
Simulate, Refine and Integrate: Strategy Synthesis for Efficient SMT Solving

Bingzhe Zhou1 , Hannan Wang1 , Yuan Yao1 ,
Taolue Chen2 , Feng Xu1 and Xiaoxing Ma1

1State Key Laboratory of Novel Software Technology, Nanjing University, China
2School of Computing and Mathematical Sciences, Birkbeck, University of London, UK

{bingzhezhou, hannanwang}@smail.nju.edu.cn, {y.yao,xf,xxm}@nju.edu.cn, t.chen@bbk.ac.uk

Abstract
Satisfiability Modulo Theories (SMT) solvers are
crucial in many applications, yet their perfor-
mance is often a bottleneck. This paper introduces
SIRISMT, a novel framework that employs ma-
chine learning techniques for the automatic synthe-
sis of efficient SMT-solving strategies. Specifically,
SIRISMT targets at Z3 and consists of three key
stages. First, given a set of training SMT formulas,
SIRISMT simulates the solving process by leverag-
ing reinforcement learning to guide its exploration
within the strategy space. Next, SIRISMT refines
the collected strategies by pruning redundant tac-
tics and generating augmented strategies based on
the subsequence structure of the learned strategies.
These refined strategies are then fed back into the
reinforcement learning model. Finally, the refined
and optimized strategies are integrated into one
strategy, which can be directly plugged into modern
SMT solvers. Extensive evaluations show the su-
perior performance of SIRISMT over the baseline
methods. For example, compared to the default Z3,
it solves 26.8% more formulas and achieves up to
an 86.3% improvement in the Par-2 score on bench-
mark datasets. Additionally, we show that the syn-
thesized strategy can improve the code coverage by
up to 11.8% in a downstream symbolic execution
benchmark.

1 Introduction
Satisfiability Modulo Theory (SMT) solvers are automated
tools designed to determine the satisfiability of first-order
logic formulas with respect to certain background theories
(e.g., bit vectors, etc.), playing a foundational role in various
fields such as software verification [Kroening et al., 2023;
Song et al., 2023], program synthesis [Jha et al., 2010] and
symbolic execution [Cadar et al., 2008].

The efficiency of SMT solvers, which is heavily influenced
by the heuristics they employ, often turns out to be a perfor-
mance bottleneck within these applications [Palikareva and
Cadar, 2013; De Moura and Bjørner, 2011]. To improve
efficiency, solvers like Z3 [De Moura and Bjørner, 2008],
CVC5 [Barbosa et al., 2022], and Yices2 [Dutertre, 2014]

use various solving heuristics in conjunction with proof meth-
ods and search techniques. To specify the heuristic to solve
a complex formula, typically one can use a tactic language
provided by modern SMT solvers. A program in such a lan-
guage is often referred to as a solving strategy, which gives a
high-level plan outlining a combination of tactics.

However, in general, determining a suitable strategy for a
given formula is challenging. For instance, Z3 has over a hun-
dred tactics, some with complex parameters, creating a large
strategy space, especially when sequences are lengthy. Addi-
tionally, strategies often include heuristics with control state-
ments, such as conditionals or loops, making hand-crafting
these strategies laborious.

Modern SMT solvers typically provide default strategies
designed for general use by domain experts. However, these
strategies do not fully consider the specific characteristics of
each formula, leading to suboptimal performance in some
cases. For instance, adjusting default strategies may signif-
icantly improve solving efficiency for certain formulas, as
demonstrated in the example below.

Example 1. The following constraint is from the theorem
prover Isabelle [Nipkow et al., 2002].

∀g1. g41 + 12g21 + 9 = c1(g
2
1 + p1)

2 + y1

∀g2. g42 + 12g22 + 9 = c2(g
2
2 + p2)

2 + y2

where answer1 = y1 and answer2 = y2

and answer1 = answer2

This example involves nonlinear constraints with (universal)
quantifiers. Z3 fails to provide an answer in 200 seconds
with its default strategies. However, by adjusting the de-
fault solving strategy to the one learned by our approach,
CHECK-SAT-USING(then(simplify; qe; smt)) (which first
simplifies the input constraints, then performs quantifier elim-
ination, and finally tries to solve the formula using tactic smt),
Z3 can successfully solve this constraint in one second.

Existing Work. Existing work has attempted the auto-
matic synthesis of SMT strategies using techniques like
evolutionary algorithms [Ramı́rez et al., 2016], machine
learning [Balunovic et al., 2018], and Monte Carlo Tree
Search (MCTS) [Lu et al., 2024]. However, these methods
still have several limitations. (C1) The variable interdepen-
dencies in an SMT formula is not well encoded, as formulas



were simply treated as natural language tokens; (C2) the lat-
est state of the formula1 is not well captured, as existing work
tends to directly map the initial formula to a solving strategy;
(C3) The generated tactic sequences often suffer from redun-
dancy and bias, reducing their utility.

This Work. We propose SIRISMT2, a novel framework for
the automatic strategy synthesis in SMT solvers.3 SIRISMT
consists of three key stages. The simulation stage combines
graph neural networks and reinforcement learning to obtain a
set of tactic sequences that are efficient in solving the train-
ing SMT formulas. The refinement stage further enhances the
tactic sequences by pruning redundant tactics and generating
augmented ones. This stage also interacts with the simulation
stage by feeding the refined tactic sequences back into the
machine learning model. The integration stage integrates the
refined tactic sequences into the final solving strategy by em-
ploying a specialized decision tree algorithm [Quinlan, 1993].
Specifically, we leverage various techniques to address the
limitations of the existing work.

• We build a graph for each SMT formula and use graph neu-
ral networks (GNNs, [Kipf and Welling, 2017; Wu et al.,
2020]) to represent SMT formulas beyond simple natural
language tokens. GNNs can better capture formulas’ struc-
tural information, providing more meaningful representa-
tions for the later strategy synthesis.

• We leverage reinforcement learning (RL, [Wang et al.,
2022; van Hasselt et al., 2015]) to capture the information
of the transformed formulas. Under RL, the decision on the
next tactic is made based on the current form of the input
formula. RL and GNNs together allow SIRISMT to better
understand and respond to the current formula adaptively,
leading to more effective subsequent decisions.

• We refine the generated tactic sequences to improve their
effectiveness and diversity. Inspired by probabilistic delta
debugging [Wang et al., 2021], we systematically eliminate
redundant tactics in each tactic sequence. With the observa-
tion that some common tactic combinations are often effec-
tive across different formulas, we identify these combina-
tions via frequent subsequence detection [Liu et al., 2021],
and then use the identified tactic combinations to generate
new tactic sequences.

In this work, we evaluate Z3 plugged with the strategy out-
putted by SIRISMT. Experiments on five benchmark SMT
datasets demonstrate that the solving strategy achieves a re-
markable performance. For instance, the synthesized strate-
gies of SIRISMT can solve 26.8% more formulas compared
to the default solving strategy in Z3, and achieve 17.4%–
86.3% (relative) improvements in the PAR-2 score [Amadini
et al., 2023]. Compared to the state-of-the-art competitors
fastSMT [Balunovic et al., 2018] and Z3Alpha [Lu et al.,

1Formulas are transformed into equivalent forms as tactics are
applied.

2The source code, dataset and the extended version are available
at: https://github.com/SoftWiser-group/SiriSMT

3We focus on Z3 in this paper, but the underlying idea is appli-
cable to other solvers.

1 then(
2 using-params simplify mul2concat true;
3 using-params propagate-values flat-and-or

false;
4 using-params solve-eqs solve-eqs-max-occs 2;
5 elim-uncnstr;
6 ...
7 )

Figure 1: Example (partial) strategy for QFBV theory in Z3.

2024], SIRISMT also solves 15.6% and 16.6% more formu-
las, respectively. Moreover, we evaluate SIRISMT in the
downstream symbolic execution task [Cadar et al., 2008].
The results show that SIRISMT achieves up to 11.8% code
coverage improvement on coreutils programs compared to
KLEE’s default solving strategy.

We summarize the main contributions as follows.

• We put forward a three-stage framework for automatic
strategy synthesis in SMT solvers, with an additional re-
finement stage to guide the learning process.

• We substantiate the framework by GNNs that capture the
complex structures of SMT formulas as well as RL which
effectively guides the exploration of the strategy space.

• We implement the above techniques in SIRISMT and
demonstrate its superior performance in solving SMT for-
mulas through extensive evaluations.

Roadmap. Section 2 introduces the background knowledge
and problem statement. Section 3 details the proposed ap-
proach. Section 4 reports the experimental results. Section 5
covers related work, and Section 6 concludes the paper.

2 Preliminary and Problem Statement

2.1 SMT Solving Strategy
In addition to the default solving strategies, modern SMT
solvers such as Bitwuzla [Niemetz and Preiner, 2023],
CVC5 [Barbosa et al., 2022], and Z3 [De Moura and Bjørner,
2008] allow users to customize solver configurations or de-
sign their own solving strategies using a tactic language. For
example, a solving strategy in Z3 is a program in its tactic
language, typically encompassing multiple tactics in a se-
quence and possibly further incorporating control statements
to improve its expressiveness. Each tactic can adeptly modify
formulas to either simplify their evaluation or directly solve
them. For instance, the tactic bit-blast is often used to re-
duce bit-vector expressions in the SMT formula to equivalent
propositional logic. This translation is essential as it allows
the formula, originally expressed using bit-vectors, to be pro-
cessed using an SAT solver. Within each tactic, parameters
are commonly needed.

An example (partial) strategy for quantifier-free bit-vector
(QFBV) problems in Z3 is shown in Fig. 1.4 This strategy

4The sequence is part of the default strategy, which comprises
multiple branches and is over 20 steps.



Training 

Formulas

AST-based Graph 

Construction

Redundancy 
Elimination

Refinement

Final 

Strategy

Tactic Sequence 
Augmentation

Graph Neural 
Networks

Reinforcement 
Learning

Predicates
Generation

Tactic Parameter 
Tuning

Simulation

Tree-based 
Strategy Synthesis

Integration

Figure 2: Overview of SIRISMT.

begins with applying the simplify tactic using specific pa-
rameters to transform multiplication into concatenation op-
erations. Subsequently, the propagate-values tactic is used,
avoiding the flattening of and/or operators. The solve-eqs tac-
tic is then employed, restricting its application to variables
with at most two occurrences. Finally, elim-uncnstr is em-
ployed to eliminate uninterpreted constants that occur only
once in a goal, where their immediate context can be substi-
tuted with a new constant.

In the tactic language of Z3, there are more than a hundred
tactics, and each tactic may include a substantial number of
parameters. For instance, the simplify tactic comprises over
50 parameters. Given that solving strategies often encom-
pass several tens of tactics, identifying the appropriate solv-
ing strategy for a formula poses a challenging task.

2.2 Problem Statement
Given a set of SMT formulas F = {f1, f2, . . . , fN}, our goal
is to automatically synthesize an effective solving strategy
qbest ∈ Q that not only maximizes the number of formulas
solved but also minimizes the total solving time. Specifically,
we aim to optimize the following objective:

qbest = argmin
q∈Q

N∑
i=1

cost(fi, q),

where the cost function cost(fi, q) defines the cost of solving
formula fi with strategy q. For example, one can define it as:

cost(fi, q) =

{
runtime(q, fi) if strategy q solves fi,

penalty if strategy q does not solve fi.

Here, runtime(q, fi) represents the time required for strategy
q to solve formula fi, and penalty is a fixed cost applied when
strategy q fails to solve formula fi.

Although minimizing the runtime is a natural objective, di-
rectly optimizing it is challenging due to the inherent noise
and variability caused by factors such as hardware perfor-
mance and solver configurations. To address this, we pro-
pose to optimize a cost function that considers not only the
runtime but also the computational operations (e.g., length of
the tactic sequence) required to solve the formulas. This al-
lows for a more robust and stable strategy synthesis process,
overcoming the pitfalls of relying solely on runtime.

3 Approach
An overview of SIRISMT is given in Fig. 2. It takes a set
of training formulas as inputs, and outputs a solving strategy
in a tree form employing the control structures of the tactic
language. Specifically, SIRISMT consists of the following
three stages.

• Simulation stage. This stage generates initial tactic se-
quences for solving the training SMT formulas. SIRISMT
parses the input formulas into graphs and uses GNNs to
encode them. The encoding combines graph representa-
tions, probe embeddings, and applied tactics. Reinforce-
ment learning (RL) is then used to explore the strategy
space, adapting to the latest state of the input formula as
tactics are applied.

• Refinement stage. To address noise and instability from
the simulation stage, SIRISMT refines the tactic sequences
by reducing redundancies and augmenting the strategy
space. The refined sequences are fed back into the simu-
lation stage, allowing RL models to retrain with improved
sequences. This iterative process continues until a resource
budget is exhausted or no further improvement is observed.
SIRISMT also tunes tactic parameters during this stage.

• Integration stage. In this stage, SIRISMT synthesizes the
solving strategy by generating predicates for partitioning
tactic sequences and integrating them into a tree-form strat-
egy using control structures. The resulting strategy is ap-
plicable to SMT formulas with distributions similar to the
training set and can be directly used with solvers (e.g., Z3).

3.1 The Simulation Stage
In this stage, we aim to identify a set of tactic sequences that
are efficient in terms of solving the training formulas. Specif-
ically, we try to generate a tactic sequence for each formula
in the training set, which involves three integral components:
AST-based graph construction, SMT formula representation
learning using GNNs, and tactic sequence generation via RL.
In the sequel, we present the details of these three compo-
nents.

AST-based Graph Construction Traditional approaches
that treat SMT formulas as natural language tokens often fail
to capture the structural information and semantic relation-
ships crucial for optimal strategy synthesis. To address this,



root

assertdec-fun

AND

set-
logic

GT LT

𝑣𝑎𝑟! 𝑐𝑜𝑛𝑠𝑡!

dec-fun check-
sat

(set-logic ALL)

(declare-fun x () Int)
(declare-fun y () Int)

(assert
(and 
(> x 10) 
(< y 20)

)
)

(check-sat)

𝑙𝑜𝑔𝑖𝑐"

Abstract Syntax Tree (AST)

Use-Def Edge 

𝑣𝑎𝑟!𝑣𝑎𝑟#

𝑣𝑎𝑟!

𝑣𝑎𝑟#

𝑣𝑎𝑟# 𝑐𝑜𝑛𝑠𝑡#

Figure 3: Graph representation of an example SMT formula.

we propose transforming SMT formulas into graph represen-
tations, which are then encoded using GNNs. This method
allows us to capture both structural and semantic details of
the formulas, providing a solid foundation for the subsequent
stages.

Specifically, we first convert an SMT formula into a di-
rected graph based on its abstract syntax tree (AST), denoted
as G = (V,E). The set of nodes V includes all components
of the formula such as logical operators, relational operators,
functions, constants, variables, and commands. The set of
edges E consists of two types of links: the syntax tree links
and the use-definition links [Leeson et al., 2023], which con-
nect variables to their definitions.

Example 2. Fig. 3 shows an example of transforming an
SMT formula into its graph representation. An example
SMT formula given on the left is parsed into an AST by
pySMT [pys, 2014]. Each component of the SMT formula
is represented as a node in the graph shown on the right.
In this example, the types of nodes include logical operators
(e.g., the conjunction operator and), relational operators (e.g.,
the greater-than sign ‘>’), commands (e.g., assert, declare

-fun, and check-sat), constants, and variables. Note that to
ensure the generalization across different formulas, variable
names and constants are substituted into a unified form (e.g.,
‘var 1’ and ‘const 1’). In addition to the AST links, we fur-
ther connect the AST nodes through use-def links (denoted
with blue dashed lines). These links clearly outline the us-
ages of the free variables in a formula, and thus are pivotal
as they can capture diverse contexts in which free variables
operate, enriching the structure and semantic information of
the graph.

Formula Representation Learning via GNN We apply
Graph Attention Networks (GAT) [Veličković et al., 2018]
to the constructed graph representation. Each node vi is as-
signed a vector representation ht

vi , which is iteratively up-
dated through GAT’s message passing:

ht+1
vi = g

 ∑
vj∈N (vi)

αt
ijW

t
vh

t
vj

 , αt
ij =

exp(eij)∑
k∈N (vi)

exp(eik)
,

where eij = LeakyReLU(b⊤[Wehvi∥Wehvj ]). Here, g(·) is
the ReLU activation introducing non-linearity, N (vi) denotes
the neighbors of vi, and W t

v is the shared weight matrix for

SMT 
Solver

Memory

(𝑠, 𝑎, 𝑟, s′)

𝑠

𝑎

DQN
Value nets Target nets

copy update

Figure 4: Illustration of the reinforcement learning module.

feature transformation. The attention coefficient αt
ij quanti-

fies the importance of node vj’s features to vi. In this frame-
work, W t

vh
t
vj represents the message passed from vj to vi,

enabling effective aggregation of structural information. Em-
ploying GNNs in our setting is important for accurately dis-
cerning the intricate interdependencies within SMT formulas,
paving the way for the development of sophisticated tactic se-
quence generation in the subsequent RL phase.

Tactic Sequence Generation via RL SMT solving is in-
herently a sequential decision-making task, where the ef-
fects of applying a specific tactic depend on the current
form of the formula. Unlike traditional methods (e.g.,
fastSMT [Balunovic et al., 2018]) that mainly encode the in-
put formulas, reinforcement learning (RL) is well-suited to
adaptively learn tactics based on the evolving formula states.

We cast tactic sequence generation as an RL problem, de-
fined by the tuple M = (S,A, T,R). Here, states (S) repre-
sent the formula’s current form (including GNN embeddings,
applied tactics, and probes), actions (A) correspond to tactics,
and the reward function (R) evaluates solving success, time
efficiency, and sequence length. The transition function (T )
is deterministic and thus omitted. The policy (π) maps states
to actions to maximize cumulative rewards.

As illustrated in Fig. 4, our framework adopts the Dou-
ble DQN architecture [van Hasselt et al., 2015], where
value and target networks reduce overestimation and stabi-
lize learning. The solver applies selected tactics, resulting
in new states stored in a memory buffer to periodically up-
date Q-values. The training dataset comprises transitions
{(si, ai, ri, si+1)}Ni=1, and refined sequences from the next
stage are included for retraining.
Reward Function. The reward function encourages efficient
solving while discouraging unnecessary tactic sequences:

Reward = Isolved − βτ + γ
1

l
,

where Isolved is an indicator for solving success, τ is normal-
ized time, and l is the sequence length. We set β = γ = 0.1
to emphasize solving capability over other factors.

3.2 The Refinement Stage
The refinement stage is motivated by the observation that al-
though tactic sequences generated by machine learning may
exhibit good performance, they are often noisy, i.e., contain-
ing inefficiencies and redundancies that may hinder the over-
all performance of the solver. In view of this, we design
a rigorous refinement process that reevaluates the tactic se-
quences generated by the model. In practice, we implement



refinement through a two-phase iterative approach. First,
tactic sequence reduction is applied to eliminate redundant
tactics, streamlining the sequences and improving their effi-
ciency. Second, the reduced sequences are analyzed to detect
frequent subsequences, which form the basis for mutation-
based augmentation, generating new tactic sequences from
the existing ones. These refined sequences are then fed back
to the simulation stage for retraining the RL model, enabling
it to distinguish effective tactics better and further optimize
the strategy space exploration.

Redundancy elimination. The first phase focuses on identi-
fying and eliminating ineffective tactics. We use Probabilistic
Delta Debugging (ProbDD [Wang et al., 2021]) for efficient
pruning. ProbDD builds a probabilistic model to assess the
contribution of each tactic to solving performance, and keeps
the reduced sequence with the minimum runtime.

Tactic Sequence Augmentation. Following the reduction
phase, we perform tactic sequence augmentation, which con-
sists of two steps: subsequence substitution and parameter
generation. We first detect frequent subsequences in reduced
sequences using a detection algorithm [Liu et al., 2021].
These subsequences are hypothesized to generalize well to
other formulas. For each reduced sequence, we replace pre-
fixes with common tactic combinations, generating new se-
quences. We retain only those that outperform the origi-
nal sequences. These augmented sequences are sent back to
the reduction phase, and the process is iteratively repeated.
This ensures continuous refinement of the best-performing
sequences. Finally, random parameter configurations are as-
signed to tactics to explore a broader spectrum of sequences.
Each configuration is tested on a subset of training formulas
to validate their effectiveness and ensure they do not cause
errors during application.5 Note that we assign default tac-
tic parameters in the simulation stage to avoid enlarging the
search space.

3.3 The Integration Stage
In this stage, we integrate the refined tactic sequences into
a final strategy. The integration has to navigate the delicate
balance between specialized and general strategies. Given
the variability in the initial consecutive tactics across differ-
ent tactic sequences, we synthesize multiple strategies and
then select the strategy that solves the most instances from
the training set as the final solving strategy. This approach
ensures that we accommodate the diversity in the current tac-
tic sequences of training formulas, and that the final strategy
could efficiently solve a wide range of formulas without being
overly specialized.

In this work, we employ the C4.5 decision tree algo-
rithm [Quinlan, 1993] to build the solving strategy. We
choose C4.5 due to its ability to correct biases towards pred-
icates with larger probe values and to mitigate risks of over-
fitting. Specifically, given a set of candidate tactic sequences
Q = {q1, . . . , qn} and a dataset of formulas Φ, we combine
the tactic sequences using a branch b defined as follows,

b := if Pred then qtrue else qfalse.

5Some parameter combinations may lead to illegal transforma-
tions or errors.

This branch partitions Φ into Φtrue and Φfalse based on the
predicate ‘Pred’, which refers to a conditional statement that
utilizes probes to classify formulas. To obtain ‘Pred’, we first
probe each formula, and generate a predicate set by segment-
ing the probe values. To enhance decision-making during
strategy synthesis, we also support arithmetic operations such
as addition, subtraction, multiplication, and division between
probes. Based on the predicate set, we then compute the in-
formation gain for each possible predicate, and select the one
with maximum gain as the current branch. Here, information
gain measures how much a specific predicate reduces uncer-
tainty or increases predictiveness about the success of solving
a formula.

4 Experiment
4.1 Experimental Setup
Datasets We evaluate the effectiveness of SIRISMT on
five SMT benchmark datasets, namely, core [Barrett et al.,
2016b], Sage2 [Barrett et al., 2016e], leipzig [Barrett et al.,
2016d], hycomp [Barrett et al., 2016c], and AProVE [Bar-
rett et al., 2016a], across three theories of QFBV (Quantifier-
Free Bit-Vector), QFNIA (Quantifier-Free Nonlinear Integer
Arithmetic), and QFNRA (Quantifier-Free Nonlinear Real
Arithmetic). We follow the existing work on dataset selection
and partition.To test the downstream impact of our method,
we also evaluate the effectiveness of SIRISMT in the sym-
bolic execution task. We use coreutils (version 8.31) and two
real-world programs (Make and Gawk) as datasets, which are
standard benchmarks for evaluating the performance of sym-
bolic execution techniques [Cadar et al., 2008].

Baselines We compare SIRISMT with four state-of-the-
art baseline methods: fastSMT [Balunovic et al., 2018],
Z3Alpha [Lu et al., 2024], and the default and theory-specific
strategies of Z3 [De Moura and Bjørner, 2008]. Z3Alpha is a
strategy synthesis approach that employs a two-stage Monte
Carlo Tree Search (MCTS) for both tactic sequence gener-
ation and integration. fastSMT also uses machine learning
techniques, similar to SIRISMT, by training deep neural net-
works on a dataset of formulas to predict tactic sequences,
which are then synthesized into a strategy. Z3, a widely used
SMT solver, integrates a set of hand-crafted strategies for
general-purpose use as well as theory-specific strategies tai-
lored to domains like QFBV, QFNIA, and QFNRA. We use
Z3 version 4.12.2 for our experiments.

Evaluation Metrics We include the number of solved
formulas and the Penalized Average Runtime 2 (PAR-2)
score [Amadini et al., 2023] as the evlaution metrics. The
number of solved formulas measures the total number of for-
mulas solved, indicating its overall effectiveness. The PAR-
2 score emphasizes efficiency under time constraints, penal-
izing unsolved formulas with a double time limit. Smaller
PAR-2 score indicates better performance.

For symbolic execution, we use three coverage metrics: in-
struction coverage (ICov), branch coverage (BCov), and line
coverage (LCov). ICov measures the percentage of executed
LLVM instructions, BCov reflects the percentage of covered
branches (indicating control flow coverage), and LCov shows



Datasets Methods #Solved Impr. PAR-2 Impr.

core

Z3 210 1,501
Z3 (QFBV) 212 1.0% 1,476 1.7%

fastSMT 221 5.2% 1,322 11.9%
Z3Alpha 269 28.1% 250 83.3%
SIRISMT 270 28.6% 205 86.3%

Sage2

Z3 2,459 86,050
Z3 (QFBV) 2,471 0.4% 85,781 0.3%

fastSMT 2,984 21.4% 74,512 13.4%
Z3Alpha 2,452 -0.3% 85,942 0.1%
SIRISMT 3,807 54.8% 61,996 28.0%

leipzig

Z3 59 206
Z3 (QFNIA) 61 3.4% 172 16.5%

fastSMT 61 3.4% 178 13.6%
Z3Alpha 60 1.7% 178 13.6%
SIRISMT 61 3.4% 170 17.5%

AProVE

Z3 1,534 5,517
Z3 (QFNIA) 1,545 0.7% 5,328 3.4%

fastSMT 1,533 0 4,018 27.2%
Z3Alpha 1,593 3.8% 3,076 44.2%
SIRISMT 1,603 4.5% 2,891 47.6%

hycomp

Z3 1,700 6,288
Z3 (QFNRA) 1,700 0 6,258 0.5%

fastSMT 1,742 2.5% 4,994 20.6%
Z3Alpha 1,794 5.5% 4,116 34.5%
SIRISMT 1,823 7.2% 3,703 41.1%

Table 1: Comparison of different solving strategies. The best results
are in boldface. The relative improvements over Z3 are also shown.
The proposed SIRISMT significantly outperforms the baselines.

the proportion of lines in the program covered by the explored
paths during symbolic execution.

Implementation We implement SIRISMT in Py-
Torch [Paszke et al., 2017], represent SMT formulas in
the SMT-LIB2 format [Barrett et al., 2016f], and use
pySMT [pys, 2014] to parse formulas into ASTs. In our
RL framework, we run five iterations with different random
seeds for each training formula to obtain sufficient candi-
date tactic sequences. During the refinement stage, tactic
sequence reduction and augmentation are repeated twice for
efficiency, and the integration stage uses a maximum tree
depth of 20 in the decision tree algorithm. For both training
and testing phases, we adopt the 10-second timeout setting
following fastSMT, with all experiments run using Z3. For
symbolic execution, we use KLEE [Cadar et al., 2008]
(version 3.1) on LLVM 13. All experiments are conducted
on a server equipped with an Intel Core i9-12900KF CPU
(12th Generation, 24 cores) and an RTX 3090 GPU.

4.2 Experimental Results
Overall Performance We first present the overall perfor-
mance of different approaches. Table 1 reports the number of
solved formulas and PAR-2 score across five benchmarks. We
can observe that SIRISMT consistently outperforms all the
baselines in all cases. In terms of the total number of formu-
las solved, the synthesized strategies of SIRISMT can solve
26.8% and 26.2% more formulas compared to the default

Variants #Solved Impr. PAR-2 Impr.

w/o GNN 7,191 -4.9% 75,174 -9.0%
w/o Refinement 7,306 -3.4% 74,114 -7.5%
w/o Reduction 6,988 -7.6% 78,621 -14.0%

w/o Augmentation 7,030 -7.1% 77,272 -12.0%
w/o Params Tuning 6,927 -8.4% 79,964 -15.9%

SIRISMT 7,564 68,965

Table 2: The ablation results of SIRISMT. Each design choice is
helpful in terms of improving SIRISMT’s performance.

strategy in Z3 (7,564 vs. 5,962) and theory-specific strategies
in Z3 (7,564 vs. 5,989), respectively. It also solves 15.6%
more formulas compared to fastSMT (7,564 vs. 6,541), and
16.6% more formulas against Z3Alpha (7,564 vs. 6,168).
Noteworthy, for the Sage2 dataset which is related to sym-
bolic execution, SIRISMT demonstrates a remarkable advan-
tage, solving 54.8% more instances than the default strategy
in Z3. The performance boost can be attributed to the di-
verse nature of the Sage2 dataset, which is not derived from
a single test program but includes a variety of programs. The
diversity of constraints requires a solver that can adapt dy-
namically to each unique scenario. When considering the
PAR-2 score which is a holistic measure of the overall per-
formance of solving strategies, our method also exhibits a no-
table enhancement, outperforming Z3 with relative improve-
ments ranging from 17.4% to 86.3%.

Ablation Study We next evaluate the effect of different
components in our framework. Specifically, since RL is the
base building block of SIRISMT, we consider the rest de-
sign choices including when the GNN is excluded and when
the refinement stage is excluded. We also evaluate the ef-
fectiveness of each component (i.e., redundancy elimination,
sequence augmentation, and parameter tuning) in the refine-
ment stage. The results are summarized in Table 2.

In general, we observe that each component has a posi-
tive influence on SIRISMT. For example, excluding parame-
ter tuning has a significant negative impact on performance,
with a decrease in the PAR-2 score of 15.9%. Similarly, when
we exclude tactic sequence reduction and augmentation, the
performance also significantly drops. This result indicates
that the incorporation of both components can better guide
the exploration of better solving strategies.

Impact on Symbolic Execution Finally, we evaluate the
performance of SIRISMT on symbolic execution by compar-
ing its solving strategies with KLEE’s default strategies. In
particular, two experiments were conducted: 1) 51 randomly
selected coreutils programs as the training set, with the re-
maining 52 used for testing; 2) strategies trained on the Sage2
dataset were tested on all coreutils programs.

The results, shown in Table 3, indicate that SIRISMT’s
strategies outperform KLEE’s default in all metrics. For
example, trained on coreutils, SIRISMT achieves 3.92%,
3.57%, and 11.48% improvements in instruction, branch, and
line coverage, respectively. Using the Sage2 strategy, we ob-
serve a similar trend with an 11.79% improvement in line
coverage. Additionally, SIRISMT generates more test cases



Setup Method Coverage #Test Cases
ICov Impr. BCov Impr. LCov Impr.

Sage2 → coreutils KLEE-Default 42.81 28.81 51.25 2,837
SIRISMT 44.56 4.1% 30.30 5.2% 57.29 11.8% 4,482

coreutils → coreutils KLEE-Default 44.88 29.97 46.26 1,542
SIRISMT 46.64 3.9% 31.04 3.6% 51.57 11.5% 2,225

Table 3: The performance of SIRISMT’s solving strategy on symbolic execution. We evaluate both the strategies trained from the Sage2 and
(partial) coreutils datasets on the (rest) coreutils. The former is designed with the purpose to show SIRISMT’s generalization ability. We
observe significant coverage improvements in both cases.

20.0

20.5

21.0

21.5

22.0

22.5

23.0

0 5000 10000 15000 20000 250000.0

Time (s)

IC
ov

 (%
)

make

default
sage2
coreutils

(a) Make Program

8.0

8.5

9.0

9.5

10.0

0 5000 10000 15000 20000 250000.0

Time (s)

IC
ov

 (%
)

gawk

default
sage2
coreutils

(b) Gawk Program

Figure 5: SIRISMT ’s generalization ability in real-world scenarios.
We use Sage2 and coreutils as training data, and evaluate the syn-
thesized strategies on the two programs. The synthesized strategies
significantly outperform the default strategy in KLEE.

than KLEE’s default (e.g., 4,482 vs. 2,837 with Sage2 train-
ing) given the same time window. Note that the result when
trained on Sage2 is slightly better than that trained on core-
utils is due to the fact that the Sage2 dataset is larger. The
results of the programs Make and Gawk (Fig. 5) further con-
firm the performance of SIRISMT. These results demonstrate
that SIRISMT can significantly improve symbolic execution,
a key task in program analysis and software testing.

5 Related Work
This section briefly reviews the existing learning-based tech-
niques for SMT solvers, which roughly include solver/algo-
rithm selection and strategy synthesis. We also review graph-
based representation learning for logical formulas.
Algorithm selection. Algorithm selection is a common ap-
proach in the quest for solver accelerations, where the prin-
ciple is to match SMT formulas with the solver perform-
ing best for their resolution. The insight behind it is that
solvers with different heuristic algorithms have distinct per-
formances when tackling different formulas. A rule-based
method [Beyer and Dangl, 2018] is proposed to select differ-
ent strategies based on different theories to which the formu-
las belong. Nevertheless, there is a notable disparity in the ef-
ficacy of strategies when applied to formulas within the same
theories. Later, learning-based methods have been proposed.
They either use feature engineering which manually designs a
feature vector to allocate distinct formulas to different strate-
gies [Scott et al., 2021; Xu et al., 2011; Richter et al., 2020;
Pimpalkhare et al., 2021], or utilize an encoder to transform
formulas into embeddings, thereby learning reasonable repre-

sentation vectors corresponding to distinct formulas [Leeson
et al., 2023]Our work is orthogonal to this line of research.
Strategy synthesis. Strategy synthesis methods aim to synthe-
size more efficient solving strategies for a given SMT solver.
StratEVO [Ramı́rez et al., 2016] uses an evolutionary algo-
rithm to generate strategies, but suffers from the limited ca-
pacity of a basic set of mutation rules; fastSMT [Balunovic
et al., 2018] adopts deep neural networks to develop strate-
gies for input SMT formulas, which is later adapted to boost
the efficiency of symbolic execution tools [Chen et al., 2021].
Nonetheless, as mentioned in the introduction, these methods
encode constraints as natural language tokens, thus overlook-
ing the critical structure information. Our method falls into
this category. However, we encode SMT formulas along their
transformations with GNNs under an RL framework and fur-
ther add a refinement stage after the learning process.
Graph-based representation of logical formulas. Existing
work has attempted to use GNNs to learn representations of
logical formulas. For example, [Wang et al., 2017] use GNN
for premise selection for higher-order logic formulas. How-
ever, predicting tactic sequences based on the representations
of formulas alone does not allow for tracking their form trans-
formations after applying different tactics. Therefore, we in-
tegrate GNN with RL, enabling the selection of appropriate
tactics upon the latest form. Additionally, NeuroSAT [Sel-
sam et al., 2019] leverages GNN to predict satisfiability in
propositional logic; Graph-Q-SAT [Kurin et al., 2019] learns
to suggest variable ordering for branching heuristics in a SAT
solver. However, these approaches are limited to encod-
ing propositional formulas, whereas our framework aims to
tackle more challenging SMT formulas.

6 Conclusion
This paper presents a three-stage strategy synthesis frame-
work SIRISMT for solving SMT formulas. Our approach
effectively models the structural and semantic intricacies of
SMT formulas, along with their transformations during the
solving process. Experimental evaluations show that the syn-
thesized strategy of SIRISMT leads to significant improve-
ments in solving performance, compared to both the exist-
ing hand-crafted strategies and two state-of-the-art learning-
based methods. Future directions include how to combine
learning-based heuristics with traditional experience-based
rules, and how to employ the recent large language models
to enhance SMT solving.



Acknowledgements
This work is supported by the National Natural Science Foun-
dation of China (Grants #62025202), the Frontier Technolo-
gies R&D Program of Jiangsu (BF2024059), and the Col-
laborative Innovation Center of Novel Software Technology
and Industrialization. T. Chen is partially supported by over-
seas grants from the State Key Laboratory of Novel Software
Technology, Nanjing University, under #KFKT2023A04 and
#KFKT2025A05. Yuan Yao is the corresponding author.

References
[Amadini et al., 2023] Roberto Amadini, Maurizio Gab-

brielli, Tong Liu, and Jacopo Mauro. On the evaluation
of (meta-)solver approaches. J. Artif. Intell. Res., 76:705–
719, 2023.

[Balunovic et al., 2018] Mislav Balunovic, Pavol Bielik, and
Martin Vechev. Learning to solve smt formulas. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018.

[Barbosa et al., 2022] Haniel Barbosa, Clark Barrett, Martin
Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Ab-
dalrhman Mohamed, Mudathir Mohamed, Aina Niemetz,
Andres Nötzli, et al. cvc5: A versatile and industrial-
strength smt solver. In International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, pages 415–442. Springer, 2022.

[Barrett et al., 2016a] C. Barrett, P. Fontaine, and C. Tinelli.
AProVE Benchmarks. https://clc-gitlab.cs.uiowa.edu:
2443/SMT-LIB-benchmarks/QF NIA/tree/master/
AProVE, 2016.

[Barrett et al., 2016b] C. Barrett, P. Fontaine, and C. Tinelli.
core benchmarks. https://clc-gitlab.cs.uiowa.edu:
2443/SMT-LIB-benchmarks/QF BV/tree/master/
bruttomesso/core, 2016.

[Barrett et al., 2016c] C. Barrett, P. Fontaine, and C. Tinelli.
hycomp benchmarks. https://clc-gitlab.cs.uiowa.edu:
2443/SMT-LIB-benchmarks/QF NRA/tree/master/
hycomp, 2016.

[Barrett et al., 2016d] C. Barrett, P. Fontaine, and C. Tinelli.
leipzig benchmarks. https://clc-gitlab.cs.uiowa.edu:
2443/SMT-LIB-benchmarks/QF NIA/tree/master/leipzig,
2016.

[Barrett et al., 2016e] C. Barrett, P. Fontaine, and C. Tinelli.
Sage2 benchmarks. https://clc-gitlab.cs.uiowa.edu:2443/
SMT-LIB-benchmarks/Sage2, 2016.

[Barrett et al., 2016f] C. Barrett, P. Fontaine, and C. Tinelli.
The satisfiability modulo theories library (smt-lib). www.
SMT-LIB.org, 2016.

[Beyer and Dangl, 2018] Dirk Beyer and Matthias Dangl.
Strategy selection for software verification based on
boolean features: A simple but effective approach. In
Leveraging Applications of Formal Methods, Verification
and Validation. Verification: 8th International Symposium,

ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Pro-
ceedings, Part II 8, pages 144–159. Springer, 2018.

[Cadar et al., 2008] Cristian Cadar, Daniel Dunbar, and
Dawson Engler. Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’08, page
209–224, USA, 2008. USENIX Association.

[Chen et al., 2021] Zhenbang Chen, Zehua Chen, Ziqi
Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and
Ji Wang. Synthesize solving strategy for symbolic exe-
cution. In Proceedings of the 30th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis,
ISSTA 2021, page 348–360, New York, NY, USA, 2021.
Association for Computing Machinery.

[De Moura and Bjørner, 2008] Leonardo De Moura and
Nikolaj Bjørner. Z3: An efficient smt solver. In Proceed-
ings of the Theory and Practice of Software, 14th Interna-
tional Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’08/ETAPS’08,
page 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[De Moura and Bjørner, 2011] Leonardo De Moura and
Nikolaj Bjørner. Satisfiability modulo theories: Introduc-
tion and applications. Commun. ACM, 54(9):69–77, sep
2011.

[Dutertre, 2014] Bruno Dutertre. Yices 2.2. In Armin Biere
and Roderick Bloem, editors, Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 18-22, 2014. Proceedings, volume 8559 of Lec-
ture Notes in Computer Science, pages 737–744. Springer,
2014.

[Jha et al., 2010] Susmit Jha, Sumit Gulwani, Sanjit A. Se-
shia, and Ashish Tiwari. Oracle-guided component-based
program synthesis. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, volume 1, pages
215–224, 2010.

[Kipf and Welling, 2017] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[Kroening et al., 2023] Daniel Kroening, Peter Schrammel,
and Michael Tautschnig. Cbmc: The c bounded model
checker, 2023.

[Kurin et al., 2019] Vitaly Kurin, Saad Godil, Shimon
Whiteson, and Bryan Catanzaro. Improving SAT solver
heuristics with graph networks and reinforcement learn-
ing. CoRR, abs/1909.11830, 2019.

[Leeson et al., 2023] Will Leeson, Matthew B Dwyer, and
Antonio Filieri. Sibyl: Improving software engineering
tools with smt selection. In Proceedings of the 45th Inter-
national Conference on Software Engineering, ICSE ’23,
page 2185–2197. IEEE Press, 2023.

[Liu et al., 2021] Hongzhi Liu, Jie Luo, Ying Li, and Zhong-
hai Wu. Iterative compilation optimization based on met-
ric learning and collaborative filtering. ACM Trans. Archit.
Code Optim., 19(1), dec 2021.

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/tree/master/AProVE
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/tree/master/AProVE
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/tree/master/AProVE
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/tree/master/bruttomesso/core
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/tree/master/bruttomesso/core
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/tree/master/bruttomesso/core
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA/tree/master/hycomp
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA/tree/master/hycomp
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA/tree/master/hycomp
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/tree/master/leipzig
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/tree/master/leipzig
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/Sage2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/Sage2
www.SMT-LIB.org
www.SMT-LIB.org


[Lu et al., 2024] Zhengyang Lu, Stefan Siemer, Piyush Jha,
Joel Day, Florin Manea, and Vijay Ganesh. Layered and
staged monte carlo tree search for smt strategy synthesis,
2024.

[Niemetz and Preiner, 2023] Aina Niemetz and Mathias
Preiner. Bitwuzla. In Constantin Enea and Akash Lal,
editors, Computer Aided Verification - 35th International
Conference, CAV 2023, Paris, France, July 17-22, 2023,
Proceedings, Part II, volume 13965 of Lecture Notes in
Computer Science, pages 3–17. Springer, 2023.

[Nipkow et al., 2002] Tobias Nipkow, Lawrence C Paulson,
and Markus Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[Palikareva and Cadar, 2013] Hristina Palikareva and Cris-
tian Cadar. Multi-solver support in symbolic execution. In
Proceedings of the 25th International Conference on Com-
puter Aided Verification - Volume 8044, CAV 2013, page
53–68, Berlin, Heidelberg, 2013. Springer-Verlag.

[Paszke et al., 2017] Adam Paszke, Sam Gross, Soumith
Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch, 2017.

[Pimpalkhare et al., 2021] Nikhil Pimpalkhare, Federico
Mora, Elizabeth Polgreen, and Sanjit A. Seshia. Med-
leysolver: Online SMT algorithm selection. In Chu-Min
Li and Felip Manyà, editors, Theory and Applications of
Satisfiability Testing - SAT 2021 - 24th International Con-
ference, Barcelona, Spain, July 5-9, 2021, Proceedings,
volume 12831 of Lecture Notes in Computer Science,
pages 453–470. Springer, 2021.

[pys, 2014] Pysmt: A solver-agnostic library for fast proto-
typing of smt-based algorithms. https://pypi.org/project/
PySMT/, 2014.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[Ramı́rez et al., 2016] Nicolás Gálvez Ramı́rez, Youssef
Hamadi, Eric Monfroy, and Frédéric Saubion. Evolving
smt strategies. In 2016 IEEE 28th International Confer-
ence on Tools with Artificial Intelligence (ICTAI), pages
247–254, 2016.

[Richter et al., 2020] Cedric Richter, Eyke Hüllermeier,
Marie-Christine Jakobs, and Heike Wehrheim. Algorithm
selection for software validation based on graph kernels.
Autom. Softw. Eng., 27(1):153–186, 2020.

[Scott et al., 2021] Joseph Scott, Aina Niemetz, Mathias
Preiner, Saeed Nejati, and Vijay Ganesh. Machsmt: A
machine learning-based algorithm selector for smt solvers.
In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 303–325.
Springer, 2021.

[Selsam et al., 2019] Daniel Selsam, Matthew Lamm,
Benedikt Bünz, Percy Liang, Leonardo de Moura, and
David L. Dill. Learning a sat solver from single-bit
supervision, 2019.

[Song et al., 2023] Kunjian Song, Mikhail R. Gadelha,
Franz Brauße, Rafael S. Menezes, and Lucas C. Cordeiro.
Esbmc v7.3: Model checking c++ programs using clang
ast, 2023.

[van Hasselt et al., 2015] Hado van Hasselt, Arthur Guez,
and David Silver. Deep reinforcement learning with dou-
ble q-learning, 2015.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks, 2018.

[Wang et al., 2017] Mingzhe Wang, Yihe Tang, Jian Wang,
and Jia Deng. Premise selection for theorem proving by
deep graph embedding, 2017.

[Wang et al., 2021] Guancheng Wang, Ruobing Shen, Junjie
Chen, Yingfei Xiong, and Lu Zhang. Probabilistic delta
debugging. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ES-
EC/FSE 2021, page 881–892, New York, NY, USA, 2021.
Association for Computing Machinery.

[Wang et al., 2022] Xu Wang, Sen Wang, Xingxing Liang,
Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and Qiguang
Miao. Deep reinforcement learning: a survey. IEEE Trans-
actions on Neural Networks and Learning Systems, 2022.

[Wu et al., 2020] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and S Yu Philip. A com-
prehensive survey on graph neural networks. IEEE trans-
actions on neural networks and learning systems, 32(1):4–
24, 2020.

[Xu et al., 2011] Lin Xu, Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. Satzilla: Portfolio-based algorithm
selection for SAT. CoRR, abs/1111.2249, 2011.

https://pypi.org/project/PySMT/
https://pypi.org/project/PySMT/

	Introduction
	Preliminary and Problem Statement 
	SMT Solving Strategy
	Problem Statement

	Approach
	The Simulation Stage
	The Refinement Stage
	The Integration Stage

	Experiment
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion

