
On the Axiomatizability of Priority�

Luca Aceto1,2, Taolue Chen3,5, Wan Fokkink3,4, and Anna Ingolfsdottir1,2

1 Reykjav́ık University, School of Science and Engineering
Ofanleiti 2, 103 Reykjav́ık, Iceland

2 BRICS, Aalborg University, Department of Computer Science
Fr. Bajersvej 7E, 9220 Aalborg Ø, Denmark

3 CWI, Embedded Systems Group
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

4 Vrije Universiteit, Section Theoretical Computer Science
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

5 Nanjing University, State Key Laboratory of Novel Software Technology
Nanjing, Jiangsu, P.R.China, 210093

luca@ru.is, chen@cwi.nl, wanf@cs.vu.nl, annai@ru.is

Abstract. This paper studies the equational theory of bisimulation
equivalence over the process algebra BCCSP extended with the prior-
ity operator of Baeten, Bergstra and Klop. It is proven that, in the
presence of an infinite set of actions, bisimulation equivalence has no
finite, sound, ground-complete equational axiomatization over that lan-
guage. This negative result applies even if the syntax is extended with
an arbitrary collection of auxiliary operators, and motivates the study
of axiomatizations using conditional equations. In the presence of an
infinite set of actions, it is shown that, in general, bisimulation equiva-
lence has no finite, sound, ground-complete axiomatization consisting of
conditional equations over BCCSP. Sufficient conditions on the priority
structure over actions are identified that lead to a finite, ground-complete
axiomatization of bisimulation equivalence using conditional equations.

1 Introduction

Programming and specification languages often include constructs to specify
mode switches (see, e.g., [17, 19]). Indeed, some form of mode transfer in compu-
tation appears in operating systems in the guise of interrupts, in programming
languages as exceptions, and in the behaviour of control programs and embed-
ded systems as discrete “mode switches” triggered by changes in the state of
their environment. Such mode changes are often used to encode different levels

� The first and fourth author were partly supported by the project “The Equational
Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund. The
second and third author were partly supported by the Dutch Bsik project BRICKS
(Basic Research in Informatics for Creating the Knowledge Society). The second
author was partly supported by 973 Program of China (No. 2002CB312002), NNSFC
(No. 60233010, No. 60273034, No. 60403014).

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 480–491, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Axiomatizability of Priority 481

of urgency amongst the actions that can be performed by a system as it com-
putes, and implement variations on the notion of pre-emption. Classic process
description languages include primitive operators to describe mode changes—for
example, LOTOS [9] offers the so-called disruption operator—or have been ex-
tended with variations on mode transfer operators. Examples of such operators
for the process algebra CCS are discussed by Milner in [18, pp. 192–193].

One of the most widely studied, and natural, notions used to implement dif-
ferent levels of urgency between system actions is priority. (A thorough and clear
discussion of the different approaches to the study of priority in process descrip-
tion languages may be found in [12].) In this paper, we consider the well-known
priority operator Θ studied by Baeten, Bergstra and Klop [5] in the context
of process algebra. (See [10, 11, 12, 13] for later accounts of this operator in the
setting of process description languages.) The priority operator Θ gives certain
actions priority over others based on an irreflexive partial ordering relation <
over the set of actions. Intuitively, a < b is interpreted as “b has priority over
a”. This means that, in the context of the priority operator Θ, action a is pre-
empted by action b. For example, if p is some process that can initially perform
both a and b, then Θ(p) will initially only be able to execute the action b.

In their classic paper [5], Baeten, Bergstra and Klop provided a sound and
ground-complete axiomatization for this operator modulo bisimulation equiv-
alence. Their axiomatization uses predicates on actions (to express priorities
between actions) and one extra auxiliary operator. Bergstra showed in the ear-
lier paper [6] that, in case of a finite alphabet of actions, there exists a finite
equational axiomatization for Θ, without action predicates and help operators.
So, if the set of actions is finite, neither conditional equations nor auxiliary op-
erators, as used in [5], are actually necessary to obtain a finite axiomatization of
bisimulation equivalence over basic process description languages enriched with
the priority operator. But, can Bergstra’s positive result be extended to a setting
with a countably infinite collection of actions? Or are conditional equations and
auxiliary operators necessary to obtain a finite axiomatization of bisimulation
equivalence in the presence of an infinite collection of actions? (Note that infi-
nite sets of actions are common in process calculi, and arise, for instance, in the
setting of value- or name-passing calculi.) The aim of this paper is to provide a
thorough answer to these questions in the setting of the process algebra BCCSP
enriched with the priority operator Θ. In case of an infinite alphabet, we permit
the occurrence of action variables in axioms.

The process algebra BCCSP contains only basic process algebraic operators
from CCS and CSP, but is sufficiently powerful to express all finite synchro-
nization trees. This paper considers the equational theory of BCCSP with the
priority operator Θ from [5] modulo bisimulation equivalence. Our first main
result is a theorem indicating that the use of conditional equations is indeed
inevitable in order to offer a finite axiomatization of bisimulation equivalence
over the basic process language we consider in this study. To this end, we prove
that, in case of an infinite alphabet and in the presence of at least one pri-
ority relation a < b between a pair of actions, there is no finite equational

482 L. Aceto et al.

axiomatization for BCCSP enriched with the priority operator (Theorem 2).
This result even applies if one is allowed to add an arbitrary collection of help
operators to the syntax. Theorem 2 offers a very strong indication that the use
of conditional equations, where the conditions consist of action predicates, is
essential for axiomatizing Θ, and cannot be circumvented by introducing auxil-
iary operators. (This is in contrast to the classic positive and negative results on
the existence of finite equational axiomatizations for parallel composition offered
in [7, 20, 21].)

Having established that conditional equations are necessary in order to obtain
a finite, ground-complete equational axiomatization of bisimulation equivalence,
we then proceed to investigate whether, in the presence of an infinite set of
actions, this equivalence can be finitely axiomatized using conditional equations,
but without auxiliary operators like the unless operator used in [5]. We show that,
in general, the answer to this question is negative. This we do by exhibiting a
priority structure with respect to which bisimulation equivalence affords no finite,
sound and ground-complete axiomatization in terms of conditional equations
(Theorem 3). This shows that, in general, the use of auxiliary operators is indeed
necessary to axiomatize bisimulation equivalence finitely, even using conditional
equations and over the simple language considered in this study.

In contrast to the aforementioned negative results, we exhibit a countably infi-
nite, ground-complete axiomatization for bisimulation equivalence over BCCSP
with the priority operator in terms of conditional equations (Theorem 4). This
axiomatization suggests that infinite collections of pairwise incomparable ac-
tions with respect to the priority relation < are the source of our negative result
presented in Theorem 3.

Our results add the priority operator to the list of operators whose addition to
a process algebra spoils finite axiomatizability modulo bisimulation equivalence;
see, e.g., [2, 4, 20, 21, 22] for other examples of non-finite axiomatizability results
over process algebras.

Most of the proofs have been omitted from this extended abstract; they can
be found in the full version of the paper [1]. Only for the negative result in
Section 5.1 do we provide a proof sketch.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based.

2.1 The Language BCCSPΘ

Act denotes a non-empty alphabet of atomic actions, with typical elements
a, b, c, d, e. Over Act we assume an irreflexive, transitive partial ordering < to
express priorities between actions. Intuitively, a < b expresses that the action b
has priority over the action a. We say that actions a1, . . . , an are incomparable
if they are distinct and ai < aj does not hold for all 1 ≤ i, j ≤ n.

On the Axiomatizability of Priority 483

The language of processes we shall consider in this paper, henceforth referred
to as BCCSPΘ, is obtained by adding the unary priority operator Θ from [5] to
the basic process algebra BCCSP [14, 15]. The language is given by the following
grammar:

t ::= 0 | a.t | t + t | Θ(t) | x | α.t ,

where a ranges over Act , x is a process variable and α is an action variable.
Process and action variables range over given, disjoint countably infinite sets.
We use x, y, z to range over the collection of process variables, and α, β as typical
action variables. We use t, u, v to range over the collection of open process terms.
A process term is closed if it does not contain any variables, and p, q, r, range
over the set of closed terms T(BCCSPΘ). The size of a term is its length in
function symbols.

A substitution maps each process variable to a process term, and each action
variable to an action or action variable. A substitution is closed if it maps process
variables to closed process terms and action variables to actions. For every term
t and substitution σ, the term obtained by replacing occurrences of process
variables x and action variables α in t with σ(x) and σ(α) is written σ(t).

The semantics of the operators is captured by the transition rules below, which
give rise to Act-labelled transitions between closed terms:

a.x
a→ x

x1
a→ y

x1 + x2
a→ y

x2
a→ y

x1 + x2
a→ y

x
a→ y x

b
� for all b such that a < b

Θ(x) a→ Θ(y)

where a ranges over Act . Intuitively, closed terms in the language BCCSPΘ

represent finite process behaviours, where 0 does not exhibit any behaviour,
p + q is the nondeterministic choice between the behaviours of p and q, and a.p
executes action a to transform into p. Furthermore, the process graph of Θ(p)
is obtained by eliminating all transitions q

a→ q′ from the process graph of p for
which there is a transition q

b→ q′′ with a < b.
We consider the language BCCSPΘ modulo bisimulation equivalence.

Definition 1. A binary symmetric relation R over T(BCCSPΘ) is a bisimula-
tion if p R q together with p

a→ p′ imply q
a→ q′ for some q′ with p′ R q′. We

write p ↔ q if there is a bisimulation relating p and q. The relation ↔ will be
referred to as bisimulation equivalence or bisimilarity.

It is well-known that ↔ is an equivalence relation. Moreover, the transition rules
are in the GSOS format of [8]. Hence, bisimulation equivalence is a congruence
with respect to all the operators in the signature of BCCSPΘ, meaning that
p ↔ q implies C[p] ↔ C[q] for each BCCSPΘ-context C[].

We can therefore consider the algebra of the closed terms in T(BCCSPΘ)
modulo ↔. In Section 4, we shall offer results that apply to any signature Σ
that extends the one of BCCSPΘ. To this end, we shall tacitly assume that
all of the new operators in Σ also preserve bisimulation equivalence, and are
semantically interpreted as operations over finite synchronization trees [18].

484 L. Aceto et al.

2.2 Equational Logic

An axiom system is a collection of equations t ≈ u over the language BCCSPΘ.
An equation t ≈ u is derivable from an axiom system E, notation E � t ≈ u,
if it can be proven from the axioms in E using the rules of equational logic
(viz. reflexivity, symmetry, transitivity, substitution and closure under BCCSPΘ

contexts). Without loss of generality one may assume that substitutions happen
first in equational proofs, i.e., that the rule t≈u

σ(t)≈σ(u) may only be used when
t ≈ u ∈ E. Moreover, by postulating that for each axiom in E also its symmet-
ric counterpart is present in E, we can disregard applications of symmetry in
equational proofs. In the remainder of this paper, we shall tacitly assume that
our equational axiom systems are closed with respect to symmetry. Further-
more, it is well-known (cf., e.g., Section 2 in [16]) that if an equation relating
two closed terms can be proven from an axiom system E, then there is a closed
proof for it. (A proof is closed if it only mentions closed terms.) We shall only
consider questions related to the provability of closed equations from an axiom
system. Therefore, in light of the previous observation, we can restrict ourselves
to considering closed proofs.

An equation t ≈ u is sound with respect to ↔ if σ(t) ↔ σ(u) holds for each
closed substitution σ. An axiom system E is called sound over some language
modulo ↔ if E � t ≈ u implies t ↔ u, for all terms t, u in the language.
Conversely, E is called ground-complete if p ↔ q implies E � p ≈ q, for all closed
terms p, q in the language.

Our order of business in the remainder of this paper will be to offer a thor-
ough study of the equational theory of the language BCCSPΘ modulo bisimu-
lation equivalence. We begin our investigation by considering the case in which
the set of actions Act is finite. We then move on to investigate the equational
properties of bisimulation equivalence over BCCSPΘ when the set of actions is
infinite.

3 |Act | < ∞

In this section, we assume that the action set is finite. The axiom system in
Table 1 was put forward by Jan Bergstra in [6]. Note that, in the case of a finite
action set, this axiom system is finite, since then the axiom schemas PR2–4 give
rise to finitely many equations.

Theorem 1 (Bergstra [6]). The axiom system (A1)–(A4) and (PR1)–(PR4)
is sound and ground-complete for BCCSPΘ modulo ↔.

In the remainder of this paper, process terms are considered modulo associativity
and commutativity of +. We use

∑n
i=1 ti to denote t1+ · · ·+tn, where the empty

sum represents 0. Modulo the axioms (A1) and (A2), every term t in the language
BCCSPΘ has the form

∑n
i=1 ti, where the terms ti do not have the form t′ + t′′.

The terms ti are called the summands of t.

On the Axiomatizability of Priority 485

Table 1. Axiomatization in case of |Act | < ∞

A1 x + y ≈ y + x
A2 x + (y + z) ≈ (x + y) + z
A3 x + x ≈ x
A4 x + 0 ≈ x

PR1 Θ(0) ≈ 0
PR2 Θ(a.x + a.y + z) ≈ Θ(a.x + z) + Θ(a.y + z)
PR3 Θ(a.x + b.y + z) ≈ Θ(b.y + z) (a < b)
PR4 Θ(a1.x1 + · · · + an.xn) ≈ a1.Θ(x1) + · · · + an.Θ(xn)

(a1, . . . , an incomparable)

4 |Act | = ∞

In this section, we deal with the case that the action set is infinite. Our main
result is that bisimulation equivalence does not afford a finite equational axiom-
atization over the language BCCSPΘ, provided that Act contains at least two
actions a, b with a < b. (Otherwise, the equation Θ(x) ≈ x would be sound, and
the priority operator could be eliminated from all terms.) This negative result
even applies if BCCSPΘ is extended with an arbitrary collection of operators
(over finite synchronization trees) for which bisimulation is a congruence.

The idea behind the proof of our main result of this section is that a finite
axiom system E can mention only finitely many action names. So, since Act is
infinite, we can find a pair c, d of distinct actions that do not occur in E. If c
and d are incomparable, then the equation Θ(c.0 + d.0) ≈ c.0 + d.0 is sound;
if c < d, then Θ(c.0 + d.0) ≈ d.0 is sound. In the first case, we show that an
equational proof of Θ(c.0 + d.0) ≈ c.0 + d.0 from E would give rise to a proof
of the unsound equation Θ(a.0 + b.0) ≈ a.0 + b.0 from E. This follows by a
simple renaming argument, using that c and d do not occur in E. Likewise, in
the second case, a proof of Θ(c.0 + d.0) ≈ d.0 from E would give rise to a proof
of the unsound equation Θ(d.0 + c.0) ≈ c.0 from E.

Theorem 2. Let |Act | = ∞, and a < b for some a, b ∈ Act. Let Σ be a signature
consisting of the operators in BCCSPΘ, together with auxiliary operators for
which bisimulation equivalence is a congruence. Then bisimulation equivalence
has no finite, sound and ground-complete axiomatization over T(Σ).

5 Axiomatizing Priority Conditionally

Theorem 2 offers very strong evidence that, in the presence of an infinite set
of actions, equational logic is inherently not sufficiently powerful to achieve a
finite axiomatization of bisimilarity over closed terms in the language BCCSPΘ.
Indeed, that result holds true even in the presence of an arbitrary number of
auxiliary operators.

486 L. Aceto et al.

In the presence of action variables, it is natural to view our language as
consisting of two sorts: one for actions and the other for processes. This is all
the more true because the set of actions has the structure of a partial order, and
we should like to express axioms over processes that reflect the influence that
this poset structure on actions has on the behaviour of processes. In case our set
of actions is finite, this can be done by means of a finite number of equations
that are instances of (PR3) and (PR4) in Table 1.

In the presence of an infinite action set, however, the axiom schemas (PR3)
and (PR4), as well as (PR2), have infinitely many instances. One way to capture
their effects finitely is, in the presence of action variables, to phrase the equation
schemas (PR3) and (PR4) as conditional equations thus:

(CPR3) (α < β) ⇒ Θ(α.x + β.y + z) ≈ Θ(β.y + z)

(CPR4)n (
∧

1≤i,j≤n

¬(αi < αj)) ⇒

Θ(α1.x1 + · · · + αn.xn) ≈ α1.Θ(x1) + · · · + αn.Θ(xn) (n ≥ 0) .

In both of the above conditional equations, we use predicates over actions to
restrict the applicability of the equation on the right-hand side of the implication.
In general, henceforth in this study we shall consider conditional equations of the
form P ⇒ t ≈ u, where P is a predicate over actions, and t ≈ u is an equation
over the language BCCSPΘ. In what follows, we shall assume that predicates
over actions are expressed using formulae in first-order logic with equality and
the binary relation symbol <.

The semantics of a predicate P is given by the collection of closed substitutions
that satisfy it. If P is a tautology, then we simply write t ≈ u. For instance, a
version of of equation (PR2) with action variables will be written thus:

(CPR2) Θ(α.x + α.y + z) ≈ Θ(α.x + z) + Θ(α.y + z) .

Note that equation (PR1) in Table 1 is just (CPR4)0. Moreover, since < is
irreflexive, the conditional equation (CPR4)1 reduces to Θ(α.x) ≈ α.Θ(x).
(Note that this equation can be derived from each of the (CPR4)n with n ≥ 1
and (A3).)

A conditional equation P ⇒ t ≈ u is sound with respect to bisimilarity, if
σ(t) ↔ σ(u) holds for each closed substitution σ that satisfies predicate P . It is
not hard to see that for each partial order of actions (Act , <), the conditional
equations (CPR2), (CPR3) and (CPR4)n (n ≥ 0) are sound modulo bisimilarity
over the language BCCSPΘ.

A natural question to ask at this point, and one that we shall address in
the remainder of this study, is whether, unlike standard equational logic, con-
ditional equations suffice to obtain a finite, ground-complete axiomatization of
bisimulation equivalence over the language BCCSPΘ.

In their classic paper [5], Baeten, Bergstra and Klop offered a finite, condi-
tional, ground-complete axiomatization of bisimilarity over the language BPAδ

with the priority operator. Their axiomatization, however, relied upon the

On the Axiomatizability of Priority 487

Table 2. Axioms for Θ in the presence of �

Θ(α.x) ≈ α.x
Θ(0) ≈ 0

Θ(x + y) ≈ (Θ(x) � y) + (Θ(y) � x)
¬(α < β) ⇒ (α.x) � (β.y) ≈ α.x
(α < β) ⇒ (α.x) � (β.y) ≈ 0

(α.x) � 0 ≈ α.x
0 � (α.x) ≈ 0

(x + y) � z ≈ (x � z) + (y � z)
x � (y + z) ≈ (x � y) � z

introduction of a binary auxiliary operator, the so-called unless operator �, whose
transition rules are:

x
a→ x′ y

b
� for all b such that a < b

x � y
a→ x′ , where a ∈ Act .

In the setting of BCCSPΘ, and using action variables in lieu of concrete ac-
tion names, the relation between the priority operator and the unless operator is
expressed by the conditional equations in Table 2. It is not too hard to see that
those conditional equations, together with (A1)–(A4) in Table 1, yield a ground-
complete, finite, conditional equational axiomatization of bisimulation equiva-
lence. Therefore, even in the presence of an infinite set of actions, bisimulation
equivalence affords a finite, ground-complete axiomatization using conditional
equations at the price of introducing a single auxiliary operator. But, if the set
of actions is infinite, is the use of an auxiliary operator like the unless operator
necessary to obtain a finite axiomatizability result for bisimulation equivalence
over BCCSPΘ using conditional equations?

5.1 A Negative Result

Our order of business will now be to prove that, in the presence of an infinite
set of actions, in general auxiliary operators are indeed necessary in order to
obtain a finite ground-complete axiomatization of bisimulation equivalence over
the language BCCSPΘ. In this section, Act = {ai, bi | i ≥ 1} ∪ {c}, where
ai < bi < c for each i ≥ 1, and these are the only inequalities. For convenience,
we consider terms not only modulo associativity and commutativity of +, but
also modulo the sound equations x + 0 ≈ x and Θ(Θ(x) + y) ≈ Θ(x + y).

The following lemma is the crux in the proof of Theorem 3. It states a property
of closed terms that holds for all of the closed instantiations of axioms in any
sound collection of conditional equations. In [3, Section 2.3] this is referred to as a
proof-theoretic technique to prove that there is no finite basis for the equational
theory. We use Φn to abbreviate

∑n
i=1 bi.0.

Lemma 1. Let P ⇒ t ≈ u be a conditional equation that is sound modulo ↔.
Let σ be a closed substitution with σ(P) = true. Assume that:

488 L. Aceto et al.

– n is larger than the size of t, where n ≥ 2; and
– the summands of σ(t) are all bisimilar to either Φn or 0.

Then the summands of σ(u) are all bisimilar to either Φn or 0.

Proof. The claim is easily seen to hold if σ(t) ↔ 0. Assume therefore that some
summand of σ(t) is bisimilar to Φn. Then σ(t) ↔ σ(u) ↔ Φn.

Write t =
∑

i∈I ti and u =
∑

j∈J uj for some non-empty, finite index sets I
and J , where the terms ti and uj are of the form x, a.v, α.v or Θ(v). By the
proviso of the lemma, for each i ∈ I, the summands of σ(ti) are all bisimilar
to Φn or 0. Since n ≥ 2, for each i ∈ I, the term ti is not of the form a.v or
α.v. Hence either it is a process variable x, or it is of the form Θ(

∑
�∈Li

di�.t
′
i� +∑

m∈Mi
αm.t′′im +

∑
k∈Ki

zik) (modulo x + 0 ≈ x and Θ(Θ(x) + y) ≈ Θ(x + y)).
Let I ′ ⊆ I be the set of indices of summands of t that have the above form.
Observe that Ki
= ∅ for each i ∈ I ′ such that σ(ti) is bisimilar to Φn (because
n is larger than the size of t). Note moreover that summands ti of t having the
above form such that σ(ti) ↔ 0 must have Li = Mi = ∅, and for such summands
σ(zik) ↔ 0 for each k ∈ Ki.

Let us assume, towards a contradiction, that there is an index j ∈ J such that
σ(uj) has a summand that is bisimilar neither to Φn nor to 0. We proceed by a
case analysis on the form of uj . The cases where uj is of the form x, a.u′

j or α.u′
j

are easy and are omitted here. We focus on the case where uj = Θ(u′). Then uj

consists of a single summand, so by assumption, σ(uj) ↔/ Φn and σ(uj) ↔/ 0.
Since σ(u) ↔ Φn, u′ is of the form

∑
�∈L e�.u

′
� +

∑
m∈M βm.u′′

m +
∑

k∈K yk.
We distinguish two cases.

1. For each i ∈ I ′ with σ(ti) ↔/ 0 there is a ki ∈ Ki such that ziki is not a
summand of u′.
Define the substitution σ′ as σ′(y) = c.0 if either y = ziki for some i ∈ I ′

with σ(ti) ↔/ 0 or if y is a summand of t with σ(y) ↔/ 0, and let σ′ agree with
σ on other process variables and on action variables. It is not hard to see that
σ′(t) bi

� for i = 1, . . . , n (because c > bi and t has no summand of the form
a.v or α.v). On the other hand, since σ(uj) ↔/ 0 and σ(u) ↔ Φn, there is an

h with 1 ≤ h ≤ n such that σ(u′) bh→. Furthermore, σ(u′) c
�. By assumption,

ziki is not a summand of u′ for each i ∈ I ′ with σ(ti) ↔/ 0. Moreover, for any
variable summand y of t with σ(y) ↔/ 0, y is not a summand of u′, because
by assumption σ(y) ↔ Φn while σ(u′) ↔/ Φn. So σ(u′) bh→ and σ(u′) c

�

imply σ′(u′) bh→ and σ′(u′) c
�. It follows that σ′(uj)

bh→, and so σ′(u) bh→.
Hence σ′(t) ↔/ σ′(u). Since σ′(P) = σ(P) = true, this contradicts the fact
that P ⇒ t ≈ u is sound modulo ↔.

2. {zi0k | k ∈ Ki0} ⊆ {yk | k ∈ K}, for some i0 ∈ I ′ with σ(ti0) ↔/ 0. In this
case, K is non-empty since, as previously observed, Ki0 is non-empty. By
the proviso of the lemma, σ(ti0) ↔ Φn, so (since n is larger than the size
of ti0) there is a k0 ∈ Ki0 with σ(zi0k0) ↔/ 0. Furthermore, by assumption,
σ(uj) ↔/ 0 and σ(uj) ↔/ Φn. Therefore, there is an h with 1 ≤ h ≤ n such

that σ(Θ(u′)) bh
�. Define the substitution σ′ as σ′(y) = ah.0 if y = zi0k0 , and

On the Axiomatizability of Priority 489

let σ′ agree with σ on other process variables and on action variables. We
argue that σ′(t) ah

�. To this end, observe, first of all, that, since σ(Θ(u′)) bh
�,

we have σ(
∑

k∈K yk) bh
�, and so σ(zi0k0)

bh
�. We are now ready to show that

no summand of σ′(t) affords an ah-labelled transition. We consider three
exhaustive possibilities:
(a) Let i ∈ I ′ with zi0k0
∈ {zik | k ∈ Ki}. Then clearly σ′(ti)

ah
�.

(b) Let i ∈ I ′ with zi0k0 ∈ {zik | k ∈ Ki}. Then σ(ti) ↔/ 0 because
σ(zi0k0) ↔/ 0, so by assumption σ(ti) ↔ Φn. This implies σ(ti)

bh→, so
since σ(zi0k0)

bh
�, it follows that σ′(ti)

bh→. Since the outermost function
symbol of ti is Θ, we can conclude that σ′(ti)

ah
�.

(c) Finally, since σ(zi0k0) ↔/ 0 and σ(zi0k0)
bh
�, the proviso of the lemma

yields that zi0k0 cannot be a summand of t.
From the three cases above we can conclude that σ′(t) ah

�. On the other

hand, σ′(Θ(u′)) ah→, because σ(Θ(u′)) bh
� and zi0k0 ∈ {yk | k ∈ K}. Hence

σ′(u) ah→, and so σ′(t) ↔/ σ′(u). Since σ′(P) = σ(P) = true, this contradicts
the fact that P ⇒ t ≈ u is sound modulo ↔.

In summary, the assumption that some σ(uj) has a summand that is bisimilar
neither to Φn nor to 0, leads to a contradiction. This completes the proof. ��

The following proposition states that the property of closed instantiations of
sound conditional equations mentioned in the above lemma is preserved under
equational derivations from a finite collection of sound equations.

Proposition 1. Let E be a finite collection of conditional equations that is
sound modulo ↔. Let n ≥ 2 be larger than the size of any term in the equa-
tions of E. Assume, furthermore, that

– E � p ≈ q; and
– the summands of p are all bisimilar to Φn or 0.

Then the summands of q are all bisimilar to Φn or 0.

Proof. By induction on the depth of the closed proof of the equation p ≈ q from
E, using Lemma 1. ��

Theorem 3. Let Act = {ai, bi | i ≥ 1} ∪ {c}, where ai < bi < c for each
i ≥ 1, and these are the only inequalities. Then bisimulation equivalence has no
ground-complete axiomatization over BCCSPΘ consisting of a finite set of sound
conditional equations.

Proof. Let E be a finite collection of conditional equations that is sound modulo
↔. Let n ≥ 2 be larger than the size of any term in the equations of E. According
to Proposition 1, from E we cannot derive Θ(Φn) ≈ Φn. This equation is sound
modulo ↔, and therefore E is not ground-complete. ��

490 L. Aceto et al.

5.2 A Positive Result

In the previous section, we offered an example of a priority structure (Act , <)
with respect to which it is impossible to give a finite, ground-complete axioma-
tization of bisimulation equivalence over BCCSPΘ in terms of conditional equa-
tions without auxiliary operators. That result, however, does not imply that
auxiliary operators are always necessary to achieve a finite basis of conditional
equations for bisimulation equivalence. Our aim in this section is to substanti-
ate this claim by providing some general conditions over the priority structure
(Act , <) that are sufficient to guarantee the existence of a finite, ground-complete
conditional axiomatization of bisimulation equivalence over BCCSPΘ.

Definition 2. An anti-chain in a poset (Act , <) is a subset of Act consisting of
pairwise incomparable actions. The width of a poset (Act , <) is the least upper
bound of the cardinalities of its anti-chains.

We now offer a countably infinite, ground-complete, conditional axiomatization
of bisimulation equivalence over BCCSPΘ. Such an axiomatization reduces to a
finite one if the poset of actions has finite width.

Theorem 4. Let (Act , <) be an infinite poset of actions.

1. The axiom system consisting of (CPR2), (CPR3), (CPR4)n (n ≥ 0) and
(A1)–(A4) is ground-complete for bisimilarity over BCCSPΘ.

2. Assume that the width of (Act , <) is k. Then the axiom system consisting of
(CPR2), (CPR3), (CPR4)k, (A1)–(A4) and (PR1) is ground-complete for
bisimilarity over BCCSPΘ.

The sufficient condition over (Act , <) stated in the above theorem applies, for
instance, to any poset that has infinitely many finite anti-chains of bounded size.
For example, it can be used to show that bisimilarity affords a finite, ground-
complete axiomatization consisting of conditional equations over BCCSPΘ if,
for some k, the poset (Act , <) has elements aij (i ≥ 1, 1 ≤ j ≤ k) ordered thus:
ahk < aij if, and only if, h < k. That poset has countably many finite, maximal
anti-chains of size k.

A more general sufficient condition over (Act , <) that applies to some posets
containing infinite anti-chains, and still guarantees the existence of a finite con-
ditional basis of equations for bisimilarity over BCCSPΘ may be found in the
full version of the paper [1, Section 5.2]. That condition applies, for instance,
to the flat priority structure ({⊥, a0, a1, . . .}, <), where the only ordering rela-
tions are given by ⊥ < ai for each i ≥ 0. Membership of the countably infi-
nite anti-chain {a0, a1, . . .} can be characterized syntactically by the predicate
P (α) = ∀β. ¬(α < β). We can therefore write the following, sound conditional
equation that allows us to reduce the number of summands within the scope of
a Θ operator:

P (α) ∧ P (β) ⇒ Θ(α.x + β.y + z) ≈ Θ(α.x + z) + Θ(β.y + z) .

The generalization of Theorem 4(2) in the full version of this paper relies on the
isolation of conditions on the priority structure that ensure the soundness of the
above conditional equation over infinite, maximal anti-chains.

On the Axiomatizability of Priority 491

References

1. L. Aceto, T. Chen, W. Fokkink, and A. Ingolfsdottir. On the axiomatizability of
priority. BRICS Report Series RS-06-1, BRICS, 2006.

2. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. CCS with Hennessy’s merge
has no finite equational axiomatization. Theoretical Computer Science, 330(3):377–
405, 2005.

3. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. Finite equational bases in
process algebra: Results and open questions. In Processes, Terms and Cycles: Steps
on the Road to Infinity, LNCS 3838, pp. 338–367. Springer, 2005.

4. L. Aceto, W. Fokkink, A. Ingolfsdottir, and S. Nain. Bisimilarity is not finitely
based over BPA with interrupt. In Proc. CALCO’05, LNCS 3629, pp. 52–66.
Springer, 2005.

5. J. Baeten, J. Bergstra, and J.W. Klop. Syntax and defining equations for an inter-
rupt mechanism in process algebra. Fundam. Informat., IX(2):127–168, 1986.

6. J. Bergstra. Put and Get, Primitives for Synchronous Unreliable Message Passing.
Logic Group Preprint Series 3, Utrecht University, Department of Philosophy, 1985.

7. J. Bergstra and J.W. Klop. Process algebra for synchronous communication. In-
formation & Control, 60(1/3):109–137, 1984.

8. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of the
ACM, 42(1):232–268, 1995.

9. E. Brinksma. A tutorial on LOTOS. In Proc. PSTV’85, pp. 171–194. North-
Holland, 1985.

10. J. Camilleri and G. Winskel. CCS with priority choice. Information and Compu-
tation, 116(1):26–37, 1995.

11. R. Cleaveland and M. Hennessy. Priorities in process algebras. Information and
Computation, 87(1-2):58–77, 1990.

12. R. Cleaveland, G. Lüttgen, and V. Natarajan. Priorities in process algebra. In
Handbook of Process Algebra, pp. 711–765. Elsevier, 2001.

13. R. Cleaveland, G. Lüttgen, V. Natarajan, and S. Sims. Priorities for modeling
and verifying distributed systems. In Proc. TACAS’96, LNCS 1055, pp. 278–297.
Springer, 1996.

14. R. van Glabbeek. The linear time-branching time spectrum. In Proc. CONCUR’90,
LNCS 458, pp. 278–297. Springer, 1990.

15. R. van Glabbeek. The linear time-branching time spectrum I. The semantics of
concrete, sequential processes. In Handbook of Process Algebra, pp. 3–99. Elsevier,
2001.

16. J.F. Groote. A new strategy for proving ω-completeness with applications in
process algebra. In Proc. CONCUR’90, LNCS 458, pp. 314–331. Springer, 1990.

17. S. Mauw, PSF – A Process Specification Formalism, PhD thesis, University of
Amsterdam, 1991.

18. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
19. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML

(Revised). MIT Press, 1997.
20. F. Moller. The importance of the left merge operator in process algebras. In Proc.

ICALP’90, LNCS 443, pp. 752–764. Springer, 1990.
21. F. Moller. The nonexistence of finite axiomatisations for CCS congruences. In Proc.

LICS’90, pp. 142–153. IEEE, 1990.
22. P. Sewell. Nonaxiomatisability of equivalences over finite state processes. Annals

of Pure and Applied Logic, 90(1–3), 163–191, 1997.

	Introduction
	Preliminaries
	The Language BCCSP_{Θ}
	Equational Logic

	$|{\it Act}|<\infty$
	$|{\it Act}|=\infty$
	Axiomatizing Priority Conditionally
	A Negative Result
	A Positive Result

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

