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Loop invariant inference is a fundamental, yet challenging, problem in program verification. Recent work
adopts the guess-and-check framework, where candidate loop invariants are iteratively generated in the guess
step and verified in the check step. A major challenge of this general framework is to produce high-quality
candidate invariants in each iteration so that the inference procedure can converge quickly. Empirically, we
observe that existing approaches may struggle with guessing the complete invariant due to the complexity
of logical connectives, but usually, all the clauses of the correct loop invariant have already appeared in
the previous guesses. This motivates us to refine the guess-and-check framework, resulting in a generate-
combine-check framework, where the loop invariant inference task is divided into clause generation and clause
combination. Specifically, we propose a novel loop invariant inference approach Clause2Inv under the new
framework, which consists of an LLM-based clause generator and a counterexample-driven clause combinator.
As the clause generator,Clause2Inv leverages LLMs to generate a multitude of clauses; as the clause combinator,
Clause2Inv leverages counterexamples from the previous rounds to convert generated clauses into invariants.
Our experiments show that Clause2Inv significantly outperforms existing loop invariant inference approaches.
For example, Clause2Inv solved 312 (out of 316) linear invariant inference tasks and 44 (out of 50) nonlinear
invariant inference tasks, which is at least 93 and 16 more than the existing baselines, respectively. By design,
the generate-combine-check framework is flexible to accommodate various existing approaches which are
currently under the guess-and-check framework by splitting the guessed candidate invariants into clauses. The
evaluation shows that our approach can, with minor adaptation, improve existing loop invariant inference
approaches in both effectiveness and efficiency. For example, Code2Inv which solved 210 linear problems with
an average solving time of 137.6 seconds can be improved to solve 252 problems with an average solving time
of 17.8 seconds.
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1 Introduction
Bugs and security vulnerabilities pose significant threats to our daily life with software’s ever-
increasing ubiquity and complexity. Program verification, which aims to prove the absence of these
problems at compile-time, is an indispensable tool to mitigate these risks [17]. Loop invariant plays
a central role in program verification. Specifically, a loop invariant is a proposition that holds before
and after each iteration of a loop, the inference of which is a central task in deductive verification
based on, e.g., Hoare logic and its variants. Loop invariant inference is, however, undecidable in
general, and turns out to be challenging in practice, making it a subject of active research for over
40 years.

Traditionally, loop invariant inference methods mainly leverage deductive reasoning, such as
constraint solving [9, 21, 22, 42], counterexample guided abstraction refinement [8, 48], and Craig
interpolation [24, 31]. However, this class of approaches is often not scalable; some of them rely
highly on manual intervention.

Another class of approaches leverages inductive reasoning, which is of a data-driven nature [19,
20, 32, 37, 38, 49]. At an earlier stage, some approaches cast the invariant inference problem as a
supervised learning problem [19, 37] where various classic machine learning algorithms can be
applied. One of the serious shortcomings is that they require handcrafted features, which turns out
to be challenging for complex, unstructured programs [20]. Moreover, some of the standard linear
classification methods, such as SVM [47] and Perceptron [18], may overfit to existing data, limiting
their ability to infer a correct loop invariant.

More recent works along this line have adopted the guess-and-check framework [22, 33, 36, 44–
46], where candidate invariants are iteratively generated in the guess step and verified in the check
step. While these methods lack completeness guarantees, in practice they usually outperform the
earlier approaches. Additionally, they can instantiate cutting-edge (data-driven) approaches during
the guess step, significantly improving their effectiveness and scalability. Indeed, various machine
learning techniques, such as decision tree [20], reinforcement learning [41, 46] and continuous
logic networks [36, 45], have been applied to generate candidate invariants.
Our work. One drawback of the guess-and-check methods lies in that they are not effective at
utilizing previously failed guesses. Namely, different rounds of guesses are largely independent and
the insight of the (albeit failed) previous ones was not sufficiently harnessed later on.

In this paper, we propose to refine the “guess" step into two separated but closely related steps, i.e.,
generating clauses and then combining clauses to derive a candidate loop invariant, giving rise to a
new generate-combine-check framework. To instantiate this new framework, we propose to leverage
large language models (LLMs) as the backbone clause generator and a counterexample-driven
clause combinator, leading to a tool Clause2Inv. In a nutshell, for the clause generator, we craft
prompts specifically aimed at eliciting assertions from LLMs. These assertions are free of logical
connectives but are with emphasis on specific parts of the program under consideration. For the
clause combinator, we maintain all the previously generated assertions and devise an algorithm to
systematically assemble them, thereby deriving the candidate loop invariant.

The underpinning rationale of our design is that the state-of-the-art LLMs excel in “brainstorm-
ing”, but not in logical reasoning. As a result, fully-fledged loop invariants (with logic connectives)
generated directly from LLMs may not be of high quality, which is also observed by our experiments.
Instead, the clauses/assertions produced by LLMs turn out to be much more useful. In particular,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA045. Publication date: July 2025.

https://doi.org/10.1145/3728920


Clause2Inv: A Generate-Combine-Check Framework for Loop Invariant Inference ISSTA045:3

we can devise suitable prompts to incorporate the lesson learned from the previous mistakes so
that LLMs can return more targeted clauses. These clauses are assembled by a symbolic combi-
nator, which can, again, make use of failed candidate loop invariants (from previous rounds) via
counterexamples. As such, we design a new form of neuro-symbolic system (i.e., LLM as the neural
component and the clause combinator as the symbolic component) for loop invariant inference.
Evaluation. To thoroughly evaluate Clause2Inv, we conduct experiments on an extended linear
loop invariant benchmark comprising 316 problems, including 133 problems from Code2Inv [41],
84 additional problems from the 2019 SyGuS competition [1], and 99 new problems from the
2024 SV-COMP benchmarks [5]. We also extend the existing nonlinear loop invariant benchmark
from 30 problems [46] to 50 problems, with 20 additional problems mainly from the 2024 SV-
COMP benchmarks. The performance of Clause2Inv is compared against seven typical methods,
i.e., LoopInvGen [34], CVC5 [3], Code2Inv [41], LIPuS [46], CLN2INV [36], G-CLN [45], and
SymInfer [33]. The experimental results show that Clause2Inv outperforms the state-of-the-art
methods. In particular, the number of linear problems solved is increased from 219 (previously by
G-CLN) to 312 by Clause2Inv, and the number of nonlinear problems solved is increased from 28
(previously by SymInfer) to 44. We refer the readers to Section 4.2 for details.

In addition, for tools which are currently under the guess-and-check framework, we can modify
them as per the proposed generate-combine-check framework. Specifically, historical guesses from
these base tools are gathered and split into clauses, and then our clause combinator is applied to
derive the loop invariant. As such, we obtain variants of respective base tools. In our experiments,
Code2Inv, LIPuS, CLN2INV and G-CLN are selected for evaluation. The result shows that their
performance is improved by 20% at least (cf. Section 4.3 for details), which demonstrates the efficacy
and wide applicability of the generate-combine-check framework.

Our contributions can be summarized as follows.
• We propose a novel generate-combine-check framework for loop invariant inference, which
clearly divides the problem into clause generation and clause combination, so that the
discarded clause information can be better leveraged to speed up the convergence of the
traditional guess-and-check process.
• We instantiate the framework by an LLM-based clause generator and a counterexample-driven
clause combinator, implementing a new tool Clause2Inv. This establishes a new paradigm of
neuro-symbolic synergy for challenging program verification tasks.
• We curate new benchmarks for loop invariant inference and conduct extensive experiments
on them. The results confirm that Clause2Inv sets up a new baseline for loop invariant
inference, and moderate adaptations of various existing methods as per our new framework
can enhance their respective performance.

Roadmap. The rest of the paper is organized as follows. Section 2 introduces the background
knowledge and presents a motivating example. Section 3 describes the proposed approach. Section 4
shows the evaluation results. Section 5 discusses threats to validity. Section 6 covers the related
work. Section 7 concludes the paper.

2 Preliminary and Motivation
In this section, we first introduce the loop invariant inference problem and then present a motivating
example.

2.1 Problem Statement
The purpose of loop invariant inference is to identify a loop invariant that can be used to demonstrate
that a program exhibits the expected properties. For a loop of the form while 𝐵 do 𝑆 , the classical
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Hoare logic stipulates that a loop invariant 𝐼 must satisfy

𝑃 =⇒ 𝐼 {𝐼 ∧ 𝐵} 𝑆 {𝐼 } (𝐼 ∧ ¬𝐵) =⇒ 𝑄

{𝑃} while 𝐵 do 𝑆 {𝑄}
.

Here, 𝑃 is the pre-condition,𝑄 is the post-condition, and 𝑆 is the loop body (consisting of a sequence of
statements) with 𝐵 as the loop condition (boolean expression). Essentially, the above rule indicates
that the loop invariant 𝐼 satisfies the following three conditions.
• Prev. The loop invariant must hold before entering the loop. This ensures that the invariant
is true at the start, before the execution of the loop body.
• Inv. If the loop invariant is true before an iteration of the loop and the loop condition holds,
then the invariant must still be true after executing the loop body. This ensures that the
invariant remains true throughout the loop’s execution.
• Post. If the loop terminates, then the loop invariant combined with the negation of the loop
condition should imply the post-condition. This ensures that the loop invariant is strong
enough to guarantee that the desired property (represented by the post-condition) will always
hold once the loop terminates.

In practice, SMT solvers (e.g., Z3 [12]) are typically used to verify the correctness of three (logical)
conditions. If any of them fails, the SMT solver usually provides a concrete counterexample. It
includes the assignments to the variables within the program and indicates which specific constraint
has been violated.

2.2 Motivating Example
Listing 1 presents a simple program with two variables and a single loop. A valid loop invariant
for this program is (𝑥 ≤ 𝑛) ∨ (𝑥 = 0). While this invariant may appear to be straightforward for
human beings, deducing it automatically requires considerable efforts. We summarize two common
limitations of existing learning-based methods.

Listing 1. A motivating example

int main() {
int n;
int x;
// pre -conditions
x = 0;
// loop body
while (x < n) {

x = x + 1;
}
// post -condition
if (n >= 0) {

assert(x == n);
}

}

Limitation 1: previous guesses are not effectively utilized. Existing loop invariant inference methods
that are within the guess-and-check framework iteratively generate a candidate invariant and
check it; if the check fails, the candidate invariant is discarded and the next candidate invariant
will be generated. In practice, we observe that although the current invariant may not be valid, at
least some of its clauses are likely parts of the correct (to-be-found) invariant. Unfortunately, such
clauses are not well-utilized by the existing methods.
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To illustrate this limitation, we examine the inference process of Code2Inv [41] for the program
in Listing 1. Code2Inv is a learning-based method for loop invariant inference. It follows the general
guess-and-check framework where reinforcement learning (RL) is adopted to guess the invariants.
Specifically, Code2Inv generates candidate invariants based on BNF expansion rules chosen by a
deep RL model, and then verifies these invariants against conditions using SMT solvers. The RL
model enables Code2Inv to adapt its strategies for different programs, allowing it to learn from its
inference attempts and improve over time.

For the given example in Listing 1, Code2Inv generates numerous expressions, and finally obtains
the correct loop invariant

((𝑛 ≥ (𝑥 + 0) ∨ 𝑥 = (0 − 0))),
which is the 225th expression generated during the inference process. Interestingly, clauses such as
(𝑥 ≤ 𝑛) and (𝑥 = 0), which are equivalent to the two clauses of the finally accepted loop invariant,
appeared much earlier in this process, e.g., in the 12th expression

((𝑛 = 1) ∧ (𝑥 ≥ 𝑛 ∨ 𝑛 > (1 − 𝑛)) ∧ (𝑥 ≤ 𝑛)),

and the 13th expression
((𝑥 = (𝑥 + 0)) ∧ (𝑥 = 0)) .

This observation indicates that Code2Inv generates all the crucial components of the desired
loop invariant early on, but unfortunately does not use them effectively. Similar limitations also
exist for other methods. For example, CLN2INV [36] and G-CLN [45] generate candidate invariants
and repeatedly test them, and the generated invariant is discarded and no longer contributes to the
inference process, once it fails the SMT solver check.
Limitation 2: complex symbolic knowledge is not effectively handled. Another limitation of existing
learning-based methods lies in their handling of complex expressions with logical connectives [29].
Although some efforts have beenmade in this direction, insofar the results have not been satisfactory.
For example, existing methods for extracting logical rules from general neural architectures lack
sufficient precision [2], and inductive logic learning lacks sufficient expressiveness for use in
verification [14]. Moreover, while CLN2INV [36] has shown impressive results, its ability to express
complex logical structures is limited. Specifically, when faced with programs requiring intricate
logical relations or nonlinear patterns, the model struggles to capture these complexities effectively.
It has been reported that CLN2INV cannot solve any problems on the nonlinear benchmark of
LIPuS [46]. Some other learning-based approaches (e.g., Code2Inv) are even worse in this regard.
Similarly, approaches based on reinforcement learning cannot handle logical connectives directly,
but infer logical connectives through trial-and-error, which is of low efficiency.

To illustrate this limitation, we show some generated expressions from Code2Inv for the program
in Listing 1 as follows,

((𝑥 = 0) ∧ (𝑥 = (1 − 𝑥)) ∧ (𝑛 > 0)),
((𝑛 = 1) ∧ (𝑥 = (𝑛 + 𝑛)) ∧ (𝑛 ≤ (0 − 𝑛))),

which are all unsatisfiable given the logic conjunction is introduced.
LLMs unfortunately exhibit similar issues. For instance, we directly query GPT-4o mini whether
(𝑛 ≥ 𝑥 ∧ 𝑥 = 0) is the loop invariant of the program. However, it incorrectly denies (𝑥 = 0) as a
part of the loop invariant, and returns “the loop invariant should be (𝑛 ≥ 𝑥)”. This shows that LLMs
do not fully grasp the concept of loop invariants and cannot strictly enforce the three constraints
of loop invariants. In this case, while the LLM recognizes part of the invariant, it fails to account
for the complete logical structure, highlighting its limitations in handling precise logical reasoning.
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Fig. 1. An overview of Clause2Inv.

Our framework. The above limitations motivate us to explore the question: Can we use learning-based
methods to generate clauses first, and then combine them with logic connectives to derive a valid loop
invariant?
To this end, we propose to refine the guess-and-check framework into generate-combine-check,

where the learning-based methods are devoted to the easier task of generating clauses instead of
the complete invariants, and manually designed rules are used to combine the clauses into loop
invariants. This design effectively addresses the two previously mentioned limitations.
• The previous guesses from the generating step can be maintained and reused. Such guesses
can be further combined to form the future loop invariants.
• It does not require learning-based methods to handle complex concepts such as logical
connectives or loop invariants, which are a better fit for symbolic tools such as manually
defined rules or SMT solvers.

Another advantage of the generate-combine-check framework is that it can be easily adapted to
improve the performance of existing learning-based loop invariant inference methods by splitting
their previous guesses into clauses and maintaining them for later use.

3 The Proposed Approach
In this section, we present Clause2Inv, a loop invariant inference approach under the generate-
combine-check framework. We shall first present an overview, then describe the details of its key
components, followed by how it can be integrated with the existing methods.

3.1 Overview
Figure 1 presents an overview of our approach, which consists of the following two components.
(1) Clause generation. As mentioned before, the key of our generate-combine-check framework

is to generate the clauses rather than the loop invariants directly. Specifically, we leverage
LLMs and cast the clause generation task into an assertion generation task. In the prompt to
LLMs, we deliberately ask LLMs not to use logical connectives in the generated expressions.
We also design a feedback mechanism that allows LLMs to pay more attention to certain parts
of the program (e.g., pre-conditions, loop body, and post-conditions), according to which
constraint has been violated by the previous candidate loop invariant. For example, if the
counterexample associated with the previous candidate loop invariant is returned due to a
violation of the prev constraint (i.e., pre-conditions should imply the candidate invariant), we
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will ask LLM to pay more attention to the pre-conditions during the next clause generation
process.

(2) Clause combination. After preparing the clauses, we proceed to generate candidate invariants
by combining the clauses with logical connectives ∧ and ∨. Specifically, we maintain three
data structures in this stage: a set exprStore storing historical clauses, a set ceSet storing
all the previous counterexamples, and a list exprList keeping expressions that can pass all
the counterexamples in ceSet. The clauses in exprStore are combined to find expressions
that can pass all the current counterexamples. To increase the success rate of generated
expressions, we also store the failed candidate invariants in exprStore as they have high
potential to be parts of the correct loop invariant. For the expressions in exprList, we select
the most concise one as the candidate invariant and check it by an SMT solver. If the check
passes, a correct loop invariant is found. Otherwise, a new counterexample will be returned
and exprList will be updated against this new counterexample. The specific constraint that
has been violated (i.e., ‘ceKey’ in the figure) will also be returned to the clause generation
component.

The above process continues until the desired loop invariant is derived or a timeout occurs.

3.2 LLM-based Clause Generation
We now elaborate on the LLM-based clause generator utilized in Clause2Inv. Note that, we do not
prompt LLMs to directly generate the complete loop invariant; instead, we convert the task into an
assertion generation task and intentionally ask LLMs not to contain logical connectives such as ∧
and ∨ in the returned expressions. All the generated clauses will be maintained in a set for clause
combination.

Prompt 1: Clause Generation Prompt.

### Your Task ###
I will provide you with a program.
Your task is to generate assertions based on the program’s execution.
Please split the generated assertions and return them in a list, ordered from the most
generalizable to the least generalizable for {attention}.

### Notes ###
1. Try to find more complex assertions involving multiple variables with longer expressions.
2. Prioritize finding generalizable assertions that hold true across a wider range of situations.
3. Limit operators in the assertions to "==", "!=", "<", ">", "<=", ">=".
4. Avoid using logical operators like "&&", "||", "==>", "->", "if", "=>", "or", and "and".

### Program ###
{program}

The prompt template is shown in Prompt 1. We first describe the task, asking LLMs to generate
assertions, with special “attention” paid to the three conditions mentioned in Section 2.1. Initially,
we set “attention” to “pre-conditions, loop body, and post-conditions”. When a counterexample
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is returned from the check step, this “attention” is set to one of the three conditions (i.e., “pre-
conditions”, “loop body”, and “post-conditions”) depending on which condition is violated.

Using “attention” is essential here as it encourages LLMs to generate all the required clauses in a
correct loop invariant. If we simply ask LLMs to generate assertions for the program, they tend to
generate ones for the loop body only. For instance, for the program shown in Listing 1, LLMs tend
to generate clauses like (𝑛 ≥ 𝑥), (𝑛 > 𝑥), and (𝑥 ≥ 0). However, they are less likely to generate
(𝑥 = 0) which is the clause we need for both pre-conditions and post-conditions. In contrast, if we
ask LLMs to pay more attention to specific parts such as pre-conditions, clauses like (𝑥 = 0) will
have a greater chance of being generated because these clauses are more generalizable for those
corresponding parts.
After describing the task, we list a few notes for LLMs. Specifically, the first note asks LLMs to

generate more complex assertions involving multiple variables with longer expressions, in case
LLMs may generate trivial expressions. The second note asks LLMs to generate generalizable
assertions that hold true across a wide range of situations. Assertions akin to this have better
potential to be the final clause of the loop invariant. The third note limits the comparison operators
that LLMs can use and the fourth note asks LLMs not to use logical connectives. The “program” in
this prompt will be replaced with the concrete program.

Example. We revisit the example in Listing 1. If we directly prompt the LLM to infer the loop
invariant, it will not include (𝑥 = 0) as a part of the final loop invariant and thus cannot infer the
loop invariant within 10 minutes. In fact, even though we give LLM the correct loop invariant and
ask whether it is the correct one, interestingly the LLM tends to deny its correctness.

In contrast, with our clause generator, the LLM initially returns a clause list that includes (𝑥 ≥ 0),
(𝑥 ≤ 𝑛), · · · , (𝑥 ≠ 0). We then identify (𝑥 ≤ 𝑛) as the best candidate invariant, but it is rejected by
the SMT solver as the pre-condition is violated. At this point, we ask the LLM to focus more on the
pre-conditions in the prompt, and the clause list including (𝑥 = 0) is returned in the third iteration,
which can be further combined with (𝑥 ≤ 𝑛) to form the final loop invariant. The whole process
for this example takes only 10.8 seconds.

3.3 Counterexample-driven Clause Combination
We next explain howwe combine the clauses in exprStore into expressions in exprListmentioned
in the overview of the approach in Section 3.1. Recall that exprListmaintains the expressions that
can pass all the existing counterexamples in ceSet.
3.3.1 Combination in exprStore. Each time we query LLMs, they will return a set of new clauses.
For these new clauses, we first directly append them into exprList. The intuition is that a single
clause itself may be the correct loop invariant. Next, we will combine each new clause with the old
clauses in exprStore. Specifically, for a new clause 𝑐𝑛𝑒𝑤 and an old clause 𝑐𝑜𝑙𝑑 in exprStore, we
combine two more clauses as 𝑐𝑜𝑙𝑑 ∧ 𝑐𝑛𝑒𝑤 and 𝑐𝑜𝑙𝑑 ∨ 𝑐𝑛𝑒𝑤 , which are then appended to exprList.
The rationale behind this combination is as follows. We combine new clauses with old ones as

their attention may be concentrated on different program parts. More importantly, note that the
previously failed candidate loop invariant is also stored in exprStore as mentioned in Section 3.1.
Therefore, we can directly refine it by exploring the potential of the new clauses, especially since we
have deliberately asked LLMs to generate clauses with the given attention (i.e., the reason why the
previous candidate invariant failed). For example, if the previous candidate invariant fails due to the
pre-condition is not satisfied, we will ask LLMs to generate new clauses with special attention paid
to the pre-condition. Therefore, combining these new clauses with the failed candidate invariant
will have a higher chance of obtaining the correct loop invariant.
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Algorithm 1: The Clause2Inv Algorithm
Input: Program information program
Output: Loop invariant inv

1 Function Clause2Inv(program):
2 exprStore ← ∅;
3 ceSet ← ∅;
4 inv ← None;
5 attention ← "pre-conditions, loop body, and post-conditions";
6 while inv is None do
7 clauses← LLMClauseGenerate(program, attention);
8 inv, attention← combineClauses(exprStore, clauses, ceSet);
9 end

10 return inv

11 end

In addition to combining failed candidate invariants with new clauses, we also refine them
immediately after their failed check. That is, we further combine each failed candidate invariant with
existing expressions in exprStore. Specifically, if the candidate invariant fails the pre-condition,
meaning that it is too strict to be implied by the pre-condition, it will be relaxed through a
combination with expressions using ∨. Similarly, ∧ is used if the post-condition is violated. For the
inductiveness constraint, we use both ∧ and ∨. Such a refinement step is essential. For example, for
loops with multiple phases such as “if-else” control structures, their loop invariants are difficult to
infer due to the complexity of using disjunction ∨ to combine multiple expressions corresponding
to different paths [25, 34, 45]. In contrast, our refinement step explicitly handles such cases by
deliberately combining existing expressions.

3.3.2 exprList Update. Whenever a candidate loop invariant fails the SMT check, exprList is
updated based on the newly returned counterexample. Specifically, we check each expression
in exprList against this new counterexample and discard the ones that cannot pass it. For the
remaining expressions, we sort them according to their conciseness (i.e., the expression length),
where more concise ones are prioritized because they tend to be more generalizable.

While exprList is not empty meaning that expressions in it can still pass all the previous
counterexamples, we iterate the above process by selecting the most concise expression as the
candidate invariant and checking it in SMT solvers. The iteration ends when this candidate invariant
passes the check, i.e., a valid loop invariant is found. Otherwise, a new counterexample is returned
and the exprList is updated. If the exprList is empty, we will turn to the clause generator and
ask the LLMs for new clauses.

3.4 The Overall Algorithm
The overall algorithm of Clause2Inv is summarized in Alg. 1. Given the input program, Clause2Inv
first initializes the data structures. During the iterations, Clause2Inv iteratively asks LLMs to gener-
ate clauses with the current attention, which is initialized with three conditions and later updated
based on the returned results of procedure combineClauses(). Then,Clause2Inv passes the current
exprStore set, the new clauses generated by LLMs and the current ceSet to combineClauses().
This iteration terminates when a correct loop invariant has been found or a timeout occurs.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA045. Publication date: July 2025.



ISSTA045:10 Cao et al.

Algorithm 2: Procedure combineClauses
Input: Expression set exprStore, newly generated clauses clauses, and counterexample

set ceSet
Output: Candidate invariant inv

1 Function combineClauses(exprStore, clauses, ceSet):
2 exprList← ∅;
3 foreach clause in clauses do
4 exprList.append(clause);
5 foreach expr in exprStore do
6 exprList.append(andCombine(expr, clause));
7 exprList.append(orCombine(expr, clause));
8 end
9 exprStore.add(clause);

10 end
11 exprListUpdate(exprList, ceSet);
12 while not exprList.empty() do
13 candidateInv← exprList[0];
14 exprStore.add(candidateInv);
15 result, ceKey, ce ← SMTSolver.check(candidateInv);
16 ceSet.add(ce);
17 if result is True then
18 return candidateInv

19 end
20 else
21 foreach expr in exprStore do
22 if ceKey != "pre" then
23 exprList.append(andCombine(expr, candidateInv));
24 end
25 if ceKey != "post" then
26 exprList.append(orCombine(expr, candidateInv));
27 end
28 end
29 end
30 exprListUpdate(exprList, ceSet);
31 end
32 return None, ceKey;
33 end

The detailed algorithm of procedure combineclauses() is summarized in Alg. 2. We first com-
bine new clauses with old clauses in exprStore (Lines 3-10), and update exprList (Line 11). Then,
the first expression in exprList is selected as the candidate invariant and checked by an SMT
solver (Lines 13-16). If the check passes, a valid loop invariant is found (Lines 17-19); otherwise,
we immediately refine the candidate invariant based on which constraint has been violated (Lines
20-29). We then update exprList again and continue the iteration as long as exprList is not
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Fig. 2. Integration of Clause2Inv with other tools.

empty. If exprList becomes empty, procedure combineclauses() terminates and new clauses
with be obtained through the clause generator.

3.5 Integration with Other Tools
One advantage of Clause2Inv is that it can also be integrated with various existing tools built upon
the guess-and-check framework. That is, we can replace the LLM-based clause generator by (1)
gathering guessed invariants from existing tools and (2) splitting them into clauses, as illustrated
in Figure 2. This compatibility extends to several prior loop invariant inference tools, such as
Code2Inv [41], LIPuS [46], CLN2INV [36], and G-CLN [45], among others. Such integration is
non-invasive, and could further improve the performance of existing tools by better leveraging the
previous guesses.
As shown in Figure 2, for a given base tool, we gather all the guessed expressions, decompose

them into clauses and filter out useless ones (e.g., tautologies and contradictions). The remaining
clauses are then combined based on our combineClauses procedure (cf. Algorithm 2). The base
tool and Clause2Inv share the same counterexample set. Note that, more technically, we also use
a white-box random clause generator which addresses the issue when the base tool generates
insufficient clauses for combination. That is, while waiting for the guess step of the base tool,
we invoke the random clause generator to produce clauses, ensuring the combination procedure
proceeds uninterrupted. This random clause generator is based on the template shown in LIPuS [46],
where the constants and variables are randomly chosen from the input program.

4 Evaluation
In this section, we present the experimental results, which are designed to answer the following
three research questions (RQs).

RQ1. How does Clause2Inv perform compared with the existing baselines?
RQ2. To what extent can the proposed generate-combine-check framework enhance existing tools?
RQ3. How do different design choices affect the performance of Clause2Inv?

4.1 Setup
Benchmark. To thoroughly evaluate different loop invariant inference methods, we curate a

dataset of 316 linear benchmark problems and 50 nonlinear benchmark problems. The linear
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dataset includes 133 problems collected by Code2Inv [41], commonly used in previous evaluations.1
Additionally, we manually craft 84 problems from the 2019 SyGuS competition and 99 problems
from the 2024 SV-COMP benchmarks. For the nonlinear benchmark, we collect 30 problems from
LIPuS [46], and additionally craft 20 problems from the 2024 SV-COMP benchmarks. Each problem
consists of a C code snippet containing a loop, potentially with nested if-then-else structures, and
the corresponding SMT-LIB2 files.

Baselines. To evaluate our approach, we compare it with the following baselines.
• LoopInvGen [34] searches a conjunctive normal form over predicates synthesized by an
underlying engine, and it is a heuristic search-based system.
• CVC5 [3] is an efficient open-source SMT solver, which can be used to prove the satisfiability
of first-order formulas with respect to a variety of useful background theories. It provides a
Syntax-Guided Synthesis (SyGuS) engine to synthesize invariants.
• Code2Inv [41] is a standard guess-and-check approach, which generates candidate invariants
according to BNF (Backus-Naur form) expansion rules selected by a deep RL model and
checks the invariants against the verification conditions with an SMT solver.
• LIPuS [46] is an extension of Code2Inv, introducing a two-dimensional reward mechanism to
guide reinforcement learning and integrating it with a template iteration method. For both
linear and nonlinear loop invariants its performance is good as reported.
• CLN2INV [36] is a deep learning method that builds a “bijection” between logic expressions
and neural networks. It infers the loop invariant by training a neural network (i.e., logic
expression) to fit in the program traces.
• G-CLN [45] builds upon CLN2INV by incorporating gating mechanisms and other enhance-
ments, enabling it to learn more complicated loop invariants. It is good at inferring nonlinear
loop invariants.
• SymInfer [33], or DIG, infers loop invariants by utilizing symbolic states generated by sym-
bolic executions. Different from other approaches, it aims at inferring non-trivial invariants
for any location labeled at the source code. SymInfer is good at inferring nonlinear loop
invariants, but its performance is poor for linear ones [46].

Among these baselines, LoopInvGen, CVC5, and SymInfer are traditional symbolic methods, and
the rest are learning-based methods. For the linear benchmark, we compare all the baselines except
SymInfer. For nonlinear benchmark, we compare Clause2Inv with LIPuS, G-CLN, and SymInfer,
which are all specially designed for inferring nonlinear loop invariants.

Evaluation metrics. To evaluate the efficacy of different methods in inferring loop invariants,
we adopt the following performance indicators: 1) the number of successfully generated loop
invariants; 2) the number of SMT solver queries during the inference process; and 3) the time used
to infer the loop invariant. The first metric relates to effectiveness, while the latter two metrics
pertain to efficiency.2

Implementations. Our experiments evaluate all methods under identical settings using the same
hardware and benchmark. For the LLM used in Clause2Inv, we adopt GPT-4o mini (gpt-4o-mini)
by default. Each method is subject to a timeout of 600 seconds per problem. The experiments are
conducted on a GPU server equipped with an Intel Core i9-13900K@3.00GHz CPU, 48GB RAM,
and a GeForce RTX 4090 GPU.
1Ryan et al. [36] identified that 9 out of them were unsolvable. During our review of the benchmarks, we discovered an
additional 6 unsolvable cases. We have corrected these problematic cases based on their original SMT-LIB2 files.
2Note that we compute the latter two metrics based on the successfully solved problems. In other words, these two metrics
are somewhat unfriendly to methods that can solve more challenging problems.
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Table 1. Performance comparison of different loop invariant inference methods on linear invariant generation.
The proposed Clause2Inv can solve 312 out of 316 problems, which is at least 93 more than the competitors.

Methods # Solved Benchmarks # Avg. Queries Avg. Time (s)
Total 316 (133/84/99)

LoopInvGen 218 (107/49/62) 5.6 17.8
CVC5 207 (107/46/54) 13.9 5.5

Code2Inv 210 (110/47/53) 10.9 137.6
LIPuS 159 (124/18/17) 3.7 48.4

CLN2INV 211 (124/35/52) 23.9 0.6
G-CLN 219 (116/45/58) 20.1 2.6

Clause2Inv 312 (132/82/98) 5.8 35.2

4.2 RQ1. Performance Comparison
Benchmark of linear loop invariant problems. We first compare different methods on the problems

where only linear invariants are required. The results are presented in Table 1 (the detailed perfor-
mance on the three data sources (i.e., Code2Inv, SyGuS 2019 and SV-COMP 2024) is also shown in
parentheses). The best performance is highlighted in boldface.
It can be observed that Clause2Inv significantly outperforms the competitors in terms of the

number of solved benchmark problems. With GPT-4o mini used in the clause generator, Clause2Inv
solves 93 more problems than the best competitor, G-CLN. As for the efficiency metrics, the number
of SMT solver queries of Clause2Inv is relatively low compared to the other approaches. The
average solving time of Clause2Inv is higher than several baselines (but is still lower than the two
RL-based methods). The reasons are two-fold: First, the queries to the LLM require time. Second,
the additional solved problems of Clause2Inv are usually more challenging, thus increasing the
average time.
We next compare the performance of different methods on the three data sources. It can be

observed that all the competitors perform relatively well on the original 133 benchmark problems
(solving 107—124 problems), but not as effectively on the additional two benchmark sources (solving
at most 58.3% and 62.6% of the problems respectively). As tools using more traditional methods
(such as LoopInvGen and CVC5) also perform relatively worse on the new problems, it is reasonable
to conclude that the new problems may indeed be more difficult. In contrast, we observe that
Clause2Inv performs relatively stable (missing one, two, one solution across the three data sources,
respectively), showing its strong generalizability. The reasons may be two-fold. First, Clause2Inv
adopts off-the-shelf LLMs, which exhibit sufficient generalization capabilities and do not overfit to
the previous benchmarks. Second, our clause combinator can better handle the previous guesses as
well as the logic connectives, both of which are critical for loop invariant inference.

Benchmark of nonlinear invariant problems. For this benchmark, we compare Clause2Inv with
three state-of-the-art approaches that demonstrate impressive performance on nonlinear problems,
i.e., LIPuS [46], G-CLN [45], and SymInfer (also known as DIG) [33]. The results are shown in
Table 2. Note that, different from other tools, SymInfer aims at inferring non-trivial invariants for
any location labeled at the source code with concrete program data traces, and does not need to
resort to SMT solvers to check whether its result satisfies the three constraints of loop invariants.
Therefore, we do not compare SMT solver queries here.
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Table 2. Performance comparison of different loop invariant inference methods on the nonlinear benchmark.
Clause2Inv can solve at least 16 more problems.

Methods # Solved Benchmarks Avg. Time (s)
Total 50 (30/20)

G-CLN 21 (15/ 6) 10.3
SymInfer 28 (15/13) 16.7
LIPuS 25 (25/ 0) 183.5

Clause2Inv 44 (28/16) 64.9

Our approach Clause2Inv demonstrates better performance not only on the initial 30 problems,
but also on the additional 20 problems. For SymInfer, its performance is consistent on the additional
20 problems. For learning-based methods G-CLN and LIPuS, their performance significantly de-
creases on the additional problems. One possible explanation for this phenomenon is the overfitting
issue in learning-based methods.

The performance improvement of Clause2Inv in nonlinear cases is attributed to several reasons.
For traditional template-based approaches, inferring a nonlinear loop invariant involves a signifi-
cantly larger solution space than the linear cases, causing significant or even unaffordable burdens
to such methods. Similar issues also exist for learning-based methods that utilize an invariant
template, such as LIPuS [46], Code2Inv [41], and ICE-DT [20]. However, our approach does not rely
on the invariant template, but instead leverages LLMs to generate clauses, which effectively narrows
the solution space for the clause combinator. Furthermore, the clause combinator is designed to
better handle the historical clauses and logic connectives, thus gradually converging to the correct
loop invariant.

4.3 RQ2. Integration with Other Tools
Basic integration. We evaluate the integration capability of Clause2Inv. The results with tools

such as Code2Inv [41], LIPuS [46], CLN2INV [36], and G-CLN [45] as the base tools are presented in
Table 3. For simplicity, we focus on the linear benchmark in this experiment. For a fair comparison,
we also present the average solving time of Clause2Inv on the initially solved problems by the base
tool (indicated in parentheses in the last column). Note that the solved problem set of Clause2Inv
is a superset of that of the base tool.

We can observe that Clause2Inv, when integrated with the existing base tools, can significantly
improve the base tools’ performance. For example, the classic Code2Inv solved 210 problems with
an average solving time of 137.6 seconds. When integrated with Clause2Inv, it solves 252 problems
with an average solving time of 17.8 seconds. Similarly, it also solves 82, 53, and 49 more problems
for LIPuS, CLN2INV, and G-CLN, respectively. Meanwhile, when considering the average solving
time on the commonly-solved problems, Clause2Inv is also faster in all cases.

Comparing differentmethods, we observe that ‘CLN2INV+Clause2Inv’ and ‘G-CLN+Clause2Inv’
are relatively better in both the number of solved problems and the average solving time. We at-
tribute this improvement to the higher quality of their generated clauses, which makes the clause
combination of Clause2Inv more effective. Specifically, CLN2INV and G-CLN generate invariants
based on the program execution traces instead of static analysis as adopted by Code2Inv and LIPuS.

Integrating multiple tools. Clause2Inv is also flexible for integrating multiple existing loop in-
variant inference tools, by simply aggregating all the generated loop invariant expressions into
the expression pool, as shown in Figure 2. To illustrate this, we combine CLN2INV and G-CLN
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Table 3. The integration capability of Clause2Inv. It can further enhance the performance of various existing
tools built upon the guess-and-check framework.

Methods # Solved Benchmarks # Queries Time (both solved)

Code2Inv 210 (110/47/53) 10.9 137.6
Code2Inv + Clause2Inv 252 (121/58/73) 8.0 17.8 (13.0)

LIPuS 159 (124/18/17) 3.7 48.4
LIPuS + Clause2Inv 241 (124/48/69) 6.4 6.0 (5.0)

CLN2INV 211 (124/35/52) 23.9 0.6
CLN2INV + Clause2Inv 264 (131/60/73) 14.4 1.1 (0.5)

G-CLN 219 (116/45/58) 20.1 2.6
G-CLN + Clause2Inv 268 (131/61/76) 6.6 2.2 (1.9)

CLN2INV+G-CLN 227 (124/45/58) 22.9 1.5
CLN2INV+G-CLN + Clause2Inv 287 (131/72/84) 13.4 9.5 (1.2)

Table 4. Results of ablation study. The performance of Clause2Inv is stable with different LLMs, and both
designs of our clause generator and clause combinator are essential.

Models # Solved Benchmarks # Avg. Queries Avg. Time (s)
Total (133/84/99)

GPT-4o mini 312 (132/82/98) 5.8 35.2
GPT-3.5-Turbo 308 (131/80/97) 6.3 51.1

Deepseek 301 (132/75/94) 5.8 54.1

Random generator 227 (124/47/56) 11.4 67.4
LLM only 225 (92/53/80) 2.3 61.0

Without refinement 285 (122/74/89) 5.0 34.8

together as the base tool to output loop invariant expressions, and further integrate them with
Clause2Inv. The result is shown in the last two rows of Table 3. Here, “CLN2INV+G-CLN” means
that we run the two tools separately, with the better result being reported. After integrating the
two tools with Clause2Inv, 60 more problems are solved (from 227 to 287), whose improvement is
even greater than the improvement of either CLN2INV or G-CLN integrated with Clause2Inv.

4.4 RQ3. Ablation Study
Performance under different LLMs. For the ablation study, we first test different LLMs. Specifically,

we select an alternative model from OpenAI and another open-source model from DeepSeek.
The results on the linear benchmark are given in Table 4. It can be observed that Clause2Inv’s
performance is stable across different LLMs. This result may come as a surprise as there are obvious
gaps between GPT-3.5-Turbo and GPT-4 as well as DeepSeek and GPT-4 [7, 25]. We attribute this
stability to the generate-combine-check framework, where LLMs do not need to infer the complete
loop invariant which is, we posit, beyond their current capability. Instead, they only need to generate
a set of clauses describing the properties of the program, which is the strength of LLMs.
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Random clause generator. We next evaluate the case when LLMs are not used in the clause
generator. Specifically, we substitute the LLMs with the random clause generator discussed in
Figure 2. The result, denoted by “random generator”, is shown in Table 4. It can be observed that,
even with a random white-box clause generator, Clause2Inv can solve 227 problems, which is even
slightly better than the existing tools, as shown in Table 1. This result suggests the effectiveness
of our clause combinator and, more broadly, the strength of the proposed generate-combine-check
framework for loop invariant inference.

LLM only. To verify the usefulness of our clause combinator and the ability of inferring loop
invariants directly for LLMs, we craft a prompt asking the LLM to directly generate loop invariants
(with logical connectives), and disable the clause combination part. The result is also shown in
Table 4. Using GPT-4o mini, the number of solved problems decreases from 312 to 225. This shows
that LLMs alone cannot sufficiently handle complex symbolic knowledge, necessitating a symbolic
combinator to achieve better performance.

In Table 4, we also observe that “LLM only” performs closely to “random generator”, but exhibits
discrepancies across different data sources. Specifically, random generator outperforms LLM only
on the original 133 problems, but underperforms on the new 183 problems. The reasons are as
follows. The loop invariants of the original 133 problems tend to be complex combinations of
simple clauses, while the clauses of the 183 problems are more complex with more operators (e.g.,
mod) and variables involved. Moreover, our clause combinator plays an important role in the 133
problems and LLMs may perform better in the latter case.

Without the refinement step. We also conduct an experiment to validate the effectiveness of the
refinement step (i.e., Lines 20-29 in Alg. 2) in the clause combinator. We remove this part from the
algorithm and run the same experiment again. The result is in the last row of Table 4, where one
can see that the number of solved problems decreases from 312 to 285. Although this decrease
is not very substantial, it significantly weakens our approach especially for complex loops with
multiple phases, as will be shown in a case study in Section 5.1.

5 Discussion
5.1 Case Studies
Case study 1: a linear loop invariant. We first showcase a complex linear benchmark problem

that can only be solved by our Clause2Inv in Listing 2.

Listing 2. A problem with linear loop invariant

int main (){

int i;

int j;

int n;

int k;

int b;

n = 0;

b = 0;

assume(k > 0);

assume(k < 20000001);

assume(i == j);

while(n < (2 * k)){

n = n + 1;

if(b == 1){

b = 0;

i = i + 1;

}

else{

b = 1;

j = j + 1;

}

}

if(n >= (2 * k))

assert(i == j);

}
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Clause2Inv successfully produces a valid loop invariant for the program as

((𝑛 ≥ 0 ∧ ((𝑏 = (𝑛 mod 2) ∧ (𝑖 = 𝑗 ∧ 𝑏 = 0)) ∨
(𝑏 = (𝑛 mod 2) ∧ (𝑖 ≥ 𝑗 − 1 ∧ (𝑘 > 0 ∧ (𝑛 < 2 · 𝑘 ∧ 𝑛 mod 2 = (𝑖 + 𝑗) mod 2)))))) ∧ 𝑗 ≥ 𝑖),

which contains 10 clauses connected by 9 logic connectives, and takes 482.9 seconds and 19 SMT
solver queries. In this invariant, 𝑛 ≥ 0 and 𝑗 ≥ 𝑖 rigorously capture the behavior of the program.
The two underlined sub-expressions correspond to the two paths of the “if-else” control structure,
respectively. By observing the inference process of this loop invariant, we find that Clause2Inv first
infers the sub-expression corresponding to the 𝑏 = 0 condition, which is relatively simpler, and then
infers another sub-expression corresponding to the 𝑏 = 1 condition, which is more complicated.
After preparing the two sub-expressions, the combinator merges them with ∨ in the refinement
step. We note that this problem cannot be solved if the refinement step is excluded.

Case study 2: a nonlinear loop invariant. We also show a complex nonlinear case in Listing 3,
which is the standard Bresenham’s line drawing algorithm.

Listing 3. A problem with nonlinear loop invariant

int main() {

int X, Y;

int v, x, y;

assume(X > 0);

assume(Y > 0);

assume(X >= Y);

v = 2 * Y - X;

y = 0;

x = 0;

while (x <= X) {

if (v < 0) {

v = v + 2 * Y;

} else {

v = v + 2 * (Y - X);

y++;

}

x++;

}

assert (2*Y*x - 2*x*y - X \

+ 2*Y - v + 2*y == 0);

}

For this program, Clause2Inv generates a valid loop invariant, i.e.,

𝑦 ≥ 0 ∧ (2𝑌 · 𝑥 ≥ 2𝑥 · 𝑦 + 𝑋 − 2𝑌 + 𝑣 − 2𝑦 ∧ (𝑋 > 0 ∧ 𝑌 > 0 ∧ 𝑣 = 2𝑌 − 𝑋 + 2𝑌 · 𝑥 − 2𝑋 · 𝑦)) .

This is very challenging even for human beings. For example, the 𝑣 = 2𝑌 − 𝑋 + 2𝑌 · 𝑥 − 2𝑋 · 𝑦
sub-expression is hard to infer even for someone familiar with Bresenham’s line drawing algorithm,
let alone the combination of the multiple sub-expressions to form a valid loop invariant.

5.2 Comparison with LaM4Inv
A parallel piece of work is LaM4Inv [43]. Our Clause2Inv differs from LaM4Inv in two aspects.
First, LaM4Inv asks LLMs to generate complete invariants and employs bounded model checking
to eliminate unnecessary clauses. In contrast, Clause2Inv directly constructs a pool of clauses and
infers the loop invariant from scratch based on the clauses. As a result, while LaM4Inv may be
hindered due to the scalability of bounded model checking, Clause2Inv avoids this issue by using a
clause combination algorithm.
Second, LaM4Inv directly combines the existing invariants with conjunctions to form the final

invariant, while Clause2Inv uses a clause combination algorithm, which can better handle disjunc-
tive normal forms. As illustrated in LaM4Inv [43], it fails to generate the invariant for the case in
Listing 4. In contrast, Clause2Inv solves this problem in 29.1 seconds, which can be attributed to
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the clause combination algorithm. The inferred loop invariant is:

(𝑥 mod 2 = 𝑦 mod 2 ∨ (𝑥 ≤ 99 ∧ 𝑥 mod 2 = 0)) .

Listing 4. Case 2 in LaM4Inv

int main() {

int x;

int y;

x = 0;

while (x < 99) {

if(y % 2 == 0){

x = x + 2;

}

else{

x = x + 1;

}

}

assert ((x % 2) == (y % 2));

}

}

5.3 Threats to Validity
We have identified three primary threats to the validity of our work. The first relates to the
capabilities of SMT solvers. While SMT solvers are essential tools, they struggle with operations
such as multiplication, division, and exponentiation. This limitation creates a bottleneck when
solving nonlinear benchmarks. Existing research often restricts the number of multiplicative layers
in nonlinear invariant inference and avoids using power operations where both the base and
exponent are variables. Although we could generate some invariants that include expressions like
“power(a, b)”, SMT solvers face difficulties verifying such invariants. Furthermore, recent studies
have shown that SMT solvers can sometimes produce incorrect results, which could potentially
affect the verification results.
The second threat concerns the benchmark we used, which is limited in scope. Despite the

expansion, the benchmark problems still cannot fully represent real-world scenarios. In future
work, we aim to develop more robust benchmarks to better demonstrate the performance of our
method with greater clarity and accuracy.
The third threat pertains to the potential data leakage associated with large language models.

There remains uncertainty regarding whether LLMs have encountered the prior 133 benchmark
problems, as these are open-sourced and may have been previously exposed to them. Furthermore,
the sources of our new benchmark problems, the 2019 SyGuS competition and 2024 SV-COMP
benchmarks, may also have been exposed to LLMs. Nonetheless, the new benchmark problems are
manually crafted by us, effectively mitigating the data leakage concern. Additionally, the correct
loop invariants are not included in the datasets.

6 Related Work
In this section, we provide a brief review of related work, categorized into traditional approaches
and learning-based approaches.
Traditional approaches. Various loop invariant inference methods have been proposed in the history,
which can be divided into several categories: constraint solving [9, 21], abstract interpretation [10,
11, 26], logical abduction [6, 13], model checking [22, 42], craig interpolation [24, 31], syntax-guided
synthesis [3, 4], counterexample guided abstraction refinement [8, 48], recurrence analysis [16, 23,
27], etc. For example, Eldarica [22] is a model-checking-based Horn clauses solver. CVC4/CVC5 [3,
4] is an efficient open-source SMT solver, which provides a syntax-guided synthesis engine to
synthesize invariants. These approaches tend to be stable for different application situations, but
their performance is not as effective and scalable as learning-based methods.
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Learning-based approaches. Recently, a variety of approaches follow the guess-and-check framework
and utilize machine learning techniques to generate candidate invariants. Exemplar machine learn-
ing techniques utilized include decision tree [15, 19, 20, 35, 44], support vector machine [28, 40],
PAC (probably approximately correct) learning [39], reinforcement learning [41, 46], continuous
logic networks [36, 45]. For example, ICE-DT [20] uses decision trees to handle implication coun-
terexamples, but requires experts to annotate program properties. Code2Inv [41] and LIPuS [46]
utilize reinforcement learning to expand the grammar tree of an invariant template. CLN2INV [36]
and G-CLN [45] design continuous logic networks and aim to build a “bijection” between logic
expressions and neural networks. A few recent attempts have also explored the capability of LLMs in
loop invariant inference. Kamath et al. [25] directly employ LLMs to find inductive loop invariants;
Chakraborty et al. [7] further rank the outputs of LLMs; Liu et al. [30] propose a self-supervised
learning paradigm to fine-tune LLMs for loop invariant inference. Very recently, Wu et al. [43]
investigate a synergy of LLMs and bounded model checking for loop invariant inference.
These learning-based approaches all aim to directly infer the loop invariants, which usually

include logical connectives that are difficult to handle for machine learning techniques. In contrast,
we propose a generate-combine-check framework, leveraging learning-based approaches to generate
clauses and manually designed rules to systematically combine clauses into candidate invariants.

7 Conclusion
In this paper, we propose a new loop invariant inference approach Clause2Inv, which is based on a
new generate-combine-check framework. The key idea is to divide loop invariant inference into
clause generation and clause combination, where the former is a much easier task than directly
generating the loop invariant, and the latter can better handle the historical guesses and logic
connectives. Evaluations on 316 linear benchmark problems and 50 nonlinear benchmark problems
demonstrate the superior performance of Clause2Inv, surpassing the state-of-the-art methods
by solving at least 93 and 16 more problems, respectively. Moreover, due to the flexibility of
our generate-combine-check framework, Clause2Inv can be integrated with many previous loop
invariant inference tools to further improve their performance.

8 Data Availability
To ensure transparency and facilitate the reproduction of our results, we make the augmented
datasets as well as the experiment scripts and results publicly available via the link https://github.
com/SoftWiser-group/Clause2Inv.
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