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Autonomous driving systems (ADS) have achieved remarkable progress in recent years. However, ensuring
their safety and reliability remains a critical challenge due to the complexity and uncertainty of driving
scenarios. In this paper, we focus on simulation testing for ADS, where generating diverse and effective testing
scenarios is a central task. Existing fuzz testing methods face limitations, such as overlooking the temporal and
spatial dynamics of scenarios and failing to leverage simulation feedback (e.g., speed, acceleration and heading)
to guide scenario selection and mutation. To address these issues, we propose SimADFuzz, a novel framework
designed to generate high-quality scenarios that reveal violations in ADS behavior. Specifically, SimADFuzz
employs violation prediction models, which evaluate the likelihood of ADS violations, to optimize scenario
selection. Moreover, SimADFuzz proposes distance-guided mutation strategies to enhance interactions among
vehicles in offspring scenarios, thereby triggering more edge-case behaviors of vehicles. Comprehensive
experiments demonstrate that SimADFuzz outperforms state-of-the-art fuzzers by identifying 73 more unique
violations, including 5 reproducible cases of vehicle-vehicle, vehicle-pedestrian and vehicle-roadside collisions.
These results demonstrate SimADFuzz’s effectiveness in enhancing the robustness and safety of autonomous
driving systems.
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1 Introduction
Autonomous driving systems (ADS), such as Apollo1 and Autoware2, have made significant progress
in recent years. Various technologies have been developed to enable vehicles to operate au-
tonomously without human intervention [7, 9]. However, ensuring the safety and reliability of these
systems remains a critical challenge [21]. As of March 2024, the California Department of Motor

∗Corresponding author.
1Apollo, https://github.com/ApolloAuto/apollo
2Autoware, https://github.com/autowarefoundation/autoware
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Vehicles reported 695 traffic accidents involving autonomous vehicles,3 including 133 collisions in
2023. These incidents underscore the urgent need for comprehensive and effective testing of ADS
before deployment.
Recent research has focused on leveraging various technologies to test the performance and

reliability of ADS. For instance, adversarial attacks, widely used in computer vision, have been
applied to test the robustness of ADS perception modules by exposing vulnerabilities in object
detection and classification [59, 69]. Similarly, software testing techniques such as search-based
testing [6] and fuzz testing [28, 30, 31, 68] have shown great potential in identifying defects and
vulnerabilities in ADS. While these methods have achieved significant results, challenges remain in
ensuring comprehensive coverage and scalability for real-world scenarios.
Simulation-based testing has emerged as a widely adopted method for evaluating ADS due to

its efficiency and cost-effectiveness compared to real-road testing [45]. By generating diverse and
realistic driving scenarios, simulation-based testing can evaluate ADS under various conditions,
identifying potential violations such as collisions, unsafe lane changes, and traffic rule violations.
This approach is indispensable for uncovering safety issues and improving the reliability of ADS.

The quality of simulation scenarios is critical to the effectiveness of simulation-based testing
for ADS [13]. Various scenario generation methods, such as DriveFuzz [30] and Doppel [28],
have been proposed. In general, these methods leverage genetic algorithms to generate offspring
scenarios through selection, crossover, and mutation of parent scenarios. Scenarios are evaluated
and prioritized using pre-designed fitness functions, often considering factors such as the behavior
of the ego vehicle4 or minimum distances between vehicles. Random mutation strategies are then
applied to generate offspring scenarios. However, these methods face several limitations:
(1) Limitations in scenario fitness evaluation. Existing fitness functions typically prioritize sce-

narios based on simple aggregation methods, such as maximum, average, or median values.
However, these approaches overlook the sequential nature of driving scenarios, which consist
of discrete temporal scenes capturing dynamic interactions and behaviors. Simply aggregat-
ing attributes fails to account for these temporal dynamics, potentially leading to suboptimal
prioritization.

(2) Limitations in mutation strategies. Scenarios involve a large number of mutable elements,
resulting in an enormous search space. While random mutation is a natural approach, it fails
to consider the interactions between mutable elements, such as vehicles and pedestrians. As a
result, this strategy may struggle to produce high-quality scenarios that effectively challenge
the ADS.

In this paper, we propose SimADFuzz, a simulation-feedback fuzz testing method for ADS to
address the limitations of existing methods. SimADFuzz monitors and collects simulation feedback,
including the coordinates and physical states of vehicles, during the simulation. Based on genetic
algorithms, it generates high-quality testing scenarios. Unlike previous work that primarily uses
feedback for scenario selection, SimADFuzz innovatively leverages feedback to extract temporal
features for scenario fitness evaluation and to design effective mutation strategies.

To address the limitations of scenario fitness evaluation, SimADFuzz optimizes scenario selection
using model-based fitness evaluation methods. Specifically, we propose a Violation Prediction
Model (VPM), which integrates a Transformer [57] encoder to capture the continuous and dynamic
nature of driving scenarios. It first embeds the driving scenario into a fixed-length vector to
represent the high-dimensional feature space. Then, it predicts the probability of violations through

3DMV Autonomous Vehicle Collision Reports, https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-
vehicles/autonomous-vehicle-collision-reports/
4The vehicle controlled by ADS is referred to as the ego vehicle, while other vehicles are referred to as NPC vehicles.
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a fully connected layer. Scenarios with higher predicted violation probabilities are prioritized for
subsequent crossover and mutation operations to generate offspring scenarios for further testing.

Additionally, to overcome the limitations of mutation strategies, SimADFuzz adopts a distance-
guided mutation strategy. This strategy dynamically adjusts the mutation probability of NPC
vehicles based on their proximity to ego vehicles, increasing the likelihood of interactions. By
prioritizing NPC vehicles closer to the ego vehicle for mutation, SimADFuzz generates offspring
scenarios that are more likely to expose potential safety issues while maintaining scenario diversity.

We conduct extensive experiments on two ADS, i.e., InterFuser [47] and LMDrive [46]. InterFuser
is a top-tier agent that secured 2nd place on the CARLA leaderboard,5 and LMDrive is the first
research prototype ADS that leverages large language models for end-to-end autonomous driving.
The results show that SimADFuzz detects 18 more unique violations than the baseline, which
employ random selection and mutation strategies, in 3-hour fuzzing. Moreover, in 10-hour fuzzing,
SimADFuzz discovers 150, 85, and 73 more violations than AV-Fuzzer [31], DriveFuzz [30], and
TM-Fuzzer [34], respectively. Finally, we manually check 9 violations discovered by SimADFuzz,
including 5 collision scenarios triggered by InterFuser and LMDrive. These violations are repro-
ducible, demonstrating the effectiveness of SimADFuzz in generating safety-critical scenarios and
detecting ADS violations.

The main contributions of this paper are summarized as follows:

(1) We propose a novel fuzz testing method for ADS, named SimADFuzz, which leverages
simulation feedback to generate high-quality scenarios. SimADFuzz effectively discovers
violations in ADS by dynamically analyzing vehicle states and interactions during simulation.

(2) We develop a model-based scenario fitness evaluation approach. By utilizing violation predic-
tion models and incorporating a Transformer encoder, SimADFuzz captures the temporal
features of driving scenarios, enabling more accurate prioritization of high-risk scenarios.

(3) We introduce distance-guided mutation strategies that mutate NPC vehicles based on their
proximity to ego vehicles. This approach increases the likelihood of interactions, generating
diverse and challenging scenarios that expose potential safety issues in ADS.

(4) We conduct extensive experiments to evaluate the effectiveness of SimADFuzz. Results
demonstrate that SimADFuzz detects more violations compared to state-of-the-art methods,
including collisions and lane invasion. To facilitate reproducibility and further research, we
release the implementation publicly.6

Structure. The rest of this paper is organized as follows. Section 2 introduces the preliminaries
of simulation-based testing and genetic algorithms. Section 3 illustrates the limitations of exist-
ing methods through motivating examples. Section 4 details the design and implementation of
SimADFuzz. Section 5 presents the experimental results and discusses potential threats to validity.
Section 6 reviews related work in the field. Finally, Section 7 concludes the paper and proposes
directions for future research.

2 Preliminaries
Simulation-based testing is a widely adopted approach to evaluate the performance and reliability
of ADS [17, 35, 65]. This method uses virtual scenarios as structured test cases to execute and
validate target systems. Genetic algorithms [5, 39], inspired by natural selection, are commonly
employed in fuzz testing to generate diverse and high-quality test cases. Several fuzz testing

5The 1st place agent, ReasonNet, has not made its code publicly available. Cf. CARLA leaderboard, https://leaderboard.carla.
org/leaderboard/
6SimADFuzz, https://github.com/yagol2020/SimADFuzz
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methods, such as AV-Fuzzer [31], DriveFuzz [30], Doppel [28], and TM-Fuzzer [34], have been
proposed for simulation-based ADS testing.
Figure 1 illustrates the framework of simulation-based fuzz testing for ADS. This framework

takes the ADS under test as input and produces violation reports as output. It consists of three
main components: seed scenario generation, simulation, and genetic operators. First, seed scenarios
are generated and executed in the simulation environment. During the execution, feedback infor-
mation such as vehicle coordinates and velocities is collected from the simulator to evaluate the
fitness of each scenario. Based on these fitness scores, the most promising scenarios are selected.
These selected scenarios undergo crossover or mutation to produce offspring scenarios, which are
then executed in the simulation environment for subsequent generations. During execution, the
simulation environment detects various types of violations, such as collisions, unsafe lane changes,
and traffic rule violations. This fuzzing process is repeated until the testing budget (e.g., time) is
exhausted. At the end of the process, a report summarizing the detected violations is generated to
aid in evaluating the ADS’s performance and identifying potential issues.

Execution on Simulation Environment

Scenarios
Selection

Scenarios
Crossover & Mutation

Genetic Operators

Seed Scenarios Generation

feedback
info

inital seeds

Violation ReportADS Under Test offspring
scenarios

Fig. 1. Simulation-based Fuzz Testing Framework for ADS

In this framework, scenario selection, crossover, andmutation are the three main genetic operators
that define the core of genetic algorithms. For scenario selection, genetic algorithms identify
promising scenarios based on several metrics and evaluate their fitness scores using single- or
multi-objective search methods. These evaluations are performed using fitness functions, which
quantify the likelihood of a scenario causing violations [1]. Table 1 summarizes the commonly used
metrics in simulation-based testing for ADS. As shown in Table 1, the fitness function evaluates
scenarios to estimate their probability of triggering violations. For scenario crossover and mutation,
random strategies are widely used. For instance, DriveFuzz [30] employs random mutation by
altering weather conditions (e.g., wind, cloud cover, and rain) or modifying pedestrian behaviors
without utilizing any crossover operator. Similarly, Doppel [28] adopts random mutation by adding
or removing traffic participants or modifying the starting and destination points of ego vehicles.
On the other hand, Doppel’s crossover operator swaps ego vehicles between two scenarios when
their routes intersect.

In this paper, we aim to optimize two key genetic operators: scenario selection and mutation. The
details of these optimizations are presented in Section 4.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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Table 1. Fitness Metrics used in AV-Fuzzer, DriveFuzz, and Doppel

Method Factor Description

AV-Fuzzer[31]

𝑑𝑠𝑎𝑓 𝑒 The maximum distance without colliding with other actors
𝑑𝑠𝑡𝑜𝑝 The distance the vehicle will travel before coming to a complete

stop
Fitness score = 𝑑𝑠𝑎𝑓 𝑒 − 𝑑𝑠𝑡𝑜𝑝

DriveFuzz[30]

ℎ𝑎 The times of hard acceleration
ℎ𝑏 The times of hard braking
ℎ𝑡 The times of hard turn
𝑜𝑠 The times of oversteer
𝑢𝑠 The times of understeer
𝑚𝑑 The minimum distances from ego vehicle to other actors
Fitness score = −(ℎ𝑎 + ℎ𝑏 + ℎ𝑡 + 𝑜𝑠 + 𝑢𝑠 − 1/𝑚𝑑)

Doppel[28]

𝑓𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 The minimum distances from ego vehicle to other actors
𝑓𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 The total number of unique decisions being made by all ego

vehicles
𝑓𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 The total number of pairs of actors whose trajectory overlaps

with another
𝑓𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 The total number of violations across all ego vehicles
Fitness score Based on NSGA-2

3 Motivating Examples
This section presents scenario examples to illustrate the limitations of existing methods and
discusses the necessity of introducing model-based fitness evaluation and distance-guided mutation
strategies.
As shown in Figure 2, the scenario involves three vehicles converging at a 𝑇 -junction. The red

vehicle intends to proceed straight, the white vehicle is making a left turn, and the green vehicle is
turning right. The traffic light for the east-west direction is green, allowing all vehicles to proceed
legally.

Figure 2a illustrates the scenario 𝑆1. At time point 2, the white vehicle turns left and encounters
the red vehicle travelling straight. To avoid a collision, the red vehicle brakes, maintaining a distance
of 3 meters from the white vehicle. Meanwhile, the green vehicle completes its right turn quickly.
At time point 3, as the traffic light changes to yellow, the red vehicle accelerates to pass through
the junction. However, at time point 4, it brakes again due to the slow-moving green vehicle ahead,
now maintaining a distance of 5 meters between them.

In a similar scenario 𝑆2 depicted in Figure 2b, the key difference is that the start point of the green
vehicle is further far from the 𝑇 -junction. At time point 2, the red and white vehicles maintain a
minimum distance of 3 meters, while the green vehicle just enters the junction. By time point 3,
the red vehicle brakes once more to avoid a rear-end collision, with a distance of 4 meters. Finally,
at time point 4, all three vehicles safely navigate through the 𝑇 -junction without incident.

Table 2 presents the collected feedback information for the red vehicle, including the minimum
distance to other vehicles and hard brake events during the simulation. Both DriveFuzz and Doppel
incorporate the minimum distance (𝑚𝑑) between vehicles as a key metric in their fitness functions.
For example, DriveFuzz evaluates fitness based on the minimum distance and the number of hard
braking (ℎ𝑏) events by the ego vehicle, while Doppel considers the minimum distance between all

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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(a) Scenario 𝑆1: Green Vehicle Quickly Passes the T-junction without Interacting with the Red Vehicle

(b) Scenario 𝑆2: Green Vehicle Turns Right and Causes the Red Vehicle to Brake at the 𝑇 -junction

Fig. 2. Two Similar Scenarios of Multi-Vehicle Interactions at a 𝑇 -junction

vehicles and integrates additional metrics using the NSGA-II algorithm [71]. However, both methods
rely on aggregate functions, such as minimum or count, to evaluate the overall scenario fitness. As
a result, DriveFuzz and Doppel assign identical fitness values to both scenarios (𝑆1𝑚𝑑 = 3, 𝑆1ℎ𝑏 = 2
and 𝑆2𝑚𝑑 = 3, 𝑆2ℎ𝑏 = 2), thereby erroneously considering 𝑆1 and 𝑆2 to pose equivalent risks of
triggering more violation behaviors.

Table 2. Feedback Information of the Red Vehicle during Simulation

Scenarios Distance Hard Brake
𝑡1 𝑡2 𝑡3 𝑡4 𝑡1 𝑡2 𝑡3 𝑡4

𝑆1 12 3 6 5 ✗ ✓ ✗ ✓
𝑆2 12 3 4 5 ✗ ✓ ✓ ✗

However, 𝑆2 is considered riskier than 𝑆1, as the red vehicle not only interacts with two different
vehicles at one 𝑇 -junction, but also triggers two hard braking events within a short period of
time while continuously maintaining a close distance to other vehicles. These factors create a
more complex and hazardous traffic situation compared to 𝑆1. However, aggregate functions (e.g.,
minimum) only capture the most severe moment (e.g., the closest distance of 3 meters in 𝑆2),
overlooking other potential risks such as the 4-meters distance at time point 3 of 𝑆2, which may
indicate another collision risk.
Furthermore, DriveFuzz only counts the number of hard braking events without considering

the spatial or temporal context of these events. For example, although the red vehicle triggers
two hard braking events in both scenarios, the clustering of these events differs significantly. In
scenario 𝑆1, the two braking events occur in different road segments, allowing the ADS more time
to react and adjust. In contrast, in scenario 𝑆2 both events happen within a short time frame at the
same𝑇 -junction, challenging the performance of the ADS and triggering more edge-case behaviors.
Existing methods, however, reduce such events to simple numerical counts, failing to capture
critical details that could indicate higher risk scenarios.

In summary, the complex scenario 𝑆2 illustrated in Figure 2b should be prioritized for mutation
to further explore potential risks. However, due to the reliance on insufficient aggregate functions
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(cf. the first limitation), existing methods may assign the same or even lower fitness scores to
such complex scenarios compared to simpler ones, leading to missed opportunities in identifying
safety-critical behaviors of ADS.

In addition, dangerous or violating behaviors usually occur during interactions with other traffic
participants. With more frequent interactions comes a higher risk of violations [41]. Consider
another scenario shown in Figure 3, where the white vehicle gradually exits the conflict zone of
the T-junction, increasing its distance from the other two vehicles. As the interactions decrease, it
becomes less likely to exhibit further violating behaviors. Consequently, the white vehicle should
be prioritized for mutation to increase interaction. However, both DriveFuzz and Doppel randomly
select vehicles for mutation (cf. the second limitation), which inevitably results in redundant
offspring scenarios.

Fig. 3. Decreased Interaction Caused by the White Vehicle Driving Away From the Other Two Vehicles

To address these challenges, we propose SimADFuzz, a fuzz testing method that employs a
Transformer encoder to effectively analyze the temporal dynamics within scenarios and evaluate
the overall scenario using violation prediction models. Additionally, SimADFuzz integrates distance-
guided mutation strategies to enhance the likelihood of interactions between vehicles, thereby
improving the quality and relevance of offspring scenarios.

4 Approach
Figure 4 presents an overview of SimADFuzz, which comprises three modules: the simulation test
engine, the simulation-feedback genetic algorithm, and the violation detector.

① Simulation Test Engine

③ Violation Detector

Simulation
Execctor

Violation
Analysis

Violation
Report

Vehicle
States

Seed
Scenarios

② Simulation-Feedback
Genetic Algorithm

Model-based
 Fitness Evaluation

Distance-guided
Mutation Strategy

1
1

1
1 t1

Temporal
Features

Road
Attrributes Scenarios Selection

Offspring Scenarios

Vehicle
Coordinates

Distance
Information

Fig. 4. Overview of SimADFuzz
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First, SimADFuzz sends seed scenarios to the simulation test engine for execution. The simulation
engine collects feedback information, including the coordinates and physical states of vehicles, as
detailed in § 4.1.

Second, the simulation-feedback genetic algorithm processes the collected feedback information
to extract temporal features and road attributes. It then evaluates the fitness score based on the
violation prediction model and SDC-Scissor (described in § 4.2.1). The fitness scores guide the
selection of scenarios, which are subjected to crossover (§ 4.2.2) and mutation (§ 4.2.3) to generate
offspring scenarios that promote more interactions between vehicles and increase the likelihood of
triggering violation behaviors.

Finally, the violation detector analyzes the interactions between vehicles, pedestrians, and traffic
lights to identify five types of violations. Violation reports, along with the corresponding scenarios
that can reproduce the violations, are output to assist ADS developers and testers in identifying
defects, as detailed in § 4.3.

In the following section, we present the key components of SimADFuzz in detail.

4.1 Simulation Test Engine and Feedback Collection
To implement simulation-based testing, we design a simulation test engine that incorporates an
autonomous vehicle simulator and a simulation-feedback collector.
The autonomous vehicle simulator is maintained by high-fidelity platforms (e.g., CARLA [15],

LGSVL [44]), or simulation tools designed for specific ADS (e.g.,Dreamview [2], AWSIM [55]). These
simulators provide realistic environments, deploy vehicles and pedestrians at specific coordinates,
and return sensor data such as RGB cameras, radar, GPS, and inertial measurement units.
Among these, CARLA and LGSVL have emerged as two widely used platforms in fuzz testing

methods. However, LGSVL ceased maintenance and updates in 2022, limiting access to certain maps
and assets. In contrast, CARLA has continuously improved its maps and API integrations, offering
more comprehensive simulation capabilities that are well-suited for fuzz testing. Additionally,
CARLA hosts official ADS performance benchmarks through the CARLA Leaderboard, making it
a preferred choice for both research and industry. Consequently, SimADFuzz prioritizes CARLA
as the primary simulation environment for generating driving scenarios, deploying ADS, and
conducting fuzz testing.
The simulation-feedback collector gathers real-time feedback information by calling APIs pro-

vided by the simulator. Specifically, SimADFuzz collects two types of vehicle-related information,
as shown in Table 3, i.e., (1) vehicle coordinates, which indicate the vehicle’s location and trajectory;
and (2) physical states, which reflect the vehicle’s behavior, including attributes such as speed and
acceleration. This information captures the temporal features of vehicles during simulation and is
used to evaluate scenario fitness through a model-based approach.

Table 3. Feedback Information collected by SimADFuzz

Type Name Description

Vehicle coordinates 𝑙𝑜𝑐𝑥 X-coordinate of the vehicle
𝑙𝑜𝑐𝑦 Y-coordinate of the vehicle

Physical states

𝑠𝑝𝑒𝑒𝑑𝑥 X-direction speed of the vehicle
𝑠𝑝𝑒𝑒𝑑𝑦 Y-direction speed of the vehicle
𝑎𝑐𝑐𝑥 X-direction acceleration of the vehicle
𝑎𝑐𝑐𝑦 Y-direction acceleration of the vehicle
𝑦𝑎𝑤 Heading of the vehicle

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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4.2 Simulation-Feedback Genetic Algorithm
Figure 5 illustrates the process of the simulation-feedback genetic algorithm. In SimADFuzz, the
genetic representation (i.e., chromosome) of a scenario used for simulation is composed of four
parts. The green and red parts shown in Figure 5 represent the routes of the ego vehicle and NPC
vehicles, respectively, defined by their start and end points. The yellow part represents the routes of
pedestrians, while the blue part encodes weather conditions, such as rain or fog levels. Notably, all
chromosomes maintain a fixed number of NPC vehicles and pedestrians throughout evolutionary
operations. Specifically, when removing traffic participants during mutation, we replenish by
generating different route for the corresponding parts, which can avoid excessive computational
cost of generating too many traffic participants while maintaining realistic simulation during fuzz
testing.

After the parent scenario completes simulation, SimADFuzz collects the coordinates and physical
states of vehicles. These collected features are then used in a sequential process involving scenario
selection, crossover, and mutation to generate offspring scenarios for the next generation of
simulations.
We detail the key components of the simulation-feedback genetic algorithm, including model-

based fitness evaluation, scenario selection, crossover strategies, and mutation strategies, in the
following sections.

Ego Trajectory

NPC Trajectory

...

Simulation-Feedback Collector

Simulation Test Engine
Ego Start Point

NPC Start Point

Ego End Point

Ped
Start Point

Ped
End Point

Ped
Action

Weather Conditions

NPC End Point

... ... ...

... ...

Parent Scenario

Ego Phy States

NPC Phy States

...

Crossover
(§4.2.2)

Mutation
(§4.2.3)

Ego Start Point Ego End Point

Weather Conditions

... ... ...

... ...

Offspring Scenario

Scenario Selection (§4.2.1)

Scenario Generation

Fig. 5. Process of the Simulation-Feedback Genetic Algorithm

4.2.1 Model-based Fitness Evaluation and Scenario Selection. In general, a driving scenario is a
sequence composed of several scenes, where each scene represents a snapshot of the simulation
world [56]. Scenes may include actions, events, and other objects that characterize the driving
environment. Based on this definition, we formalize a driving scenario 𝑆 as a sequence (𝑠1, · · · , 𝑠𝑇 )
of 𝑇 scenes with fixed time intervals. Each scene 𝑠𝑡 is represented as (𝑣𝑡1, · · · , 𝑣𝑡𝑚), where𝑚 is the
number of vehicles in 𝑆 , and 𝑣𝑡𝑖 refers to the features of vehicle 𝑣𝑖 , including its coordinates and
physical states at scene 𝑠𝑡 .

However, these features only represent individual scenes within the scenario and fail to capture
interactions between vehicles or behaviors such as turning or sudden braking. These interactions
are critical for evaluating the potential of a scenario to trigger violations.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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To address this limitation, we design the Violation Prediction Model (VPM) to evaluate the
fitness score of driving scenarios by predicting the probability of triggering violations. Specifically,
the VPM extracts temporal relationships and interactions among vehicles through the driving
scenario encoder, which is a Transformer-based encoder embedding a driving scenario into
a fixed-length vector representing the high-dimensional feature space. Then, the probability of
violation (i.e., the fitness score of the scenario) is predicted by the violation prediction layer and
guides the selection of scenarios for further optimization and mutation. Details about the two main
layers of VPM are described below.
Driving Scenario Encoder. The driving scenario encoder is designed to learn patterns from scene
sequences using sequence models, which are effective in capturing relevant information from
temporal data. Sequence models such as LSTM [25] and Transformer have been widely applied to
tasks like driving behavior intention recognition [20] and trajectory/velocity prediction [19, 22, 37].
In this work, we adopt the Transformer for the driving scenario encoding task due to its superior
performance in trajectory forecasting [23, 63]. In SimADFuzz, the Transformer encoder takes
feedback information as input, represented as a tensor with the shape 𝑇 × 𝑁𝑖𝑛𝑓 𝑜 . Here, 𝑇 denotes
the number of scenes, and 𝑁𝑖𝑛𝑓 𝑜 represents the total amount of information collected for all vehicles
in the scenario. Specifically, 𝑁𝑖𝑛𝑓 𝑜 = 7 ×𝑚, where𝑚 is the number of vehicles, and the 7 features
include coordinates, speed, acceleration, and heading. By leveraging the multi-head attention
mechanism, the Transformer encoder embeds the scenario into a high-dimensional feature space,
which is then used to predict the probability of violations.
Violation Prediction Layer. The violation prediction layer is designed to estimate the probability
of violations, which serves as the fitness score for the scenario. It consists of a fully connected (FC)
layer with a single output node, producing a scalar probability value. The FC layer combines and
models relationships among features extracted from the entire scene sequence, capturing high-level
interactions and temporal dependencies. Scenarios with higher predicted probabilities indicate a
greater likelihood of causing violations in the ADS. Consequently, these scenarios are prioritized
for selection in generating offspring scenarios during the optimization process.
The VPM evaluates scenarios and prioritizes them for crossover and mutation in the genetic

algorithm. However, relying solely on a single fitness metric can be misleading, as it may fail to
capture other critical characteristics of the scenarios being tested [16]. As shown in Table 1, existing
works commonly evaluate scenarios using multiple fitness metrics to ensure a more comprehensive
assessment. To address this limitation, we augment the SimADFuzz with three additional fitness
metrics: minimum distance, number of unique violations [11, 28], and the score of SDC-Scissor
(Self Driving Cars Cost Effective Test Selector; abbreviated as SDC-Score) [4].
• The minimum distance (𝐷𝑖𝑠𝑡min) is the smallest distance between the ego vehicle and other
vehicles throughout the scenario simulation. A smaller distance typically indicates a higher
likelihood of collisions or other violations, reflecting an increased level of risk in the scenario.
Formally, 𝐷𝑖𝑠𝑡min is computed by Equation (1), where 𝑇 is the time steps in the simulation,
𝐶 denotes the NPC vehicles, 𝑒 is the ego vehicle and 𝑑𝑖𝑠𝑡 represents the Euclidean distance
between two vehicles at time 𝑡 .

𝐷𝑖𝑠𝑡min = min
𝑡 ∈𝑇,𝑐∈𝐶

𝑑𝑖𝑠𝑡 (𝑡, 𝑒, 𝑐) (1)

• The number of unique violations (𝑁𝑢𝑚uvs) refers to the number of violations triggered by the
ego vehicle in the current scenario, after filtering out duplicates or highly similar violations.
A higher count of unique violations suggests a more risky and complex scenario, potentially
exposing more defects in the ADS by challenging its performance in diverse ways. Formally,
𝑁𝑢𝑚uvs is computed in Equation (2), where 𝑉 denotes the violations detected in the current
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Table 4. Name and Description of SDC-Features [4]

Name Description
Direct distance Euclidean distance between start and finish
Length Total length of the driving path
Number L Turns Number of left turns on the driving path
Number R Turns Number of right turns on the driving path
Number Straight Number of straight segments on the driving path
Total angle Cumulative turn angle on the driving path
Median, Std, Max, Min, Mean angle Median/Std/Maximum/Minimum/Average turn angle on

the driving path
Median, Std, Max, Min, Mean radius Median/Std/Maximum/Minimum/Average turn radius of

the driving path
Full road diversity The cumulative diversity of the full road composed of all

segments
Mean road diversity The mean diversity of the segments of a road

scenario,𝑈 is the repository of unique violations collected from all prior tests, 𝑠𝑖𝑚 evaluates
the similarity between two violations. Note that newly identified unique violations are added
to𝑈 after computation for future reference.

𝑁𝑢𝑚uvs =
��{𝑣 ∈ 𝑉 ��∀𝑢 ∈ 𝑈 , 𝑠𝑖𝑚(𝑣,𝑢) < 𝜃

}�� (2)

• SDC-Scissor is a method that leverages machine learning models to identify and filter unlike
scenarios to detect faults in ADS before executing them. It extracts static road attributes
(i.e., SDC-Features, as shown in Table 4) and sends them into trained models to classify
scenarios as safe or unsafe. Complementarily, SimADFuzz focuses on capturing temporal
features, such as dynamic interactions between vehicles over time. Combining these static
and temporal features enhances the overall fitness evaluation by leveraging the strength of
both approaches. The original SDC-Scissor treats scenario prediction as a binary classification
problem based on the probability output from the model. We repurpose this probability as the
SDC-Score (𝑆sdc) defined in Equation (3), where 𝐹sdc denotes the feature vector representing
SDC-Features.

𝑆sdc =𝑚𝑜𝑑𝑒𝑙 (𝐹sdc) (3)
The use of the number of unique violations as a fitness metric is partially inspired by coverage-

guided fuzz testing techniques [48, 64], which retain test cases that cover new basic blocks or
branches and discard those that do not, thereby effectively exploring unseen code paths. As the
coverage is determined relative to previously explored cases, these order-dependent metrics are
useful to guide the search process toward unique crash or bugs that have not been discovered
before. We define the number of unique violations in a similar manner: a violation is considered
unique if it differs from previously observed violations in terms of the events’ timestamp and spatial
location within a given threshold. This allows us to identify and filter redundant scenarios that do
not contribute to detecting new violations, thereby improving violations diversity. Although the
same scenario may receive different fitness scores when evaluated at different time (due to prior
violations), it aligns with the goal of encouraging diversity in violation-triggering behaviors. We
remark that the number of unique violations as a fitness metric has also been successfully applied
in ADS fuzzing studies [28, 34, 68], validating the effectiveness of this metric in guiding the search
toward diverse and non-redundant violations.
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To this end, we combine the VPMwith three additional fitness metrics, treating scenario selection
as a multi-objective optimization task. The goal is to identify solutions (i.e., scenarios) that balance
multiple objectives, such as increasing violation probabilities and risk exposure, or reducing the
distance between vehicles. To achieve this, we leverage the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-2) [71], a widely used multi-objective optimization algorithm, to select scenarios
based on the Pareto-optimal frontier. The reason behind our choice of NSGA-2 is twofold. NSGA-2
identifies a set of non-dominated solutions, meaning no other solutions perform better across all
objectives. Through this mechanism, the most elite and effective genes (e.g., the routes of NPC
vehicles) are selected for crossover and mutation to facilitate more interactions with an ego vehicle.
Moreover, by employing crowding-distance techniques, NSGA-2 ensures a diverse set of driving
scenarios, effectively exploring the simulation search space while avoiding premature convergence
to local optima.

4.2.2 Crossover Strategy. The crossover operator combines two parent scenarios to generate two
offspring scenarios. In SimADFuzz, the crossover operation swaps the routes of NPC vehicles,
pedestrians and weather conditions, while excluding the route of the ego vehicle to preserve
interaction validity.
For the pedestrians, SimADFuzz randomly swaps half of the pedestrians between the two

scenarios, increasing the diversity of pedestrians routes and behaviors.
For the NPC vehicles, SimADFuzz is designed to enhance the interaction likelihood between

the ego vehicle and NPC vehicles. Specifically, for two parent scenarios 𝑆1 and 𝑆2, SimADFuzz
checks whether the trajectory of an NPC vehicle 𝑁𝑃𝐶𝑆1

𝑖 in 𝑆1 intersects with the trajectory of the
ego vehicle 𝐸𝐺𝑂𝑆2 in 𝑆2. If it is the case, there might be a potential interaction between 𝐸𝐺𝑂𝑆2

and 𝑁𝑃𝐶𝑆1
𝑖 , and SimADFuzz randomly selects one NPC vehicle from 𝑆2 and swaps it with 𝑁𝑃𝐶𝑆1

𝑖 ,
generating two offspring scenarios.

Forweather conditions, SimADFuzz swaps each individual weather parameters (e.g., rain intensity,
fog density, etc.) between the two parent scenarios with a default probability of 50%. This stochastic
crossover operation enhances environmental diversity while maintaining weather parameters in
valid ranges.

For the ego vehicle, its route is excluded from crossover to prevent invalidating NPC interactions.
If the route of ego vehicle is modified, its trajectory would change in subsequent simulations, break-
ing the spatio-temporal alignment with NPC vehicles whose swapped trajectories are specifically
designed to interact with the ego’s unaltered path. Although altering the ego’s route could explore
diverse road structures, it decreases the probability of interaction with NPC vehicles. Therefore,
SimADFuzz retains the ego’s route to ensure NPC crossover validity.

4.2.3 Mutation Strategy. Mutation operators generate offspring scenarios based on a parent sce-
nario. As shown in Figure 5, the chromosome of a scenario is categorized into three components:
vehicles (including the ego and NPC vehicles), pedestrians, and weather. Among these, vehicles
play a critical role in contributing to dynamic scenario variations. To enhance the likelihood of
interactions with the ego vehicle, we focus on vehicle mutation and propose a distance-guided
mutation strategy.

Distance-guided Mutation for Vehicles. Vehicles are essential traffic participants in creating
dynamic scenarios for testing. As discussed in Section 3, the probability of interactions and subsequent
violations decreases as the distance between vehicles increases. To address this, SimADFuzz employs
a distance-guided mutation strategy to identify and remove NPC vehicles with low interaction
potential. Specifically, two types of NPC vehicles are identified and removed:
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• Stuck Vehicles refer to NPC vehicles that remain nearly stuck throughout the simulation,
contributing minimally to scenario dynamics. Existing approaches primarily focus on iden-
tifying scenarios where the ego vehicle itself becomes stuck (a.k.a. stationary or paralysis)
to identify ADS function failure [10, 30]. TM-Fuzzer [34] identifies and removes stationary
NPC vehicles surrounding the ego vehicle to prevent it from getting in traffic congestion.
Inspired by this, we focus on the effectiveness of NPC behaviors, identifying NPC vehicles
that remain stationary throughout the simulation. For example, vehicles that are waiting
for traffic lights over prolonged durations. Since these NPC vehicles are unlikely to interact
meaningfully with the ego vehicle or challenge the ADS’s edge-case handling capabilities,
SimADFuzz removes them and generates new routes during the mutation process.
• Leaving Vehicles refer to NPC vehicles that are moving away from the ego vehicle, whose
diminishing influence reduces their impact on the ADS perception module and decision-
making processes. SimADFuzz therefore removes these departing vehicles and reassigns
their routes.

The process of distance-guided mutation is detailed in Algorithm 1. The algorithm takes the
following inputs: the set of NPC vehicles in the parent scenario (𝐶), the ego vehicle in the parent
scenario (𝑒), the distance matrix (𝑚𝑑𝑖𝑠𝑡 ), a threshold for identifying stuck vehicles (𝑤 ), and a time
window size for identifying leaving vehicles (𝑢). The algorithm outputs a modified set of NPC
vehicles for the offspring scenario.

The𝑚𝑑𝑖𝑠𝑡 is represented as a three-dimensional matrix with shape𝑇 × |𝑉 | × |𝑉 |, where𝑇 denotes
the number of time steps, and |𝑉 | represents the number of vehicles. Each element𝑚𝑑𝑖𝑠𝑡 (𝑡, 𝑣1, 𝑣2)
represents the Euclidean distance between vehicles 𝑣1 and 𝑣2 at timestamp 𝑡 . The distance is
computed as:

𝑚𝑑𝑖𝑠𝑡 (𝑡, 𝑣1, 𝑣2) =
{
∥𝑣𝑡1 − 𝑣𝑡2∥2, if 𝑣1 ≠ 𝑣2

0, otherwise

where ∥𝑣𝑡1 − 𝑣𝑡2∥2 denotes the Euclidean distance between the positions of vehicles 𝑣1 and 𝑣2 at time
𝑡 .

Algorithm 1 begins by initializing an empty set 𝐷 to record NPC vehicles marked for removal.
Each vehicle 𝑣 ∈ 𝐶 is evaluated based on two criteria:
1. Stuck Vehicles: The algorithm computes the total route length Δ𝑟𝑜𝑢𝑡𝑒 for each vehicle 𝑣 by

summing the Euclidean distances between its positions at consecutive timestamps. If Δ𝑟𝑜𝑢𝑡𝑒 < 𝑤 ,
indicating minimal movement throughout the simulation, the vehicle is added to 𝐷 .

2. Leaving Vehicles: For each vehicle 𝑣 , the algorithm computes the cumulative distance trend
Δ𝑑𝑖𝑠𝑡 relative to the ego vehicle 𝑒 over a sliding time window of size 𝑢. If Δ𝑑𝑖𝑠𝑡 remains positive
(≥ 0) across all examined windows, the vehicle is marked as consistently moving away and added
to 𝐷 .

Vehicles in𝐷 are removed from the scenario. The function Mutate_Route modifies the routes of
the remaining vehicles and the ego vehicle 𝑒 , ensuring the mutated routes remain on the same road
segment for contextual consistency. The function Add_Vehicles then replenishes the removed
vehicles with new NPC vehicles, generating routes with randomly selected start and end points
to explore new routes. The final mutated set of NPC vehicles is returned as part of the offspring
scenario.
Figure 6 illustrates an example of distance-guided mutation. In the parent scenario (left), the

red vehicle is identified as a stuck vehicle, as it remains stationary at a long red traffic light, while
the yellow one is identified as a leaving vehicle, as its trajectory indicates it is consistently moving
away from the ego vehicle (the blue vehicle), reducing the likelihood of interactions. These two
vehicles are removed during the mutation process.
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Algorithm 1: Distance-guided Mutation Process
Input :𝐶 - NPC vehicles in the parent scenario,

𝑒 - Ego vehicle in the parent scenario,
𝑚𝑑𝑖𝑠𝑡 - Distance matrix,
𝑤 - Threshold for identifying stuck vehicles,
𝑢 - Time window size for identifying leaving vehicles

Output :𝐶 - Mutated NPC vehicles
1 𝐷 ← ∅;
2 for 𝑣 ∈ 𝐶 do
3 Δ𝑟𝑜𝑢𝑡𝑒 ←

∑𝑇
𝑡=1 ∥𝑣𝑡 − 𝑣𝑡−1∥2 ;

4 if Δ𝑟𝑜𝑢𝑡𝑒 < 𝑤 then
5 𝐷 ← 𝐷 ∪ {𝑣};
6 continue;

7 𝑓 𝑙𝑎𝑔← 𝑇𝑟𝑢𝑒 ;
8 for 𝑡 ∈ [𝑢,𝑇 ] do
9 Δ𝑑𝑖𝑠𝑡 ←

∑𝑡
𝑖=𝑡−𝑢 (𝑚𝑑𝑖𝑠𝑡 (𝑖 + 1, 𝑣, 𝑒) −𝑚𝑑𝑖𝑠𝑡 (𝑖, 𝑣, 𝑒));

10 if Δ𝑑𝑖𝑠𝑡 < 0 then
11 𝑓 𝑙𝑎𝑔← 𝐹𝑎𝑙𝑠𝑒;
12 break;

13 if 𝑓 𝑙𝑎𝑔 then
14 𝐷 ← 𝐷 ∪ {𝑣};

15 𝐶 ← 𝐶 \ 𝐷 ;
16 Mutate_Route(𝐶) ;
17 Mutate_Route(𝑒) ;
18 Add_Vehicles(𝐶 , |𝐷 |) ;
19 return 𝐶 ;

In the offspring scenario (right), two new vehicles are added to replace the removed ones. One of
the new vehicles intersects with the ego vehicle’s trajectory at a roundabout, thereby enhancing
the potential for interactions in the offspring scenario.

Stuck Vehicle

Ego Vehicle

Leaving Vehicle

Mutated Vehicle

Mutated Vehicle

Generate Vehicle with New Route

Remove Vehicle

Ego Vehicle

Remove Vehicle

Generate Vehicle with New Route

(a) Parent Scenario (b) Offspring Scenario

Fig. 6. An Example of Distance-guided Mutation
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Mutation for Pedestrians and Weather Conditions. SimADFuzz also mutates pedestrians
and weather conditions. Pedestrians are spawned near the ego vehicle to improve interaction
likelihood, as their relatively low speed makes distant interactions unlikely. Weather conditions
are randomly sampled from predefined ranges, such as rain intensity (0–100) and sun altitude (-90°
to 90°), to explore diverse environmental scenarios.

4.3 Violation Detector and Reproduction
The violation detector module is responsible for identifying misbehavior and violations triggered
by ego vehicles during simulation. SimADFuzz supports detecting the following violations:
Collision: Collisions are one of the most fundamental violations that an ADS must avoid.

Collisions are detected when the ego vehicle comes into physical contact with other static or
dynamic objects. This detector is implemented using CARLA’s built-in collision sensors.

Lane Invasion: Lane invasions are detected when the ego vehicle crosses restricted road lanes,
such as crossing solid lines that indicate non-crossable lane boundaries during lane changes. This
detector is implemented using CARLA’s built-in lane invasion sensors.
Speeding: Speeding violations are detected when the ego vehicle’s speed consistently exceeds

the specific road’s speed limit for a duration 𝑇𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔. This detector is implemented by analyzing
the ego vehicle’s historical speed data and comparing it against the speed limit.
Running Red Lights: Running red light violations are detected when the ego vehicle drives

through an intersection during a red light. This detector is implemented by monitoring the traffic
light state and the ego vehicle’s coordinates within the intersection.
Stuck: Stuck behaviors often indicate ADS failures or system disablement but may also result

from external factors such as traffic congestion. These violations are detected when the ego vehicle
remains stationary beyond a predefined duration 𝑇𝑠𝑡𝑢𝑐𝑘 . This detector is implemented by analyzing
the ego vehicle’s historical speed data and verifying whether the speed remains consistently zero
over the duration 𝑇𝑠𝑡𝑢𝑐𝑘 .
When SimADFuzz identifies a violation, it saves the entire scenario (including the states of

the ego vehicle, NPC vehicles, pedestrians and weather conditions) to facilitate reproduction.
Additionally, SimADFuzz utilizes CARLA’s API (Client.start_recorder) to record scenarios
withmore detailed information (such as the states of traffic lights and vehicle dynamics). SimADFuzz
supports replaying both types of scenario recordings to reproduce violations, and supports further
analysis, including root cause investigation and ADS performance evaluation.

5 Evaluation and Results
To evaluate the effectiveness of SimADFuzz, we conducted experiments aimed at addressing the
following research questions, covering various perspectives:

RQ1 To what extent can optimization strategies in scenario selection and mutation components of
SimADFuzz improve its effectiveness in detecting violations?

RQ2 How effective is SimADFuzz in detecting violations in ADS compared to state-of-the-art
fuzzers?

RQ3 Does the strategy used in SimADFuzz impact the diverse generation of scenarios?

5.1 Experimental Settings
5.1.1 ADS Under Test. We select two ADS, i.e., InterFuser [47] and LMDrive [46], for our ex-
periments. InterFuser utilizes a Transformer-based architecture for interpretable sensor fusion,
integrating sensor data to generate control commands for the ego vehicle. It has demonstrated
its effectiveness in autonomous driving tasks by achieving high driving scores on the CARLA
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Leaderboard. LMDrive [46] is a large language model based end-to-end ADS, which integrates
multi-modal sensor data with natural language instructions, enhancing the ability of the ego vehicle
to navigate complex scenarios. Additionally, both InterFuser and LMDrive are open-sourced and
the weights of their models are publicly available. These features make them suitable choices for
evaluating the performance of SimADFuzz.

5.1.2 Fuzzing Configurations. To evaluate the scenarios generated by SimADFuzz, we utilize the
CARLA simulator, configured to run at a frame rate of 20 Hz. Each simulation lasts up to 10 minutes
but may terminate earlier if the ego vehicle collides with other vehicles or pedestrians, or if it
successfully reaches its destination.
The maps used in our experiments are Town01 and Town03 provided by CARLA. Town01 is

a small map with several bridges and intersections, while Town03 represents a large urban area
resembling a downtown district, which includes roundabouts, underpasses, overpasses, and other
complex road structures, offering diverse and challenging driving scenarios for testing.
Each testing scenario includes five pedestrians and three vehicles, one of which is configured

as the ego vehicle deployed with InterFuser or LMDrive. Figure 7 illustrates six typical scenarios
generated by SimADFuzz: two vehicles driving in the same or opposite directions, vehicles encoun-
tering each other at the roundabout, pedestrians crossing intersections under different lighting
conditions, and multiple participants meeting at an intersection.

(a) Two vehicles driving in the same

direction

(b) Two vehicles driving in the op-

posite direction

(c) Encountering vehicles at the

roundabout

(d) Pedestrians crossing intersec-

tions

(e) Pedestrians crossing intersec-

tions in low-light conditions

(f) Multiple participants meeting at

an intersection

Fig. 7. Scenarios Generated During the Fuzz Testing

The population size for fuzzing is set to 20, with crossover and mutation probabilities fixed at 0.5.
To ensure a fair comparison across different fuzzing methods, the same seed scenarios are utilized
for all experiments. These seed scenarios are generated by randomly selecting ego vehicle routes
from the maps.

There are several hyperparameters in SimADFuzz, as shown in Table 5. The first three are related
to the violation prediction model (VPM), including parameters for the Transformer encoder. The
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remaining three are associated with mutation strategies, including two parameters mentioned in
Algorithm 1 and the maximum distance between pedestrians and the ego vehicle when generating
pedestrians.

Table 5. Hyperparameters of SimADFuzz

Category Hyperparameter Description Value

VPM-related
embedding dimension 128

head number 3
encoder layer number 3

Mutation-related
threshold for identifying stuck vehicles 10 meters

time window size for identifying leaving vehicles 10 seconds
maximum distance between pedestrian and the ego vehicle 20 meters

For the dataset generation, according to the empirical study conducted by Wang et al. [60], the
improvement in quality of generated scenarios between 1,000 and 2,000 samples is not significant.
Therefore, we generate 1,000 simple driving scenarios, each with a short route where the distance
between the starting and ending points is 50 meters. We then collect feedback information to
train both the violation prediction model and the SDC-Scissor model. For model training, the
SDC-Scissor model utilizes a Logistic Regression classifier, which has been shown to perform
effectively according to Birchler et al. [3]. The violation prediction model is trained using the Adam
optimizer with a learning rate of 0.001 and binary cross-entropy as the loss function. To mitigate
overfitting, we implement an early stopping strategy with a patience of 10 epochs. The training
process for the violation prediction model requires approximately 5 minutes.

5.1.3 Baselines and Evaluation Metrics. We compare SimADFuzz against three different fuzzers:
AV-Fuzzer, which employs genetic algorithms to minimize the ego vehicle’s safety potential.

It generates offspring scenarios by altering the positions of NPCs. Note that AV-Fuzzer does
not consider the number of unique violations in its fitness function by default. To ensure a fair
comparison, we modify its fitness function to include the number of unique violations as an
additional objective by a weighted sum (0.5 × original fitness + 0.5 × number of unique violations).

DriveFuzz, which designs a fitness function based on hard acceleration and other behaviors to
evaluate scenarios. It mutates the weather conditions, NPC positions, and pedestrian navigation
types to generate diverse driving scenarios.

TM-Fuzzer, which dynamically manages traffic flow to increase interactions with the ego vehicle.
It also incorporates clustering analysis to generate diverse test scenarios.
We use the number of unique violations (UVs) as the evaluation metric. UVs are defined as

violations that occur at different times or locations. Thismetric is widely used in ADS fuzz testing [11,
28] and serves as a reliable indicator of a fuzzer’s performance in detecting violations. In our
evaluation, we define a temporal threshold of ±10 seconds and a spatial threshold of ±30 meters to
determine unique violations.

5.2 Experimental Results
5.2.1 RQ1: Component Effectiveness. To validate the effectiveness of the violation prediction model,
SDC-Scissor, and distance-guided mutation strategies, we conducted ablation experiments using
SimADFuzz variants. All experiments were performed on the Town03 map with InterFuser as the
test subject, where each variant was fuzzed for a total of 3 hours.
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The results are shown in Figure 8, where each line represents a variant 𝑋 + 𝑌 . Here, 𝑋 indicates
the components activated during scenario selection, which can be 𝑉𝑆 (using both the violation
prediction model and SDC-Scissor, representing the complete fuzzer of SimADFuzz), 𝑉 (using only
the violation prediction model), 𝑆 (using only SDC-Scissor), or 𝑅 (randomly selecting scenarios).
𝑌 indicates the components activated during mutation, which can be 𝐷 (using distance-guided
mutation strategies) or 𝑅 (randomly mutating scenarios).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (h)

0

5

10

15

20

25

Nu
m

be
r o

f U
ni

qu
e 

Vi
ol

at
io

ns

Fuzzers
VS+D (SimADFuzz)
V+D
S+D
R+D
VS+R
V+R
S+R
R+R

Fig. 8. The number of UVs detected by variants of SimADFuzz. Each variant is denoted as 𝑋 + 𝑌 , where 𝑋
represents the components activated during scenario selection (with 𝑉 for the violation prediction model, 𝑆

for SDC-Scissor, and 𝑅 for random selection), and 𝑌 represents the components activated during mutation

(with 𝐷 for distance-guided mutation strategies and 𝑅 for random mutation strategies).

As shown in Figure 8, the complete fuzzer 𝑉𝑆 + 𝐷 outperforms all other variants, discovering 28
UVs over a total of 3 hours of fuzzing, while the random baseline (𝑅 + 𝑅) only discovers 10 UVs.
This indicates that the optimization components for both scenario selection and mutation greatly
improve the ability to detect violations in ADS.

Focusing on scenario selection,𝑉+𝐷 and 𝑆+𝐷 outperform𝑅+𝐷 , indicating that both the violation
prediction model and SDC-Scissor improve the effectiveness of selecting high-risk scenarios. The
combination of these two models (𝑉𝑆 + 𝐷) further refines the selection process by leveraging
temporal features from the violation prediction model and static road features from SDC-Scissor.
To better demonstrate the effectiveness of the scenario selection strategy of SimADFuzz, we

constructed two similar scenarios, 𝑆1 and 𝑆2, as described in the motivation examples (Section 3).
Figure 9 shows the bird’s eye view of these scenarios. It can be observed that scenario 𝑆2 is riskier
than 𝑆1 because the green vehicle blocks the ego vehicle’s path during right turns, potentially
leading to rear-end collisions. We calculated the fitness scores of both scenarios using AV-Fuzzer,
DriveFuzz, TM-Fuzzer and SimADFuzz. As shown in Table 6, AV-Fuzzer assigns a higher fitness
score to 𝑆1, while DriveFuzz and TM-Fuzzer consider both scenarios to be equally risky. Notably,
DriveFuzz’s objective values (e.g., hard acceleration, hard braking, etc.) are identical in both scenarios.
In contrast, SimADFuzz selects 𝑆2 as the Pareto-optimal scenario through the NSGA-2 algorithm.
The VPM predicts violation probabilities of 0.14 and 0.48 for 𝑆1 and 𝑆2, respectively, indicating that
𝑆2 poses higher risk when spatial-temporal features are considered.

In terms of scenario mutation, variants with randommutation strategies (𝑉𝑆 +𝑅,𝑉 +𝑅, 𝑆 +𝑅, and
𝑅+𝑅) performworse than their counterparts with distance-guided mutation strategies. Furthermore,
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(a) Bird-view of Scenario 𝑆1

(b) Bird-view of Scenario 𝑆2

Fig. 9. Two similar scenarios corresponding to Figure 2a and Figure 2b. Each scenario is represented by a

bird’s eye view of the map, with the red vehicle is deployed with InterFuser as the ego vehicle. The differences

between two scenarios are the start point of the green vehicle, where the start point of the green vehicle in 𝑆2
is farther from the 𝑇 -junction compared to 𝑆1, causing the green vehicle blocks the ego vehicle during right

turns, leading to a risky situation.

Table 6. The Fitness Score of Different Fuzzers in Two Similar Scenarios

Fuzzers S1 S2
Object Values Fitness Score Object Values Fitness Score

AV-Fuzzer - 136.62 - 136.44

DriveFuzz
ha=14; hb=8;
ht=0; os=0;

us=0; 1/md=0.25
22.25

ha=14; hb=8;
ht=0; os=0;

us=0; 1/md=0.25
22.25

TM-Fuzzer -md=-4.90; nova=0.47;
distance=0 Pareto-optimal -md=-4.73; nova=0.46;

distance=0 Pareto-optimal

SimADFuzz model=0.14; sdc=0.05;
-md=-4.90; num_vio=0 Not Pareto-optimal model=0.48; sdc=0.05;

-md=-4.73; num_vio=0 Pareto-optimal

𝑉𝑆 +𝑅 shows stagnation in the number of unique violations detected during fuzzing. This suggests
that random mutation strategies may generate low-quality scenarios with limited interaction
between traffic participants. Table 7 supports this observation by showing that distance-guided
mutation strategies increases both the number of NPC vehicles near the ego vehicle (i.e., within 50
meters) and collision violations. Notably, while𝑉𝑆 + 𝑅 only discovered one collision where the ego
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vehicle hit roadside barriers without interacting with other participants, SimADFuzz uncovered
more complex scenarios, including two collisions caused by NPC vehicles changing lanes and one
collision involving a pedestrian crossing the road. These results demonstrate that the distance-based
mutation strategies enhance vehicle interactions through increased proximity, which consequently
affects the ADS’s perception and decision-making, ultimately leading to more violations.

Table 7. The Number of NPC Vehicles Near by the Ego Vehicle and Collision Violations

Fuzzer variants Fuzzing Time Num of Vehicles Num of Collision Violations

VS+R
1h 3 0
2h 4 0
3h 8 1

VS+D (SimADFuzz)
1h 7 2
2h 11 3
3h 15 3

Answer to RQ1: The model-based fitness evaluation and distance-guided mutation strate-
gies effectively enhance the performance of SimADFuzz, detecting 18more unique violations
compared to variants using random strategies over 3 hours fuzz testing.

5.2.2 RQ2: Performance Comparison with SOTA Fuzzers. We conducted experiments on InterFuser
and LMDrive to compare the performance of SimADFuzz with other state-of-the-art fuzzers,
including AV-Fuzzer, DriveFuzz, and TM-Fuzzer. Each experiments was executed for a total of 10
hours.
Figure 10 and Figure 11 shows the number of unique violations detected in InterFuser and

LMDrive, respectively. The x-axis represents the fuzzing time in hours, while the y-axis indicates
the number of unique violations detected. It can see that the performance gap between SimADFuzz
and other fuzzers becomes increasingly significant as fuzzing progresses.

For InterFuser as the ADS under test, as shown in Figure 10, SimADFuzz detected a total of 111
UVs in two maps after 10 hours fuzzing, outperforming TM-Fuzzer (52 UVs), DriveFuzz (50 UVs),
and AV-Fuzzer (10 UVs). Additionally, SimADFuzz identified its first collision violation within 4
minutes, compared to 7 minutes for TM-Fuzzer, demonstrates SimADFuzz’s superior efficiency in
detecting critical violations. Specifically, SimADFuzz detected 20 collisions, 54 lane invasions, and
37 stuck violations.
For another ADS under test, LMDrive, as shown in Figure 11, all four fuzzers discover fewer

unique violations than InterFuser, since LMDrive is a more complex and advanced ADS with
superior performance. According to the comparison results, SimADFuzz outperforms the other
three baseline methods in both maps Town01 and Town03, with a total of 55 UVs detected, compared
to 41 UVs for TM-Fuzzer, 31 UVs for DriveFuzz and 6 UVs for AV-Fuzzer. SimADFuzz triggers
19 lane invasion violations and 15 stuck violations; however, to our surprise, 21 collisions were
detected in LMDrive, which is more than those detected in InterFuser. We manually checked the
recordings and reran the scenarios generated by SimADFuzz, and found that LMDrive sometimes
misjudged lane markings, leading to insufficient steering when turning, which results in the vehicle
driving off the road and colliding with roadside barriers.
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Fig. 10. The Number of UVs Detected by SimADFuzz and Baselines in Different Maps (InterFuser)
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Fig. 11. The Number of UVs Detected by SimADFuzz and Baselines in Different Maps (LMDrive)

Notably, none of the fuzzers detected speeding or running red light violations during testing on
InterFuser and LMDrive. We attribute this observation to the ADS’s conservative configurations.
Specifically, InterFuser is configured with a strict 5 m/s speed limit and a 0.3 confidence threshold
for red traffic light detection. LMDrive acquires the real-time traffic light status directly from
the simulator while maintaining smooth driving behavior through acceleration/deceleration rate
constraints. These configurations make the ego vehicle behave as a cautious driver, avoiding
speeding or moving when it is uncertain about the traffic light state.
To further analyze the results, we categorized the violations according to their types. Table 8

summarizes parts of violations discovered by SimADFuzz, briefly describing their scenarios and par-
ticipants. Importantly, all scenarios were confirmed to be reproducible using SimADFuzz (detailed
in Appendix A).

Regarding collision violations, we manually inspect each detected collision and categorize them
into pedestrian, vehicle and roadside collisions. Below, we present five case studies (#1, #2, #3, #4
and #5 in Table 8), all of which can be reproduced using SimADFuzz.
Case Study#1: Pedestrian Collision by InterFuser. As shown in Figure 12, the collision

occurs at night under low-light conditions. Although SimADFuzz ensures that vehicle headlights
are activated when the sun altitude falls below 90 degrees, the driving conditions remain more
challenging than in daylight. InterFuser successfully detects a moving object at timestamp 𝑡1
(Figure 12(b)), but it fails to recognize the pedestrian at timestamps 𝑡2 and 𝑡3. From the control
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Table 8. Violation Types and Scenario Descriptions

Violation Types ID Scenarios Description

Collision

#1 Ego vehicle failed to respond appropriately to a pedestrian jaywalking, resulting in a side collision.
#2 Ego vehicle collides with another vehicle while changing lanes to exit a crossroads.
#3 Ego vehicle collides with another vehicle while changing lanes at an intersection.
#4 Ego vehicle collides with another vehicle due to insufficient steering while turning right.
#5 Ego vehicle collides with roadside signboard due to misjudged lane markings.

Lane Invasion #6 Ego vehicle illegally crosses the solid line while passing through an intersection.
#7 Ego vehicle illegally crosses the solid line while turning right.

Stuck #8 Ego vehicle failed to change lanes when the pedestrian in front remained stationary for too long.
#9 Ego vehicle misjudged the state of the traffic lights, resulting in being stuck on a downhill ramp.

signals generated by InterFuser (highlighted in blue in the controller display at the bottom-right),
we observe that the ego vehicle does not apply any braking at timestamps 𝑡2 and 𝑡3. Although the
pedestrian’s behavior contributed to the collision, InterFuser’s failure to take appropriate actions
(i.e., braking) also makes it partially responsible for the accident.

Case Study#2, #3 and #4: Vehicle Collision by InterFuser. As shown in Figure 13, the ego
vehicle rear-collides with a van when changing lanes to exit the roundabout. At the time, the
van is stationary in the ego vehicle’s path. From Figure 13(c), we can see that while InterFuser
successfully detects an object to the right of the ego vehicle, it misjudges the size of the obstacle.
This misjudgment results in insufficient left steering by the ego vehicle, ultimately causing the
collision.

Figure 14 illustrates a collision caused by an improper lane change. At 𝑡1, two vehicles are turning
left at an intersection, with the front vehicle controlled by InterFuser. Then, at 𝑡2, the ego vehicle
merges into the side lane while a red car is driving alongside it on the left. Although InterFuser
identified the red car, it failed to yield and persisted in making the lane change despite the situation.
At 𝑡3, a side collision occurred due to an incorrect estimation of the red vehicle’s speed.

Figure 15 shows a more severe frontal collision. The ego vehicle, turning right at an intersection
with insufficient steering, drives into the opposite lane. Unfortunately, a white truck is approaching
from the opposite direction. Although the truck is braking and InterFuser immediately outputs
a brake signal (as shown in Figure 15(c)), trying to avoid the collision by stopping in front of the
truck. However, the ego vehicle’s speed is too high to stop in time and ultimately, the two vehicles
collide head-on.
Case Study#5: Roadside Signboard Collision by LMDrive. Figure 16 illustrates a collision

triggered by LMDrive under heavy fog conditions. During a left turn maneuver on a curved
road, the system misjudged lane markings, causing the ego vehicle to deviate off-road as shown
in Figure 16(c). The vehicle persistently maintained throttle input without braking or steering
correction,7 ultimately colliding with a roadside speed limit signboard at 14.65 km/h (Figure 16(d)).

Answer to RQ2: SimADFuzz reveals 150, 85 and 73 more unique violations than AV-Fuzzer,
DriveFuzz and TM-Fuzzer respectively across two tested ADS, demonstrating superior
effectiveness in generating high-quality scenarios for simulation-based testing.

5.2.3 RQ3: Diversity of Scenarios. The main goal of SimADFuzz is to generate more diverse and
interactive driving scenarios. One of the metrics used to evaluate diversity is ego vehicle trajectory
7The LMDrive controller’s display interface contains a display mismatch: throttle and steering data are positionally swapped
in the GUI.
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(a) Bird-view of scenario at 𝑡1 (b) InterFuser controller display at 𝑡1

(c) Bird-view of scenario at 𝑡2 (d) InterFuser controller display at 𝑡2

(e) Bird-view of scenario at 𝑡3 (f) InterFuser controller display at 𝑡3

Fig. 12. Pedestrian Collision under Low-Light Conditions (#1)

(a) Bird-view of scenario (b) Front-view of scenario (c) InterFuser controller display

Fig. 13. Vehicle Collision during Lane Change at the Roundabout (#2)

coverage on the map [26]. We mark the waypoints on the Town03 map at 5-meter intervals and
define trajectory coverage as the number of waypoints covered by the ego vehicle’s route divided
by the total number of waypoints on the map.
As shown in Figure 17, SimADFuzz (i.e., VS+D) achieved 46.84% trajectory coverage, outper-

forming AV-Fuzzer (2.80%) which does not mutate the ego vehicle’s route but only the NPCs, and
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(a) Bird-view of scenario at 𝑡1 (b) InterFuser controller display at 𝑡1

(c) Bird-view of scenario at 𝑡2 (d) InterFuser controller display at 𝑡2

(e) Bird-view of scenario at 𝑡3 (f) InterFuser controller display at 𝑡3

Fig. 14. Vehicle Collision during Lane Change at the Intersection (#3)

(a) Bird-view of scenario (b) Front-view of scenario (c) InterFuser controller display

Fig. 15. Vehicle Collision during Turn Right (#4)

DriveFuzz (12.04%) which mutates the ego vehicle’s route only after the cycle and mutation process
are completed. TM-Fuzzer, which aims to increase interactions by dynamically controlling traffic
flow, achieved a trajectory coverage of 17.88%.
Furthermore, the two variants of SimADFuzz, 𝑅 + 𝑅 and 𝑉𝑆 + 𝑅, achieve 23.18% and 33.10%

of trajectory coverage, respectively. Although random-based scenario mutation strategies have a
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(a) Before Turning (b) Turning Left (c) Off Road (d) Collision with Signboard

Fig. 16. Roadside Signboard Collision during Turn Left (#5)

higher probability of mutating the ego vehicles to discover more map waypoints than SimADFuzz,
which focuses on mutating NPC vehicles, 𝑅 + 𝑅 and 𝑉𝑆 + 𝑅 often assign longer driving tasks for
the ego vehicle, reducing simulation efficiency. For example, we counted the number of scenarios
executed by SimADFuzz and 𝑉𝑆 + 𝑅 during the 3-hour fuzzing process. The results show that
SimADFuzz executed 48 scenarios, while 𝑉𝑆 + 𝑅 executed 37 scenarios. This difference explains
why the map coverage of 𝑅 + 𝑅 and 𝑉𝑆 + 𝑅 is lower than that of SimADFuzz.

Recall that SimADFuzz detects more violations than other fuzzers, which indicates that SimAD-
Fuzz not only increases the diversity of the ego vehicle’s trajectory across the map but also improves
the quality of the scenarios for detecting risky behaviors.

Answer to RQ3: The strategies used in SimADFuzz enhance the coverage of the ego
vehicle’s trajectory on the map, thereby improving the diversity of the generated scenarios.

5.3 Threats to Validity
5.3.1 Internal Validity. One potential threat to internal validity is the implementation of SimAD-
Fuzz. We developed SimADFuzz based on the DEAP and CARLA simulator and extended it by
(1) enhancing the simulation information collector through analysis of actions determined by the
ADS, (2) integrating a model-based fitness evaluation using a deep neural network model and
adapting the fitness score to the NSGA-2 algorithm provided by DEAP, and (3) customizing the
scenario mutation procedure by introducing a distance-guided mutation strategy. Although the
implementation of SimADFuzz has undergone peer review, there may still be issues that could
affect the experimental results. To mitigate this risk, we have made the source code of SimADFuzz
publicly available (details in Appendix A), allowing the community to reproduce the results and
validate the implementation.

5.3.2 External Validity. A potential threat to external validity is that we evaluate the effectiveness
of SimADFuzz primarily based on InterFuser and LMDrive using two simulation maps, which
may limit the generalizability of the results to other ADSs or driving environments. Specifically,
industrial-grade ADSs (e.g., Apollo and Autoware) generally have more complex architectures
than research-prototype ADSs, and certain driving scenarios (e.g., parking, U-turns, etc.) are not
covered by the two maps used in our experiments. Therefore, the effectiveness of SimADFuzz on
these industrial-grade ADSs and in such specific scenarios requires further investigation in future
work. Nevertheless, it is important to note that InterFuser has achieved top-performing results on
the CARLA Leaderboard, and LMDrive integrates complex large language models, representing
novel and advanced ADSs. Additionally, the two selected maps adequately cover typical driving
environments in both rural and urban areas, and both the test subjects and simulation maps have
been widely employed in previous works [29, 34, 60, 68], which mitigates threats to external validity.
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(a) AV-Fuzzer (2.80%) (b) DriveFuzz (12.04%)

(c) TM-Fuzzer (17.88%) (d) SimADFuzz-R+R (23.18%)

(e) SimADFuzz-VS+R (33.10%) (f) SimADFuzz-VS+D (46.84%)

Fig. 17. Trajectory Coverage of Fuzzers in Town03

5.3.3 Construct Validity. The primary threat to construct validity lies in the metrics used to
evaluate the effectiveness of SimADFuzz. In our experiment, we focus solely on the number of
unique violations detected by each fuzzer. The violation oracle used in SimADFuzz, its variants,
and other fuzzers are identical. Therefore, comparing the number of unique violations provides a
fair assessment of the performance of SimADFuzz. Furthermore, the number of unique violations
is a widely accepted metric in the evaluation of fuzz testing for ADS [11, 28], and it effectively
reflects the capability of SimADFuzz in detecting violations within ADS.

6 Related Work
SimADFuzz leverages fuzzing techniques for simulation-based testing, and proposes novel scenario
selection and mutation strategies to generate offspring scenarios. This section reviews the related
work on simulation-based testing for ADS and optimization techniques for fuzz testing.
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6.1 Simulation-based Testing for ADS
Simulation-based testing presents a viable and efficient alternative, enabling the exploration of
a broad spectrum of scenarios and environments in a controlled and safe setting [42]. However,
as the complexity of simulated environments increases, the number of configurable and variable
elements also grows, leading to a vast space of possible scenarios. Therefore, simulation-based
testing methods for ADS focus on how to generate critical scenarios.
Wang et al. [58] presented AdvSim, a framework that generates safety-critical scenarios by

adversarially altering the trajectories of actors within traffic scenarios to test the LiDAR-based ADS.
Gambi et al. [18] presented ASFault, which creates road networks to simulate driving scenarios and
employs a genetic algorithm to generate tests aimed at exposing unsafe behaviors in lane-keeping
systems.

Moreover, Sun et al. [52] and Zhang et al. [67] expanded the oracle of violations beyond collisions
to traffic laws. They presented LawBreaker and GFlowNet, respectively, which assess the "distance"
between the behavior of ego vehicles and traffic laws using signal temporal logic [38], thereby
generating scenarios that more closely resemble violations. Huai et al. [28] presented Doppel,
which replaces non-intelligent agents in the simulation with the ego vehicle, ensuring that all
violations are triggered by the ego vehicle and reducing false positives. Lu et al. [36] proposed
DeepCollision based on the Deep Q-Learning (DQN) algorithm [40], which calculates the safety
distance and current distance to evaluate the collision probability, and designs reward functions to
make the DQN output the optimal action, thereby increasing the possibility of detecting collision
behaviors. Tian et al. proposed MOSAT [53] and CRISCO [54]. MOSAT represents vehicle driving
behavior as a gene sequence composed of atomic driving maneuvers. It considers fitness metrics
such as the estimation time to collision (ETTC) and leverage NSGA-2 to select scenarios, then
the maneuver sequence are mutated to generate offspring driving scenarios. CRISCO extracts
influential behavior patterns from historical traffic accidents, and assigns participants to move
along specified trajectories during scenario generation. Additionally, CRISCO leverages ETTC to
evaluate the criticality of driving scenarios, selecting more critical scenarios to challenge the ADS.

Haq et al. [24] focus on DNN-enabled systems and propose an online testing method that utilizes
MOSA/FITEST as the multi-objective search algorithm to guide the generation of test cases. In
contrast, SimADFuzz employs the NSGA-2 algorithm, which is orthogonal to MOSA/FITEST. While
both aim to optimize multiple objectives, they do so through different methodologies and strategies,
offering unique advantages in different contexts, such as exploration vs. exploitation trade-offs.
AV-Fuzzer [31], AutoFuzz [68], DriveFuzz [30], TM-Fuzzer [34], scenoRITA [27] and Scenario-

Fuzz [60] are representative methods that utilize fuzz testing techniques to generate scenarios for
autonomous driving simulations. These fuzzers adapt their scenario generation strategies based on
simulation feedback. For instance, AV-Fuzzer retains scenarios with higher potential safety risks
when interacting with other actors. AutoFuzz evaluates objectives such as the ego vehicle’s speed
during collisions and the minimum distance to other actors. Similarly, DriveFuzz incorporates
metrics such as hard braking, steering, and minimum distances as driving quality scores, selecting
the scenarios with the highest fitness to generate offspring. TM-Fuzzer utilizes real-time traffic
management and diversity analysis to serach and generate critical and unique scenarios. scenoRITA
optimize mutation strategies force on obstacles states (e.g., vehicles, pedestrians and bikes) and
proposed a technique to eliminate duplicate scenarios to enhance testing efficiency. The most
similar work with SimADFuzz is ScenarioFuzz, which builds a graph neural network to predict
and filter out high-risk scenarios, while we leverage Transformer model to embed the scenarios
by considering the temporal features of the ego vehicle and NPC vehicles. Note that SimADFuzz
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selects scenarios based on multi-objective search algorithm NSGA-2, so it is convenient to adapt
other fitness (such as confidence level proposed by ScenarioFuzz) to further refine our method.

6.2 Optimization Techniques for Fuzz Testing
Fuzz testing is a dynamic software analysis and testing technique that employs random inputs
as test cases, which are then executed within the programs under test (PUT) [33]. The quality of
test cases is pivotal to the efficacy of fuzz testing; high-quality test cases facilitate the exploration
of more diverse execution paths within the program, while low-quality test cases may lead to
inefficient resource allocation and reduced testing effectiveness. Thus, recent work focused on
optimizing seed selection and mutation strategies to generate high-quality test cases.

For seed selection, Memlock [61] prioritizes seeds based on coverage and memory consumption
to uncover vulnerabilities related to memory usage in PUT. Truzz [66] favors seeds that generate
new edge coverages, thereby improving the code coverage. K-Scheduler [50] assigns different prob-
abilities for selection based on the centrality of each seed. Cerebro [32] calculates a comprehensive
score for seeds based on the complexity of unexplored code near the execution path. AFLSmart [43]
computes the effectiveness ratio of seeds, with higher effectiveness seeds being allocated more
resources, thus increasing the likelihood of generating effective offspring test cases.

For seed mutation, several works leverage machine learning models to optimize mutation strate-
gies. Neuzz [49] employs a neural network model to smoothen complex PUT, establishing a
relationship between test case byte sequences and branch coverage, identifying key byte positions
through gradients for targeted mutation. MTFuzz [48] uses a Multi-Task neural network to learn a
compact embedding of the input space for multiple related tasks, guiding the mutation process by
focusing on high-gradient areas of the embedding. Wu et al. [62] proposed PreFuzz, which enhances
gradient guidance through a resource-efficient edge selection mechanism and a probabilistic byte
selection mechanism to improve mutation effectiveness.
Existing seed selection and mutation optimization strategies cannot be directly applied to fuzz

testing for ADS, because the scenarios are well-defined structured data compared to byte sequences.
Inspired by SmarTest [51], which leverages language models to prioritize and generate transaction
sequences (i.e., test cases in the context of smart contracts), SimADFuzz employs a model-based
fitness score evaluation method to optimize scenario selection. Furthermore, by measuring the
distance between the ego vehicle and other traffic participants, the mutation strategy is refined
to increase the probabilities of interactions between vehicles, leading to more effective scenario
generation.

7 Conclusion
In this paper, we have proposed a novel fuzz testing method SimADFuzz, which addressed the
limitations of existing methods and generated high-quality scenarios for autonomous driving
systems. SimADFuzz combines a model-based fitness evaluation approach with distance-guided
mutation strategies to improve the ability of fuzz testing in detecting violations. We have conducted
extensive experiments to evaluate the effectiveness of SimADFuzz. The results show that compared
to the state-of-art approaches AV-Fuzzer, DriveFuzz and TM-Fuzzer, SimADFuzz can detect 150, 85
and 73 more violations and demonstrate its ability to identify potential issues in the ADS.

In future work, we aim to further enhance scenario selection andmutation strategies. For example,
we plan to incorporate factors such as traffic signals and weather conditions into the neural network
model to improve the accuracy of fitness value evaluation. In addition, we intend to explore the
use of sequence models such as Informer [70], which has demonstrated superior performance
over Transformers in extracting temporal features from trajectory prediction [8], to enhance the
effectiveness of the scenario violation prediction model. Future work also includes investigating
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replacing NSGA-2 with advanced multi-objective algorithms such as MOPSO [12] and NSGA-3 [14]
to analyze differences in performance. Furthermore, we shall consider evaluating SimADFuzz
on industrial-grade ADSs, such as Apollo and Autoware, which offer more complex and realistic
system architectures. Moreover, experiments will be extended to larger and more diverse simulation
maps, enabling more comprehensive assessment of SimADFuzz’s effectiveness under varying and
challenging driving scenarios.
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