategies but
with the additional constraint

s ∼i s′ ⇒ θi(s) = θi(s′),

2 VOLUME 4, 2016

https://github.com/MCMAS-ACGS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

i.e., agent i has to choose the same local action at the
states that are indistinguishable from each other by the
agent i;

• iR-strategy θi : S + → Ac, the same as IR-strategies but
with the additional constraint

ρ ∼i ρ
′ ⇒ θi(ρ) = θi(ρ′),

i.e., agent i has to choose the same local action on the
finite paths that are indistinguishable from each other by
the agent i.

Intuitively, i (resp. I) signals that agents can only observe
partial information characterized via epistemic accessibility
relations ∼i (resp. complete information with all epistemic
accessibility relations being the identity relation). r (resp. R)
signals that agents can make decisions based on the current
observation (resp. the whole history of observations). For
instance, Ir stands for perfect information imperfect recall
strategies, while iR stands for imperfect information perfect
recall strategies. We will, by slightly abusing notation, extend
both Ir-strategies and ir-strategies to the domain S + such
that for all ρ ∈ S +, θi(ρ) = θi(lst(ρ)). We denote by Tstr the
set of strategy types {Ir, IR, ir, iR}. For each strategy type
σ ∈ Tstr, we denote by Θσ

i the set of σ-strategies for agent
i ∈ Ag and by Θσ

A the set
⋃

i∈A Θσ
i , for a coalition A ⊆ Ag.

B. OUTCOMES
Given a set of agents A ⊆ Ag, a collective σ-strategy for the
coalition A is a function υσA : A → Θσ

A such that for each
agent i ∈ A, υσA(i) ∈ Θσ

i is a σ-strategy of agent i. For i ∈ A
and ρ ∈ S +, we denote the local action υσA(i)(ρ) of agent i by
υσA(i, ρ), and the complementary set Ag \ A by A.

Given a state s, a collective σ-strategy υσA and a collective
σ′-strategy υσ

′

A
, let play(s, υσA , υ

σ′

A
) denote the path such that

ρ0 = s and for every j ≥ 0, ρ j+1 = ∆(ρ j, ~a j) for some ~a j ∈ Ac
such that for every i ∈ Ag:

~a j(i) =

{
υσA(i, ρ[0.. j]), if i ∈ A;
υσ

′

A
(i, ρ[0.. j]), if i ∈ A.

Intuitively, play(s, υσA , υ
σ′

A
) is the unique play when the CGS

starts from the state s and all the agents enforce strategies
specified by υσA and υσ

′

A
.

For every state s ∈ S and collective σ-strategy υσA of the
coalition A, the outcome of the CGS G is defined as follows:

Oσ
G

(s, υσA) ,
{
play(s, υσA , υ

IR

A
) | ∀i ∈ A, υIR

A
(i) ∈ ΘIRi

}
.

Intuitively, Oσ
G

(s, υσA) is the set of all the possible plays that
may occur when each agent i ∈ A enforces its σ-strategy
υσA(i) from the state s no matter which IR-strategies the other
agents choose. The subscript G is dropped from Oσ

G
when it

is clear from the context.

III. ALTERNATING-TIME TEMPORAL LOGICS
The alternating-time temporal logics: ATL and ATL∗ are
respectively extensions of the branching-time logics CTL and
CTL∗ by replacing the existential path quantifier E with col-
lation modalities 〈〈A〉〉 [1], each of which is parameterized by

a coalition A ⊆ Ag. Intuitively, the formula 〈〈A〉〉φ expresses
that the coalition A has a collective strategy to achieve the
goal φ no matter which strategies the agents in A choose.
Formally, ATL∗ is defined by the following grammar:

State formulae ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉φ,
Path formulae φ ::= ϕ | ¬φ | φ ∧ φ | X φ | φ U φ,

where q ∈ AP and A ⊆ Ag.
The derived operators are defined as usual:

φ1 ∨ φ2 , ¬(¬φ1 ∧ ¬φ2) F φ , true U φ

φ1 → φ2 , φ2 ∨ ¬φ1 G φ , ¬F ¬φ
[[A]]φ , ¬〈〈A〉〉¬φ φ1 R φ2 , Gφ2 ∨ φ2U(φ1 ∧ φ2)

In this work, ATL∗ formulae refer to ATL∗ state formu-
lae. A path formula of ATL∗ with the state formulae being
restricted to atomic propositions is called an LTL formula.
Formally, LTL is defined by the following grammar:

φ ::= q | ¬φ | φ ∧ φ | X φ | φ U φ.

The semantics of ATL∗ is traditionally defined over CGSs.
When strategy abilities are considered, it is often parameter-
ized with a strategy type σ ∈ Tstr, denoted by ATL∗σ [8].
Formally, let G be a CGS and s be a state of G, the semantics
of ATL∗σ (i.e., the satisfaction relation |=σ) is defined induc-
tively as follows:
Semantics of state formulae
• G, s |=σ q iff q ∈ λ(s);
• G, s |=σ ¬ϕ iff G, s 6|=σ ϕ;
• G, s |=σ ϕ1 ∧ ϕ2 iff G, s |=σ ϕ1 and G, s |=σ ϕ2;
• G, s |=σ 〈〈A〉〉φ iff there exists a collective σ-strategy υσA

for the coalition A such that for each path ρ ∈ Oσ(s, υσA):
G, ρ |=σ φ;

Semantics of path formulae
• G, ρ |=σ ϕ iff G, ρ0 |=σ ϕ;
• G, ρ |=σ ¬φ iff G, ρ 6|=σ φ
• G, ρ |=σ φ1 ∧ φ2 iff G, ρ |=σ φ1 and G, ρ |=σ φ2;
• G, ρ |=σ Xφ iff G, ρ[1,∞] |=σ φ;
• G, ρ |=σ φ1Uφ2 iff there exists an integer k ≥ 0 such that
G, ρ[k,∞] |= φ2 and for all j : 0 ≤ j < k: G, ρ[j,∞] |=σ φ1.

Given an ATL∗ formula ϕ, a CGSG and a strategy typeσ ∈
Tstr, the model-checking problem is to determine whether
G, s |=σ ϕ or not, for each initial state s of the CGS G.

A. VANILLA ATL
(Vanilla) ATL is a sublogic of ATL∗ where each occurrence
of the collation modality 〈〈A〉〉 is immediately followed by a
temporal operator. Formally, ATL is defined by the following
grammar:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉X ϕ | 〈〈A〉〉(ϕ R ϕ) | 〈〈A〉〉(ϕ U ϕ),

where q ∈ AP and A ⊆ Ag.
Remark that the release operator R cannot be defined using

the until (U) and global (G) operators in ATL [10], so is
included for completeness.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

An ATL/ATL∗ formula of the form 〈〈A〉〉φ is simple if φ is
an LTL formula. An ATL/ATL∗ formula ϕ is positive if (1)
each subformula 〈〈A〉〉φ in ϕ is a simple formula, (2) there
is no occurrence of [[A]]φ in ϕ, and (3) negations ¬ only
appear in front of atomic propositions. For example, 〈〈A〉〉X q
is simple and positive, but ¬〈〈A〉〉X q is neither simple nor
positive.

B. SOME SEMANTICS ISSUES
We observe that the semantics of ATL/ATL∗ refers to the
agents’ abilities in an implicit manner. For the formula
〈〈A〉〉ϕ, the specified σ-strategies only apply to agents in the
coalition A while the agents in the coalition A (i.e., outside of
A) could still choose beyondσ-strategies (e.g., IR-strategies).
In other words, the coalition A has a collective σ-strategy
to achieve ϕ no matter what the other agents do. When σ
is IR as in the original work by [1], this interpretation of
〈〈A〉〉ϕ is plausible, as “no matter what the other agents do” is
effectively the same as “no matter which strategies the other
agents choose”. However, when σ is set to be more restricted
than IR, agents not in the coalition A are still allowed to use
IR-strategies.

As mentioned in the introduction, this results in a few
shortcomings. From a modeling perspective, agents’ abili-
ties should be arguably decided by the practical scenario.
Namely, they should be fixed when the model is built, and all
agents stick to their respective abilities independent of logic
formulae. More concretely, from the semantic perspective,
the existing semantics only take into account the abilities
of agents that are quantified in 〈〈A〉〉, but does not take into
account the abilities of agents who are not in the coalition A,
and neglects the (multi-player) game nature in the evolution
of MASs. As a result, it may exhibit some counter-intuitive
semantics. For instance, consider two formulae 〈〈A〉〉φ and
〈〈A′〉〉φ′, the agent i ∈ A \ A′ may have different abilities to
achieve φ and φ′.

Let us consider an autonomous road vehicle scenario to
see why this is not ideal. There are several autonomous cars
which can only observe partial information and have bounded
memory. A CGS model G consists of a set A of agents
modeling autonomous cars, and an additional environment
agent e. We can reasonably assume that all the car agents
use ir-strategies, while e uses IR-strategies. The property
〈〈A′〉〉φ expresses that autonomous cars A′ ⊂ A can co-
operatively achieve the goal φ no matter which strategies
the other cars and the environment choose. Verifying that G
satisfies 〈〈A′〉〉φ under the existing semantics would allow car
agents A \ A′ to use IR-strategies. If G satisfies 〈〈A′〉〉φ, then
the result is conclusive, i.e., 〈〈A′〉〉φ holds for the system.
However, if G invalidates 〈〈A′〉〉φ, we cannot deduce that
〈〈A′〉〉φ fails because we overestimate the abilities of agents
in A \ A′ when evaluating 〈〈A′〉〉φ. In other words, for the
formula 〈〈A′〉〉φ under |=σ where σ , IR, it seems to be
inappropriate to render the agents in A \ A′ extra powers of
IR to potentially defeat agents from A′ when the abilities of
the agents in A \ A′ are actually much weaker and agents

in A′ are certainly aware of this. The over-approximation of
strategic abilities in such cases are unnecessary and may not
be sufficient.

IV. ABILITIES AUGMENTED ACGSs
In this section, we introduce abilities augmented concurrent
game structures (ACGSs in short), which explicitly equip
each agent with a strategy type from Tstr. As such, agents
have fixed strategic abilities for a given ACGS. Formally, an
ACGS is a pair

M = (G, π),

where G is a CGS and π : Ag → Tstr is a function that
assigns a strategy type π(i) to each agent i ∈ Ag. The strategy
type π(i) explicitly characterizes the abilities of agent i in the
CGS model. Recalling that epistemic accessibility relations
are used to characterize observable abilities of agents, agents
with Ir-strategies or IR-strategies are able to distinguish two
distinct states, hence we assume that, for each agent i ∈ Ag
with π(i) ∈ {IR, Ir}, the epistemic accessibility relation ∼i is
an identity relation, denoted by id∼.

Paths and traces of ACGSs are defined in the same way as
in CGSs, but strategies and outcomes have to be revised as
follows.

A. STRATEGIES AND OUTCOMES OF ACGSs
Let A be a set of agents. A collective strategy of the coalition
A in the ACGS M is a function ξA : A →

⋃
i∈A Θ

π(i)
i that

assigns each agent i ∈ A a π(i)-strategy ξA(i) ∈ Θ
π(i)
i .

Given a state s ∈ S and a set of agents A ⊆ Ag, for
every collective strategy ξA of the coalition A, the outcome
OM(s, ξA) of M is the set of all possible paths that may
occur when each agent i ∈ A enforces its π(i)-strategy ξA(i)
from the state s, and any other agent i ∈ A can only choose
π(i)-strategies (rather than general IR-strategies). Formally,
OM(s, ξA) is defined as

OM(s, ξA) ,
{
play(s, ξA, ξA) | ∀i ∈ A, ξA(i) ∈ Θ

π(i)
i

}
.

We will omit the subscriptM from OM(s, ξA) when it is clear
from context.

B. SEMANTICS OF ATL AND ATL∗ ON ACGSs
The difference of outcomes between ACGSs and CGSs in-
duces distinct semantics of ATL/ATL∗ on ACGSs than CGSs.
LetM be an ACGS and s be a state inM, the semantics of
ATL/ATL∗ onM (i.e., the satisfaction relation |=) is defined
similar to the one on a CGS, except that the semantics of the
state formulae of the form 〈〈A〉〉φ is defined as follows:

M, s |= 〈〈A〉〉φ if there exists a collective strategy
ξA : A →

⋃
i∈A Θ

π(i)
i for the coalition A such that

M, ρ |= φ, for all paths ρ ∈ O(s, ξA).
Remark that this semantics takes into account whether the
agents from A have perfect or imperfect information/recall.

Given an ACGS M and an ATL/ATL∗ formula ϕ, the
model-checking problem is to determine whether M, s |= ϕ

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

holds, for every initial state s ofM. Given a state formula ϕ,
let JϕKM denote the set of the states ofM that satisfy ϕ.

We remark that, as per formal semantics, the system model
is syntactic and their computations are semantic. In previous
work in literature, the abilities of agents are determined when
ATL/ATL∗ formulae are interpreted using computations of
the system model. In contrast, in this work, the abilities of
agents are defined explicitly in the system model without re-
ferring to ATL/ATL∗ formulae or computations of the system
model. Therefore, we assert that the abilities of agents are
defined at the semantic level in previous work, whereas at the
syntactic level in this work.

V. EFFECTS OF STRATEGY TYPES
Given an ATL/ATL∗ formula ϕ, we denote by Agϕ the set of
agents that appear in ϕ. The semantics of ATL/ATL∗ defined
on ACGSs is different from the one defined on CGSs. In
general, they are incomparable.

Proposition 1. There are an ACGSM = (G, π), an ATL/ATL∗

formula 〈〈A〉〉φ, and a type σ ∈ Tstr such that π(i) = σ for
all i ∈ A andM, s |= 〈〈A〉〉φ holds, but G, s 6|=σ 〈〈A〉〉φ.

Proof. Let us consider the CGS shown in Figure 1. There are
two agents {1, 2}, four states {s0, s1, s2, s3} (s0 is the initial
state), λ(s0) = λ(s1) = λ(s2) = {q} and λ(s3) = ∅, ∼1 is
the identity relation, s ∼2 s′ for every s, s′ ∈ {s0, s1, s2} and
s3 ∼2 s3.

s3

s0

s1 s2

(a, b2) (a, b1)

(a, b2)

(a, b2)(a, b1)

(a, b1)

(a, ?)

FIGURE 1. An illustrating example, where ? ∈ {b1, b2}.

Consider the function π such that π(1) = IR and π(2) = ir,
thenM, s0 |= 〈〈{1}〉〉Gq, but G, s0 6|=IR 〈〈{1}〉〉Gq. �

Proposition 1 reveals that for positive ATL/ATL∗ formulae
ϕ such that π(i) = σ for each i ∈ Agϕ, even if the agents of
Agϕ have the same strategy types in the ACGS (G, π) and the
CGS G, verifying G against ϕ under σ may examine more
behavior than verifying (G, π) against ϕ. Therefore, if the
behavior of a MAS is exactly modeled as an ACGSM rather
than a CGS G with strategy type σ, verifying G against ϕ
under σ may lead to incorrect result.

By restricting all the strategy types to IR, straightforwardly
we have:

Proposition 2. LetM = (G, π) be an ACGS where for each
i ∈ Ag, π(i) = IR. For each state s ofM and ATL∗ formula ϕ,
G, s |=IR ϕ iffM, s |= ϕ.

Proof. By applying structural induction on ϕ, it suffices to
show that the result holds for formulae of the form 〈〈A〉〉φ.

By the induction hypothesis, for every path ρ, the follow-
ing holds: G, ρ |=IR ϕ iffM, ρ |= ϕ.

For each pair (ξA, υ
IR
A) of collective strategies such that

ξA = υIRA , we have: OM(s, ξA) = OIR
G

(s, υIRA). Each agent i ∈ A
has same sets of possible IR-strategies in G and M, hence
G, s |=IR 〈〈A〉〉φ iffM, s |= 〈〈A〉〉φ. �

In light of Proposition 1 and Proposition 2, in this section
we shall investigate the effects of strategy types by consider-
ing ACGSs with various different setups of strategy types.

Given a set A ⊆ Ag and two functions π1, π2 : Ag → Tstr,
π1 is coarser than π2 with respect to the coalition A, denoted
by π1 �A π2, if for every i ∈ A, π1(i) = π2(i) and for every
j ∈ A, one of the following conditions holds:
• π1(j) = IR, π2(j) = IR;
• π1(j) = Ir, π2(j) ∈ {IR, Ir};
• π1(j) = iR, π2(j) ∈ {IR, iR};
• π1(j) = ir, π2(j) ∈ {IR, Ir, iR, ir} = Tstr.

Proposition 3. Let A be a set of agents and s be a state of a
CGS G. For two functions π1, π2 : Ag → Tstr with π1 �A π2,
and any collective strategy ξA of the coalition A, we have:

O(G,π1)(s, ξA) ⊆ O(G,π2)(s, ξA).

Proposition 3 reveals the effect of strategy types of A on the
outcomes. It is easy to observe that if π2(i) = σ for all i ∈ A,
then for every collective σ-strategy υσA such that ξA = υσA , we
have: O(G,π2)(s, ξA) ⊆ Oσ

G
(s, υσA). Moreover, if π2(i) = IR for

all i ∈ A, then O(G,π2)(s, ξA) = Oσ
G

(s, υσA).
By Proposition 3, we have:

Proposition 4. Given a CGS G, a state s in G and a positive
ATL/ATL∗ formula ϕ, for each pair of two functions π1, π2 :
Ag→ Tstr such that π1 �Agϕ π2,

if (G, π2), s |= ϕ, then (G, π1), s |= ϕ.

Proof. By applying structural induction on ϕ, it suffices to
show that the result holds for formulae of the form 〈〈A〉〉φ.

Suppose (G, π2), s |= 〈〈A〉〉φ (otherwise the proposition
immediately holds), then there exists a collective strategy ξA

for the coalition A such that for each path ρ ∈ O(G,π2)(s, ξA),
(G, π2), ρ |= φ holds. Since A ⊆ Agϕ and for every i ∈ Agϕ,
π1(i) = π2(i) and π1 �Agϕ π2, then π1 �A π2. By Proposition 3,
we get that O(G,π1)(s, ξA) ⊆ O(G,π2)(s, ξA).

By the induction hypothesis, for every state formula ϕ′ in
φ and every state s′, if (G, π2), s′ |= ϕ′, then (G, π1), s′ |= ϕ′.

Therefore, for each path ρ ∈ O(G,π1)(s, ξA), we get that
(G, π1), ρ |= φ. The result immediately follows. �

More restrictions on strategy types and ATL/ATL∗ for-
mulae can make two semantics coincide, as the following
proposition shows.

Proposition 5. Let s be a state of the ACGSM = (G, π) and
σ ∈ Tstr be a strategy type. Assume an ATL/ATL∗ formula ϕ
that satisfies

1) for every i ∈ Agϕ, π(i) = σ,
2) for every i ∈ Ag \ Agϕ, π(i) = IR, and

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

3) for every occurrence of 〈〈A′〉〉φ in ϕ, Agϕ = A′.
Then we have G, s |=σ ϕ iffM, s |= ϕ.

Proof. The proof directly follows from the fact that
O(G,π2)(s, ξAgϕ) = Oσ

G
(s, υσAgϕ

) for every state s ∈ S , collec-
tive strategy ξAgϕ and collective σ-strategy υσAgϕ

such that
ξAgϕ = υσAgϕ

. �

VI. UNDECIDABLE RESULTS
In this section, we present the following undecidable results.

Theorem 1. The ATL/ATL∗ model-checking problem for
ACGSs is undecidable.

Proof. It has been shown [5] that the Halting problem of Tur-
ing machines can be reduced to the ATLiR model-checking
problem of CGSs against the formula ϕ = 〈〈{1, 2}〉〉G ok,
where ok is an atomic proposition.

In other words, one can construct a CGS G =

(S , {s0}, Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,∆, λ) from a Turing
machine such that G, s0 |=iR 〈〈{1, 2}〉〉G ok iff the Turing
machine does not halt on the empty word.

Let M = (G, π) be an ACGS such that for every agent
i ∈ Ag, π(i) = iR if i ∈ {1, 2}, otherwise π(i) = IR. Clearly,
G, s0 |=iR 〈〈{1, 2}〉〉G ok iff M, s0 |= 〈〈{1, 2}〉〉G ok. The
undecidability immediately follows. �

By Theorem 1, in the rest of this paper, we focus on
the model-checking problem of ACGSs by restricting the
function π to Ag→ Tstr \ {iR}.

VII. ATL MODEL-CHECKING FOR ACGSs
In this section, we show that the ATL model-checking prob-
lem for ACGSs is ∆P

3 -complete. We first propose a model-
checking algorithm and then prove the ∆P

3 -hardness of the
problem.

Our model-checking algorithm iteratively computes the set
of states satisfying state formulae from the innermost subfor-
mulae. The main challenge is how to compute J〈〈A〉〉φKM.
To this end, we first show how to compute J〈〈A〉〉φKM for
a simple formula 〈〈A〉〉φ, and then present the algorithm for
general ATL formulae.

A. MODEL-CHECKING FOR SIMPLE ATL
For a simple ATL formula of the form 〈〈A〉〉φ, we can show
that whether it is satisfied or not is irrelevant to whether the
agents that have perfect information abilities admit perfect
recall strategies or not.

Proposition 6. Given a simple ATL formula 〈〈A〉〉ϕ,
consider an ACGS M = (G, π) such that G =

(S , {s}, Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,∆, λ) and π : Ag →
Tstr \ {iR}, let π′ be a function such that for every i ∈ Ag,

π′(i) =

{
Ir, if i ∈ A ∧ π(i) = IR;
π(i), otherwise.

For every state s inM, the following holds:

(G, π), s |= 〈〈A〉〉ϕ iff (G, π′), s |= 〈〈A〉〉ϕ.

Proof. Recalling that for each agent i ∈ Ag with π(i) ∈
{IR, Ir}, ∼i is an identity relation, we can then safely regard
all the agents in Ag with Ir-strategies as ir-strategies with
the identity relation. We first construct the tree-unfoldingM∗s
ofM from the state s. LetM∗s = (G∗, π∗) such that

G∗ = (S +, S ∗0, Ag, (Aci)i∈Ag, (∼∗i)i∈Ag, (P∗i)i∈Ag,∆
∗, λ∗),

where
• S ∗0 = {s};
• for every i ∈ Ag,

π∗(i) =

{
Ir, if i ∈ A ∧ π(i) = IR;
π(i), otherwise.

• for every i ∈ Ag and ρ, ρ′ ∈ S +, ρ ∼∗i ρ
′, if

– either π(i) , IR and lst(ρ) ∼i lst(ρ′)
– or π(i) = IR and ρ = ρ′;

• P∗i (ρ) = Pi(lst(ρ)) for every i ∈ Ag and ρ ∈ S +;
• ∆∗(ρ,~a) = ρ · ∆(lst(ρ), ~a) for every ρ ∈ S + and ~a ∈ Ac;
• λ∗(ρ) = λ(lst(ρ)) for every ρ ∈ S +.
We observe that the tree-unfolding M∗s is a tree-like

ACGS, namely, every state can be reached by a unique finite
path from the state s. Hence, IR-strategies of the coalition
A from the state s in M correspond exactly to Ir-strategies
of the coalition A from the state s in the tree unfoldingM∗s,
while the types of other agents are same under π and π∗. We
show thatM, s |= 〈〈A〉〉ϕ iffM∗s, s |= 〈〈A〉〉ϕ. (We remark that
this result does not hold if ϕ is a general LTL formula.)

(⇒) Suppose M, s |= 〈〈A〉〉ϕ, then there exists a collective
strategy ξA such that for every path ρ ∈ OM(s, ξA):M, ρ |= ϕ.
From the collective strategy ξA, we define the function ξ∗A
such that for every i ∈ A and ρ ∈ S +:

ξ∗A(i)(ρ) =

{
ξA(i)(lst(ρ)), if π(i) , IR;
ξA(i)(ρ), if π(i) = IR.

First, we show that ξ∗A is a collective strategy of the
coalition A in M∗s. Consider an agent i ∈ A and two states
ρ, ρ′ ∈ S +, if ρ ∼∗i ρ′ , then either (π(i) , IR and
lst(ρ) ∼i lst(ρ′)) or (ρ = ρ′ and π(i) = IR).
• If π(i) , IR and lst(ρ) ∼i lst(ρ′), then we get

that ξA(i)(lst(ρ)) = ξA(i)(lst(ρ′)), hence ξ∗A(i)(ρ) =

ξ∗A(i)(ρ′).
• If ρ = ρ′ and π(i) = IR, then we get that ξA(i)(ρ) =

ξA(i)(ρ′), hence ξ∗A(i)(ρ) = ξ∗A(i)(ρ′).
Therefore, ξ∗A is a collective strategy of the coalition A inM∗s.

Next, we show that for every collective strategy ξ∗
A

of A in
M∗s, play(s, ξ∗A, ξ

∗

A
) |= ϕ holds.

Suppose play(s, ξ∗A, ξ
∗

A
) = ρ0ρ1 · · · . Let ξA be the function

such that for every i ∈ A and j ≥ 0,

ξA(i)(lst(ρ j)) = ξ∗
A
(i)(ρ j), if π(i) , IR;

ξA(i)(ρ0 · · · ρ j) = ξ∗
A
(i)(ρ0 · · · ρ j), if π(i) = IR.

Consider j, k ≥ 0 such that lst(ρ j) ∼i lst(ρk) for some
i ∈ A, then either π(i) , IR or π(i) = IR.
• If π(i) , IR, then ρ j ∼

∗
i ρk. This implies that ξ∗

A
(i)(ρ j) =

ξ∗
A
(i)(ρk). Hence ξA(i)(lst(ρ j)) = ξA(i)(lst(ρk)).

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

• If π(i) = IR, then the agent i can choose any action at
any state of ρ j.

Therefore, ξA is a collective strategy of A in M and
play(s, ξA, ξA) = lst(ρ0)lst(ρ1) · · · . Following from the
fact that λ∗(ρ) = λ(lst(ρ)) for every ρ ∈ S +, we get that
M∗s, s |= 〈〈A〉〉ϕ.

(⇐) Suppose M∗s, s |= 〈〈A〉〉ϕ, then there exists a collec-
tive strategy ξ∗A such that for every path ρ ∈ OM∗s (s, ξ∗A):
M∗s, ρ |= ϕ. Without loss of generality, we assume that there
is an arbitrary total order � on set S +, and denote by min(U)
the minimal one of the set of states U ⊆ S + with respect to
the order �.

Let ξA be the function such that for every i ∈ A and s′ ∈ S :

ξA(i)(s′) = ξ∗A(i)
(
min({ρ ∈ S + | lst(ρ) = s′})

)
.

First, we show that ξA is a collective strategy of the
coalition A in M. Consider an agent i ∈ A and two states
s1, s2 ∈ S , if s1 ∼i s2, then either π(i) , IR or (s1 = s2 and
π(i) = IR).
• If π(i) , IR, then for each pair of states ρ1, ρ2 ∈ S + such

that lst(ρ1) = s1 and lst(ρ2) = s2, we have: ρ1 ∼
∗
i ρ2.

This implies that ξ∗A(i)(ρ1) = ξ∗A(i)(ρ2), hence ξA(i)(s1) =

ξA(i)(s2).
• If s1 = s2 and π(i) = IR, we choose ξA(i)(s1) =

ξA(i)(s2) = ξ∗A(i)(min({ρ ∈ S + | lst(ρ) = s1})).
Therefore, ξA is a collective strategy of the coalition A inM.

Consider a collective strategy ξA of A in M, let ρ =

play(s, ξA, ξA), then we have:

ρ[0..0]ρ[0..1]ρ[0..2] · · · ∈ OM∗s (s, ξ∗A).

Following from the fact that λ∗(ρ) = λ(lst(ρ)) for every ρ ∈
S +, we get thatM, s |= 〈〈A〉〉ϕ.

Since {(lst(ρ), ρ) | ρ ∈ sS ∗} is bisimulation between G
and G∗ (cf. Definition 5.1 and Lemma 5.2 [11]), we get that
(G∗, π∗), s |= 〈〈A〉〉ϕ iff (G, π∗), s |= 〈〈A〉〉ϕ. Therefore, we get
that (G, π), s |= 〈〈A〉〉ϕ iff (G∗, π∗), s |= 〈〈A〉〉ϕ iff (G, π∗), s |=
〈〈A〉〉ϕ. �

We remark that Alur et al. [1] observed that both semantics
of ATL under Ir-strategies and IR-strategies are coincide
for CGSs. This result was generalized and formally proved
for infinite CGSs (i.e., no finiteness with respect to the set
of states and actions) (cf. Proposition 1 [8]). Proposition 6
can be seen as a generalization of the result of [1] and could
be extended to the infinite ACGSs similar to [8]. Moreover,
Proposition 6 could be generalized to allow all agents that
are perfect information to be imperfect recall. We prefer not
to do so because it would not improve complexity result,
meanwhile it may reduce scalability, as we have to check
more strategies of agents not in the coalition A (see the
model-checking algorithm below).

By Proposition 6, all the agents in the coalition A with IR-
strategies can be seen as with Ir-strategies. Moreover, for
each agent i ∈ Ag with Ir/IR-strategies, ∼i is an identity
relation. Therefore, without loss of generality, we can safely

assume that π(i) = ir for all i ∈ A, and π(i) ∈ {ir, IR} for all
i ∈ A. Let Air denotes the set {i ∈ A | π(i) = ir}.

For two collective strategies ξA and ξAir , let

M(ξA, ξAir) , (G′, π)

be the ACGS obtained from (G, π) by enforcing strategies ξA

and ξAir , namely, by removing transitions whose actions of
agents in A∪Air do not conform to ξA and ξAir . We have that

Lemma 1. J〈〈A〉〉φKM ≡
⋃
ξA

⋂
ξAir

J〈〈∅〉〉φKM(ξA,ξAir
).

Proof. (⇒) Suppose s ∈ J〈〈A〉〉φKM, then there exists a
collective strategy ξA : A →

⋃
i∈A Θ

π(i)
i such that for each

path ρ ∈ OM(s, ξA):M, ρ |= φ.
For every collective strategy ξAir : Air →

⋃
i∈Air Θiri , we

denote by Pathss(M(ξA, ξAir)) the set of paths inM(ξA, ξAir)
that start from s. Then, Pathss(M(ξA, ξAir)) ⊆ OM(s, ξA).
This implies that for every path ρ ∈ Pathss(M(ξA, ξAir)):
M, ρ |= φ holds. Therefore, we get that s ∈ J〈〈∅〉〉φKM(ξA,ξAir

)

for every collective strategy ξAir : Air →
⋃

i∈Air Θiri . The
result immediately follows.

(⇐) Suppose s ∈
⋃
ξA

⋂
ξAir

J〈〈∅〉〉φKM(ξA,ξAir
), then there

exists a collective strategy ξA : A →
⋃

i∈A Θ
π(i)
i such

that s ∈
⋂
ξAir

J〈〈∅〉〉φKM(ξA,ξAir
). This implies that for every

collective strategy ξAir : Air →
⋃

i∈Air Θiri , and every path
ρ ∈ Pathss(M(ξA, ξAir)), ρ |= φ holds.

Since OM(s, ξA) =
⋃
ξAir
Pathss(M(ξA, ξAir)), we get that

for every path ρ ∈ OM(s, ξA), ρ |= φ holds. Therefore, s ∈
J〈〈A〉〉φKM. �

Algorithm for Simple ATL. To compute J〈〈A〉〉φKM, the
Turing machine first existentially guesses a collective strat-
egy ξA : A →

⋃
i∈A Θ

π(i)
i by restricting the transition function

of M. Then the Turing machine reaches the universal state,
and explores all collective strategies ξAir : Air →

⋃
i∈A Θ

π(i)
i

by restricting the transition function of M, and finally
computes J〈〈∅〉〉φKM(ξA,ξAir

) which amounts to CTL model-
checking and can be done in polynomial time in the size of
M(ξA, ξAir) and 〈〈∅〉〉φ [12]. Clearly, the number of choices is
limited by the size of the transition function and each choice
can be doing in polynomial time. Therefore, J〈〈A〉〉φKM can
be computed in polynomial time by an alternating Turing
machine with two alternations (starting in an existential
state). By the characterization of the polynomial hierarchy
(PH), we obtain the following result.

Lemma 2. For a state s and a simple ATL formula 〈〈A〉〉φ,
checking whether s ∈ J〈〈A〉〉φKM is in ΣP

2 (i.e., NPNP).

Example 1. Consider the ACGS Mr = (G, π) defined as
follows.
• G = (S , {s0}, Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,∆, λ), where

– S = {s0, s1, s2, s3, s4};
– Ag = {1, 2, 3};
– Aci = {a, b} for i ∈ Ag;

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

s0

s4

s3s1

s2

(b, b, b)

(b, a, ?)

(?, b, ?)

(b, a, a)
(a, a, a)

(a, a, a)

(a, a, a)

(a, a, b)

(a, a, a)

(a, b, a)

q1

q1
q1

q1

q2

s0

s4

s3s1

s2

(b, b, b)

(a, a, a)

(a, a, a)

(a, a, a)

(a, a, b)

(a, a, a)

q1

q1
q1

q1

q2

s0

s4

s3s1

s2

(b, b, b)

(a, b, ?)

(a, a, a)

(a, a, a) (a, b, a)

q1

q1
q1

q1

q2

(c)(b)(a)

FIGURE 2. Running example: (a)Mr , (b)M′r(ξ{1}, ξ{2}) and (c)M′r(ξ{1}, ξ′{2}), where ? ∈ {a, b}.

– ∼1=∼3= {(s, s) | s ∈ S }, ∼2=∼1 ∪{(s0, s3), (s3, s0)};
– P1(s0) = P1(s2) = {a, b}, P1(s1) = P1(s3) = {a},

P1(s4) = {b} ;
– P2(s0) = P2(s3) = {a, b}, P2(s1) = P2(s2) = {a},

P2(s4) = {b};
– P3(s0) = {a, b}, P3(s1) = P3(s2) = P3(s3) = {a},

P3(s4) = {b};
– ∆ is shown in Figure 2(a);
– λ(s1) = {q2}, λ(s0) = λ(s2) = λ(s3) = λ(s4) = {q1}.

• π : Ag → Tstr is the function such that π(1) = IR,
π(2) = ir and π(3) = IR.

We consider the ATL formula ϕr := 〈〈{1}〉〉(q1Uq2) expressing
that the agent 1 has a strategy to achieve the goal q1Uq2.
Obviously, ϕr is a simple ATL formula. By Proposition 6, we
get that Mr, s0 |= ϕr iff M′r, s0 |= ϕr, where M′r = (G, π′)
with π′(1) = ir, π′(2) = π(2) and π′(3) = π(3).

Consider the collective strategies ξ{1}, ξ{2} and ξ′
{2} defined

as follows.
• ξ{1}(1) = {s0 7→ a, s1 7→ a, s2 7→ a, s3 7→ a, s4 7→ b}.
• ξ{2}(2) = {s0 7→ a, s1 7→ a, s2 7→ a, s3 7→ a, s4 7→ b}.
• ξ′

{2}(2) = {s0 7→ b, s1 7→ a, s2 7→ a, s3 7→ b, s4 7→ b}.
We obtain two ACGSs M′r(ξ{1}, ξ{2}) and M′r(ξ{1}, ξ

′
{2}) de-

picted in Figure 2(b) and Figure 2(c), respectively. Then, we
have:
• J〈〈∅〉〉(q1Uq2)KM′r(ξ{1},ξ{2}) = {s0, s1, s2};
• J〈〈∅〉〉(q1Uq2)KM′r(ξ{1},ξ′{2}) = {s1, s2}.

This shows that s0 <
⋂
ξ:{2}→Θir2

J〈〈∅〉〉(q1Uq2)KM′r(ξ{1},ξ). We
can get the same result for other collective strategies of the
agent 1. Therefore,M′r, s0 6|= ϕr.

ΣP
2 -hardness. Next, we show that the model-checking prob-

lem for simple ATL is ΣP
2 -hard.

Lemma 3. For a state s and a simple ATL formula 〈〈A〉〉φ,
checking whether s ∈ J〈〈A〉〉φKM is ΣP

2 -hard.

Proof. We prove by a reduction from the satisfiability of
quantified Boolean formulas with two alternations of quan-
tifiers (QBF2) which is known to be ΣP

2 -complete.
Let ∃X.∀Y.ψ be an instance of QBF2, where X =

{x1, · · · , xm} and Y = {y1, · · · , yk} are sets of Boolean vari-
ables, ψ is a Boolean formula over Boolean variables of

X ∪ Y . Without loss of generality, we assume that ψ is in
3-CNF

∧
j(`1

j ∨ `
2
j ∨ `

3
j), where ` j is a literal that is either

a Boolean variable or its negation. We denote by c j for the
clause `1

j ∨ `
2
j ∨ `

3
j , and cl(ψ) the set of clauses of ψ.

∃X.∀Y.ψ is satisfiable iff an assignment f1 : X → {0, 1}
exists such that for all assignments f2 : Y → {0, 1}, ψ
evaluates to 1 under f1 and f2.

Let M = ((S , {s}, Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,∆, λ), π)
be an ACGS, where
• S = S c ∪ S ` ∪ {s⊥, s>, s}, S ` = {sz, s¬z | z ∈ X ∪ Y} and

S c = {sc | c ∈ cl(ψ)};
• Ag = {gx | x ∈ X} ∪ {gy | y ∈ Y} ∪ {gd, gψ};
• For each i ∈ Ag,

Aci =

{a�, ac | c ∈ cl(ψ)}, if i = gψ;
{a1, a2, a3, a�}, if i = gd;
{a⊥, a>, a�}, otherwise.

• For each i ∈ Ag,
– ∼i is an identity relation id∼, if i ∈ {gd, gψ};
– ∼i= id∼∪{(sz, s¬z), (s¬z, sz)}, if i = gz for z ∈ X∪Y .

• For each i ∈ Ag, Pi is defined as follows: for each s′ ∈ S ,

Pi(s′) =

{ac | c ∈ cl(ψ)}, if i = gψ ∧ s′ = s;
{a�}, if i = gψ ∧ s′ , s;
{a1, a2, a3}, if i = gd ∧ s′ = sc;
{a�}, if i = gd ∧ s′ , sc;
{a⊥, a>}, if i = gz ∧ s′ ∈ {sz, s¬z};
{a�}, if i = gz ∧ s′ < {sz, s¬z};
{a�}, if s′ ∈ {s>, s⊥}.

• ∆ is defined as follows: for every (s′, ~a) ∈ S × Ac,

∆(s′, ~a) =

sc, if s′ = s ∧ ~a(gψ) = ac;
s`i , if s′ = s`1∧`2∧`3 ∧ ~a(gd) = ai;

(1) if s′ = s¬z ∧ ~a(gz) = a>,
s⊥, (2) or s′ = sz ∧ ~a(gz) = a⊥,

(3) or s′ = s⊥;
(1) if s′ = s¬z ∧ ~a(gz) = a⊥,

s>, (2) or s′ = sz ∧ ~a(gz) = a>,
(3) or s′ = s>.

• λ is the function such that for all s′ ∈ S : λ(s′) = q> if
s′ = s>, λ(s′) = ∅ otherwise;

• π(i) = ir for every i ∈ Ag.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Intuitively, the agent gψ controls the state s and chooses
a clause c to verify by selecting the action ac. Then, the
agent gd controls the state sc and chooses a literal `i (e.g.,
z or ¬z) of c to verify by selecting the action ai. Next, the
agent gz controls the state s`i and chooses a truth value for
the variable z by selecting a> or a⊥. If the literal `i is true
under z, thenM enters the state q>, otherwiseM enters the
state q⊥. The relation ∼gz ensures that the agent gz chooses
the same truth value at the states sz and s¬z. The ACGS M
can be constructed in polynomial time in the size of ∃X.∀Y.ψ.

Let Ag∃ denote the set {g`, gx | x ∈ X}, then we have

s ∈ J〈〈Ag∃〉〉Fq>KM iff ∃X.∀Y.ψ is satisfiable.

Indeed, there exists an assignment f1 : X → {0, 1} such
that ψ evaluates to 1 under f1 regardless of the values of the
variables in Y iff there is a collective strategy ξAg∃ such that
M, ρ |= Fq> for all paths ρ ∈ O(s, ξAg∃), where for every
x ∈ X, f1(x) = 1 (resp. f1(x) = 0) iff the agent gx selects the
action a> (resp. a⊥) at the states sx and s¬x.

The proof is completed. �

We remark that the following result also holds:

s ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉Fq>KM iff ∃X.∀Y.ψ is satisfiable.

which will later be used in the proof of Lemma 5.
Following Lemma 2 and Lemma 3, we have that:

Theorem 2. The model-checking problem for simple ATL
formulae is ΣP

2 -complete.

B. MODEL-CHECKING FOR GENERAL ATL
Algorithm for General ATL. We now present the model-
checking algorithm for general ATL, which computes JϕKM
from the innermost subformulae.

Algorithm 1: ATL model-checking algorithm
Input: An ACGSM = (G, π) and an ATL formula ϕ
Output: JϕKM

1 Function MC(M, ϕ)
2 switch ϕ :
3 case q : return {s ∈ S | q ∈ λ(s)};
4 case ¬ϕ′ : return S \ MC(M, ϕ′);
5 case ϕ1 ∧ ϕ2 : return MC(M, ϕ1) ∩ MC(M, ϕ2);
6 case Kiϕ

′ : return {s ∈ S | [s]∼i ⊆ MC(M, ϕ′)};
7 case EAϕ

′ : return {s ∈ S | [s]∼
E
A ⊆ MC(M, ϕ′)};

8 case DAϕ
′ : return {s ∈ S | [s]∼

D
A ⊆ MC(M, ϕ′)};

9 case CAϕ
′ : return {s ∈ S | [s]∼

C
A ⊆ MC(M, ϕ′)};

10 case 〈〈A〉〉φ :
11 foreach sub-state-formula ϕ′ in φ do
12 Replace ϕ′ by a fresh atomic proposition qϕ′

in ϕ, and let λ(qϕ′) := MC(M, ϕ′);
13 J〈〈A〉〉φKM :=

⋃
ξA

⋂
ξAir

J〈〈∅〉〉φKM(ξA ,ξAir
);

14 return J〈〈A〉〉φKM;

Algorithm 1 shows the pseudo code, which takes an ACGS
M = (G, π) and an ATL formula ϕ as inputs, and outputs
JϕKM which contains all the states that satisfy ϕ.

We also incorporate epistemic modalities Kiϕ,EAϕ,DAϕ
and CAϕ from [13] into our algorithm with the following
semantics:
• G, s |=σ Kiϕ iff ∀s′ ∈ S , s ∼i s′ =⇒ G, s′ |=σ ϕ;
• G, s |=σ EAϕ iff ∀s′ ∈ S , s ∼E

A s′ =⇒ G, s′ |=σ ϕ;
• G, s |=σ DAϕ iff ∀s′ ∈ S , s ∼D

A s′ =⇒ G, s′ |=σ ϕ;
• G, s |=σ CAϕ iff ∀s′ ∈ S , s ∼C

A s′ =⇒ G, s′ |=σ ϕ,
where ϕ is a state formula, ∼E

A=
⋃

i∈A ∼i, ∼D
A =

⋂
i∈A ∼i,

∼C
A= (∼E

A)+ (i.e., the transitive closure of ∼E
A). Kiϕ,EAϕ,DAϕ

and CAϕ denote that “i knows”, “every agent in the coalition
A knows”, “agents in the coalition A have distributed know-
ledge”, and “agents in the coalition A have common know-
ledge” on the fact ϕ, respectively. The ATL logic extended
with these epistemic modalities is called ATLK logic. Given
a state s ∈ S and a binary relation w⊆ S × S , we denote by
[s]w the set {s′ ∈ S | s w s′}.

By Lemma 2, the model-checking problem for ATLK on
ACGSs is solvable in ∆P

3 (i.e., PNP
NP

).

Lemma 4. The model-checking problem for ATLK on ACGSs
is in ∆P

3 .

∆P
3 -hardness. We show that the model-checking problem

for ATL is ∆P
3 -hard by a reduction from the sequentially

nested satisfiability problem of quantified Boolean formulae
(SNSAT2), which is known to be ∆P

3 -complete [10], [14].
An instance Im of SNSAT2 is given by m Boolean vari-

ables Z = {z1, · · · , zm} and a list of m equations

z1 � ∃X1.∀Y1.ψ1(X1,Y1)
z2 � ∃X2.∀Y2.ψ2(X2,Y2, z1)

...

zm � ∃Xm.∀Ym.ψm(Xm,Ym, z1, · · · , zm−1)

where for every i : 1 ≤ i ≤ m,
• ψi is a 3-CNF Boolean formula over variables Xi ∪ Yi ∪

Z<i with Z<i = {z1, · · · , zi−1};
• Xi = {xi

1, · · · , x
i
mi
}, Yi = {yi

1, · · · , y
i
ki
} are two sets of

Boolean variables.
The instance Im is satisfiable iff there exists an assignment

fm : Z → {0, 1} such that for every i : 1 ≤ i ≤ m,

fm(zi) = 1 iff ∃Xi.∀Yi.ψi is satisfiable under fm.

Lemma 5. The model-checking problem for ATL on ACGSs
is ∆P

3 -hard.

Proof. We reduce SNSAT2 to the ATL model-checking prob-
lem. For every equation z j � ∃X j.∀Y j.ψ j, let

M j = ((S j, {s j}, Ag j, (Ac j
i)i∈Ag j , (∼ j

i)i∈Ag j , (P j
i)i∈Ag j ,∆ j, λ j), π j)

be the ACGS constructed as in the proof of Lemma 3 from
the formula ∃X j.∀Y j.ψ j. LetM

j
be the ACGS obtained from

M j, where the initial state s j is renamed to s j. We recursively
construct two families of ACGSs: (N j)1≤ j≤m and (N

j
)1≤ j≤m.

For j = 0, let N1 = M1 and N
1

= M
1
. For j > 0, we

define N j and N
j
as follows.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1) N j (resp.N
j
) starts from the initial state sz j (resp. s¬z j)

which is controlled by the agent gz j with two available
actions a⊥ and a> at the state sz j (resp. s¬z j).

2) At the state sz j (resp. s¬z j),
a) if the agent gz j selects the action a>, then N j

(resp. N
j
) goes to the state s j (the initial state

of M j) and then behaves the same as M j until
some state of the form szi or s¬zi for some i < j is
reached;

b) if the agent gz j selects the action a⊥, then N j

(resp. N
j
) goes to the state s j (the initial state

of M
j
) and then behaves the same as M

j
until

some state of the form szi or s¬zi for some i < j is
reached.

3) N j andN
j
behaves the same asN i (resp.N

i
) after the

state szi (resp. s¬zi) for some i < j.
Each state of the form s j is associated with the atomic
proposition q, i.e., λ(s j) = {q}. Let Ag∃ denote the set
{g`, gx | x ∈

⋃m
i=1 Xi} ∪ {gz | z ∈ Z}. The ATL formula is

constructed recursively as follows: φ0 ≡ false and for every
j : 1 ≤ j < m,

φ j+1 ≡ 〈〈Ag∃〉〉X(q↔ 〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φ j)))

where a↔ b denotes (a ∧ b) ∨ (¬a ∧ ¬b).
The result follows from the following claim.

Claim:
1) sm ∈ Jq ∧ 〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φm−1))KNm iff the

instance Im is satisfied by some assignment fm : Z →
{0, 1} such that fm(zm) = 1.

2) sm
∈ J¬q ∧ ¬〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φm−1))K

N
m iff

the instance Im is satisfied by some assignment fm :
Z → {0, 1} such that fm(zm) = 0.

If the instance Im is satisfied by an assignment fm : Z →
{0, 1}, then we have that: for every j : 1 ≤ j ≤ m, fm(zi) = 1
iff ∃Xi.∀Yi.ψi is satisfiable under fm. It suffices to prove that

sm ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q>∨φm−1))KNm iff Im is
satisfied by some assignment fm : Z → {0, 1} such
that fm(zm) = 1.

We prove this by applying induction on m.

Base case m = 1. Following the proof of Lemma 3,

s1 ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉Fq>KM1 iff ∃X1.∀Y1.ψ1 is satisfiable.

Then, the result immediately follows from the fact that φ0 is
false. Note that q is always false after the state s1.

Inductive step m > 1. Recall that sm ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU
(q> ∨ φm−1))KNm iff a collective strategy ξ : Ag∃ →⋃

i∈Ag∃ Θ
π(i)
i exists such that for every path ρ ∈ ONm (sm

c , ξA)
and every success state sm

c of sm: Nm, ρ |= ¬qU(q> ∨ φm−1).
For every path ρ ∈ ONm (sm

c , ξA), we have that:
• ρ visits some state ρi of the form s j or s j for 1 ≤ j < m

iff ρi ∈ Jφ jKNm ,
• ρ does not visit any state ρi of the form s j or s j for 1 ≤

j < m iff ρ ends with a loop on the state q>.

By the induction hypothesis, we have that:
• s j ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q>∨φ j−1))KN j iff the instance
I j is satisfied by an assignment f j : Z< j+1 → {0, 1} such
that f j(z j) = 1.

• s j
∈ J¬〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φ j−1))KN j iff I j is

satisfied by an assignment f j : Z< j+1 → {0, 1} such that
f j(z j) = 0.

Therefore, sm ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φm−1))KNm iff
Im is satisfied by an assignment fm : Z → {0, 1} such that
fm(zm) = 1 and for every j : 1 ≤ j < m, fm(z j) = f j(z j).

Note that sz j ∼gz j
s¬z j for every j : 1 ≤ j ≤ m, hence the

agent gz j always chooses the same action at the states sz j and
s¬z j . This ensures that fm is well-defined. �

Following Lemma 4 and Lemma 5, we get that:

Theorem 3. The model-checking problem for ATL (hence
ATLK) formula is ∆P

3 -complete.

VIII. ATL∗ MODEL-CHECKING FOR ACGSs
In this section, we show that the ATL∗ model-checking
problem for ACGSs is 2EXPTIME-complete. The model-
checking algorithm mainly follows Algorithm 1 which iter-
atively computes the set of states satisfying state formulae
from the innermost subformulae. The main challenge is how
to compute J〈〈A〉〉φKM, as Proposition 6 does not hold if φ is
a general LTL formula. To solve this problem, we propose a
novel reduction to the solving of parity games.

A. MODEL-CHECKING SIMPLE ATL∗

Given a simple ATL∗ formula 〈〈A〉〉φ and an ACGS M =

(G, π), we compute J〈〈A〉〉φKM by a reduction to the problem
of computing the winning region of a turn-based two-player
parity game. We first introduce some basic concepts which
will be used in our reduction.

A deterministic parity automaton (DPA) A is a tuple
(P,Σ, δ, p0,R), where
• P is a finite set of states;
• Σ is a finite input alphabet;
• δ : P × Σ→ P is a transition function;
• p0 ∈ P is an initial state;
• R : P→ {0, ..., k} is a rank function .

A run ρ of A over an ω-word α0α1... ∈ Σω is an infinite
sequence of states ρ = p0 p1... such that for every i ≥ 0,
pi+1 = δ(pi, αi). Let inf(ρ) be the set of states visited in-
finitely often in ρ. An infinite word is recognized by A if
A has a run ρ over this word such that minp∈inf(ρ) R(p) is
even. For every LTL formula φ, one can construct a DPA
Aφ = (P, 2AP, δ, p0,R) with 22O(|φ|)

states and rank k = 2O(|φ|)

such that Aφ recognizes all the ω-words satisfying φ [15],
where each ω-word corresponds to a trace τ(ρ) of a path ρ in
the ACGS.

A (turned-based, two-player) parity game P is a tuple
(V = V0] V1, E,Ξ), where
• Vi for i ∈ {0, 1} is a finite set of vertices controlled by

Player-i;

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

• E ⊆ V × V is a finite set of edges;
• Ξ : V → {0, ..., k} is a rank function.

A play ρ starting from the vertex v0 is an infinite sequence of
vertices v0v1... such that for every i ≥ 0, (vi, vi+1) ∈ E. ρ is
accepting if minv∈inf(ρ) Ξ(v) is even. A strategy of Player-i is a
function θ : V∗Vi → V such that for every ρ ∈ V∗ and v ∈ Vi,
(v, θ(ρ·v)) ∈ E. Given a strategy θ0 for Player-0 and a strategy
θ1 for Player-1, let P(θ0, θ1) be the play where Player-0 and
Player-1 enforce their strategies θ0 and θ1, respectively. θ0 is
a winning strategy for Player-0 if P(θ0, θ1) is accepting for
all strategies θ1 of Player-1. The winning region of Player-0,
denoted by WR0, is the set of vertices from which Player-0
has a winning strategy.

We will use the following notations in our reduction.
• dom(g) denotes the domain of the function g.
• Aσ := {i ∈ A | π(i) = σ} and Aσ := {i ∈ A | π(i) = σ}.
• Fir is the set of (total) functions f : Air × S →⋃

i∈Air Aci such that for all (i, s) ∈ Air×S , f (i, s) ∈ Pi(s)
and s ∼i s′ entails that f (i, s) = f (i, s′).

• Given a state s, let F s
IR be the set of functions f : AIR →⋃

i∈AIR Aci such that f (i) ∈ Pi(s) for every i ∈ AIR, and
FIR :=

⋃
s∈S F s

IR.
• Gir is the set of partial functions g : Air × S →⋃

i∈Air Aci, such that for each (i, s) ∈ Air × S , if
g(i, s) ∈ dom(g), then for all s′ ∈ S with s ∼i s′:
g(i, s) = g(i, s′) ∈ Pi(s).

• Πir := {G ⊆ Gir | ∀g, g′ ∈ G, dom(g) = dom(g′)}.
We construct a parity game Pφ as follows:

Pφ = (V = V0] V1, E,Ξ),

where
• V0 = S ∪ (S × P × Fir × Πir);
• V1 = (S × Fir) ∪ (S × P × Fir × FIR × Πir);
• Ξ : V → {0, · · · , k} is a rank function such that: ,

– Ξ(s) = Ξ(s, f) = 0 for every s ∈ S and f ∈ Fir,
– Ξ(s, p, f1,G) = Ξ(s, p, f1, f2,G) = R(p), for every

s ∈ S , p ∈ P, f1 ∈ Fir, f2 ∈ FIR and G ∈ Πir.
• E is defined as follows:

1) (s, (s, f1)) ∈ E for (s, f1) ∈ S × Fir;
2) ((s, f1), (s, p0, f1, ∅)) ∈ E for (s, f1) ∈ S × Fir;
3) ((s, p, f1,G), (s, p, f1, f2,G)) ∈ E for (s, p, f1,G) ∈

V0 and f2 ∈ F s
IR;

4) ((s, p, f1, f2,G), (s′, δ(p, λ(s)), f1,G′)) ∈ E for ev-
ery (s, p, f1, f2,G) ∈ V1 and s′ ∈ S , where
G′ ∈ Πir is the largest set such that the following
conditions hold: for every g′ ∈ G′,
(1) either G = ∅ or there exists g ∈ G such that

dom(g′) = dom(g) ∪
{
(i, s′′) ∈ Air × S | s ∼i s′′

}
and for every (i, s′′) ∈ dom(g), g′(i, s′′) = g(i, s′′);
(2) there exists ~a ∈ Ac such that s′ = ∆(s, ~a), and
for every (i, s) ∈ Ag × S ,

~ai =

f1(i, s), if (i, s) ∈ dom(f1);
g′(i, s), if (i, s) ∈ dom(g′);
f2(i), if i ∈ dom(f2).

In this reduction, intuitively, the function f1 ∈ Fir en-
codes ir-strategies of agents in Air, and the collection of
the functions f2 ∈ FIR in plays of Pφ from the vertex
(s, f1) encodes IR-strategies of agents in AIR. These functions
together encode a collective strategy of the coalition A. Each
function g ∈ Gir encodes ir-strategies of agents in Air. The
imperfect information abilities of agents are ensured by the
definitions of the functions f ∈ Fir and g ∈ Gir.

Intuitively, to check whether s ∈ J〈〈A〉〉φKM, Pφ starts with
the vertex s. At the first step, Player-0 chooses a function
f1 ∈ Fir meaning that the ir-strategies of the agents in
Air are chosen. Next, Pφ moves from (s, f1) to (s, p0, f1, ∅)
which lets the DPA Aφ start with p0 (note that Player-1
has only one choice at this step). At a vertex (s, p, f1,G)
controlled by Player-0, Player-0 chooses actions for agents
in AIR by choosing one function f2 ∈ F s

IR. Then Player-1
chooses actions for agents in A with respect to the chosen
actions of agents in Air tracked by G. These selections of
actions together with f1 and G determine a joint action ~a,
based on which Pφ moves to (s′, δ(p, λ(s)), f1,G′) such that
s′ is the successor state of the state s after the joint action ~a,
and δ(p, λ(s)) is the successor state of the state p inAφ which
allows to mimics the run of Aφ over the trace τ(ρ) induced
by the play ρ ofM. During this step, f2 is dropped from the
vertex ofPφ, as f2 corresponds to actions of agents in AIR and
needs not track. The actions of agents in Air are preserved in
G′ from G. This ensures imperfect recall abilities of agents
in Air. Note that it is important to associate the functions
g ∈ Gir to the same state s′ that is reached via same sequence
of states for a given function f1 ∈ Fir (i.e., Item 4) in the
definition of E), otherwise the agents from AIR may choose
different actions on the same path ofM.

Lemma 6. WR0 ∩ S = J〈〈A〉〉φKM.

Proof. According to the definition of Pφ, each Pφ(θ0, θ1)
must be of the form

s(s, f1)(s, p0, f1, ∅)(s, p0, f1, f2, ∅)

(s1, p1, f1,G1)(s1, p1, f1, f 1
2 ,G1)

(s2, p2, f1,G2)(s2, p2, f1, f 2
2 ,G2)

(s3, p3, f1,G3)(s3, p3, f1, f 3
2 ,G3)

· · ·

Let ρθ0,θ1 be the path ss1s2s3 · · · obtained from Pφ(θ0, θ1).
(⇒) Suppose s ∈ WR0 ∩ S , then Player-0 has a winning
strategy θ : V∗V0 → V such that minv∈inf(Pφ(θ,θ1)) Ξ(v) is even
for every strategy θ1 of Player-1.

It is well-known that, for parity games, if Player-0 has a
winning strategy, then it also has a pure memoryless winning
strategy [16]. Let θ0 : V0 → V be a pure memoryless winning
strategy for Player-0 such that minv∈inf(Pφ(θ0,θ1)) Ξ(v) is even
for every strategy θ1 of Player-1. Then, the DPA Aφ recog-
nizes the ω-word τ(ρθ0,θ1). This implies thatM, ρθ0,θ1 |= φ.

Let ξA be the collective strategy for the coalition A such
that

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

• for every (i, s′) ∈ Air × S : ξA(i)(s′) = f1(i, s′); and
• for every i ∈ AIR, strategy θ1 of Player-1 and prefix

s1 · · · s j of ρθ0,θ1

– ξA(i)(ss1 · · · s j) = f j
2 (i), if j ≥ 1;

– ξA(i)(s) = f2(i), otherwise.
For every collective strategy ξA : A →

⋃
i∈A Θ

π(i)
i , let θ1 be

a strategy of Player-1 such that
• for every (s, f1) ∈ V1: θ1(s, f1) = (s, p0, f1, ∅);
• for every (s, p, f1, f2,G) ∈ V1:

θ1(s, p, f1, f2,G) = (s′, δ(p, λ(s)), f1,G′),
where G′ satisfies the conditions in the reduction. More-
over, for every g ∈ G′ and (i, s′′) ∈ dom(g),

g(i, s′′) = ξA(i)(s).
Then, ρθ0,θ1 = play(s, ξA, ξA). Therefore, s ∈ J〈〈A〉〉φKM.

(⇐) Suppose s ∈ J〈〈A〉〉φKM, then there exists a collective
strategy ξA for the coalition A such that for every collective
strategy ξA of the coalition A:M, play(s, ξA, ξA) |= φ.

Let θ0 be a strategy of Player-0 such that
• θ0(s) = (s, f1) where f1 ∈ Fir such that for every (i, s′) ∈

Air × S : f1(i, s′) = ξA(i)(s′);
• and θ0(s j, p j, f1,G j−1) = (s j, p j, f1, f j

2 ,G j−1) where f j
2 ∈

F s j

IR such that for every i ∈ AIR: f j
2 (i) = ξA(i)(ss1 · · · s j).

Similarly, for every strategy θ1 for Player-1, we can con-
struct a collective strategy ξA of the coalition A such that
play(s, ξA, ξA) = ρθ0,θ1 . Since M, play(s, ξA, ξA) |= φ,
minv∈inf(Pφ(θ0,θ1)) Ξ(v) is even. Therefore, θ0 is a winning strat-
egy of Player-0, namely, s ∈ WR0 ∩ S . �

The winning region of Player-0 in Pφ can be computed in
time polynomial in |V |·|E|·2k [17]. In this reduction, each G ∈
Πir contributes at most O(|S |) sets of G′. Therefore, |V | · |E| is
exponential in |G| · 2|φ|. Recall that k = 2O(|φ|). Consequently,
we have

Lemma 7. For the simple ATL∗ formula 〈〈A〉〉φ, J〈〈A〉〉φKM
can be computed in 2EXPTIME.

Example 2. Let us continue with the ACGS Mr = (G, π)
and ATL formula ϕr from Example 1. The DPA Aq1Uq2 =

(P, 2{q1,q2}, δ, p0,R) is shown in Figure 3, where R(p0) =

R(p2) = 1 and R(p1) = 0. The parity game Pϕr starting from

p0

p1{q2}
{q1}

{q1}

{q1, q2}
∅

{q2}
{q1, q2}

p2

{q1}
∅

{q2}
{q1, q2}

∅

FIGURE 3. The DPA Aq1Uq2 .

s0 is shown in Figure 4, where the circle-shape vertices are
controlled by Player-0, the others are controlled by Player-1,
the ranks of the vertices containing state p1 are 0, and the
ranks of the other vertices are 1. We can see that s0 < WR0.
Hence,Mr, s0 6|= ϕr.

It is known that the model-checking problem of simple
ATL∗IR on CGSs is 2EXPTIME-complete [1]. We have that:

Theorem 4. The model-checking problem for simple ATL∗ is
2EXPTIME-complete.

B. MODEL-CHECKING FOR GENERAL ATL∗

The model-checking algorithm (shown in Algorithm 2) for
general ATL∗ follows Algorithm 1, where the procedure for
simple ATL is replaced by the one for simple ATL∗. We also
extend ATL∗ with the epistemic modalities Kiϕ,EAϕ,DAϕ
and CAϕ, leading to the logic ATLK∗.

Algorithm 2: ATL∗ model-checking algorithm
Input: An ACGSM = (G, π) and an ATL∗ formula ϕ
Output: JϕKM

1 Function MC(M, ϕ)
2 switch ϕ :
3 case q : return {s ∈ S | q ∈ λ(s)};
4 case ¬ϕ′ : return S \ MC(M, ϕ′);
5 case ϕ1 ∧ ϕ2 : return MC(M, ϕ1) ∩ MC(M, ϕ2);
6 case Kiϕ

′ : return {s ∈ S | [s]∼i ⊆ MC(M, ϕ′)};
7 case EAϕ

′ : return {s ∈ S | [s]∼
E
A ⊆ MC(M, ϕ′)};

8 case DAϕ
′ : return {s ∈ S | [s]∼

D
A ⊆ MC(M, ϕ′)};

9 case CAϕ
′ : return {s ∈ S | [s]∼

C
A ⊆ MC(M, ϕ′)};

10 case 〈〈A〉〉φ :
11 foreach sub-state-formula ϕ′ in φ do
12 Replace ϕ′ by a fresh atomic proposition qϕ′

in ϕ, and let λ(qϕ′) := MC(M, ϕ′);
13 J〈〈A〉〉φKM := WR0 ∩ S ;
14 return J〈〈A〉〉φKM;

By Lemma 7, the model-checking problem for ATLK∗ on
ACGSs can be solved in 2EXPTIME.

Theorem 5. The model-checking problem for ATL∗ (hence
ATLK∗) on ACGSs is 2EXPTIME-complete.

IX. IMPLEMENTATION AND EXPERIMENTS
We implement the ATLK/ATLK∗ model-checking algorithms
in MCMAS [18] and carry out several experiments. The tool
GOAL [19] is used to transform LTL formulae to DPA and
compute winning regions of parity games. All models in our
experiments are based on the existing benchmarks in the
literature. All experiments were conducted on a desktop with
1.70GHz Intel Core E5-2603 CPU and 32GB of memory.

A. CASTLE GAME
In Castle Game [20], there are several agents modeling
workers and an environment agent. Each worker works for
the benefit of a castle, and the environment keeps track of the
Health Points (HP) of castles. Each castle preserves an HP up
to 3, and 0 means it is defeated. Workers are able to attack a
castle which they do not work for, or defend the castle which
they work for, or do nothing. Any agent cannot defend its
castle twice in a row, it must wait 1 step before being able
to defend again. The castle gets damaged if the number of
attackers is greater than the number of defenders, and the

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

s0

(s0, f2) (s0, f3)

f1 = {(1, s0) 7→ a, (1, s1) 7→ a, (1, s2) 7→ a, (1, s3) 7→ a, (1, s4) 7→ b}
f2 = {(1, s0) 7→ b, (1, s1) 7→ a, (1, s2) 7→ a, (1, s3) 7→ a, (1, s4) 7→ b}
f3 = {(1, s0) 7→ a, (1, s1) 7→ a, (1, s2) 7→ b, (1, s3) 7→ a, (1, s4) 7→ b}
f4 = {(1, s0) 7→ b, (1, s1) 7→ a, (1, s2) 7→ b, (1, s3) 7→ a, (1, s4) 7→ b}
f⊥ is the function with empty domain

(s0, f1) (s0, f4)

(s0, p0, f1, ∅) (s0, p0, f2, ∅) (s0, p0, f3, ∅) (s0, p0, f4, ∅)

(s0, p0, f1, f⊥, ∅) (s0, p0, f2, f⊥, ∅) (s0, p0, f3, f⊥, ∅) (s0, p0, f4, f⊥, ∅)

(s1, p0, f1, {g1})

g1 = {(2, s0) 7→ a, (2, s3) 7→ a} g2 = {(2, s0) 7→ b, (2, s3) 7→ b}
g3 = {(2, s0) 7→ a, (2, s3) 7→ a, (2, s1) 7→ a}
g4 = {(2, s0) 7→ a, (2, s3) 7→ a, (2, s2) 7→ a}
g5 = {(2, s0) 7→ a, (2, s3) 7→ a, (2, s2) 7→ a, (2, s1) 7→ a}
g6 = {(2, s0) 7→ a, (2, s3) 7→ a, (2, s4) 7→ b}

(s2, p0, f1, {g1})
(s3, p0, f1, {g2})

(s3, p0, f2, {g2})

(s4, p0, f2, {g1})

(s1, p0, f3, {g1})

(s2, p0, f3, {g1})

(s3, p0, f3, {g2})

(s3, p0, f4, {g2}) (s4, p0, f4, {g1})

(s1, p0, f1, f⊥, {g1}) (s3, p0, f1, f⊥, {g2})
(s2, p0, f1, f⊥, {g1})

(s4, p0, f2, f⊥, {g1})

(s3, p0, f2, f⊥, {g2}) (s1, p0, f3, f⊥, {g1})

(s2, p0, f3, f⊥, {g1}) (s3, p0, f4, f⊥, {g2})

(s3, p0, f3, f⊥, {g2}) (s4, p0, f4, f⊥, {g1})(s1, p1, f1, {g3})

(s4, p0, f2, {g6})(s1, p0, f1, {g4})

(s1, p0, f1, f⊥, {g4})

(s1, p1, f1, {g5})

(s2, p0, f3, {g4})

(s4, p0, f2, f⊥, {g6})

(s1, p1, f3, {g3})
(s4, p0, f4, {g6})

(s4, p0, f4, f⊥, {g6})

(s1, p1, f1, f⊥, {g3})

(s1, p1, f1, f⊥, {g5})

(s1, p1, f3, f⊥, {g3})

(s2, p0, f3, f⊥, {g4})

FIGURE 4. The parity game Pϕr starting from the state s0 with accepting plays highlighted in blue color.

difference influences its HP. In this model, the number of
states is 8000 × 4n, the environment agent has 1 local action,
and each worker agent has 4 local actions, where n denotes
the number of workers.

In this experiment, we consider an ACGS consisting of
three worker agents w1,w2,w3 and an environment agent e,
where worker wi works for the castle ci.

• ϕ1 ≡ 〈〈{w1,w2}〉〉F(castle3De f eated): expresses that
workers w1 and w2 can make castle c3 defeated, no
matter which strategies the worker w3 uses.

• ϕ2 ≡ 〈〈{w1,w2}〉〉F(allDe f eated): expresses that work-
ers w1 and w2 can make all the castles defeated, no
matter which strategies the worker w3 uses.

The results are shown in Table 1, where (σ1, σ2, σ3, σ4) in
each row denotes the strategy types of agents e,w1,w2,w3,
N/A denotes timeout (2.5 hours), Y (resp. N) denotes that
the model satisfies (resp. fails) the formula, and columns
2–4 (resp. 5–7) show total time (in seconds) and result of
verifying ϕ1 (resp. ϕ2) using Algorithm 1 and Algorithm 2,
respectively.

We observe that: (1) the strategy types of agents do affect

TABLE 1. Results of Castle Game

π
ϕ1 ϕ2

Alg. 1 Alg. 2 SAT Alg. 1 Alg. 2 SAT
(IR, IR, IR, IR) N/A 20.295 Y N/A 18.178 Y
(IR, IR, IR, ir) N/A 7523.67 Y N/A 7377.44 Y
(IR, IR, ir, IR) N/A 31.904 Y N/A 30.578 N
(IR, ir, IR, IR) N/A 32.446 Y N/A 31.259 N
(IR, IR, ir, ir) N/A 3402.56 Y N/A 3451.59 N
(IR, ir, IR, ir) N/A 3294.51 Y N/A 3366.71 N
(IR, ir, ir, IR) 5.822 24.254 Y 77.514 23.37 N
(IR, ir, ir, ir) 13.791 113.493 Y 45.679 113.647 N

the performance and results. In particular, the time signifi-
cantly increases when w3 is ir-typed while w1 or w2 is IR-
typed; (2) Algorithm 1 is more efficient when both w1 and w2
are ir-typed; otherwise and Algorithm 2 is more efficient.
This is because the number of possible strategies of w1 and
w2 is small (using Lemma 2) if both w1 and w2 are ir-typed.

B. DINING CRYPTOGRAPHERS PROTOCOL
Dining Cryptographers Protocol is one of anonymity proto-
cols aimed at establishing the privacy of principals during
an exchange [13]. The dining cryptographers protocol can

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Results of Dining Cryptographers Protocol

#Crypts #States Alg. 1 Alg. 2
ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

3 160 0.022 0.016 0.013 6.439 5.838 5.852
4 384 0.059 0.049 0.028 6.928 6.744 7.242
5 896 0.133 0.114 0.049 8.839 8.874 8.88
6 2048 0.315 0.328 0.163 12.567 12.724 12.865
7 4608 0.929 1.388 0.382 22.938 23.411 23.654
8 10240 3.463 4.022 0.834 60.642 60.583 63.064
9 22528 9.19 8.913 1.721 266.844 240.003 254.293
10 49152 21.988 21.927 5.094 1712.62 1588.06 1762.88

be modeled as a MAS. In this game, n cryptographers share
a meal around a circular table. Either one of them or their
employer paid the bill. They want to know whether it was
sponsored by their employer without revealing the identity
of the payer (if one of them did pay). The protocol works
as follows: each cryptographer 1) tosses a coin and shows
the outcome to his/her right-hand neighbour, 2) announces
whether the two coins agree or not if he/she is not payer,
otherwise announces the opposite of what he/she sees. Their
employer is the payer if an even number of cryptographers
claiming that the two coins are different, otherwise not. For
experimental purpose, we allow the cryptographer who paid
for the meal announces either the two coins agree or not no
matter what he/she saw.

In this experiment, n ranges from 3 to 10, two cryptogra-
phers use ir-strategies, and one of them should be the payer.
The others all use IR-strategies. We verify three formulae ψ1,
ψ2 and ψ3, where ψi expresses that if the number of “sayd-
ifferent" is odd and the i-th cryptographer is not the payer,
then he/she knows that the bill is paid by one of the others,
but cannot tell exactly who is the payer. For instance, in the
three cryptographers case, ψ1 ≡ 〈〈∅〉〉G((odd ∧ ¬c1paid) →
((Kc1(c2paid ∨ c3paid)) ∧ ¬Kc1c2paid ∧ ¬Kc1c3paid)).

The results are shown in Table 2, where column 1 gives
the number of cryptographers, column 2 gives the number of
states, columns 3–5 (resp. columns 6–7) show the total time
of respectively verifying ψ1, ψ2 and ψ3 using Algorithm 1
(resp. Algorithm 2). Both ψ1 and ψ2 are satisfied by all
the models, while ψ3 not. We observe that Algorithm 1 is
more efficient than Algorithm 2, as the coalitions in all the
formulae are ∅. From this experiment, one may conclude the
reasonable scalability of our tool.

C. BOOK STORE SCENARIO

The Book Store Scenario depicts a deal between two agents:
a supplier (S) and a purchaser (P) [18]. Initially, S is waiting
for an order from P, and P is ready for initiating a trade. Upon
receiving an order of some e-good from P, S can make a
decision to accept the order or not, and later notifies P. If S
accepts, then P can pay the fee. Once paid, S can either reject
the payment or accept and deliver the good. If P received the
good, then trade is completed. During the trade, P can revoke
the order, both S and P can terminate the trade, after which
the information of the trade should be symmetric at any time.

TABLE 3. Results of Book Store Scenario

π
ϕ1 ϕ2

Alg. 1 Alg. 2 SAT Alg. 1 Alg. 2 SAT
(IR, IR) 4.237 11.264 Y 0.08 5.566 Y
(IR, Ir) 4.102 12.185 Y 0.081 5.124 Y
(IR, ir) 4.094 11.459 Y 0.081 5.26 Y
(Ir, IR) 4.095 17.398 Y 0.081 6.096 Y
(Ir, Ir) 4.086 30.649 Y 0.082 7.183 Y
(Ir, ir) 4.112 32.985 Y 0.082 8.009 Y
(ir, IR) 4.162 17.842 N 0.082 5.96 Y
(ir, Ir) 4.144 31.155 N 0.082 7.592 Y
(ir, ir) 4.157 30.73 N 0.082 7.473 Y

In this model, S has 15 local states and 13 actions, and P has
12 local states and 7 actions. In this experiment, we verify the
model against the following formulae:

• ϕ1 ≡ 〈〈∅〉〉G((S &P_no_T)→ (KS 〈〈{S , P}〉〉F trd_end)):
expresses that if neither S nor P terminates the trade
(i.e., S &P_no_T is true), then S knows that they can
cooperatively complete the trade eventually.

• ϕ2 ≡ 〈〈{S , P}〉〉(S &P_no_T U (trd_end ∧ ¬trd_succ)):
expresses that the trade can end by P’s requiring for
refund.

The results are shown in Table 3. Each row presents the
result of one of strategy type combinations of S and P, for
instance, (IR, ir) denotes that S has an IR-strategy while P
has ir-strategy. Columns 2-4 (resp. columns 5-7) show total
time and results of verifying ϕ1 (resp. ϕ2) using Algorithm 1
(resp. Algorithm 2). The results of ϕ1 confirm that strategy
types affect the truth of formula. Algorithm 1 performs better
than Algorithm 2 both on ϕ1 and ϕ2 in this experiment.

X. RELATED WORK
The family of alternating-time temporal logics (ATL, ATL∗

and AMC [1]) for reasoning about games was introduced
with motivations partially from MASs. Model-checking al-
gorithms were also given with IR-strategies. [21] extended
ATL with knowledge operators and proposed correspond-
ing model-checking algorithms. In their work, epistemic
accessibility relations are considered in the interpretation of
knowledge operators, but not for the strategies and outcomes.
This means that agents still use IR strategies for collation
modalities 〈〈A〉〉ψ. This issue was discussed in [22] which
proposed an idea of iR-strategies. [2] introduced the notion
of imperfect recall into ATL/ATL∗, and systematically in-
vestigated the complexity of model-checking problems for
ATL/ATL∗ under four different strategic types. Importantly,
with iR-strategies the model-checking problem becomes un-
decidable [5]. Authors in [6] introduced knowledge operators
into AMC, studied its semantics and proposed a model-
checking algorithm for the alternation-free fragment under
the imperfect information setting. [8] further conducted a
comprehensive comparison of variants of ATL/ATL∗ with
different strategic abilities. The study corroborates that the
agents’ strategic abilities play a prominent role in logic
semantics.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In the previous work, strategies of agents are revocable,
i.e., when it comes to achieve a goal in the (nested) subfor-
mulae, previously selected strategies are deleted. [4] intro-
duced a variant of ATL with irrevocable strategies under the
imperfect recall setting. It was generalized into ATL/ATL∗

with strategy contexts [23], which allowed agents to drop or
inherit previously selected strategies.

Two versions of strategic logics were introduced by [24]
and [25], and the model-checking problems were investi-
gated therein under the IR-setting. Strategic logics extend
LTL with first-order quantifications over strategies which
naturally capture the multi-player game nature in the evo-
lution of MASs. Knowledge operators were introduced in
the strategic logic [25] where a model-checking algorithm
with ir-strategies was given [9]. Here all agents must take
ir-strategies (so the potential inconsistency can be ruled
out), but no other strategic abilities were considered. To
gain decidability under iR-setting, specific restrictions on
the abilities of the agents were proposed in, for instance,
[26]–[32]. Several subsets of the strategic logics [25] such
as BSIL [33], TCL [34] were proposed and studied under the
IR-setting in order to maintain a low complexity.

Our work is orthogonal to the existing work which defines
the strategic abilities at the semantics level, but takes a more
syntactic level by strengthening the model.

XI. CONCLUSION AND FUTURE WORK
In this paper, we discussed the problem of existing semantics
of ATL/ATL∗, and advocated the approach to make agents’
abilities explicit in modeling. For this purpose, we intro-
duced an extension of standard CGS model, named ACGS,
which defines agents’ abilities at the syntactic level of the
system model. We explored the effects of strategy types in
the semantics, in particular model-checking, of ATL/ATL∗

over ACGSs, and provided model-checking algorithms with
identified complexity. The algorithms are implemented in
a tool MCMAS-ACGS, which has been applied to several
applications to demonstrate the feasibility and effectiveness.
This work represents the first systematic study towards differ-
ent agents’ abilities at the syntactic level, which is in contrast
to previous approaches at the semantic level.

Currently we use ATL/ATL∗ as the specification, but the
methodology can be extended to other logics such as Strategy
Logic, and other agents’ abilities such as strategy contexts.
Several questions are left open such as axiomatization and
satisfiability problem. We leave them for future work.

REFERENCES
[1] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time temporal

logic,” Journal of the ACM, vol. 49, no. 5, pp. 672–713, 2002.
[2] P. Schobbens, “Alternating-time logic with imperfect recall,” Electronic

Notes in Theoretical Computer Science, vol. 85, no. 2, pp. 82–93, 2004.
[3] W. Jamroga and W. van der Hoek, “Agents that know how to play,”

Fundamenta Informaticae, vol. 63, no. 2-3, pp. 185–219, 2004.
[4] T. Ågotnes, V. Goranko, and W. Jamroga, “Alternating-time temporal

logics with irrevocable strategies,” in Proceedings of the 11th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK), 2007, pp.
15–24.

[5] C. Dima and F. L. Tiplea, “Model-checking ATL under imperfect in-
formation and perfect recall semantics is undecidable,” CoRR, vol.
abs/1102.4225, 2011.

[6] N. Bulling and W. Jamroga, “Alternating epistemic mu-calculus,” in Pro-
ceedings of the 22rd International Joint Conference on Artificial Intelli-
gence, 2011, pp. 109–114.

[7] F. Laroussinie and N. Markey, “Augmenting ATL with strategy contexts,”
Information and Computation, vol. 245, pp. 98–123, 2015.

[8] N. Bulling and W. Jamroga, “Comparing variants of strategic ability:
how uncertainty and memory influence general properties of games,”
Autonomous Agents and Multi-Agent Systems, vol. 28, no. 3, pp. 474–
518, 2014.

[9] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano, “Practical verifica-
tion of multi-agent systems against SLK specifications,” Information and
Computation, vol. 261, no. Part, pp. 588–614, 2018.

[10] F. Laroussinie, N. Markey, and G. Oreiby, “On the expressiveness and
complexity of ATL,” Logical Methods in Computer Science, vol. 4, no. 2,
2008.

[11] M. Cohen, M. Dam, A. Lomuscio, and F. Russo, “Abstraction in model
checking multi-agent systems,” in Proceedings of the 8th International
Joint Conference on Autonomous Agents and Multiagent Systems, 2009,
pp. 945–952.

[12] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite state concurrent systems using temporal logic specifications:
A practical approach,” in Proceedings of the Conference Record of the
10th Annual ACM Symposium on Principles of Programming Languages,
1983, pp. 117–126.

[13] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano, “MCMAS-SLK:
A model checker for the verification of strategy logic specifications,” in
Proceedings of the 26th International Conference on Computer Aided
Verification, 2014, pp. 525–532.

[14] F. Laroussinie, N. Markey, and P. Schnoebelen, “Model checking CTL+

and FCTL is hard,” in Proceedings of the 4th International Conference on
Foundations of Software Science and Computation Structures, 2001, pp.
318–331.

[15] N. Piterman, “From nondeterministic Büchi and Streett automata to deter-
ministic parity automata,” in Proceedings of the 21st IEEE Symposium on
Logic in Computer Science, 2006, pp. 255–264.

[16] Y. Gurevich and L. Harrington, “Trees, automata, and games,” in Proceed-
ings of the 14th Annual ACM Symposium on Theory of Computing, 1982,
pp. 60–65.

[17] M. Jurdzinski, “Small progress measures for solving parity games,” in
Proceedings of the 17th Symposium on Theoretical Aspects of Computer
Science, 2000, pp. 290–301.

[18] A. Lomuscio, H. Qu, and F. Raimondi, “MCMAS: an open-source model
checker for the verification of multi-agent systems,” International Journal
on Software Tools for Technology Transfer, vol. 19, no. 1, pp. 9–30, 2017.

[19] Y. Tsay, Y. Chen, M. Tsai, K. Wu, and W. Chan, “GOAL: A graphical tool
for manipulating büchi automata and temporal formulae,” in Proceedings
of the 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2007, pp. 466–471.

[20] J. Pilecki, M. A. Bednarczyk, and W. Jamroga, “Model checking properties
of multi-agent systems with imperfect information and imperfect recall,”
in Proceedings of the 7th International Conference on Intelligent Systems,
2014, pp. 415–426.

[21] W. van der Hoek and M. Wooldridge, “Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications,” Studia
Logica, vol. 75, no. 1, pp. 125–157, 2003.

[22] W. Jamroga, “Some remarks on alternating temporal epistemic logic,”
Proceedings of the Workshop on Formal Approaches to Multi-Agent
Systems, pp. 133–140, 2003.

[23] A. D. C. Lopes, F. Laroussinie, and N. Markey, “ATL with strategy
contexts: Expressiveness and model checking,” in Proceedings of the
30th Conference on Foundations of Software Technology and Theoretical
Computer Science, 2010, pp. 120–132.

[24] K. Chatterjee, T. A. Henzinger, and N. Piterman, “Strategy logic,” Infor-
mation and Computation, vol. 208, no. 6, pp. 677–693, 2010.

[25] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi, “Reasoning about
strategies: On the model-checking problem,” ACM Transations on Com-
putational Logic, vol. 15, no. 4, pp. 34:1–34:47, 2014.

[26] R. Berthon, B. Maubert, and A. Murano, “Decidability results for ATL*
with imperfect information and perfect recall,” in Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, 2017, pp.
1250–1258.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[27] R. Berthon, B. Maubert, A. Murano, S. Rubin, and M. Y. Vardi, “Strategy
logic with imperfect information,” in Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, 2017, pp. 1–12.

[28] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin, “Verification of
broadcasting multi-agent systems against an epistemic strategy logic,”
in Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2017, pp. 91–97.

[29] ——, “Verification of multi-agent systems with imperfect information and
public actions,” in Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, 2017, pp. 1268–1276.

[30] B. Maubert and A. Murano, “Reasoning about knowledge and strate-
gies under hierarchical information,” in Proceedings of the Sixteenth
International Conference on Principles of Knowledge Representation and
Reasoning:, 2018, pp. 530–540.

[31] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin, “Decidable
verification of multi-agent systems with bounded private actions,” in
Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, 2018, pp. 1865–1867.

[32] W. Jamroga, V. Malvone, and A. Murano, “Natural strategic ability under
imperfect information,” in Proceedings of the 18th International Confer-
ence on Autonomous Agents and MultiAgent Systems, 2019, pp. 962–970.

[33] F. Wang, S. Schewe, and C. Huang, “An extension of ATL with strategy
interaction,” ACM Transactions on Programming Languages and Systems,
vol. 37, no. 3, p. 9, 2015.

[34] C. Huang, S. Schewe, and F. Wang, “Model-checking iterated games,”
Acta Inf., vol. 54, no. 7, pp. 625–654, 2017.

16 VOLUME 4, 2016

