LASER: Script Execution by Autonomous Agents for On-demand
Traffic Simulation

Hao Gao
Nanjing University
Nanjing, China
gh@smail.nju.edu.cn

Jingyue Wang
Nanjing University
Nanjing, China
502023330056 @smail.nju.edu.cn

Wenyang Fang
Nanjing University
Nanjing, China
211220178@smail.nju.edu.cn

Jingwei Xu Yunpeng Huang Taolue Chen
Nanjing University Nanjing University University of London
Nanjing, China Nanjing, China London, United Kingdom
jingweix@nju.edu.cn hyp@smail.nju.edu.cn taolue.chen@gmail.com
Xiaoxing Ma

Nanjing University
Nanjing, China
xxm@nju.edu.cn

Abstract

Autonomous Driving Systems (ADS) are advancing rapidly due to
progress in deep learning, yet critical challenges remain, particu-
larly in the realm of safety verification. As safety-critical systems,
ADS must undergo rigorous testing across diverse scenarios. Real-
world data, while valuable, are inherently inflexible for interac-
tion and scenario customization. In contrast, simulator-generated
synthetic scenarios provide a platform that enables interaction,
control, editability, and adaptability to specific needs. However,
current simulation approaches are limited—either relying on costly,
manually crafted, overly templated scenarios or generating uncon-
ditioned trivial behaviors based on learned distributions. In this
work, we introduce LASER, an innovative framework that lever-
ages large language models (LLMs) to conduct traffic simulations
based on natural language inputs. The framework operates in two
phases. First, it generates scripts from user-provided descriptions.
Second, it executes these scripts by guiding autonomous agents
within the CARLA simulator to perform tasks in real-time. This
method effectively decomposes tasks, allocates controls, and in-
tegrates interactive elements to create dynamic and scalable sim-
ulations that align with user requirements. By using LASER, we
overcome the rigid constraints of traditional simulation methods,
enabling the creation of complex, diverse, flexible and on-demand
driving scenarios. The approach significantly enhances the pro-
cess of generating ADS training and testing data, addressing the
scalability and diversity issues associated with previous simula-
tion models. The code and all demos are available anonymously at
https://njudeepengine.github.io/LASER/.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Internetware 2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1926-4/25/06

https://doi.org/10.1145/3755881.3755905

Keywords

Autonomous Driving Systems, Traffic Simulation, Autonomous
Agents, Test Generation

ACM Reference Format:

Hao Gao, Jingyue Wang, Wenyang Fang, Jingwei Xu, Yunpeng Huang,
Taolue Chen, and Xiaoxing Ma. 2025. LASER: Script Execution by Au-
tonomous Agents for On-demand Traffic Simulation. In the 16th Inter-
national Conference on Internetware (Internetware 2025), June 20-22, 2025,
Trondheim, Norway. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3755881.3755905

To make a great film, you need three things—the script,
the script and the script.

— Alfred Hitchcock

1 Introduction

With the deep learning breakthrough, Autonomous Driving Sys-
tems (ADS) have made significant advancements in tasks such as
occupancy prediction [15, 35], trajectory prediction [13, 20, 29], se-
mantic scene completion [5, 16, 17] and world model [31, 32, 37, 43].
For example, Tesla’s Full Self-Driving (FSD) demonstrates excep-
tional performance in common and complex tasks such as lane
change, turn, merge, fork, and detour for most types of roads, in-
cluding even curvy highways and roundabouts [28].

The rapid development of end-to-end ADS research and applica-
tion is based on vast and high-quality driving data. On the one hand,
a large dataset containing multimodal data from all kinds of sensors
(such as cameras, lidar, and radar) is essential to train the underly-
ing deep neural network (DNN) models. Taking FSD as an example,
Tesla claims that their camera-only models are trained with more
than 160 billion frames of driving data sampled from real-world
scenarios, synthetic scenarios generated by simulators, as well as
those from other sources [27]. On the other hand, ADS are highly
critical in safety and must be thoroughly tested in various scenarios,
especially some rare and unanticipated ones, to guarantee their
ability to handle emergence and avoid accidents [38].

https://orcid.org/0009-0005-3692-9908
https://orcid.org/0009-0007-3214-7882
https://orcid.org/0009-0005-2489-2298
https://orcid.org/0000-0003-0407-0797
https://orcid.org/0009-0005-3971-5438
https://orcid.org/0000-0002-5993-1665
https://orcid.org/0000-0001-7970-1384
https://njudeepengine.github.io/LASER/
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3755881.3755905
https://doi.org/10.1145/3755881.3755905
https://doi.org/10.1145/3755881.3755905
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3755881.3755905&domain=pdf&date_stamp=2025-10-27

Internetware 2025, June 20-22, 2025, Trondheim, Norway

The most straightforward approach to building datasets for ADS
training/testing is to collect real-world traffic data through sensors
such as vehicle cameras, which naturally reflect real distributions
of the data and can be scaled up through crowd-sourcing [3, 4].
However, this method is inefficient, as daily traffic often yields
repetitive, trivial scenarios, while safety-critical events, which are
rare and high-risk, are seldom included in the training set and thus
hardly learned by the model [12]. Additionally, static data, such
as vehicles captured in each frame, lack the flexibility to interact
with or manipulate, preventing effective training/testing specific or
customized scenarios. Last but not least, online, interactive testing
of ADS requires the actors (e.g., vehicles, pedestrians) to be reactive
to the behavior of others, which is virtually infeasible for those
collected from traffic data.

To address these limitations, another class of approaches is to
generate the scenarios from traffic simulators, collecting synthetic
data through high-fidelity sensors [3, 4, 22, 26, 34, 41, 42]. These
methods allow for creating customized driving scenarios tailored
to specific needs, resulting in a controllable and editable dataset
for training and testing models. Furthermore, they enable the rapid
execution of thousands of diverse and targeted online tests by
deploying virtual vehicles attached with trained models in the
simulator, facilitating the identification of pitfalls and the resolution
of exceptions before costly real-world settings.

Undoubtedly, generating driving scenarios with real-world traf-
fic flows is demanding. Each dynamic object-regardless of a vehicle,
bicycle, or pedestrian—exhibits its own time-varying motion pat-
terns, which are often interdependent with those of other objects.
Mainstream methods for traffic simulation can be categorized as
rule-based or learning-based. Rule-based traffic simulation employs
analytical models to control vehicle movements [6, 11, 18], typically
relying on fixed, predefined routes. This approach often results in
highly repetitive scenarios with limited behavioral diversity.

In contrast, learning-based methods aim to replicate human tra-
jectories from real-world driving logs to produce varied and realistic
behaviors, which leverage techniques—such as imitation learning
(IL), reinforcement learning (RL), deep learning (DL) and deep gen-
erative models—to generate diverse and realistic driving behaviors
by utilizing real-world driving logs as demonstrations. We refer the
readers to [7] for a comprehensive survey. However, these methods
generally face significant challenges in accurately modeling and
generating human driving behaviors, often resulting in simplistic
actions such as passing or merging [26]. This is primarily due to
three reasons. (a) Limited and biased training data. Existing
methods commonly rely on datasets such as Nuscenes, which con-
tains only 1000 videos [3]. Learning high-level driving behaviors in
complex, multi-agent environments must tackle the combinatorial
explosion of input states, but the limited, imbalanced nature of the
data makes it hard to generalize to rare or unseen scenarios, com-
monly referred to as “long-tail" cases [7]. (b) Lack of alignment
with human understanding. The behaviors generated by these
models are often not aligned with natural language descriptions or
human common sense, making them less interpretable and harder
to customize for specific driving behaviors. (c) Scenario genera-
tion in real-time. When generating interactive traffic scenarios
online, these methods typically operate in an auto-regressive man-
ner, where each step’s prediction builds upon the previous one.

85

Hao Gao, Jingyue Wang, Wenyang Fang, Jingwei Xu, Yunpeng Huang, Taolue Chen, and Xiaoxing Ma

Without goal-oriented guidance, this approach can lead to trivial
or ineffective behaviors, and the accumulation of prediction errors
may result in catastrophic failures such as collisions or vehicles
driving off-road [40].

Very recently, deep generative model-based methods [31, 32, 37,
43] provide a promising way for generating customized traffic data
with world models. However, it remains a difficult task to generate
interactive traffic scenarios with diverse, on-demand behaviors.

Recently, large language models (LLMs) and multi-modal lan-
guage models (MMLMs) have demonstrated remarkable capabilities
in common-sense reasoning, planning, interaction and decision-
making, showcasing great potential to address the challenges men-
tioned above [10, 14]. We propose a new traffic simulation frame-
work, named LASER (LLM-based scenArio Script gEnerator and
ExecutoR) that leverages LLMs to create both intricate and inter-
active driving scenarios by generating readable scripts to guide
step-by-step execution of each dynamic objects within the scenar-
ios, which only requires simple natural language descriptions from
the users in the first place.

As illustrated in Figure 1, we first translate user requirements
to a master script, which then is converted to sub-scripts for each
dynamic object, i.e., each executing actor in the scenario. Based
on the rich domain-specific knowledge and advanced reasoning
capability of LLM4AD [23, 36], each actor’s lifespan is managed by
an LLM-controlled autonomous agent that executes its sub-script in
real-time. These agents make decisions about intermediate actions
based on the current state of the environment at each simulation
timestamp, all aiming to achieve their individual goals within the
expected time frame.

Leveraging the common-sense and behavior understanding of
LLM-controlled agents, we can perform top-down behavior-to-
action script interpretation, as opposed to the previous bottom-up
action-to-behavior accumulation. The LLM interpretation aligns
language-specified behaviors with low-level actions, provides inter-
pretability for the generation process and enables the on-demand
generation of specific long-tail scenarios. With scripts highlighting
their agendas, these LLM-controlled autonomous agents cooper-
ate to achieve the tasks, generating on-demand behavior while
avoiding accumulated prediction errors.

We design a task set consisting of 17 user requirements encom-
passing both long-tail and reasonable safety-critical scenarios. We
evaluate LASER for on-demand script generation and execution on
these tasks in the CARLA simulator [8]. The experimental results
demonstrate that LASER can generate scripts based on user require-
ments effectively, with only 3.18% of the characters in the resulting
executable script being inputted by the user to fulfill their demands.
The experimental results also show that our approach can execute
the script effectively and efficiently, with an average success rate
of 90.48%, and usage of 1606.09 tokens per simulation second per
agent. Furthermore, manual inspection confirms that our approach
can successfully simulate various safety-critical scenarios which
can be applied to ADS testing.

In summary, the primary contribution of our work is to propose
an on-demand, interactive approach for traffic simulation, which
includes a script generator and LLM-controlled autonomous agents
as the executor. To the best of our knowledge, this is the first time
we have achieved on-demand scenario generation in ADS testing.

LASER: Script Execution by Autonomous Agents for On-demand Traffic Simulation

2 Related works

We have covered the related work on learning-based traffic sim-
ulation in Section 1. A recent trend in autonomous driving is to
leverage LLMs which have demonstrated exceptional capabilities
in human-like tasks such as common-sense understanding, plan-
ning, decision-making, and interaction [10, 14], trained on vast
datasets of trillions of tokens and images from the web. These
models exhibit a deep reservoir of actionable knowledge, which
can be harnessed for robotic manipulation through reasoning and
planning [36]. Recent research has explored the use of LLMs to
develop autonomous agents that execute natural language tasks
in interactive environments [1, 2, 9]. A notable example is RT-H,
which enhances agent robustness and flexibility by decomposing
high-level tasks into sequences of fine-grained behaviors, referred
to as "language motions" (e.g., "move arm forward" followed by
"grasp the can"). This approach effectively leverages multi-task
datasets, significantly improving performance [1].

Substantial efforts have also been directed towards integrat-
ing LLMs with ADS, underscoring the models’ superior abili-
ties in understanding and decision-making within driving scenar-
ios [21, 23, 25, 36]. For example, CarLLaVA achieved first place in
the sensor track of the CARLA Autonomous Driving Challenge 2.0,
surpassing the next-best submission by 32.6%. This success is attrib-
uted to its integration of the vision encoder LLaVA with the LlaMA
architecture as its backbone [21]. Additionally, LLM-Assist outper-
formed all existing learning- and rule-based methods across most
metrics in the Nuplan dataset by leveraging LLMs’ common-sense
reasoning to refine plans generated by rule-based planners [25].

Further research has demonstrated the capability of LLM-
integrated ADS to execute tasks based on natural language in-
structions, revealing its potential for modeling complex human
driving behaviors [23, 30]. For instance, LMDrive showed that LLM-
controlled driving agents could interpret and follow high-level
driving commands, such as "Turn right at the next intersection,’
by aligning these instructions with vehicle control signals using a
vision-language model as the foundation [23]. More recently, DiLu
demonstrated that with few-shot learning, LLMs could achieve re-
sults comparable to RL-based planners, significantly reducing the
computational cost of deploying multiple LLM-controlled agents
simultaneously [36].

3 Methodology
3.1 Framework

To achieve on-demand and interactive traffic simulation, we pro-
pose a framework called LASER, as illustrated in Figure 1. LASER
consists of two stages, implemented by two modules respectively,
i.e., script writer (Section 3.2) and LASER-Agent (Section 3.3). Un-
like the previous learning-based methods that conduct generation
and simulation simultaneously, our LASER framework first gener-
ates scripts that define logic-chained behaviors (LCB) with natural
language instructions from the user requirements. It then executes
the script by the real-time cooperation of LASER-Agents.

The two-stage framework detaches actor behavior from the sce-
nario with a natural language script. Compared to road data collec-
tion that collects on-road scenarios at the state level, our LASER
framework records scenarios at the behavioral level, which enables
dynamic and flexible execution during the simulation. Compared

86

Internetware 2025, June 20-22, 2025, Trondheim, Norway

to learning-based traffic simulation that generates scenarios at
the state level, LASER generates scenarios at the behavioral level,
this enables on-demand generation and top-down execution of
language-specified behavior, and easy editing on actor behavior to
improve performance.

To have a glance at the complexity of behaviors that LASER
can simulate, we present an example of a user-defined scenario
in Figure 1. The user requests a safety-critical scenario on the
highway: Two cars are driving in the left lane ahead of the ego
vehicle, which is in the right lane. Suddenly, the front car decelerates
due to a mechanical failure. The rear car, unable to brake in time,
switches to the right lane to avoid colliding with the front car,
unaware that the ego vehicle is behind it. In this situation, the ego
is responsible for quickly recognizing the potential for the rear
car to change lanes due to the front car’s abrupt deceleration and
must react by decelerating promptly to prevent a collision. In the
following sections, we will demonstrate detailed implementations
of the script writer and LASER-Agent modules with the example
shown in Figure 1.

3.2 Script writer

Directly executing user requirements with autonomous agents is
unstable. User requirements can be ambiguous, leading to vary-
ing behaviors across different execution attempts. Additionally,
fulfilling the user requirement often requires coordination among
multiple autonomous agents. Without a shared consensus on how
to achieve this goal, these agents may act independently, potentially
resulting in failure.

To address these challenges, we use script writer to translate user
requirements into scripts. To ensure consistency across different
execution attempts, the behaviors in the script must be detailed and
concrete, with sub-scripts that contain detailed LCB instructions
for each agent to execute. To ensure effective coordination, these
sub-scripts must align under a single master script, serving as a
unified consensus for all agents.

In our work, the generation of scripts follows a hierarchical
chain-of-thought (CoT) manner [33] to enhance the common-sense
reasoning and planning ability of LLM as GPT-40 does [19]. The
script writer first generates a master script that outlines the frame-
work of the story, then further generates sub-scripts that contain
detailed LCB instructions for each actor based on the master script.
This ensures behavior consistency over agents and executions. The
scripts are written in natural language, to enable easy editing of the
behaviors. The generating procedure of the master script and sub-
scripts for individual agents is shown in the following paragraphs.

Master-script Generation. Based on the user’s initial require-
ments and (optionally) a map description to specify the surrounding
layout, the script writer generates a master script using a CoT ap-
proach. First, the script writer prompts the LLM to generate a story
that aligns with the user’s requirements. The LLM then outlines
key stages in the sequence of events, starting with the initial state,
where each stage acts as a direct cause or prerequisite for the next.
For example, given the user requirements illustrated in Figure 1,
the following master script is produced:

Internetware 2025, June 20-22, 2025, Trondheim, Norway

Hao Gao, Jingyue Wang, Wenyang Fang, Jingwei Xu, Yunpeng Huang, Taolue Chen, and Xiaoxing Ma

Z Writing Script @ Execution of Agents

Framework of LASER

@

There are two cars ahead of ego on
the left lane. The front car suddenly
decelerates, and the rear car swerves

@ Script Writer Agent for "front_car"

- Scene
lCOT LLM Decision Module Bescription
Decision(DSL,
User Input Master Script @D l ecision(DSL)
Control
Yero e l ovse Rule-based planner Signals e en
Sub-scripts " " CARLA
User Requirement i Agent for "rear_car RUNTIME
Sub-script for . Scene
T "front_car" LLM Decision Module Description
. % l Decision(DSL)
Stjb-scnpt 1“'or review conol
rear_car Rule-based planner s::;r;:rs

to the right to avoid a collision.

Initial State

Stepl

Step2

Example of Sub-script for "rear_car" Example of Execution
Step1
position: [2, 55]
speed: 6 m/s (€5)
action: Maintain 6 m/s speed in lane 2.
termination_condition: Front_car decelerates to less than 5m/s.

reason: Maintain safe following distance while traveling at a steady speed. Step2

action: Change from lane 2 to lane 3.
termination_condition: The car is not in lane 2.
reason: Avoid collision with the suddenly decelerating front_car by shifting to

a safer lane.

Figure 1: Framework of LASER

(1) Initial state: The Vehicle Under Test (VUT) is in the right-
most lane, with two cars ahead in the leftmost lane.

(2) Stage 1: The front car in the leftmost lane suddenly de-
celerates. Reasoning: The deceleration may be due to an
obstacle or the need to reduce speed significantly for an
intersection.

(3) Stage 2: The rear car in the leftmost lane swerves into the
rightmost lane. Reasoning: The rear car swerves to avoid
a collision with the front car.

Sub-scripts Generation. Based on the master script, the script
writer queries the LLM to generate sub-scripts containing detailed,
step-by-step LCB instructions for each individual actor. These sub-
scripts clearly outline the specific actions each actor must perform,
using natural language to chain behaviors logically. Each action is
paired with a termination condition, specifying when the task is
complete and when the next action should begin, along with the
reasoning behind it. This ensures that the behavior not only aligns
with the overall narrative but also allows for flexible execution by
the autonomous agent.

The resulting sub-scripts are structured similarly to movie scripts.
They begin with an initial state, defining the actor type (e.g., truck,
car, or pedestrian), and then break down into several sequential
steps. Each step includes an action, termination conditions, and a
reason, all of which work together to link the actor’s behavior with
logical decision-making. An example of a sub-script is shown in

87

Figure 1. The initial state specifies the actor’s lateral and longitudi-
nal position, as well as its initial speed. The action defines a simple,
concrete motion that can be easily executed by our LASER-Agent,
such as merging into the leftmost lane. The termination condition
outlines measurable criteria, which may depend on the actor’s own
behavior or interactions with others, for example, when the lon-
gitudinal distance to another vehicle is within 2 meters. Finally,
the reason clarifies the rationale behind each action, enhancing
the agent’s understanding and enabling more flexible execution,
especially during interactions with other actors.

3.3 LASER-Agent

The second stage of grounding the sub-scripts into execution is
achieved through the collaboration of LASER-Agents. We employ
LLM-controlled driving agents to facilitate the comprehension of
language instructions and behavior. These agents, designed to op-
erate autonomously, execute the sub-scripts step by step based on
real-time environmental observations, working together to bring
the entire scenario to life. Since fine-tuning LLMs with vehicle
control signals and applying LLMs to learning-based planners both
require substantial computational resources during runtime (espe-
cially when managing multiple agents), we integrate each agent
with an LLM-based decision module alongside a rule-based planner.
The LLM-based decision module, equipped with common-sense,
plays a crucial role in converting language-based LCB instructions

LASER: Script Execution by Autonomous Agents for On-demand Traffic Simulation

into executable actions. Every 0.5 seconds, the LASER-Agent en-
codes the environmental scenario into a descriptive format, inte-
grates sub-script LCB instructions to create a prompt, and queries
the LLM for an executable decision. The rule-based planner then
carries out this decision.

LLM-based Decision Module. This module processes the sce-
nario description along with LCB sub-script instructions, generating
an executable decision every 0.5 seconds. It begins by checking if
the termination condition for the current step is met. If the step is
complete, it transitions to the next one. The module then predicts
an executable decision based on the step’s instructions and the sce-
nario description, which includes parameters such as target speed,
lane change direction and lane change delay.

LLM brings a common-sense understanding of translating lan-
guage instructions into higher-level executable decisions defined
by a DSL, including lane_change_directio and target_speed. Instead
of directly outputting vehicle control signals where LLMs do not
excel, this higher-level decision-making process offers better align-
ment with the model. This approach enables zero-shot grounding
of language-specified behaviors more effectively.

To enhance LLM’s comprehension of the current traffic environ-
ment, we encode the surrounding traffic conditions into a standard-
ized textual scenario description, following the approach outlined
in DiLu [36]. This description includes all essential information for
decision-making, such as the number of available lanes, the posi-
tions, speeds and lane-change statuses of both the subject vehicle
and surrounding vehicles.

Rule-based Planner. It outputs vehicle control signals to exe-
cute the decisions made by the LLM-based decision module at every
frame. It tracks a path consisting of waypoints on the map and uses
PID control [39] to regulate speed. Whenever the rule-based plan-
ner receives a new decision from the LLM-based decision module,
it generates a new path based on the current position, following
the lane change direction and the delay specified in the decision.
At each frame, the planner tracks the waypoints on the path, while
the PID controller calculates the vehicle’s steering and throttle.

This lightweight design allows the control of multiple agents
simultaneously, enabling their complex behaviors and interactions.
The rule-based planner functions as a humble executor of the LLM’s
decisions, without incorporating safety constraints such as main-
taining distance from other vehicles. This design ensures that the
agent can exhibit alarmingly realistic behaviors.

3.4 Connecting with CARLA

To enable real-time dynamic interaction between the LASER-Agent
and the CARLA environment, we develop a runtime system that al-
lows the agent to both perceive and operate within the environment,
as shown in Figure 2.

For perception, every 0.5 seconds, we acquire key information
about each vehicle, including its location, speed, and acceleration.
This data is encoded and provided to each vehicle, where waypoints
are used to convert global coordinates into Frenet coordinates along
the lane. Additionally, we refine the representation into a more
LLM-friendly format, incorporating natural language expressions
such as “ahead of you” or “driving in the same lane” to enhance
interpretability.

88

Internetware 2025, June 20-22, 2025, Trondheim, Norway

Sub-Script

=" Per Time Step Operation
——> Per Frame Operation

Steps (LCB instrctions)
Multi-vehicle

Append Last Step Number ironment ver @
i — »)
Descrption ENVironment Encoder \

User Prompt

Last Step Number
Register
CARLA

LLM Decision Module ——— RUNTIME

System Prompt
Current Step Number

lDemsmn(DSL)
Ego Vehicle Info
-—

Rule-based Planner Path Tracker

Update

—_—
Waypoint Steering and

Throttle Signal

Figure 2: Connection with CARLA

For operation, we leverage CARLA’s waypoint system to navi-
gate through lanes and intersections. In CARLA, waypoints define
lane centers and connect lanes at intersections, enabling multiple
routing options. The rule-based planner acquires these waypoints
and constructs paths based on them when given a new decision
from the LLM-based decision module.

To ensure fine-grained and precise control, a tracker continu-
ously generates steering and throttle commands, guiding the vehicle
along the waypoint path in each frame of the simulation. This allows
for smoother and more accurate maneuvering of the LASER-Agent.

4 Evaluation

In this section, we present a comprehensive evaluation of script
writer and LASER-Agents for on-demand traffic simulation. All
code and the results are available on one repository.!

4.1 Setting

User requirements. We design 17 scenario generation tasks, each
representing a complex traffic execution requirement that is chal-
lenging to capture through traditional road collection or existing
simulation methods (cf. Table 1 for details). For example, tasks such
as “Accident”, “Ambulance”, and “Reckless Driving” present long-
tail scenarios that are rarely encountered. “Swerve” and “Three in
Line 1” depict reasonable safety-critical situations where even ex-
perienced drivers could make mistakes. To navigate these scenarios
effectively, one must be able to anticipate signs of an impending
accident.

LASER Setup. Our experiment utilizes CARLA 0.9.15 [8], a
widely used open-source simulator for closed-loop ADS testing.
Built on the UE4 engine, CARLA offers realistic graphics, a variety
of vehicle and pedestrian models, and diverse maps. We assess each
task across three road segments from Town04, Town05, Town06 and
Town10, conducting 20 simulations per segment for effectiveness
(totaling 60 simulations per task) and 5 simulations per segment
for efficiency (totaling 15 simulations per task).

All experiments employ GPT-40 as the LLM, which queries every
0.5 seconds. To evaluate interactions between LASER-Agents and
ADS in safety-critical scenarios, we use our LASER-Agents to test
the end-to-end ADS InterFuser [24], which ranked #1 in the CARLA
challenge 2022 among the open source models.

Road Segments. We evaluate each task on three highway seg-
ments (including one curved segment) and three urban segments

!https://njudeepengine.github.io/LASER/

Internetware 2025, June 20-22, 2025, Trondheim, Norway

Hao Gao, Jingyue Wang, Wenyang Fang, Jingwei Xu, Yunpeng Huang, Taolue Chen, and Xiaoxing Ma

Table 1: Task set (* indicates safety-critical tasks)

Task

User requirement

1. Accident

An accident occurred on the highway. One car turned left to avoid it, but with the left lane occupied, the
following car turned right.

2. Ambulance

On the highway, an ambulance is driving straight at high speed. Multiple vehicles in the same lane move to
both sides to make way for it.

3. Bus

A bus switched from the middle lane to the bus stop, then started again and changed lanes back.

4. Caught in Pincer

A car to the left is overtaking, forcing the ego vehicle to decelerate, while a car behind speeds up, pressuring
it to accelerate.

5. Cut-in*

A car overtakes the VUT and then slows down.

6. Failed at Start

A car parked in front of the bus station started, changed lanes, and collided with the bus that was changing
lanes to park.

7. Meet in Mind 1

Two cars simultaneously change lanes to the middle lane.

8. Meet in Mind 2

Two cars, unable to see each other, simultaneously attempt to overtake a car in the middle.

9. Merge Alternately

Two cars collided in the right lane at a road intersection, and several cars in the rear weaved into the left lane.

10. Newbie Lane | A car in front on the right changes lanes without accelerating, causing a collision with the ego vehicle.
Change 1

11. Newbie Lane | A truck is to the left of the ego vehicle, and a car in front on the right changes lanes without accelerating,
Change 2 causing a collision with the ego vehicle.

12. Reckless Driving

A reckless driver repeatedly overtakes other cars on the highway.

13. Sudden Jaywalker*

The VUT was moving in the left lane behind a stopped truck. As it approached, a pedestrian emerged from
behind the truck.

14. Surrounded

Four police cars surround the criminal’s vehicle from the front, back, left, and right.

15. Swerve*

There are two cars ahead of ego on the left lane. The front car suddenly decelerates, and the rear car swerves
to the right to avoid a collision.

16. Three in Line 1*

There are two cars in front of the VUT. The car at the very front slows down, and the second car, to avoid a
collision, changes lanes to the right.

17. Three in Line 2

The front car suddenly hit the stopped car ahead, and the ego car collided with the front car.

(including a curved road). Highways typically feature longer, un-
interrupted stretches with multiple lanes, while urban roads often
have more frequent intersections, narrower lanes, and varying road
geometries. Straight and curved road segments also present dis-
tinct challenges, with straight roads focusing on maintaining lane
discipline and curved segments requiring more dynamic path ad-
justment. This variety ensures the generalizability of LASER across
different road configurations.

Metrics. The effectiveness of script writer is measured by the
user involvement percentage, defined as the average proportion of
user-provided characters (excluding spaces and newlines) in the
final executable script. We assess script execution success rate as the
number of traffic simulations meeting user requirements divided
by the total number of simulations conducted. Generated traffic
simulations are manually reviewed against specific criteria. For
example, in the scenario “Accident”, the criterion requires the car
to successfully overtake the front car and subsequently slow down.
In another scenario “Three in Line 17, the criterion specifies that

4.2 Evaluation on script generation

To evaluate the effectiveness of on-demand script generation, we
select eight user requirements related to long-tailed scenarios from
the task set. For each task, script writer generates five scripts, which
we then manually refine until the scripts successfully fulfill the user
requirements.

The experimental results are summarized in Table 2, while Fig-
ure 3 visualizes a selected case for the task “Swerve”. The results
indicate that script writer effectively generates on-demand scripts,
with an average user involvement percentage of just 3.18%. Most
inaccuracies in script writer ’s outputs stem from imprecise numer-
ical values, such as positions and speeds. Additionally, there are
instances where script writer overlooks steps implied by the user
requirements. For example, in the “Failed at Start” task illustrated
in Figure 4, the bus should initially move in the left lane while
the car stops in the right lane, before both vehicles change lanes
simultaneously. However, script writer incorrectly bypasses this
step, causing the bus to change lanes at the start.

the front vehicle must decelerate to a stop, while the rear vehicle

changes lanes to the right before colliding with the front vehicle and
then drives away. Additional criteria are available on our project
repository for further reference. Efficiency is evaluated using token
cost, defined as the number of tokens used per simulation second
per agent, and time cost, representing the real-world simulation
time per simulation second.

4.3 Evaluation on script execution

To evaluate the effectiveness and efficiency of script execution,
we select eight user requirements from our task set that involve
complex interactions, including four tasks focused on safety-critical
scenarios. For each task, script writer generates a script based on
the user requirement, which we then manually modify to ensure it

89

LASER: Script Execution by Autonomous Agents for On-demand Traffic Simulation

Internetware 2025, June 20-22, 2025, Trondheim, Norway

' >

> >

"Vehicle Under Test" position: [3, 67]

Controlled by Interfuser.

(Blue) speed: 8 m/s
N " NN\ A: Decelerate A: Maintain O m/s speed in lane 2
fronéTca; gozzc'frg 5/545] T: Reduce speed to O m/s. T: End of scene.
(Black) hspeet; R: Simulate sudden deceleration. R: Remain stopped after deceleration.

A: Maintain 6 m/s speed in lane 2. A: Change from lane 2 to lane 3. NN N

"rear_car" = position: [2, 55] T: Front_car decelerates to less than 5m/s. T: The car is not in lane 2. ?_' é’:&m:??cgnrg/s speed in lane 3.

(Red) = speed: 6 m/s R: Maintain safe following distance while R: Avoid collision with suddenly decelerating R: T R R
traveling at a steady speed. front car. \ 9 9:
" — —_ ’
L} [T |
1 —. |
b |
] | .
Execution [= @ B & e | 2
e v . e — s
" | 3
— [S—
"
[o
— ———’/ __——-""——-——

Caught in Pincer

A car to the left is overtaking, forcing

the ego vehicle to decelerate, while a

car behind speeds up, pressuring it to
accelerate.

Failed at Start

A car parked in front of the bus
station started, changed lanes, and
collided with the bus that was changing
lanes to park.

Newbie

Lane Change 2

A truck is to the left of the ego
vehicle, and a car in front on the right
changes lanes without accelerating,
causing a collision with the ego vehicle.

Figure 4: The visualized results for script generation.

Table 2: Evaluation of user involvement in script generation.
(* indicate safety-critical tasks)

Task User involvement percentage |
Accident 5.43%
Ambulance 4.41%
Caught in Pincer 0.47%
Failed at Start 7.36%
Newbie Lane Change 2 0.35%
Cut-in* 1.50%
Swerve* 3.15%
Three in Line 1* 2.74%
average 3.18%

90

meets the requirements fully. Scripts are executed by our LASER-
Agents to assess their effectiveness and efficiency.

Effectiveness. The experimental results are shown in Table 3.
The results indicate that LASER-Agents successfully execute the
scripts, achieving an average success rate (SR) of 90.48%. Most errors
arise from inaccuracies in numerical comparisons, such as positions
and speeds, while some mistakes result from hallucination.

Efficiency. The efficiency results are presented in Table 3, re-
vealing an average of 1,606.09 tokens and 7.87s for generating a
one-second simulation. In the Ambulance task, the inclusion of mul-
tiple dummy agents to simulate congestion significantly increased
the input tokens needed to describe other vehicles’ states, leading
to a higher token cost. Similarly, the Reckless Driving and Sudden
Jaywalker tasks require lengthy scripts for the actors, resulting in
elevated input token counts. Using GPT-40 API service, generat-
ing a 40-second simulation with 3 LASER-Agents incurs a cost of

Internetware 2025, June 20-22, 2025, Trondheim, Norway Hao Gao, Jingyue Wang, Wenyang Fang, Jingwei Xu, Yunpeng Huang, Taolue Chen, and Xiaoxing Ma

Accident

An accident occurred on the highway.
One car turned left to avoid it, but
with the left lane occupied, the
following car turned right.

Ambulance

On the highway, an ambulance is driving
straight at high speed. Multiple
vehicles in the same lane move to both
sides to make way for it.

Bus

A bus switched from the middle lane to
the bus stop, then started again and
and changed lanes back.

Cut-in*

A car overtakes the VUT and then
slows down.

Reckless Driving

A reckless driver repeatedly overtakes
other cars on the highway.

Sudden
Jaywalker*

The VUT was moving in the left lane
behind a stopped truck. As it
approached, a pedestrian emerged
from behind the truck.

Swerve*

There are two cars ahead of ego on the
left lane. The front car suddenly
decelerates, and the rear car swerves
to the right to avoid a collision.

i E 4 e / /

Three in Line 1*

N | 1 14
There are two cars in front of the @ @@ 4] w BE [asia’s)

VUT. The car at the very front slows & B (_;

down, and the second car, to avoid a 4 L *

collision, changes lanes to the right.

Cs i [T E—
Figure 5: The visualized results for script execution. (* indicate safety-critical tasks)

approximately $1. The majority of the time cost is attributed to 4.4 Case Study
querying the LLM, with a 10-second simulation taking around one A case study is presented to demonstrate how the LLM guides the
minute to generate.

script execution process. At each time step, LASERgathers the loca-
tion, speed, and acceleration as part of the environment description

91

LASER: Script Execution by Autonomous Agents for On-demand Traffic Simulation

Table 3: Results of effectiveness and efficiency for script exe-
cution. (* indicates safety-critical tasks)

Task SRT Token cost | | Time cost |
Accident 100% 1,556.08 9.63
Ambulance 96.43% 2,387.81 15.63
Bus 91.67% 1828.40 7.02
Reckless Driving 44.07% 2333.84 7.11
Cut-in* 98.33% 1305.83 5.76
Sudden Jaywalker* 100% 2130.40 7.55
Swerve® 100% 732.37 5.60
Three in Line 1* 93.33% 573.99 4.62
average 90.48% 1606.09 7.87

and provides this information to LASER-Agents along with their
respective sub-scripts. The LLM-based decision module of each
LASER-Agent then reasons about the situation and makes decisions
based on its script. These decisions are subsequently translated into
steering and throttle control signals by a rule-based planner, which
guides the agent’s movements within the simulator.

This case focuses on “rear_car” in the “Swerve” task. Following
the script outlined in Figure 3, the agent maintains its speed while
cruising on the highway. Once the “front_car” decelerates below 5
m/s, the agent immediately changes lanes to the right. To achieve
this, we encode the sub-script and the state of the “front_car” in
the user prompt and query the integrated LLM. The LLM auto-
matically evaluates whether the termination condition (“Front_car
decelerates to less than 5m/s”) has been met based on the state of
the “front_car” and makes decisions according to the current action
specified in the script.

We present a simplified version of the prompt process and LLM
output for this case, with full details available in the repository.

System prompt. The system prompt ensures that LLM con-
sistently follows a structured approach: receiving environment
description and sub-script from user prompt, evaluating condi-
tions, and making decisions based on the most current data (such
as speed, position, and surrounding conditions). This process ul-
timately drives the agent’s actions in the simulated environment,
with real-time decisions impacting how the scenario progresses.
Every 0.5 seconds, LASERprovides updated information to the LLM,
enabling it to process the data and determine the agent’s next action
in the sequence.

The system prompt also helps the LLM understand its role by
providing specific examples within fields such as Observations.
Notably, the LLM must be explicitly prompted for permission before
engaging in alarmingly aggressive driving or ignoring traffic rules,
ensuring controlled generation of dangerous testing scenarios.

Additionally, we hard-code the reasoning procedure to ensure
that the LLM first evaluates the completion status of the previ-
ous step before determining whether it has been completed. This
approach enforces sufficient reasoning before making a decision,
preventing the LLM from prematurely concluding completion and
reasoning based on an incorrect outcome.

92

Internetware 2025, June 20-22, 2025, Trondheim, Norway

System prompt:

You are a driving assistant in a simulated scene to help test
autonomous driving systems. Follow the steps given by the
user to generate dangerous scenes. Every 0.5s, you will be
given:

-Steps: Steps to be taken to accomplish your task.

-Previous step: The step you were taking in the last 0.5s.
-Observations: The location, speed, and acceleration of you
and other vehicles in the 2D plane.

You should respond to me step by step:

1. Previous Step Evaluation: Assess the completion status of
the previous step based on observations and termination con-
dition.

2. Previous Step Status: Completed/Incomplete

3. Your Current Step: The step you think should be taken next,
based on current observations.

Finally: Execute actions for current frame by a tool call.

User prompt before “front_car” decelerates. This user
prompt adheres to the instructions outlined in the system prompt,
providing the necessary information for the LLM to reason effi-
ciently and make accurate driving decisions. First, by setting a
sequence of LCB instructions, including actions (such as “maintain
6 m/s in lane 2”) and corresponding termination conditions (such as
“Slow down to less than 5 m/s in front of the vehicle”), along with
the step number executed in the previous time step, the LLM is able
to determine the appropriate current step in the script. This en-
ables it to decide when to initiate a lane change based on real-time
conditions.

Next, the “Observation” section provides detailed environmental
data and status information, including position, speed, acceleration,
and lane information.

Lane information is particularly important because it helps LLM
understand the relative positions of vehicles, which is essential
for making accurate decisions, especially when performing lane-
change maneuvers. The data is presented with explanatory lan-
guage, including definitions of longitudinal and lateral positions,
helping LLM interpret the environment more effectively.

User prompt before “front_car” decelerates:

Steps:

Step 1. action: Maintain 6 m/s speed in lane 2, termina-
tion_condition: Front_car decelerates to less than 5 m/s.
Step 2. action: Change from lane 2 to lane 3, termina-
tion_condition: The car is not in lane 2.

Step 3. action: Maintain 6 m/s speed in lane 3, termina-
tion_condition: Hold for next 10 seconds

Last step: Step 1.

Observation:

You are driving in lane 2 from the left on a road with 4 lanes.
Position: [98.54, 3.50], speed: 5.84 m/s, acceleration: 0.73 m/s"2,
lane position: 98.54 m.

- ‘Front_car ‘. Position: [108.83, 3.50], speed: 5.81 m/s, acceler-
ation: 1.02m/s"2, lane position: 108.83 m.

- ‘VUT* (lane 3, to your right). Position: [89.27, 7.00], speed:
7.88 m/s, acceleration: 3.73 m/s"2, lane position: 89.27 m.

Internetware 2025, June 20-22, 2025, Trondheim, Norway

LLM reasoning before “front_car” decelerates. In this rea-
soning stage, the LLM evaluates the status of the previous step,
verifying whether the termination condition set in the user prompt
has been met. The LLM determines that the previous step is incom-
plete because the front_car has not yet decelerated to below 5 m/s.
Based on this evaluation, the LLM confirms that the agent should
continue executing Step 1, which requires maintaining a speed of 6
m/s and staying in lane 2.

LLM reasoning before “front_car” decelerates:

1. Previous Step Evaluation: We are maintaining a speed close
to 6 m/s in lane 2. The front car in the same lane is driving at
5.81 m/s and accelerating.

2. Previous Step Status: Incomplete

3. Current Step: Step 1. Maintain 6 m/s speed in lane 2.
Executing actions for the current frame:

- Maintain a target speed of 6 m/s

- Follow the current lane (lane 2)

Let’s proceed with these actions.

LLM decision before “front_car” decelerates. Following the
conclusion of reasoning, the LLM decision module generates spe-
cific behavioral decision to guide the agent in executing the corre-
sponding actions. Since the front car has not decelerated yet, the
agent should continue with its current step (Step 1), maintaining a
speed of 6 m/s and staying in the current lane.

LLM decision before “front_car” decelerates:
currentfstepfnumber: 1

lane_change_direction: FOLLOW LANE
lane_change_delay: 0

target_speed: 6

User prompt after “front_car” decelerates. This User prompt
presents updated environmental information at a new time stamp
after the “front_car” decelerates, formatted similarly to the user
prompt before the front car decelerated. At this moment, the last
step of the agent is still Step 1, and the current speed of the front
car is now 4.65 m/s.

User prompt after “front_car” decelerates:

Steps:

Step 1. action: Maintain 6 m/s speed in lane 2, termina-
tion_condition: Front_car decelerates to less than 5 m/s.
Step 2. action: change from lane 2 to lane 3, termina-
tion_condition: The car is not in lane 2.

Step 3. action: Maintain 6 m/s speed in lane 3, termina-
tion_condition: Hold for the next 10 seconds.

Last step: Step 1.

Observation:

You are driving in lane 2 from the left on a road with 4 lanes. Po-
sition: [104.42, 3.50], speed: 5.76 m/s, acceleration: 0.70 m/s"2,
lane position: 104.42 m.

- ‘Front_car ‘. Position: [114.07, 3.50], speed: 4.65 m/s, acceler-
ation: 1.24 m/s"2, lane position: 114.07 m.

- ‘“VUT* (lane 3, to your right). Position: [97.10, 7.02], speed:
7.99 m/s, acceleration: 0.65 m/s"2, lane position: 97.10 m.

93

Hao Gao, Jingyue Wang, Wenyang Fang, Jingwei Xu, Yunpeng Huang, Taolue Chen, and Xiaoxing Ma

LLM reasoning after “front_car” decelerates. This reasoning
section occurs after the “front_car” decelerates. At the new time
step, the LLM reasoning stage reassesses whether the previous step
has been completed. The observations confirm that the “front_car”
has decelerated below 5 m/s, fulfilling the termination condition
for Step 1. Therefore, the status of Step 1 is marked as "Completed.”
The action to execute the lane change is initiated accordingly.

LLM reasoning after “front_car” decelerates:

1. Previous Step Evaluation: The previous step is Step 1. Your
current speed is 5.76 m/s and front_car’s speed is 4.65 m/s.
The front_car’s speed is less than 5 m/s, which meets the
termination condition.

2. Previous Step Status: Completed

3. Current Step: Step 2. Change from lane 2 to lane 3.
Executing actions for the current frame:

- Current Step Number: 2

- Lane Change Direction: Right Lane Change

- Lane Change Delay: 0.1 s

- Target Speed: Maintain 6 m/s

Executing the action.

LLM decision after “front_car” decelerates. Following the
reasoning, the LLM decision module generates the corresponding
behavioral decision. With the front car’s deceleration confirmed,
the LLM decides to execute Step 2. The agent is then instructed
to change lanes to the right with a slight delay of 0.1 seconds and
continue at a speed of 6 m/s.

LLM decision after “front_car” decelerates:
current_step_number: 2

lane_change_direction: RIGHT LANE CHANGE
lane_change_delay: 0.1

target_speed: 6

5 Limitations

Manual description of map layout. LASER’s execution relies
on manually formatting map layouts for scenario generation. This
approach can lead to inaccuracies and inefficiencies, particularly
in complex environments. Implementing automated map interpre-
tation (e.g., querying image-to-text models with the initial frame)
could greatly enhance the framework’s scalability and accuracy.
Lack of automatic search for scenario details. The current
system necessitates user-in-the-loop revision for scripts. While this
allows tailoring the generation that aligns with users’ intentions,
it restricts the system’s capacity to autonomously generate a mul-
titude of test cases with the same initial goals but varying details.
Developing a more intelligent script writer capable of automati-
cally searching for reasonable and elaborate scenario details poses
a challenge due to the knowledge gap between off-the-shelf LLMs
and the specific requirements of the simulation environment.
Computational overhead for real-time execution. Integrat-
ing LLM-controlled agents with real-time execution in complex
environments incurs significant computational overhead, especially

LASER: Script Execution by Autonomous Agents for On-demand Traffic Simulation

when scaling the simulation to multiple agents. Future enhance-
ments could focus on optimizing interactions between the LLM-
based decision-making module and the rule-based planner, aiming
to reduce latency and computational load while maintaining high
performance and decision accuracy.

Generalization to real-world scenarios. Although our frame-
work demonstrates strong performance in simulated environments,
its ability to generalize to real-world driving scenarios may hinge
on the simulation’s fidelity. Ensuring that virtual agents accurately
mimic human driver behavior across diverse global contexts re-
mains an ongoing challenge.

6 Conclusion

In this paper, we introduce LASER, a novel approach that leverages
LLMs to generate on-demand traffic simulations. Our two-stage
framework separates scenario generation from real-time execu-
tion, providing greater flexibility, scalability, and customizability
compared to traditional simulation methods. By utilizing LLM-
controlled agents, LASER offers a more human-like interpretation
of driving behaviors, ensuring coherent and realistic interactions
within the simulated environment. The experimental results demon-
strate that LASER effectively meets diverse user requirements for
both general and safety-critical driving scenarios, showcasing high
accuracy and adaptability in scenario creation. Overall, the pro-
posed approach represents a significant advancement in on-demand
traffic simulation for ADS training and testing.

Acknowledgments

We are thankful to the anonymous reviewers for their helpful com-
ments. This work is supported by Frontier Technologies R&D Pro-
gram of Jiangsu (#BF2024059), the National Natural Science Founda-
tion of China (Grants #62025202, #62172199), and the Collaborative
Innovation Center of Novel Software Technology and Industrial-
ization. Jingwei Xu (jingwei@nju.edu.cn) is the corresponding
author.

References

[1] Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan
Tompson, Yevgen Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. 2024. Rt-h:
Action hierarchies using language. arXiv preprint arXiv:2403.01823 (2024).
Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen,
Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea
Finn, et al. 2023. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. arXiv preprint arXiv:2307.15818 (2023).

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. 2020.
nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 11621-11631.
Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong, Eric Wolff, Alex
Lang, Luke Fletcher, Oscar Beijbom, and Sammy Omari. 2021. nuplan: A closed-
loop ml-based planning benchmark for autonomous vehicles. arXiv preprint
arXiv:2106.11810 (2021).

Anh-Quan Cao, Angela Dai, and Raoul de Charette. 2024. Pasco: Urban 3d
panoptic scene completion with uncertainty awareness. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 14554-14564.
Jordi Casas, Jaime L Ferrer, David Garcia, Josep Perarnau, and Alex Torday.
2010. Traffic simulation with aimsun. Fundamentals of traffic simulation (2010),
173-232.

Di Chen, Meixin Zhu, Hao Yang, Xuesong Wang, and Yinhai Wang. 2024. Data-
driven Traffic Simulation: A Comprehensive Review. IEEE Transactions on Intelli-
gent Vehicles (2024).

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An open urban driving simulator. In Conference on robot

[2

6]

(71

=

94

[10

[11

[12

[13

[14

[15

=
&

(17

(18

(19]

)
=

[21

[22]

[23

[24

[30

Internetware 2025, June 20-22, 2025, Trondheim, Norway

learning. PMLR, 1-16.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdh-
ery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. 2023. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378 (2023).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).
Martin Fellendorf and Peter Vortisch. 2010. Microscopic traffic flow simulator
VISSIM. Fundamentals of traffic simulation (2010), 63-93.

Shuo Feng, Xintao Yan, Haowei Sun, Yiheng Feng, and Henry X Liu. 2021. In-
telligent driving intelligence test for autonomous vehicles with naturalistic and
adversarial environment. Nature communications 12, 1 (2021), 748.

Xunjiang Gu, Guanyu Song, Igor Gilitschenski, Marco Pavone, and Boris Ivanovic.
2024. Producing and leveraging online map uncertainty in trajectory predic-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 14521-14530.

S Huang, L Dong, W Wang, Y Hao, S Singhal, S Ma, T Lv, L Cui, OK Mohammed,
B Patra, et al. 2023. Language is not all you need: aligning perception with
language models (2023). arXiv preprint arXiv:2302.14045 (2023).

Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. 2023.
Tri-perspective view for vision-based 3d semantic occupancy prediction. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
9223-9232.

Haoyi Jiang, Tianheng Cheng, Naiyu Gao, Haoyang Zhang, Tianwei Lin, Wenyu
Liu, and Xinggang Wang. 2024. Symphonize 3d semantic scene completion
with contextual instance queries. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 20258-20267.

Yiming Li, Zhiding Yu, Christopher Choy, Chaowei Xiao, Jose M Alvarez, Sanja
Fidler, Chen Feng, and Anima Anandkumar. 2023. Voxformer: Sparse voxel
transformer for camera-based 3d semantic scene completion. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 9087-9098.
Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Fl6tterd, Robert Hilbrich, Leonhard Liicken, Johannes Rummel, Peter
Wagner, and Evamarie Wiefiner. 2018. Microscopic traffic simulation using sumo.
In 2018 21st international conference on intelligent transportation systems (ITSC).
IEEE, 2575-2582.

OpenAl 2024. Introducing OpenAl ol-preview. https://openai.com/index/
introducing-openai-o1-preview/.

Dachee Park, Jaeseok Jeong, Sung-Hoon Yoon, Jaewoo Jeong, and Kuk-Jin Yoon.
2024. T4P: Test-Time Training of Trajectory Prediction via Masked Autoencoder
and Actor-specific Token Memory. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 15065-15076.

Katrin Renz, Long Chen, Ana-Maria Marcu, Jan Hiinermann, Benoit Hanotte,
Alice Karnsund, Jamie Shotton, Elahe Arani, and Oleg Sinavski. 2024. CarLLaVA:
Vision language models for camera-only closed-loop driving. arXiv preprint
arXiv:2406.10165 (2024).

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. 2020.
Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous
data. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part XVIII 16. Springer, 683-700.

Hao Shao, Yuxuan Hu, Letian Wang, Guanglu Song, Steven L Waslander, Yu Liu,
and Hongsheng Li. 2024. Lmdrive: Closed-loop end-to-end driving with large
language models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 15120-15130.

Hao Shao, Letian Wang, Ruobing Chen, Steven L Waslander, Hongsheng Li,
and Yu Liu. 2023. Reasonnet: End-to-end driving with temporal and global
reasoning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 13723-13733.

SP Sharan, Francesco Pittaluga, Manmohan Chandraker, et al. 2023. Llm-assist:
Enhancing closed-loop planning with language-based reasoning. arXiv preprint
arXiv:2401.00125 (2023).

Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel Urtasun. 2021. Traffic-
sim: Learning to simulate realistic multi-agent behaviors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10400-10409.
Tesla. 2023. 2023 Investor Day | Tesla. https://www.youtube.com/watch?v=
HI1zEzZVUV7w. Accessed: 2024-09-13.

Tesla. 2024. Full Self-Driving (Supervised) | Tesla. https://www.youtube.com/
watch?v=TUDiG7PcLBs. Accessed: 2024-09-13.

Chalavadi Vishnu, Vineel Abhinav, Debaditya Roy, C Krishna Mohan, and Ch Sob-
han Babu. 2023. Improving multi-agent trajectory prediction using traffic states
on interactive driving scenarios. IEEE Robotics and Automation Letters 8, 5 (2023),
2708-2715.

Wenhai Wang, Jiangwei Xie, ChuanYang Hu, Haoming Zou, Jianan Fan, Wenwen
Tong, Yang Wen, Silei Wu, Hanming Deng, Zhiqi Li, et al. 2023. Drivemlm:
Aligning multi-modal large language models with behavioral planning states for
autonomous driving. arXiv preprint arXiv:2312.09245 (2023).

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://www.youtube.com/watch?v=Hl1zEzVUV7w
https://www.youtube.com/watch?v=Hl1zEzVUV7w
https://www.youtube.com/watch?v=TUDiG7PcLBs
https://www.youtube.com/watch?v=TUDiG7PcLBs

Internetware 2025, June 20-22, 2025, Trondheim, Norway Hao Gao, Jingyue Wang, Wenyang Fang, Jingwei Xu, Yunpeng Huang, Taolue Chen, and Xiaoxing Ma

[31] Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, and Jiwen Lu.
2023. Drivedreamer: Towards real-world-driven world models for autonomous
driving. arXiv preprint arXiv:2309.09777 (2023).

[32] Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang.
2024. Driving into the future: Multiview visual forecasting and planning with
world model for autonomous driving. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 14749-14759.

[33] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL] https:
//arxiv.org/abs/2201.11903

[34] Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu, Hao Zhao, Siheng
Chen, and Yanfeng Wang. 2024. Editable scene simulation for autonomous
driving via collaborative llm-agents. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 15077-15087.

[35] Yi Wei, Linging Zhao, Wenzhao Zheng, Zheng Zhu, Jie Zhou, and Jiwen Lu.

2023. Surroundocc: Multi-camera 3d occupancy prediction for autonomous

driving. In Proceedings of the IEEE/CVF International Conference on Computer

Vision. 21729-21740.

Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao Ma, Pinlong Cai, Min Dou,

Botian Shi, Liang He, and Yu Qiao. 2023. Dilu: A knowledge-driven approach to

autonomous driving with large language models. arXiv preprint arXiv:2309.16292

(2023).

[37] Yuqing Wen, Yucheng Zhao, Yingfei Liu, Fan Jia, Yanhui Wang, Chong Luo,

Chi Zhang, Tiancai Wang, Xiaoyan Sun, and Xiangyu Zhang. 2024. Panacea:

Panoramic and controllable video generation for autonomous driving. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

6902-6912.

Wikipedia. 2018. ISO 26262 — Road vehicles — Functional safety. https://en.

wikipedia.org/wiki/ISO_26262.

[39] Wikipedia. 2023. Proportional-integral-derivative controller — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/wiki/Proportional %E2%80%
93integral%2E2%80%93derivative_controller

[40] Danfei Xu, Yuxiao Chen, Boris Ivanovic, and Marco Pavone. 2023. Bits: Bi-level
imitation for traffic simulation. In 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2929-2936.

[41] Jiawei Zhang, Chejian Xu, and Bo Li. 2024. ChatScene: Knowledge-Enabled
Safety-Critical Scenario Generation for Autonomous Vehicles. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 15459~
15469.

[42] Linrui Zhang, Zhenghao Peng, Quanyi Li, and Bolei Zhou. 2023. Cat: Closed-loop

adversarial training for safe end-to-end driving. In Conference on Robot Learning.

PMLR, 2357-2372.

Guosheng Zhao, Xiaofeng Wang, Zheng Zhu, Xinze Chen, Guan Huang, Xiaoyi

Bao, and Xingang Wang. 2024. Drivedreamer-2: Lim-enhanced world models for

diverse driving video generation. arXiv preprint arXiv:2403.06845 (2024).

[36

[38

[43

95

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/Proportional%E2%80%93integral%E2%80%93derivative_controller
https://en.wikipedia.org/wiki/Proportional%E2%80%93integral%E2%80%93derivative_controller

	Abstract
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Framework
	3.2 Script writer
	3.3 LASER-Agent
	3.4 Connecting with CARLA

	4 Evaluation
	4.1 Setting
	4.2 Evaluation on script generation
	4.3 Evaluation on script execution
	4.4 Case Study

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

