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Behaviour distances to measure the resemblance of two states in a (nondeterministic) 
fuzzy transition system have been proposed recently in literature. Such a distance, de-
fined as a pseudo-ultrametric over the state space of the model, provides a quantitative 
analogue of bisimilarity. In this paper, we focus on the problem of computing these dis-
tances. We first extend the definition of the pseudo-ultrametric by introducing discount 
such that the discounting factor being equal to 1 captures the original definition. We then 
provide polynomial-time algorithms to calculate the behavioural distances, in both the non-
discounted and the discounted setting. The algorithm is strongly polynomial in the former 
case.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Fuzzy automata and fuzzy languages are standard computational devices for modelling uncertainty and imprecision due 
to fuzziness. Classical fuzzy automata are deterministic, namely, when in the current state and reading a symbol, the automa-
ton can only move to a unique next (fuzzy) state. In [4], Cao et al. argued that nondeterminism is essential for modelling 
certain aspects of system, such as scheduling freedom, implementation freedom, the external environment, and incomplete 
information. Hence, they introduced nondeterminism into the model of fuzzy automata, giving rise to nondeterministic fuzzy 
automata, or more generally, (nondeterministic) fuzzy transition systems.

In general, system theory mainly concerns modelling systems and analysis of their properties. One of the fundamental 
questions studied in system theory is regarding the notion of equivalence, i.e., when can two systems be deemed the same 
and when can they be inter-substituted for each other? In the classical investigation in concurrency theory, bisimulation, 
introduced by Park and Milner [23], is a ubiquitous notion of equivalence which has become one of the primary tools in the 
analysis of systems: when two systems are bisimilar, known properties are readily transferred from one system to the other. 
However, it is now widely recognised that traditional equivalences are not a robust concept in the presence of quantitative
(i.e. numerical) information in the model (see, e.g., [15]). Instead, it should come up with a more robust approach to 
distinguish system states. To accommodate this, researchers have borrowed from pure mathematics the notion of metric. 
A metric is often defined as a function that associates some distance with a pair of elements. Here, it is exploited to provide 
a measure of the discrepancy between two states that are not exactly bisimilar. Probabilistic systems and fuzzy transition 
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systems are two typical examples of systems featuring quantitative nature. For probabilistic systems, the notion of distance 
in terms of pseudo-metrics has been studied extensively (cf. the related work). For fuzzy transition systems, Cao et al. [5]
proposed a similar notion which serves as an analogue of those in probabilistic systems. Technically, a pseudo-ultrametric, 
instead of a pseudo-metric, was adopted. We refer the readers to Section 2 for formal definitions.

Having a proper definition of distance at hand, the next natural question is: how to compute it for a given pair of states? 
This raises some algorithmic challenges. For probabilistic systems, different algorithms have been provided for a variety of 
stochastic models (cf. the related work). However, to the best of our knowledge, little is known as for the corresponding 
algorithms in fuzzy transition systems. Indeed, in [5] this was left as an open problem, which is the main focus of the 
current paper.

On a different matter, discounting (or inflation) is a fundamental notion in economics and has been studied in, among 
others, Markov decision processes as well as game theory. Discounting represents the difference in importance between the 
future values and the present values. For instance, assuming a real-valued discount factor 0 < γ < 1. A unit payoff is 1 if 
the payoff occurs today, but it becomes γ if it occurs tomorrow, γ 2 if it occurs the day after tomorrow, and so on. When 
γ = 1, the value is not discounted. Discounting has a natural place in system engineering; as a simple example, a potential 
bug in the far-away future is less troubling than a potential bug today [11]. In other words, discounting models preference 
for shorter solutions.

We introduce discounting into the distance definition for fuzzy transition systems, as done in probabilistic systems [28]. 
This is complementary to the definition given in [5]. In a nutshell, when measuring the distance between two states, the 
distance of their one-step successors are a times less important, and the distance between their two-step successors are a2

times less important, etc.

Contributions. The main contributions of this paper are as follows:

(1) We extend the pseudo-ultrametric definition given in [5] for non-discounted setting to the discounted setting;
(2) We present polynomial-time algorithms to compute the behavioural distance, in both non-discounted (i.e., the original 

definition in [5]) and discounted setting (defined in the current paper).

Some explanations are in order. Regarding (1), remark that the definition in [5] is given in the non-discounted setting, 
where the present distances and the distances in future are equally weighted. In our setting, the discounting will be taken 
into consideration. Regarding (2), the basic ingredient of our algorithms is the standard “value iteration” procedure à la
Kleene (Kleene’s fixpoint theorem [22]). To qualify a polynomial-time algorithm, we show two facts: (i) For each iteration, 
it only needs polynomial time. Note that according to the definition of pseudo-ultrametric, each step requires to solve a 
(non-standard) mathematical programming problem (cf. Section 2). We show this can be done in polynomial-time. This part 
is identical for both discounted and non-discounted cases. (ii) The number of iterations is polynomially bounded. In the 
non-discounted case, this is done by inspecting the possible values appearing in each iteration. For the discounted case, 
unfortunately this does not hold. Instead, our strategy is to firstly compute an approximation of the sought value, and then 
apply the continued fraction algorithm to obtain the precise value. To the best of our knowledge, we are not aware of any 
previous work on polynomial algorithms for computing behaviour distances in fuzzy transition systems.

Fuzzy transition systems are known as possibility systems which are closely related to the probabilistic systems. Our 
algorithm and its analysis reveal some interesting difference between these two types of models, especially in the non-
discounted case. Indeed, the scheme used in the paper cannot yield a polynomial-time algorithm for discrete-time Markov 
chains: There is an explicit example showing that it might take exponentially many iterations to reach the fixpoint; see [6]. 
As a matter of fact, for discrete-time Markov chains (which are the counterpart of deterministic fuzzy transition systems), 
polynomial-time algorithms do exist, but one has to appeal to linear programming [6]. This, however, does not provide a 
strongly polynomial-time algorithm.1 Even worse, for Markov decision processes (which are the counterpart of nondeter-
ministic fuzzy transition systems), the best known upper-bound is NP ∩ co-NP [18].2 In contrast, here we give a strongly 
polynomial-time algorithm for (nondeterministic) fuzzy transition systems.

Related work.

Fuzzy systems, fuzzy automata and fuzzy transition systems. Conventionally, fuzzy systems are mainly referred to as fuzzy rule 
based systems where fuzzy states (outputs) evolve over time under some (maybe fuzzy) controls. In this paper, we are 
mainly interested in a type of fuzzy system models which are based on fuzzy automata [31]. Typically, fuzzy automata are 
considered to be acceptors of fuzzy languages. However, for the purpose of the current paper, we consider fuzzy transi-
tion systems, which are, in a nutshell, nondeterministic fuzzy automata without accepting states. Hence, we disregard the 
language aspect of fuzzy automata, but focus on their dynamics.

Metrics on other types of systems. Giacalone et al. [19] were the first to suggest a metric between probabilistic transition 
systems to formalise the notion of distance between processes. Subsequently, [15] studied a logical pseudometric for labelled 

1 It is a long-standing open problem whether linear programming admits a strongly polynomial-time algorithm.
2 A (weakly) polynomial-time algorithm in this case would resolve a long-standing open problem on simple stochastic games for almost 30 years.
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Markov chains. A similar pseudometric was defined in [30] via the terminal coalgebra of a functor based on a metric on the 
space of Borel probability measures. [16] dealt with labelled concurrent Markov chains. [13] considered a slightly more general 
framework, called action-labelled quantitative transition systems. They defined a pseudometric which was an adaptation of the 
one in [16]. Furthermore [17] considered pseudometric over Markov decision processes with a continuous state space.

Algorithms for calculating metrics. Apart from the work discussed above, [29] gave an approximation algorithm based on linear 
programming and iteration. [28] proposed an algorithm for Markov chains, based on the first-order theory of reals, which 
was extended to simple probabilistic automata in [7]. These algorithms are not optimal. [27] also presented an algorithm 
for computing distance between probabilistic automata. However, their definition was considerably different from what is 
widely adopted in literature.

Equivalence and metrics in fuzzy systems. Relate to the fuzzy transition systems, different notions of bisimulation and sim-
ulation have been introduced into traditional fuzzy automata [8,21], weighted automata [2], and quantitative transition 
systems [24]. Ćirić et al. [9] proposed algorithms to compute these relations. Recently, Deng and Wu [14] provided a modal 
characterisations of fuzzy bisimulation. As an application of fuzzy bisimulation theory, Deng and Qiu [12] developed the 
supervisory control of fuzzy discrete-event systems based on simulation equivalence. To the best of our knowledge, this is 
the first paper to study (polynomial) algorithms of computing the distances between two fuzzy transition systems.

Structure of the paper. This paper is set up as follows. In Section 2, we present some background knowledge. In Section 3, 4
and 5 we provide two polynomial-time algorithms for the non-discounted and discounted case, respectively. The correctness 
of the algorithms is also shown. We conclude our work in Section 6.

2. Preliminaries

We write Q for the set of rationals. Let X be a finite set. A fuzzy subset (or simply fuzzy set) of X is a function μ : X →
[0, 1]. Such functions are called membership functions; intuitively the value μ(x) captures the degree of membership of x
in μ. A fuzzy (sub)set of X can be used to formally represent a possibility distribution over X .

The support of a fuzzy set μ is defined as Supp(μ) = {x | μ(x) > 0}. If Supp(μ) is finite, we adopt Zadah’s notation. 
Namely, assuming Supp(μ) = {x1, x2, ..., xn}, we write μ as:

μ = μ(x1)

x1
+ μ(x2)

x2
+ · · · μ(xn)

xn
.

We write F(X) and P(X) for the set of all fuzzy subsets and the power set of X respectively. For any μ, η ∈ F(X), we 
say that μ is contained in η (or η contains μ), denoted by μ ⊆ η, if μ(x) ≤ η(x) for all x ∈ X . Note that μ = η if both μ ⊆ η
and η ⊆ μ. A fuzzy set μ of X is empty if μ(x) = 0 for any x ∈ X . We usually write ∅ for the empty fuzzy set.

For any family {λi}i∈I of elements in [0, 1], we write 
∨

i∈I λi or ∨{λi | i ∈ I} for the supremum of {λi | i ∈ I}, and corre-
spondingly 

∧
i∈I λi or ∧{λi | i ∈ I} for the infimum. Note that if I is finite, 

∨
i∈I λi and 

∧
i∈I λi are the greatest element and 

the least element of {λi | i ∈ I}, respectively. For any μ ∈F(X) and U ⊆ X , μ(U ) stands for 
∨

x∈U μ(x).

2.1. Fuzzy transition systems

Definition 1 ([5]). A fuzzy transition system (FTS) is a tuple M = (S, A, δ) where

• S is a finite set of states,
• A is a finite set of labels,
• δ : S × A →P(F(S)) is a fuzzy transition function.

Given an FTS (S, A, δ) and s ∈ S , a ∈ A, we say s a−→ μ is a fuzzy transition if μ ∈ δ(s, a). An FTS is finite if both S and 
A are finite. Throughout this paper, we only consider finite FTSs. Let Act(s) = {a ∈ A | ∃μ ∈ F(S), s a−→ μ} be the set of 
actions enabled in state s.

Below we leverage the example, originally given in [5], to illustrate the FTS.

Example 1. The FTS M is depicted in Fig. 1, where S = {s1, s2, s3, s4}, A = {a} and the transitions are s1
a−→ μ, s2

a−→ η

and s3
a−→ ν . Note that here μ = 0.9

s3
+ 0.8

s4
, η = 0.6

s3
+ 0.9

s4
, and ν = 0.9

s4
. �

For complexity consideration, we assume that all the values in M are rational numbers. We also need to measure 
the size of M. Different computational models have different size measures. For the arithmetic model of computation 
(for instance, unit-cost arithmetic Random Access Machine) we define |M| to be the sum of the size of the state space and 
the number of the entries of the transition functions. Formally |M| = |S| + ∑

s∈S,a∈A,μ∈δ(s,a) |Supp(μ)|, where | · | de-
notes the cardinality of a set. For the Turing machine model, we define ||M|| taking into account the number of bits to 
encode the rational numbers in M. Formally ||M|| = |S| + ∑

s∈S,a∈A,μ∈δ(s,a) ||Supp(μ)||. Here for each finite set X ⊆ Q, 
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Fig. 1. Fuzzy transition system M.

||X || = ∑
x∈X ||x||, where ||x|| is the number of bits to encode x in binary (rational numbers are represented as a fraction). 

Obviously |M| ≤ ||M||. We use the standard notation �r� to denote the smallest integer greater than or equal to a real 
number r.

Example 2. For the FTS M in Fig. 1, |M| = 4 + 2 + 2 + 1 = 9, as |S| = 4, |Supp(μ)| = |Supp(η)| = 2, and |Supp(ν)| = 1. 
Whereas ||Supp(μ)|| = || 9

10 || + || 8
10 || = �log2 9� + �log2 10� + �log2 8� + �log2 10� = 15. Note that here log is to base 2 and 

�log2 9� + �log2 10� bits are needed to encode 0.9 in binary. �
2.2. Behavioural metrics

Definition 2. Let X be a nonempty set. A function d : X × X → [0, 1] is a pseudo-ultrametric on X if for all x, y, z ∈ X :

1. d(x, x) = 0;
2. d(x, y) = d(y, x); and
3. d(x, z) ≤ d(x, y) ∨ d(y, z).

The pair (X, d) is a pseudo-ultrametric space. For simplicity we often write X instead of (X, d). In the paper we only 
consider [0, 1]-valued pseudo-ultrametrics. This, however, is without loss of generality; see [3] for discussions.

Let D(S) be the set of all pseudo-ultrametrics on S . For any d ∈ D(S), we lift it to a pseudo-ultrametric on F(S), as 
follows.

Definition 3 (Lifting). Let d ∈D(S). For any μ, η ∈F(S), if μ(S) 
= η(S), we define d̂(μ, η) = 1; otherwise, we define d̂(μ, η)

as the value of the following mathematical programming problem (MP):

minimise
∨

s,t∈S

(d(s, t) ∧ xst) (1)

subject to
∨
t∈S

xst = μ(s) ∀s ∈ S (2)

∨
s∈S

xst = η(t) ∀t ∈ S (3)

xst ≥ 0 ∀s, t ∈ S (4)

It is shown in [3, Theorem 1] that for each d ∈D(S), d̂ is a pseudo-ultrametric on F(S).

Definition 4. We define the order � on D(S) as

d1 � d2 if d1(s, t) ≤ d2(s, t) for all s, t ∈ S.

A partially ordered set (X, ≤) is a complete lattice if every subset of X has a supremum and an infimum in (X, ≤). It can 
be easily shown that (D(S), �) is a complete lattice, following the same argument in [3, Lemma 2], with the supremum 
and infimum given by 

∨
s,t∈S,d∈D(S) d(s, t) and 

∧
s,t∈S,d∈D(S) d(s, t).

Now we extend d̂ to a distance measure on the sets of possibility distributions by appealing to the Hausdorff distance 
which measures how far two subsets of a metric space are from each other [25]. Informally, the Hausdorff distance is 
the longest distance of either set to the nearest point in the other set. We consider the Hausdorff distance for a pseudo-
ultrametric space.
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Definition 5. Let (X, d) be a pseudo-ultrametric space. For any x ∈ X and Y ⊆ X , define

d(x, Y ) =
{∧

y∈Y d(x, y), if Y 
= ∅

1, otherwise

Further, given a pair Y , Z ⊆ X , the Hausdorff distance induced by d is defined as

Hd(Y , Z) =
{

0, if Y = Z = ∅(∨
y∈Y d(y, Z)

) ∨ (∨
z∈Z d(z, Y )

)
, otherwise

It is shown in [3, Lemma 3] that, if d is a pseudo-ultrametric on X , Hd is a pseudo-ultrametric on P(X).

Example 3. Given Fig. 1, let Y = {s1, s2} ⊆ S and Z = {s3, s4} ⊆ S . The distance d3 is defined as follows: d3(s1, s3) = 0.92, 
d3(s1, s4) = 0.83, d3(s2, s3) = 0.66, d3(s2, s4) = 0.75. As a result, d3(s1, Z) = min{d3(s1, s3), d3(s1, s4)} = min{0.92, 0.83} =
0.83, and d3(s2, Z) = min{d3(s2, s3), d3(s2, s4)} = min{0.66, 0.75} = 0.66. Meanwhile, d3(s3, Y ) = inf{d3(s3, s1), d3(s3, s2)} =
min{0.92, 0.66} = 0.66, and d3(s4, Y ) = min{d3(s4, s1), d3(s4, s2)} = min{0.83, 0.75} = 0.75. The Hausdorff distance induced 
by d3 is defined as

Hd3(Y , Z) =max{d3(s1, Z),d3(s2, Z),d3(s3, Y ),d3(s4, Y )}
=max{0.83,0.66,0.66,0.75} = 0.83. �

Note that any d ∈ D(S) induces a pseudo-ultrametric d̂ on F(S) which, in turn, yields a pseudo-ultrametric Hd̂ on 
P(F(S)). We are now in a position to define a functional � on D(S).

Definition 6. The functional �γ :D(S) →D(S) is defined as follows. For any d ∈ D(S), �γ (d) is given by

�γ (d)(s, t) = γ ·
∨
a∈A

Hd̂

(
δ(s,a), δ(t,a)

)
for all s, t ∈ S , where γ ∈ (0, 1] is the discounting factor.

It is rather straightforward to check that �γ (d) ∈ D(S) by [3, Lemma 3], which means that �γ is well defined. In case 
γ = 1, it is shown in [3, Lemma 4] that the functional �1 : D(S) → D(S) is monotonic with respect to the partial order �. 
One can also see that this holds as well in the case that γ ∈ (0, 1). By Tarski’s fixpoint theorem [26], �γ admits a least
fixpoint �γ

min given by

�
γ
min =

∧
{d ∈ D(S) | �γ (d) � d}.

This is what we are after as a distance measure on the pairs of states in an FTS. Note that

Definition 7. Let (S, A, δ) be an FTS and γ ∈ (0, 1] be the discounting factor. For any s, t ∈ S , the behavioural distance between 
s and t , denoted dγ

f (s, t) ( f stands for fixpoint), is defined as

dγ
f (s, t) = �

γ
min(s, t).

Remark 1. In [3], the order � is defined in the reverse direction as in Definition 4, i.e., d1 � d2 if d1(s, t) ≥ d2(s, t). Accord-
ingly, dγ

f is defined as the greatest fixpoint (as opposed to the least fixpoint here). This is used to mimic the bisimulation 
which is commonly defined as the greatest fixpoint in the literature. Nevertheless these two definitions are equivalent.

Remark 2 (Discounting). The transitions could be written as s a−→ μ and t a−→ η. In other words, the one-step successors of 
s and t are the distributions μ and η. The distance between s and t is calculated by the Hausdorff distance between their 
one-step successors. As it is one step away from s and t , the contribution of the distance will be discounted by γ .

3. Polynomial algorithms for computing distances

In this section, we provide a sketch of algorithms to compute the behaviour distance defined in Definition 7 for the 
non-discounted case (γ = 1) and discounted case (0 < γ < 1). The basic ingredient of these algorithms is the standard 
Kleene iteration as they are both defined as the least fixpoint of a monotonic function.
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Proposition 1. Let (S, A, δ) be an FTS and γ be the discounting factor. Define (�γ )0(⊥) = ⊥ and (�γ )n+1(⊥) = �γ [(�γ )n(⊥)], 
where ⊥ is given by ⊥(s, t) = 0 for all s, t ∈ S. Then dγ

f = �
γ
min = ∨{(�γ )n(⊥) | n ∈N}.

Proof. By Kleene’s fixpoint theorem, the least fixpoint �γ
min can be obtained by iteration of �γ starting from the least 

element ⊥ (see, for example, [10]). As a result, to verify that �γ
min = ∨{(�γ )n(⊥) | n ∈ N}, it suffices to show that the 

closure ordinal of �γ , i.e., the least ordinal n such that (�γ )n+1 = (�γ )n , is at most ω. In fact, for any (s, t) ∈ S × S , if 
s a−→ μ, then for each dn = (�γ )n(⊥), there exists ηn such that t

a−→ ηn and d̂n(μ, ηn) ≤ dn(s, t). Because the FTS under 
the complexity consideration is finite, which means that δ(t, a) is finite, there is an ηn , say η, such that t

a−→ η and 
d̂n(μ, η) ≤ dn(s, t) for all but finitely many n, as desired. �

As mentioned in Section 1, Proposition 1 does not yield an outright polynomial-time algorithm. For our purpose, essen-
tially one has to show that

(1) the (non-standard) mathematical programming (MP) problem can be solved in polynomial time; and
(2) it only requires polynomially many iterations to reach the fixpoint.

In the sequel, we will show both are indeed the case. For (1), we shall present a polynomial-time algorithm that, given d
and s, t ∈ S , computes

�γ (d)(s, t) = γ ·
∨
a∈A

Hd̂(δ(s,a), δ(t,a)).

Intuitively, �γ (d)(s, t) is the new distance of s and t after applying the functional �γ to function d (one iteration). This 
suffices to show that each iteration �γ can be done in polynomial time in either case. For (2) it turns out that the non-
discounted and discounted case demand different arguments which we will provide in Section 4 and Section 5, respectively.

4. The non-discounted case

In this section, we consider the non-discounted case, i.e., γ = 1. We omit the superscript 1 of �1 and simply write �
instead.

4.1. The construction of an MP problem

We start with some simple observations. Given any M, we write 	M to be

{μ(s) | s ∈ S, μ ∈ F(S)} ∪ {0,1}.
Clearly |	M| ≤ |M|. Intuitively, 	M is the set of values appearing in M as degrees of membership as well as 0 and 1.

Example 4. Given the FTS M in Fig. 1, 	M = {0, 0.6, 0.8, 0.9, 1}. �
The following lemma has been implied in [5, p. 738, Remark 1] and is rather straightforward. Hence the proof is omitted.

Lemma 1. Let �(d)(s, t)=∨
a∈A Hd̂(δ(s, a), δ(t, a)), for any s, t ∈ S. It holds that �(d)(s, t) ∈ 	M ∪ {d(s, t) | s, t ∈ S}.

We note that this observation does not hold in the discounted case. Owning to this observation, to calculate �(d)(s, t), 
we only need to test whether each member of 	M ∪ {d(s, t) | s, t ∈ S} can be attained and the least attained value is the 
sought one. Hence we can reduce the optimisation problem to the feasibility testing of a system of equations 
 of the 
following form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨
1≤i, j≤n(dij ∧ xij) = c (∗)

x11 ∨ x12 · · · ∨ x1k1 = a1
...

xm1 ∨ xm2 · · · ∨ xmkm = am

,

where c ∈ 	M ∪ {d(s, t) | s, t ∈ S}. To this end, we first rewrite Eq. (∗) as

∨Y = c, where Y = {xij | dij ≥ c}, (∗∗)

and thus obtain 
′ as
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∨Y = c, where Y = {xij | dij ≥ c}
x11 ∨ x12 · · · ∨ x1k1 = a1

...

xm1 ∨ xm2 · · · ∨ xmkm = am

(5)

Below we leverage the example FTS in Fig. 1 to illustrate the construction.

Example 5. Recall that here μ = 0.9
s3

+ 0.8
s4

and η = 0.6
s3

+ 0.9
s4

. In this example, we show given d1 such that d1(i, i) = 0 for 
all i ∈ {1, .., 4} and d1(i, j) = 1 for all i 
= j and i, j ∈ {1, ..., 4}. Here, 	M ∪ {d(s, t) | s, t ∈ S} = {0, 0.6, 0.8, 0.9, 1}. In this 
example, we pick c = 0.6, and the system 
′ of equations is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
i 
= j xi j = c = 0.6

x11 ∨ x12 ∨ x13 ∨ x14 = 0 μ(s1) = 0

x21 ∨ x22 ∨ x23 ∨ x24 = 0 μ(s2) = 0

x31 ∨ x32 ∨ x33 ∨ x34 = 0.9 μ(s3) = 0.9

x41 ∨ x42 ∨ x43 ∨ x44 = 0.8 μ(s4) = 0.8

x11 ∨ x21 ∨ x31 ∨ x41 = 0 η(s1) = 0

x12 ∨ x22 ∨ x32 ∨ x42 = 0 η(s2) = 0

x13 ∨ x23 ∨ x33 ∨ x43 = 0.6 η(s3) = 0.6

x14 ∨ x24 ∨ x34 ∨ x44 = 0.9 η(s4) = 0.9

(6)

Note that systems of equations for other values of c can be constructed in the same way. �
4.2. Checking feasibility

Recall that now we have a system of equations 
 (which can be rewritten as 
′). Our task is to check whether both 

and 
′ are feasible, i.e., whether there exists a solution to make 
 and 
′ hold.

Lemma 2. 
 is feasible iff 
′ is feasible.

Proof. It is to show that (∗) and (∗∗) are equivalent. We rewrite (∗) as sup1≤i, j≤n{(dij ∧ xij)} = c. For all 1 ≤ i, j ≤ n, if 
dij < c, then dij ∧ xij < c. As a result, this (dij ∧ xij) is not contributing to sup1≤i, j≤n{(dij ∧ xij)} = c and can be removed. �

Given Lemma 2, it remains to show how to check the feasibility of a system of equations 
′ of the form⎧⎪⎪⎨
⎪⎪⎩

x11 ∨ x12 · · · ∨ x1k1 = a1
...

xm1 ∨ xm2 · · · ∨ xmkm = am

For this purpose, we construct a valuation for xi (1 ≤ i ≤ n) as

xi = min{a� | a� is the RHS of an equation π� of 
′ s.t. xi, j occurs in π�}
The following lemma plays a vital role. In other words, in order to check the feasibility of 
′ , it suffices to check whether 
�x = (xi)1≤i≤n is a solution of 
′ . This can be done in linear time.

Lemma 3. 
′ is feasible iff �x = (xi)1≤i≤n is a solution of 
′ .

Proof. The “if” part is obvious and we will focus on the “only if” part. Fix any 1 ≤ i ≤ m. By the definition of �x, we have 
that, for each 1 ≤ j ≤ ki , xij = min{a� | x�h = xij for some 1 ≤ h ≤ k�}. Clearly ai ∈ {a� | x�h = xij for some 1 ≤ h ≤ k�}, and 
thus we have that xij ≤ ai . It follows that

xi1 ∨ xi2 · · · ∨ xiki ≤ ai .

Since 
′ is feasible, there must exist a solution �x′ of 
. For each 1 ≤ i ≤ n, xi ≤ a� with x�h = xi for some 1 ≤ h ≤ k� . 
Consequently

�x′ ≤ �x.
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Fig. 2. Overview of the algorithms.

Algorithm 1: Calculate d̂(μ, η).
Data: FTS (S, A, δ), distance d(s, t) for all s, t ∈ S , and distributions μ, η ∈ F(S)

Result: The distance d̂(μ, η) induced by d
begin

if μ(S) 
= η(S) then
d̂(μ, η) ←− 1;
break;

Sort the set 	 ←− {μ(s), η(s), d(s, t) | s, t ∈ S} ∪ {0, 1} in an ascending order with the i-th element of 	 denoted by 	i ;
i ←− 1;
while i ≤ |	| do

// Find a potential solution
Take the system of equations 
′ (cf. (5));
for each pair (s, t) do

xst ←− 1;
for each equation π in 
′ do

if xst appears in the left hand side of π then
xst ←− min{xst , the right hand side of π};

// Test if the potential solution is a solution of 
′.
if all the equations in 
′ hold then

The potential solution is a solution of 
′;
d̂(μ, η) ←− 	i ;
break;

i ←− i + 1;

It follows that for each 1 ≤ i ≤ m,

ai = x′
i1 ∨ x′

i2 · · · ∨ x′
ik1

≤ xi1 ∨ xi2 · · · ∨ xik1 ≤ ai

Namely, �x is a solution of 
′ . �
4.3. The algorithms

Based on the results in Section 4.1 and 4.2, we specify three algorithms here. As illustrated in Fig. 2, given the current 
d(s, t) Algorithm 1 computes d̂(μ, η). The results act as the input for Algorithm 2, which calculates the updated d(s, t), i.e., 
�(d)(s, t). In Algorithm 3, it repeats the procedure until a fixpoint is reached.

We will continue with Example 5 to show how to calculate d̂1(μ, η).

Example 6 (Continued). According to the algorithm, 	 = {0, 0.6, 0.8, 0.9}. The algorithm will start from 	1 = 0. It turns 
out this is not a feasible solution. We will proceed to check 	2 = 0.6. As a result, we obtain a potential solution x33 =
min{0.9, 0.6} = 0.6, x34 = min{0.6, 0.9, 0.9} = 0.9, x44 = min{0.8, 0.9} = 0.8, x43 = min{0.6, 0.8, 0.6} = 0.6 and xij = 0 for all 
the rest variables xij .

Now we test whether the potential solution is really a solution of 
′ in Eq. (6). This is done by substituting the values 
back to Eq. (6). It is clear that x31 ∨ x32 ∨ x33 ∨ x34 = 0.9, but 0 ∨ 0 ∨ 0.6 ∨ 0.6 = 0.6 
= 0.9. So this potential solution is not a 
solution of 
′ .

The algorithm proceeds by checking the next candidate 	3 = 0.8, which turns out not to be a solution of 
′ either. 
It then checks 	4 = 0.9. Here, we have x33 = min{0.9, 0.6} = 0.6, x34 = min{0.9, 0.9, 0.9} = 0.9, x44 = min{0.8, 0.9} = 0.8, 
x43 = min{0.9, 0.8, 0.6} = 0.6 and all the rest xij = 0. This potential solution is indeed a solution of 
′ . We then conclude 
that the distance between μ and η induced by d1 is d̂1(μ, η) = 0.9. �

Whereas the correctness of Algorithm 2 follows from definition and it is easy to see it only requires polynomial time. 
The correctness of Algorithm 1 is far from trivial.
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Algorithm 2: Calculate �(d)(s, t).
Data: FTS (S, A, δ), and s, t ∈ S , distance function d
Result: �(d)(s, t)
begin

if Act(s) 
= Act(t) then �(d)(s, t) = 1;
else

//compute Hausdorff distance by calling Algo. 1

Hd̂(δ(s,a), δ(t,a)) = ( ∨
η∈δ(t,a)

∧
μ∈δ(s,a)

d̂(μ,η)
)∨( ∨

μ∈δ(s,a)

∧
η∈δ(t,a)

d̂(μ,η)
);

//compute �(d)(s, t) by taking the supremum among all actions:
�(d)(s, t) = ∨

a∈Act(s) Hd̂(δ(s, a), δ(t, a));

Lemma 2 and Lemma 3 give rise to:

Proposition 2. Algorithm 2 computes, for each d, �(d) in polynomial time.

We remark that this is actually a strongly polynomial-time algorithm. In the literature, strongly polynomial time is 
defined in the arithmetic model of computation. In this model, the basic arithmetic operations (addition, subtraction, multi-
plication, division, and comparison) take a unit time step to perform, regardless of the sizes of the operands. The algorithm 
runs in strongly polynomial time [20] if (1) the number of arithmetic operations is bounded by a polynomial in |M|; and 
(2) the space used by the algorithm is bounded by a polynomial in ||M||. In our case, one can easily verify (1) and (2) hold 
for Algorithm 2.

Algorithm 3 is the main procedure to compute d1
f (s, t) by an iteration of � starting from the least element ⊥. The 

correctness of the algorithm follows from Proposition 2, which also asserts that each iteration requires polynomial time 
only. Hence it suffices to show that only polynomial number of iterations are necessary to terminate the algorithm.

Algorithm 3: Calculate d1
f .

Data: FTS (S, A, δ)
Result: The behavioural distance matrix d1

f

begin
n ←− 0;
d0 ←− ⊥;
repeat

Dl ←− dn ;
for each pair (s, t) do

dn+1(s, t) ←− �(dn)(s, t); // Call Algo. 2

D ←− dn+1;
n ←− n + 1;

until Dl = D;
d1

f = D;

The following lemma can be obtained by induction and Lemma 1.

Lemma 4. Given M = (S, A, δ), it holds that d1
f (s, t) ∈ 	M for any s, t ∈ S.

The following proposition shows only polynomial number of iterations are necessary to terminate the algorithm.

Proposition 3. The iteration in Algorithm 3 needs at most polynomially many steps.

Proof. We assume that n ∈ N is the smallest n such that dn(s, t) = dn+1(s, t). Due to Lemma 4, di(s, t) ∈ 	M , for any 
i ∈ [0, n]. Note that each di is of dimension |S|2, and thus the value of each entry dst must be in 	M . Moreover, as � is 
monotonic, di+1 ≤ di . It follows that n ≤ |	M| · |S|2, which is polynomial in the size of M. �

We conclude this section by the following theorem, which can be easily shown by Proposition 2 and 3.

Theorem 1. Given a fuzzy transition system M, and two states s, t, d1
f (s, t) can be computed in (strongly) polynomial time.
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5. The discounted case

In this section, we consider the discounted case, i.e., γ < 1. First we remark that one cannot (at least not in a straight-
forward manner) follow the same approach as in Proposition 3 to obtain a polynomial-time algorithm, simply because 
Lemma 4 fails when γ < 1. Instead, our strategy is to first come up with an approximation algorithm, which, given any 
ε > 0, computes a d such that ||d − dγ

f || ≤ ε . It turns out that such an approximation can be identified by applying at most 
�logγ ε� iterations. In the sequel, we consider the ∞-norm for vectors, i.e., ||d1 − d2|| = maxs,t∈S |d1(s, t) − d2(s, t)|. We first 
show that � is a contraction mapping. The following is a simple technical fact.

Lemma 5. For any z1, z2, t ∈R, it holds that min(z1, t) − min(z2, t) ≤ |z1 − z2|.

Proof. Observe that min(z, t) = |z + t| − |z − t|
2

. It then follows that

min(z1, t) − min(z2, t)

= |z1 + t| − |z1 − t| + |z2 − t| − |z2 + t|
2

≤ |(z2 − t) − (z1 − t)| + |(z1 + t) − (z2 − t)|
2

= |z1 − z2|. �
For simplicity, given μ and η, we write Uμ,η for the set of {xuv}u,v∈S such that⎧⎪⎨

⎪⎩
∨

v∈S xuv = μ(u) ∀u ∈ S∨
u∈S xuv = η(v) ∀v ∈ S

xuv ≥ 0 ∀u, v ∈ S

Lemma 6. For any d, d′ : S × S → [0, 1], it holds that

||�γ (d) − �γ (d′)|| ≤ γ · ||d − d′||.

Proof. By definition,

||�γ (d) − �γ (d′)|| = max
s,t∈S

|�γ (d)(s, t) − �γ (d′)(s, t)|.

Fix two states s and t . We have the following:

|�γ (d)(s, t) − �γ (d′)(s, t)|
= |γ ·

∨
a∈A

Hd̂(δ(s,a), δ(t,a)) − γ ·
∨
a∈A

Hd′(δ(s,a), δ(t,a))|

≤ γ · |Hd̂(δ(s,a∗), δ(t,a∗)) − Hd′(δ(s,a∗), δ(t,a∗))|
[where a∗ = arg max

a∈A
Hd̂(δ(s,a), δ(t,a))]

≤ γ · |d̂(μ∗, η∗) − d̂′(μ∗, η∗)|
[where (μ∗, η∗) = arg Hd̂(δ(s,a∗), δ(t,a∗))]

= γ · | min
�x∈Uμ∗,η∗

∨
u,v∈S

(d(u, v) ∧ xuv) − min
�x∈Uμ∗,η∗

∨
u,v∈S

(d′(u, v) ∧ xuv)|

≤ γ · |
∨

u,v∈S

(d(u, v) ∧ yuv) −
∨

u,v∈S

(d′(u, v) ∧ yuv)|

[where �y = arg min
�x∈Uμ∗,η∗

∨
u,v∈S

(d(u, v) ∧ xuv)]

≤ γ · |d(u∗, v∗) ∧ yu∗v∗ − d′(u∗, v∗) ∧ yu∗v∗ |
[where (u∗, v∗) = arg max d(u, v) ∧ yuv ]
u,v∈S
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≤ γ · |d(u∗, v∗) − d′(u∗, v∗)| [By Lemma 5]
≤ γ · ||d − d′||

Namely, for any s, t ∈ S ,

|�γ (d)(s, t) − �γ (d′)(s, t)| ≤ γ · ||d − d′||.
As a result,

||�γ (d) − �γ (d′)|| = max
s,t∈S

|�γ (d)(s, t) − �γ (d′)(s, t)| ≤ γ · ||d − d′||. �

Lemma 6 reveals that �γ is a contraction mapping, hence by the Banach fixpoint theorem [1], dγ
f is not only the least, 

but also the unique fixpoint of �γ .

Corollary 1. Given any FTS M with discounting factor γ ∈ (0, 1), let N = � log ε
log γ �. Then ||(�γ )N (d0) − dγ

f || ≤ ε .

Proof. First, observe that ||�γ (d) − dγ
f || ≤ γ · ||d − dγ

f ||, which follows from Lemma 6 and the fact that �γ (dγ
f ) = dγ

f .
By induction, we have

||(�γ )n(d0) − dγ
f || ≤ γ n · ||d0 − dγ

f ||.
Hence

||(�γ )N(d0) − dγ
f || ≤ γ N · ||d0 − dγ

f || ≤ γ N ≤ ε. �

Algorithm 4: Calculate dγ
f ε .

Data: FTS (S, A, δ), error bound ε , discounting factor γ
Result: The approximate behavioural distance dγ

f ε

begin
N ←− � log ε

log r �;

d0 ←− ⊥;
n ←− 0;
repeat

for each pair (s, t) do
dn+1(s, t) ←− γ · �(dn)(s, t); // Call Algo.2

D ←− dn+1;
n ←− n + 1;

until n > N;

dγ
f ε = D;

Corollary 1 states that (�γ )N (d0) approximates dγ
f up to ε . This result is essentially a corollary of Banach fixpoint 

theorem. It also gives a strongly polynomial approximation algorithm up to any precision ε , as shown in Algorithm 4. This 
is almost sufficient for practical considerations. Theoretically appealing, by the standard continued fraction algorithm [20], 
we can compute the exact dγ

f in polynomial time as well. For this purpose, we need the following lemma:

Lemma 7. For γ ∈ (0, 1), dγ
f is a rational vector of size polynomial in ||M|| and ||γ ||.

Proof. For simplicity we write d for dγ
f . By definition, d must satisfy

d(s, t) = γ · d̂(μ,η)

for some a ∈ A, μ ∈ δ(s, a), and η ∈ δ(t, a). Namely

d(s, t) = γ ·
∨

u,v∈S

(d(u, v) ∧ xu,v)

such that
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⎧⎪⎨
⎪⎩

∨
v∈S xuv = μ(u) ∀u ∈ S∨
u∈S xuv = η(v) ∀v ∈ S

xuv ≥ 0 ∀u, v ∈ S

The claim hence follows from basic linear algebra. �
Theorem 2. For a fixed γ , d can be computed exactly in polynomial time in ||M||.

Proof. By Theorem 1, we can find dγ
f in polynomial time in M and ε a vector that is ε-close to dγ

f . And by Lemma 7, dγ
f

is a rational vector of size polynomial in ‖M‖. So we can use the continued fraction algorithm [20, Chapter 5] to compute 
d in polynomial time, as is illustrated in [6]. �

We remark that, unfortunately, the exact polynomial-time algorithm is not strongly polynomial, as continued fraction 
algorithm is used. It is an open question whether one can obtain an exact strongly polynomial-time algorithm. As a future 
work, we would implement the algorithms and provide experimental results to show if they work well in practice.

6. Conclusion

We have studied the algorithmic aspect of behavioural distance for fuzzy transition systems. The pseudo-ultrametric de-
fined in [5] was extended to accommodate both the discounted and non-discounted settings. We then provided polynomial-
time algorithms to calculate the behavioural distance in both cases.

Acknowledgements

Taolue Chen is partially supported by EPSRC grant (EP/P00430X/1), ARC Discovery Project (DP160101652, DP180100691), 
and the National Natural Science Foundation of China (Grant No. 61662035). Tingting Han is partially supported by EPSRC 
grant (EP/P015387/1). Yongzhi Cao is supported by National Natural Science Foundation of China (Grant No. 61772035 and 
61751210).

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922) 133–181.
[2] P. Buchholz, Bisimulation relations for weighted automata, Theoret. Comput. Sci. 393 (1–3) (2008) 109–123.
[3] Y. Cao, G. Chen, E.E. Kerre, Bisimulations for fuzzy-transition systems, IEEE Trans. Fuzzy Syst. 19 (3) (2011) 540–552.
[4] Y. Cao, Y. Ezawa, Nondeterministic fuzzy automata, Inform. Sci. 191 (2012) 86–97.
[5] Y. Cao, S.X. Sun, H. Wang, G. Chen, A behavioral distance for fuzzy-transition systems, IEEE Trans. Fuzzy Syst. 21 (4) (2013) 735–747.
[6] D. Chen, F. van Breugel, J. Worrell, On the complexity of computing probabilistic bisimilarity, in: L. Birkedal (Ed.), FoSSaCS, in: Lecture Notes in 

Computer Science, vol. 7213, Springer, 2012, pp. 437–451.
[7] T. Chen, T. Han, J. Lu, On metrics for probabilistic systems: definitions and algorithms, Comput. Math. Appl. 57 (6) (2009) 991–999.
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