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Bug localization represents one of the most expensive, as well as time-consuming, activities

during software maintenance and evolution. To alleviate the workload of developers, numerous
methods have been proposed to automate this process and narrow down the scope of reviewing

buggy ¯les. In this paper, we present a novel buggy source-¯le localization approach, using the

information from both the bug reports and the source ¯les. We leverage the part-of-speech

features of bug reports and the invocation relationship among source ¯les. We also integrate an
adaptive technique to further optimize the performance of the approach. The adaptive tech-

nique discriminates Top 1 and Top N recommendations for a given bug report and consists of

two modules. One module is to maximize the accuracy of the ¯rst recommended ¯le, and the
other one aims at improving the accuracy of the ¯xed defect ¯le list. We evaluate our approach

on six large-scale open source projects, i.e. ASpectJ, Eclipse, SWT, Zxing, Birt and Tomcat.

Compared to the previous work, empirical results show that our approach can improve the

overall prediction performance in all of these cases. Particularly, in terms of the Top 1 recom-
mendation accuracy, our approach achieves an enhancement from 22.73% to 39.86% for

ASpectJ, from 24.36% to 30.76% for Eclipse, from 31.63% to 46.94% for SWT, from 40% to 55%

for ZXing, from 7.97% to 21.99% for Birt, and from 33.37% to 38.90% for Tomcat.
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1. Introduction

Bug tracking systems (BTSs) are a class of dedicated tools to keep track of bug-

related issues for software projects. They provide critical supports and are widely

used by developers during software development and maintenance phases. Usually, a

new software project may set up an account in a robust BTS, such as Bugzilla, to

gather potential defects. If multiple shareholders of the software, such as developers,

testers or even users, come across a defect, they can resort to the BTS and create an

issue report to describe the situation. When a bug report is received and con¯rmed, it

will be assigned to a developer for ¯xing [1]. The developer must ¯rst carefully read

the bug report, especially the descriptive parts (e.g. \Summary" and \Description")

and elicit the keywords such as class names or method names, and then review source

code ¯les to ¯nd and ¯x the buggy parts. The above activity is indeed time-

consuming and tedious, especially for large projects with thousands of source ¯les.

Manual localization requires high expertise and imposes a heavy burden to devel-

opers, which inevitably hampers productivity. Therefore, it is highly desirable to

automate this process and recommend potential buggy source ¯les to developers with

a given bug report.

In recent years, some researchers have proposed various approaches to produce a

ranking list of buggy ¯les for processing a bug report [2]. The ranking list can narrow

down a developer's search scope and thus help enhance debugging productivity. The

basic technique of these approaches is standard information retrieval (IR). It returns

a ranking list of buggy ¯les based on the similarity scores between the textual parts of

a bug reports and the source code. However, the important information of bug

reports does not only come from the textual information, but also from other parts.

For example, Sisman et al. extended the IR framework by incorporating the histories

of defects and modi¯cations stored in versioning tools [3]. The histories might

complement the vague description in the textual parts of the bug reports and

improve the accuracy of ranking buggy ¯les. Indeed, the source ¯les are coded in

some speci¯c programming language, such as Java or C++, which, compared to

natural languages, have di®erent grammatical/semantic features. Therefore, tradi-

tional natural language processing techniques from IR ¯eld cannot be applied di-

rectly to extract the discriminative features of the source code. In light of this, Saha

et al. utilized code constructs and presented a structured IR-based technique [4].

They divided the code of each ¯le into four parts, namely, Class, Method, Variable

and Comments. Furthermore, the similarity score between a source ¯le and a bug

report was calculated by summing up the eight similarity scores between the source

¯les and bug reports. In [1], Zhou et al. integrated the information of ¯le length and

similar bugs to strengthen the traditional Vector Space Model. After that, many

other researchers have explored combining other attributes of the bug reports and

the source code to further improve the accuracy of bug localization [5–7].

We observe that most of the existing work, if not all, treats the words (apart from

stop words) equally without discrimination. To be more speci¯c, they do not consider
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the part-of-speech (POS) features of underlying words in the bug reports. The part-

of-speech, simply \POS" or \PoS" for short, represents any particular category of

words which have similar grammatical properties in nature language, such as noun,

verb, adjective, adverb, conjunction, etc. Words with the same part of speech gen-

erally display similar behavior in terms of syntax, and play similar roles within the

grammatical structure of sentences. In reality, to understand the meaning of a bug

report, POS of each word in a sentence is of particular importance. For example,

after traditional IR-based preprocessing, the summary of Eclipse Bug Report

#84078: \RemoteTreeContentManager should override default job name" is trans-

formed into \RemoteTreeContentManager override default job name". The noun

\RemoteTreeContentManager" directly indicates the buggy ¯le, and the noun

phrase \job name" is the substring of a method in the buggy ¯le. By contrast, the

verb \override" does not exist in the defect ¯le and the adjective \default" is not a

discriminative word for Java code. Thus, these words actually provide very little help

during debugging.

Textual similarity can indeed help identify potential buggy source ¯les. For ex-

ample, Fig. 1 illustrates a textual snippet of a real bug report (ID: 76255) from

Eclipse 3.1 and the bug-¯x information. Both the summary and the description focus

on the source ¯le \AntUtil.java" and the ¯le is indeed at the ¯rst place of the ranking

list, but the rest two ¯xed ¯les \AntElementNode.java" and \AntNode.java" con-

tributing to this defect are at the 4302nd and the 11459th places on the same list

ranked solely by similarity [1]. In this case, we observe that most ¯xed ¯les for the

same bug report have invocation relationship between them. For example, the ¯le

\AntUtil.java" invokes the other two ¯les. Such underlying logical relationship

cannot be captured by the grammatical similarity. This fact motivates us to combine

the invocation information with the traditional IR-based methods to improve the

accuracy of buggy source ¯les identi¯cation.

In [8], Kochhar et al. sinvestigated the potential biases in bug localization. They

de¯ned \localized bug reports" in which the buggy ¯les have been identi¯ed in the

report itself. Namely, the class names or method names of the buggy ¯les exist in the

bug reports. Motivated by this, in our approach, we ¯lter the source ¯les and only

Fig. 1. Bug report example.
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preserve the class names and method names to reduce the noisy localization for the

localized bug reports. However, this process also introduces potential issues. If a bug

report is a localized one, this method indeed can lift up the rankings of its buggy ¯les.

But this ¯ltering strategy could also lift other irrelevant ¯les up to the top places as a

side e®ect. Moreover, if a bug report is not a localized one ��� for example, the bug

report does not contain class names or method names but its buggy ¯les are ranked

high on the list ��� this ¯ltering strategy will reduce their rankings.

In light of the above considerations, we need a more comprehensive approach to

combine di®erent sources of information to give a more accurate buggy source ¯le

localization based on bug reports. We believe that di®erent types of words in bug

reports contribute di®erently to the bug localization process and are worth treating

distinctively. Our approach takes the POS of index terms as well as the underlying

invocation relationship into account. In order to take advantages of the localized bug

reports and avoid the decrease of global performance, we use di®erent ranking

strategies for Top 1 and Top N recommendations, and propose an adaptive ap-

proach, taking the demand of the developers into account.

The main contributions of this paper are as follows:

(1) We propose a POS based weighting method to automatically adjust the weight

of terms in bug reports. Particularly, we emphasize the importance of noun

terms. This method sets di®erent weights to terms from the summary and de-

scription parts in bug reports in order to distinguish their importance.

(2) We consider the invocation relationship between source code ¯les to lift up the

ranking of the ¯les that are invoked by the ¯le mentioned in bug reports with the

highest similarity scores. This method can help increase the global performance,

like MRR.a

(3) We propose an adaptive approach to maximize the accuracy of recommenda-

tions. The approach sets a selection variable opt 2 ftrue, falseg for users. We

conduct a comparative study on the same dataset in [1], which con¯rms the

performance improvement by our approach.

This paper is based on our previous work [9], but with signi¯cant extensions.

Firstly, we carry out more extensive experiments: the number of examined open

source projects is doubled ��� from three to six. Accordingly, the number of bugs

and source ¯les have been increased from 3459 to 8496 and from 19832 to 32162

respectively, which, to some extent, mitigates the external threats to validity.

Secondly, we optimize the process of rendering invocation relationship. In our pre-

vious paper [9], we simply used the string-based match to ¯nd the invocation ¯les of

the highest scored ¯le. This approach is easy to implement, but its performance

(implemented in module 2 of our approach; cf. Sec. 4) is rather poor and the invo-

cation relation has to be calculated each time. To mitigate the problem, we leverage

Eclipse Plugin CallHierarchy (org.eclipse.jdt.internal.corext.callhierarchy) to

aMean Reciprocal Rank.
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statically analyze the source code. This can help extract the invocation relation

among source ¯les in a project more accurately and avoid introducing noises. Also,

the corpus-based method may explore some implicit, but important, invocation re-

lation. Furthermore, in order to reduce the overhead, we produce the invocation

corpus for module 2 which can be reused once derived.

The rest of the paper is organized as follows. Section 2 presents some related

research. Section 3 brie°y introduces the background of our work. Section 4 describes

the POS oriented weighting method and the adaptive defect recommendation ap-

proach. We experiment with open source data and discuss the results in Sec. 5.

Section 6 discusses the threat to validity, and Sec. 7 concludes the paper.

2. Related Work

Software debugging is time-consuming but also crucial in software life cycles. Soft-

ware defect localization becomes one of the most di±cult tasks in the debugging

activity [10]. Therefore, automatic defect localization techniques that can guide

programmers are much-needed. Dynamical bug localization approaches can help

developers ¯nd defects based on spectrum [11]. A commonly-used method of these

approaches is to produce many sets of successful runs and failed runs for computing

suspiciousness of program elements via program slicing. The granularity of suspi-

ciousness elements can be a method or a statement. Although the dynamic approach

can locate the defect to a statement, the generation of test cases and its selection are

also complex [12].

Many researchers have tried to use static information of bugs and source code for

coarse-grained localization [13]. They proposed some IR-based approaches combin-

ing with some useful attributes of software artifacts and de¯ned the suspicious buggy

¯les depending on the similarity scores between bug reports and source ¯les. Usually,

IR-based models are used to represent the textual information of the bug report and

source code, such as Latent Sematic Indexing (LSI ), Latent Dirichlet Allocation

(LDA) and Vector Space Model (VSM ), which are feasible for numerical calcula-

tion [14–16]. In [17], Lukins et al. showed that LDA can be applied successfully to

source code retrieval for bug localization and compared with LSI-based approaches.

The empirical result suggests LDA-based approach is more e®ective than the

approaches using LSI alone. These works, however, did not consider the POS fea-

tures of the underlying reports. Gupta et al. [18] attempted to use the POS tagger to

help understand the regular, systematic ways a program element is named, but they

did not apply the technique to the task of bug localization.

Apart from the e®orts in defect localization, there is another thread of relevant

work on the bug report classi¯cation [19]. Before applying the bug localization

techniques, it must be con¯rmed that the selected bug reports describe the real bugs

and then their ¯xed ¯les are extracted for evaluation, which may save much time and

reduce potential noise [8]. A lot of research has been conducted for reducing the noise

in bug reports [20]. They used the text of the bug reports and predicted the bug
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reports to be bug or non-bug with many techniques [21]. Zhou et al. proposed a

hybrid approach by combining both text mining and data mining techniques to

automate the prediction process [22]. These works either empirically studied the

impact of noise existing in the software repository or provided e®ective ways to

reduce the noise. But they did not directly address the defect localization problem as

studied in our paper.

In resent years, Zhou et al. have used the VSM to represent the texts and taken

the length of source ¯les into consideration combining the similar bugs to revise the

ranking list. A dedicated tool, i.e. BugLocatorb is implemented to facilitate the

approach [1]. Many other non-textual attributes are used to enhance the perfor-

mance, such as version history [3]. Saha et al. found that the code construct is

important for bug localization, so they proposed a structure information retrieval

approach [4]. Wang et al. combined the above three discoveries to increase the

results [5]. Moreover, Ye et al. have used the domain knowledge to cover all accessible

features to enhance the IR-based bug location technique [6]. In order to help the

developers pick an e®ectiveness approach proposed in the literature, Le et al. pre-

sented the approach APRILE to predict the e®ectiveness of the localization

tools [23]. The aforementioned bug localization e®orts took available software

metrics into account and paid more attention to the relationship between bug

reports, but they neglected the POS of bug reports and the invocation relationship

among source ¯les. Our work complements with the consideration from this aspect.

Besides spectrum and IR-based defect localization, some other analysis and

tracking methods have been applied to bug localization, such as [24, 25]. In [24],

DeMott et al. enhanced the code-coverage based fault localization by incorporating

input data tainting and tracking using a light-weight binary instrumentation tech-

nique. However, their approach mainly targets at a speci¯c class of software bugs, i.e.

memory corruption related errors. In [25], Zhang et al. observed that not all state-

ments in a static slice are equally likely to a®ect another statement and proposed a

prioritized static-slicing based technique to improve the fault localization. The work

is solely based on static analysis, without considering the information from bug

reports.

3. Background

3.1. Basic ranking framework

IR is a process to ¯nd the contents in a database related to the input queries. The

matching result is not unique, but consists of several objects with di®erent degrees of

relevance, forming a ranking list [26]. The basic idea of defect localization using IR is

to compute the similarity between textual information of a given bug report and the

source code of the related project. It takes the summary and description parts of a

bhttps://code.google.com/archive/p/bugcenter/.
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bug report as a query, the source ¯les as documents, and ranks the relevance

depending on similarity scores.

To identify relevant defect source ¯les, the textual part of bug reports and source

code are typically transformed into a suitable representation respecting a speci¯c

model. In our approach, we use the VSM (a.k.a. Term Vector Model) [27] which

represents a query or a ¯le as a vector of index terms.

In order to transform texts into word vectors more e±ciently, we need to pre-

process the textual information. The traditional text preprocessing involves three

steps: ¯rst, we replace all non-alphanumeric symbols with white spaces, and split

texts of bug reports into a stream of terms by white spaces. Second, meaningless or

frequently used terms called stop word, such as propositions, conjunctions and

articles, are all removed. Usually, the stop word list of the source code is totally

di®erent from natural language documents and is always composed of particular

words relying on programming languages. Third, all remaining words are trans-

formed into their basic form by the Poster Stemming Algorithm, which can nor-

malize the terms with di®erent forms.

After preprocessing, we take the rest terms of bug reports as index terms to build

vector spaces which represent each bug report and source ¯le as vectors. The weight

of an index term in a bug report is based on its Token Frequency (TF ) in the bug

report and its Inverse Document Frequency (IDF ) in the whole bug reports. The

same goes for the weight of an index term in a source ¯le. We assume that the smaller

the angle of two vectors is, the closer the two documents represented by the two

vectors are [28].

3.2. POS tagging

POS tagging is the process of marking up a term as a particular part of speech based

on its context, such as nouns, verbs, adjectives, and adverbs, etc. Because a term can

represent more than one part of speech at di®erent sentences, and some parts of

speech are complex or indistinct, it becomes di±cult to perform the process exactly.

However, research has improved the accuracy of POS tagging, giving rise to various

e®ective POS taggers such as TreeTagger, TnT (based on the Hidden Markov

model), Stanford tagger [29–31]. State of the art taggers highlight accuracy of circ

93% compared to the human's tagging results.

In recent years, researchers have tried to help developers in program compre-

hension and maintenance by analyzing textual information in software artifacts [32].

The IR-based framework is widely used and the POS tagging technique has dem-

onstrated to be e®ective for improving the performance [33, 34]. Tian et al. have

investigated the e®ectiveness of seven POS taggers on sampled bug reports; the

Stanford POS tagger and TreeTagger achieved the highest accuracy up to 90.5% [35].

In our study, the textual information of bug reports is composed in natural

language. As mentioned before, we have discovered that the noun-based terms are

more important for bug localization. Therefore, we have made use of POS tagging

Augmenting Bug Localization with Part-of-Speech and Invocation 931



techniques to label the terms and adjusted the weight of the terms in vector trans-

forming accordingly.

3.3. Evaluation metrics

Three metrics are used to measure the performance of our approach.

(1) Top N is the number of buggy ¯les localized in top N (N ¼ 1, 5, 10) of the

returned results. A bug is related to many buggy ¯les and if one of the buggy ¯les

is ranked in topN of the returned list, we consider the bug to be located in topN .

Moreover, the higher the metric value is, the better our approach performs.

(2) MRR (Mean Reciprocal Rank) [36] is a statistic measure for evaluating the

process that produces a sample of the ranking list to all queries. The reciprocal

rank of a list is the multiplicative inverse of the rank of the ¯rst correct answer.

The mean reciprocal rank is the average of the reciprocal ranks for all queries Q:

MRR ¼ 1

jQj
XjQj

i¼1

1

ranki
; ð1Þ

where ranki is the rank of the ¯rst correct recommended ¯le to bug report i and

jQj is the number of all bug reports.

(3) MAP (Mean Average Precision) [26] is a global measurement for all of the

ranking lists. It takes all of the rankings of the buggy ¯les into account. There are

possibly several relevant source code ¯les corresponding to a bug report, the

Average Precision (AP) for a bug report r can be calculated as:

APr ¼
XjSj
k¼1

P ðkÞ � posðkÞ
Numbers of Defective Files

; ð2Þ

where jSj is the number of source ¯les, and posðkÞ is the indicator representing

whether or not the ¯le at rank k is a real defect. P ðkÞ is the precision at the given

cut-o® rank k. MAP is the mean of the average precision values for all bug

reports.

For example, ZXingc project contains two bug reports #383 and #492. Assume

that the bug report #383 results from two buggy ¯les and the ¯nal rankings of these

¯les by our approach are 3 and 8, respectively. The bug report #492 relates to ¯ve

buggy ¯les and the ¯nal rankings of these ¯les by our approach are 1, 37, 101, 154 and

244. Thus, the Top 1 for the bug reports #383 and #492 are 3 and 1, respectively.

For MRR, the value can be calculated as:

MRR ¼ 1

2

X2

i¼1

1

ranki
¼ 1

2
� 1

3
þ 1

� �
¼ 2

3
: ð3Þ

chttps://github.com/zxing/zxing.

932 Y. Zhou et al.



The Average Precision (AP) for the ¯rst Zxing Bug Report #383 can be computed

as:

AP#383 ¼
X391
k¼1

P ðkÞ � posðkÞ
Numbers of Defective Files

¼ 1

2
� 1

3
þ 1

4

� �
¼ 0:29: ð4Þ

Similarly,

AP#492 ¼ 1

5
� 1þ 1

37
þ 1

101
þ 1

154
þ 1

244

� �
¼ 0:23: ð5Þ

Based on the above values, we then can get that the mean average precision (MAP)

for Project Zxing is 0.26.

These metrics are commonly used in the IR research. Particularly, many bug

localization studies adopt such metrics to evaluate the performance of their

approaches on given data sets [1, 4, 8, 37].

4. Approach

Our approach consists of two interconnecting modules and a parameter opt. The two

modules are:

. Module 1 is a revised VSM combining with POS oriented weighting method. A

ranking list for a certain bug report will be produced. In this module, we use a

revised VSM to represent the bug report and index the source code ¯les for sim-

ilarity calculation. The proposed weighting method was applied automatically to

adjust the weight of each term based on its tag. We note that the way of ¯ltering

the source code is determined by the parameter opt.

. Module 2 is based on the results of module 1. We use the invocation relationship to

further augment the accuracy of the results. In this module, we will search the

summary and description parts of a bug report for the class-name terms. If the

corresponding source ¯les of the class have been ranked high in module 1, their

invoking ¯les will be raised accordingly in the ranking lists.

The parameter opt is a Boolean indicator of our adaptive recommendation

depending on the developers' context. If the value of opt is set to be true, it means

developers want a single decisive, i.e. the most probable ¯le to this bug report; if its

value is false, it indicates a list of n ¯les would be provided.

Our approach leverages natural language processing techniques to adjust the

weights of terms depending on their POS, and takes advantage of heuristics in bug

reports to balance the importance of summary and description. Moreover, the in-

vocation relationship between source ¯les can be generated from program compre-

hension techniques based on static analysis. Figure 2 gives an overview of our

approach. The details will be elaborated below.
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4.1. Module 1 ��� Similarity calculation

In this module, the similarity scores between the new bug report and the candidate

source ¯les are calculated, and then an initial ranking list is produced. It is a pre-

requisite that the POS is tagged before the text preprocessing. Namely, the inputs to

the POS tagger are all complete sentences. We use the-state-of-the-art POS tagger

Stanford-Postaggerd to mark all of the terms of the bug reports.

Figure 3 illustrates the tagging results for the summary of AspectJ (Bug ID:

29769). The output includes words of the sentences and their parts of speech which

have been de¯ned in the English tagging model of Stanford-Postagger. We can see

that the words \Ajde", \AspectJ", \compiler" and \options" are all noun terms. We

duplicate the terms marked as \NN (noun, singular or uncountable)", \NNS (noun,

plural)", \NNP (proper noun, singular)" and \NNPS (proper noun, plural)" three

times and other terms twice to increase the weights of noun-based terms. Moreover,

this weighting strategy would not increase the dimension of VSM and thus it need

not keep the markings until the calculation step. We aim to highlight the nouns

comparing to others, thus the weights of the terms with all noun types increase

without any di®erence.

The descriptive parts, i.e. description and summary, of a bug report are regarded

as a query, but the signi¯cance of these two parts is di®erent [38]. In order to

highlight the summary, we follow the heuristics from [39] to increase its terms'

frequency twice of that of the description. For source ¯les, we ¯lter the source code

dhttp://nlp.stanford.edu/software/tagger.shtml.

New Bug Report

Source Files Text Filtering

Similarity Scores

Invoking
Files

File
length

Tagging Preprocessing

Preprocessing Indexing

VSM
Representation

Final
Recommendation

opt

Module 1

Module 2

opt

Query

Index

Fig. 2. The overview of our approach.

934 Y. Zhou et al.



before preprocessing, and set the Boolean parameter opt to determine what kind of

¯les are recommended. Because the empirical cases studied in our paper are pro-

grammed in Java, we leverage API of Eclipse JDT, namely ASTParser, to parse the

source code. ASTParser can analyze the main components of a source ¯le, such as

classes, methods, statements and annotations. The source code can be parsed as a

compilation unit. By calling the methods of this API, we can remove some useless

elements in the source code. In our approach, all annotations of source code are

¯ltered out. Moreover, if the value of the parameter opt is set to be true, only class

names and method names of the source ¯les will be reserved. We take the ¯ltered

source code ¯les as documents and the weight-processed bug reports as queries. In

this way, we can build a VSM to represent both texts based on the index terms of bug

reports and source code. The weight wt;d of a term t in a document d is computed

based on the term frequency (tf ) and the inverse document frequency (idf ), which are

de¯ned as follows:

wt;d ¼ tft;d � idft; ð6Þ
where tft;d and idft are computed as:

tft;d ¼
ft;d
td

; ð7Þ

idft ¼ log
nd

nt

� �
: ð8Þ

Here, ft;d is the number of the occurrences of term t in document d and td is the total

number of terms document d includes. nd refers to the number of all documents and

nt is the number of documents containing term t. Thus, wt;d is high if the occurrence

frequency of term t in document d is high and the term t seldom exists in other

documents. Obviously, if a term appears ¯ve times in a document, its importance

Fig. 3. The tagging results.
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should not be ¯ve times compared to the ones appearing once [26]. In view of this

point, we use the logarithm variant to adjust tft;d [40]:

tft;d ¼ logðft;dÞ þ 1: ð9Þ
The similarity score between a query and a document is the cosine similarity

calculated by their vector representations computed above:

Simt;d ¼
Pm

i¼1wti;q � wti;dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1w

2
ti;q

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1w

2
ti;d

q ; ð10Þ

where m is the dimension of the two vectors and wti;q (respectively wti;d) represents

the weight of term ti in query q (respectively document d).

Previous work has shown that large source code ¯les have a high possibility to be

defective [41, 42]. Our approach also takes ¯le length into account and sets a coef-

¯cient lens based on ¯le length to adjust the similarity scores. The range of lengths of

source code ¯les is usually large and we must map the lengths to an interval, namely

ð0:5; 1:0Þ. To this end, we ¯rst compute the average length avg of all source ¯les and

then calculate the standard deviation sd as:

sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðli � avgÞ2
n

s
; ð11Þ

where n is the total number of source ¯les. li is the length of source code ¯le i. We

have an interval (low, high) which is de¯ned as:

low ¼ avg� 3� sd; high ¼ avgþ 3� sd ð12Þ
and the length li of the source ¯le will be normalized as norm:

norm =

(13)
(li − low)
high − low

(14)

(15)

li ≤ low,

, low < li < high,

0.5,

6.0 ×
1.0, li high.

The coe±cient lens is computed as:

lens ¼ enorm

1þ enorm
: ð16Þ

Finally, the similarity score between a bug report (the query) and a source code ¯le

(the document) can be calculated as:

Simt;d ¼ lens�
Pm

i¼1wti;q � wti;dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1w

2
ti;q

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1w

2
ti;d

q : ð17Þ

We then obtain all of the similarity scores of source ¯les and bug report and thus

form a ranking list according to the scores.
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4.2. Module 2 ��� Invocation-based calibration

As usual, the summary only depicts one obvious defect ¯le and seldom contains

methods of other buggy ¯les, resulting in poor performance of locating the other

hidden buggy ¯les. In order to increase the ranking of all buggy ¯les and improve the

overall performance, we also leverage the invocation information between high-

ranked buggy ¯les to increase scores of the other buggy ¯les.

The textual information of a bug report has been processed already and may

include one or more class-name terms. We de¯ne the source ¯les corresponding to the

class-name terms as hitting ¯les, and the hitting ¯le which ranks the highest on the

initial ranking list produced by module 1 as hf. We hypothesize that the hf has

the highest possibility to be the defective source ¯le. Figure 4 shows the detailed

processing of the invoking method. First, we extract all class-name terms of a new

bug report r and collect the hitting ¯les corresponding to these terms. Next, we select

the highest ranking source ¯le hf of the hitting ¯les. We then review the invocation

corpus to ¯nd the invocation ¯les. At last, the ¯nal score (FScorer;inf) of the invoking

¯le inf in module 2 is calibrated as follows:

FScorer;inf ¼ a� Simr;hf þ ð1� aÞ � Simr;inf ; ð18Þ

Fig. 4. The detail of Module 2: Invoking method.
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where Simr;hf is the similarity score between the highest scored ¯le hf of the hitting

¯le and the bug report r, and Simr;inf is the similarity score between the ¯le inf

invoked by hf and the bug report r. a is the parameter of the formula which is

di®erent in various projects to further adjust the weight of Simr;inf .

The most important part of module 2 is the invocation corpus which is auto-

matically produced in advance by programs based on API of Call Hierarchy in

Eclipse. The structure of the invocation corpus of a project is similar to that of its

source code. In order to ¯nd the invocation ¯les of hf, we need to locate the class

folder by utilizing the package name of the hf. There is a list of method folders under

the class folder and there are two main folders in these method folders, namely callers

and callees which consist of the invocation information of hf. Then, by reading the

¯les of these two folders and extracting the invocation information, we can collect the

invocation ¯les of hf. The invocation corpus is calculated once and stored as a re-

pository for future use. Module 2 of our approach aims to improve the performance

for bug localization by adjusting the similarity scores of invoking ¯les. This invo-

cation method can be combined with most IR-based bug localization approaches,

including BugLocator. Of course, the coe±cients combining the invocation method

and the other two original parts of BugLocator should be updated.

4.3. Adaptive strategy

As mentioned before, Top 1 recommendation and other Top N (e.g. N ¼ 5, 10)

recommendations use di®erent identi¯cation strategies. We have considered two

common situations. If the developers only need a decisive ¯le, the accuracy of Top 1

will get a preferential treatment. In this situation, we remove all of the elements of

the source ¯les except for the class names and method names. Otherwise, the

developers need N (for example, N ¼ 5, 10) candidate ¯les, and thus the overall

performance of Top N (N ¼ 5, 10) must be considered and we ¯nd that keeping all of

the essential elements of the source ¯les except annotation is better.

On top of that, we propose an adaptive approach which can maximize the per-

formance of bug localization recommendation. Our adaptive strategy is based on the

analysis of properties in source code ¯les and bug reports, which is implemented by a

parameter opt set by developers. The parameter controls both the element ¯ltering of

source code ¯les and the output of the overall approach shown in Fig. 2. When opt is

set to be true, it means developers want a decisive ¯le to the bug, and other elements

of source ¯les except for class names and method names must be removed before text

preprocessing. The output of our recommendation is then a single ¯le. Otherwise, it

means that a list of N (N ¼ 5, 10) ¯les would be provided. The output of the our

recommendation is then N candidate ¯les accordingly.

5. Experiments

To evaluate our approach, we conduct an empirical study and use the same four

cases as in [1], i.e. AspectJ, Eclipse, SWT and ZXing. To demonstrate an even
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broader applicability, we also include another two cases, i.e. Birt and Tomcat. These

two extracted projects are also intensively studied in the related bug localization

work, such as [6]. The information of the dataset is given in Table 1. We compare our

approach with the rVSM model of BugLocator (� ¼ 0). BugLocator is an IR-based

bug localization approach proposed in [1]. It takes the length of ¯les into consider-

ation and applies similar bug reports which have been localized to predict the current

bug report. BugLocator consists of two main parts, i.e. ranking based on source

code ¯les (similar to our module 1 excluding POS) and ranking based on similar bugs

(our module 2 based on the invocation between source ¯les). The parameter � is

the coe±cient combining the scores obtained from querying source code ¯les

(rVSMScore) and from similar bug analysis (SimiScore). Namely, when � is set to be

0, BugLocator ranks based on rVSMScore solely.

Our experiments are conducted on a PC with an Intel i7-4790 3.6GHz CPU and

32G RAM running Windows 7 64-bit Operating System, and JDK version is 64-bit

1.8.0-65. Table 2 depicts the results achieved by our approach for all of the six

projects. If the value of opt is set to be true, about 114 AspecJ bugs (39.86%), 946

Eclipse bugs (30.76%), 46 SWT bugs (46.94%), 11 ZXing bugs (55%), 916 Birt bugs

(21.99%) and 331 Tomcat bugs (38.90%) are successfully located and their ¯xed ¯les

can be found at the Top 1 in recommendation. If the value of opt is set to be false, our

approach can locate 76 AspecJ bugs (26.57%), 912 Eclipse bugs (29.66%), 39 SWT

bugs (39.79%), 6 ZXing bugs (30%), 382 Birt bugs (9.17%) and 287 Tomcat bugs

(33.73%) whose ¯xed ¯les are at the Top 1, 135 AspecJ bugs (47.20%), 1571 Eclipse

bugs (51.09%), 72 SWT bugs (73.47%), 13 ZXing bugs (65%), 851 Birt bugs

(20.43%) and 489 Tomcat bugs (57.46%) whose ¯xed ¯les are at the Top 5 and 168

AspecJ bugs (58.74%), 1854 Eclipse bugs (60.29%), 81 SWT bugs (82.65%), 13

ZXing bugs (65%), 1138 Birt bugs (27.32%) and 554 Tomcat bugs (65.10%) whose

¯xed ¯les are at the Top 10. Besides, the results of MRR and MAP when opt is true

are better than the ones when opt is false in all of the cases but Eclipse, because the

result of Top 1 contributes more to the performance of MRR and MAP than the

results of Top 5 and Top 10, while in Eclipse the di®erence between the Top 1

recommendation is very marginal.

Method 1 de¯nes the process of locating the bugs in our approach when opt's value

is true andMethod 2 represents another process of locating the bugs when opt's value

Table 1. The details of dataset.

Projects #Bugs #Source ¯les Period

AspectJ 286 6485 07/2002-10/2006

Eclipse 3.1 3075 12863 10/2004-03/2011

SWT 3.1 98 484 10/2004-04/2010
ZXing 20 391 03/2010-09/2010

Birt 4166 9765 06/2005-12/2013

Tomcat 851 2174 07/2002-01/2014

In Total 8496 32162
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is false. Method 1 takes advantage of the localized bug reports and ¯lters out more

noisy data, contributing more to the accuracy of Top 1 recommendation. From the

results of Top 1 for the six projects with the two methods, we have observed that the

results of Top 1 with Method 1 are better than the results of Top 1 with Method 2 for

all of the six projects which con¯rms the above idea. With the increasing scale of bug

reports, the localized bug reports also get increased and play a dominant role in bug

localization leading to the better performance of Top 1.

Because our approach has ¯ltered the source code in the beginning, particularly

when opt is true, module 1 seems more time-saving compared to BugLocator without

similar bugs module. Table 3 illustrates the execution time of rVSM model and

module 1 of our approach. The execution time of BugLocator (� ¼ 0) for AspectJ,

Table 2. The performance of our approach.

Project Method Top 1 Top 5 Top 10 MRR MAP

AspectJ opt ¼ true 114 N/A N/A 0.44 0.24

(39.86%)

opt ¼ false 76 135 168 0.37 0.21
(26.57%) (47.20%) (58.74%)

Eclipse opt ¼ true 946 N/A N/A 0.36 0.23

(30.76%)
opt ¼ false 912 1571 1854 0.40 0.30

(29.66%) (51.09%) (60.29%)

SWT opt ¼ true c46 N/A N/A 0.62 0.56
(46.94%)

opt ¼ false 39 72 81 0.55 0.49

(39.79%) (73.47%) (82.65%)

ZXing opt ¼ true 11 N/A N/A 0.69 0.63

(55%)

opt ¼ false 6 13 13 0.42 0.36
(30%) (65%) (65%)

Birt opt ¼ true 916 N/A N/A 0.25 0.16

(21.99%)
opt ¼ false 382 851 1138 0.15 0.11

(9.17%) (20.43%) (27.32%)

Tomcat opt ¼ true 331 N/A N/A 0.47 0.41
(38.90%)

opt ¼ false 287 489 554 0.45 0.41

(33.73%) (57.46%) (65.10%)

Table 3. The execution time of BugLocator (� ¼ 0) and module 1 of our

approach (m: minute; s: second).

Projects AspectJ Eclipse SWT ZXing Birt Tomcat

Approach

BugLocator 56 s 57m 6 s 3 s 53m 85 s

Module 1 49 s 9m 12 s 6 s 8m 40 s
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Eclipse, SWT, ZXing, Birt and Tomcat is 56 s, 57min, 6 s, 3 s and 85 s, respectively.

The execution time of the module 1 of our approach is 49 s, 9min, 12 s, 6 s and 40 s,

respectively. Although the time cost of our approach for SWT and ZXing is higher

compared to that of BugLocator, from Table 3, we can ¯nd the larger the project is,

the better advantage our approach can achieve. Figure 5 pictorially illustrates the

execution time comparison of the two approaches. Because the execution time of the

six projects is not at the same level, we set the execution time of each project using

BugLocator as the unit time 1 and represent the time cost of our approach as the

proportion of the execution time of BugLocator. We can observe that the module 1

relatively decreases the execution time and is more e±cient. Moreover, the larger the

source code and bug reports are, the more time-saving the module 1 is.

In our approach, we have made use of the saving time to execute the module 2

which is considerably time-consuming. It is generally known that extracting the

invocation relationship of a large project like Eclipse is very complex and thus costs

much time. Although our approach does not need to obtain the invocation rela-

tionship of all source ¯les, it does need to review thousands of highest scored source

¯les hf to get the invoking ¯les. We emphasize that, in our approach, the calculation

only needs to be conducted once and o®line, and can be used in the future, since the

invocation relationship is stored as a repository.

As mentioned before, BugLocator contains two modules. If � is greater than 0, it

also analyzes similar bug reports, which inevitably brings additional burden of cal-

culation, and certainly is more time-consuming. We have compared the performance

of our approach to BugLocator without similar bugs because we try to emphasize the

importance of POS and invocation relationship between source ¯les and do not

combine the similar bugs. Table 4 compares the accuracy of our approach with

BugLocator. As we can see, the performance of both methods of our approach is

better than BugLocator without using similar bugs.

0

0.5

1

1.5

2

2.5

AspectJ Eclipse SWT Zxing Birt Tomcat

BugLocator Module 1 of Our Approach

Fig. 5. The trend of execution time for the two approaches of comparison.
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When opt is set to be true, our approach recommends one ¯le with the highest

similarity score to the developers and actually the accuracy of recommended ¯le is

sharply high. All of the results have a considerable enhancement. For example, the

accuracy of Top 1 of this method for AspectJ almost improves twice. The perfor-

mance of Method 1 are 39.86% for AspectJ compared to 22.73% of rVSM, 30.76% for

Eclipse compared to 24.36%, 46.94% for SWT compared to 31.63%, 55% for ZXing

compared to 40%, 21.99% for Birt compared to 7.97% and 38.90% for Tomcat

compared to 33.37%. Although this method just provides one ¯le, the statistics of

MRR and MAP are based on the ranking lists Method 1 produces inside. Although it

Table 4. The comparison of BugLocator (� ¼ 0) and our approach.

Project Method Top 1 Top 5 Top 10 MRR MAP

AspectJ opt ¼ true 114 N/A N/A 0.44 0.24

(39.86%)

opt ¼ false 76 135 168 0.37 0.21
(26.57%) (47.20%) (58.74%)

BugLocator 65 117 159 0.33 0.17

(22.73%) (40.91%) (55.59%)

Eclipse opt ¼ true 946 N/A N/A 0.36 0.23

(30.76%)

opt ¼ false 912 1571 1854 0.40 0.30

(29.66%) (51.09%) (60.29%)
BugLocator 749 1419 1719 0.35 0.26

(24.36%) (46.15%) (55.90%)

SWT opt ¼ true 46 N/A N/A 0.62 0.56
(46.94%)

opt ¼ false 39 72 81 0.55 0.49

(39.79%) (73.47%) (82.65%)
BugLocator 31 64 76 0.47 0.40

(31.63%) (65.31%) (77.55%)

ZXing opt ¼ true 11 N/A N/A 0.69 0.63
(55%)

opt ¼ false 6 13 13 0.42 0.36

(30%) (65%) (75%)

BugLocator 8 11 14 0.48 0.41
(40%) (55%) (70%)

Birt opt ¼ true 916 N/A N/A 0.25 0.16
(21.99%)

opt ¼ false 382 851 1138 0.15 0.11

(9.17%) (20.43%) (27.32%)

BugLocator 332 727 1003 0.13 0.09
(7.97%) (17.45%) (24.08%)

Tomcat opt ¼ true 331 N/A N/A 0.47 0.41

(38.90%)
opt ¼ false 287 489 554 0.45 0.41

(33.73%) (57.46%) (65.10%)

BugLocator 284 467 544 0.44 0.39
(33.37%) (54.88%) (63.92%)
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sacri¯ces the performance of Top 5 and Top 10 in a certain degree, the metric values

of MRR and MAP are also higher than BugLocator without using similar bugs,

which implies the bene¯ts of our approach.

When opt is set to be false, our approach recommends n candidate ¯les based on

the ranking list of a bug report to the developers. Our approach increases the pre-

cision of defect ¯les in top N (N ¼ 5, 10) e®ectively. The performance enhancement is

about 3.84% in Top 1, 6.29% in Top 5 and 3.15% in Top 10 for AspectJ, about 5.30%

in Top 1, 4.94% in Top 5 and 4.39% in Top 10 for Eclipse, about 8.16% in Top 1,

8.16% in Top 5 and 5.10% in Top 10 for SWT, about 10% in Top 5 for ZXing, about

1.20% in Top 1, 2.98% in Top 5 and 3.24% in Top 10 for Birt and about 0.36% in

Top 1, 2.58% in Top 5 and 1.18% in Top 10 for Tomcat. From the results, it is

interesting to observe that our approach improves the performance most in Top 5 on

average.

To further explain the performance of the two selective methods in our approach,

we extend N to cover more value options, i.e. from 1 to 10. In this experiment.

Figure 6(a) shows the performance of AspectJ with 286 bug reports from Top 1 to

Top 10. AspectJ-True means Method 1 and AspectJ-False means Method 2. It is

obvious that the performance of Method 1 increases sharply at Top 1 and then slows

down. For Method 2, the results increase quickly from Top 1 to Top 10 at almost the

same speed and get better after Top 5 than Method 1.

For the Eclipse project with 3075 bug reports, only the Top 1 of Method 1 is still

better than the Top 1 ofMethod 2. The results of Method 1 from Top 2 to Top 10 are

all worse than that of Method 2. The performance comparison between the two

methods for the Eclipse project is shown in Fig. 6(b). As we can see, only the Top 1 of

Method 1 is better even though the scale of bug reports increases from 286 of AspectJ

to 3075 of Eclipse. This is also the case for the SWT project, ZXing project and

Tomcat project, illustrated by Figs. 6(c), 6(d) and 6(f), respectively. However, Birt
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(a) AspectJ

Fig. 6. The performance comparison of method 1 and method 2 in six cases.
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Fig. 6. (Continued )
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project exhibits di®erent properties. From Fig. 6(e), we can observe that the per-

formance of Method 1 is continuously better than Method 2, although the di®erence

between them is decreasing. The fact indicates a converging trend of the two

methods. The general suggestion is that, if developers want a recommended ¯le, with

our approach they can make use of Method 1. If they want N (N ¼ 5, 10) recom-

mended ¯les instead, they should make use of Method 2.

6. Threats to Validity

In this section, we discuss the possible threats to the validity in our approach, mainly

the concerns of data validity and invocation validity.
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Fig. 6. (Continued)
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(1) Data Validity. The experimental dataset we used are all programmed by Java

and the keywords of bug reports are mainly class names or method names which

make the VSM model more e®ective than other IR-based models. The perfor-

mance of Top 1 gets better when we only reserve class names and method names

in source code and the results of Top 5, Top 10 decrease at this situation and we

can get the rule that class names and method names contribute to the results of

Top 1. But we just used the dataset of Zhou et al. [1] and two others to assure the

fair comparison. Thus, whether or not this heuristic ¯ts all of the Java projects

still requires further studied to con¯rm.

(2) Invocation Validity. We generate the invocation corpus by using the JDT's plug-

in called Call Hierarchy [43, 44] and search the invocation ¯les from the corpus

afterwards. Although the call graph of the projects we use in our experiments is

of large scale, especially for Eclipse, and the generation with the large repository

can take an additional amount of time, the invocation corpus can be reused once

it was produced which seems to be more time-saving in long terms. Moreover,

due to the characteristic of the source code, we cannot say that the invocation

corpus contains all the invocation ¯les of a particular ¯le. Compared to the

simple string-based searching method used in [9], the invocation corpus can avoid

re-calculating each time.

7. Conclusion and Future Work

In software life cycles, maintenance is the most time-consuming and highly cost

phase. An in-time bug ¯xing is of crucial importance. To mitigate the work of

software developers, in this paper, we propose an adaptive approach to recom-

mending potential defective source ¯les given a certain bug report. We take

advantages of POS tagging techniques and the logical invocation relationship

between source ¯les and present an automatic weighting method to further improve

the performance. As far as we know, this is the ¯rst work considering the underlying

POS features in bug reports for bug localization. The evaluation results on six large

open-source projects demonstrate the feasibility of our adaptive approach and also

indicate better performance compared to the baseline work, i.e. BugLocator.

In the future, we plan to integrate more features of program to our approach, such

as similar bugs, version history and dynamic information. The aim is to propose a

more adaptive approach for more complex user demands. More technically, the

module 2 of the our approach will be re¯ned to decrease the number of noisy ¯les,

which may produce further enhancement. Moreover, our approach will be expanded

to utilize other kinds of dataset, such as bug reports of commercial projects and

unresolved bug reports, to demonstrate a broader applicability.
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