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Bisimulation is a well-known behavioral equivalence for discrete event systems, and has 
recently been adopted and developed in fuzzy systems. In this paper, we propose a 
new bisimulation, i.e., the group-by-group fuzzy bisimulation, for fuzzy transition systems. 
It relaxes the fully matching requirement of the bisimulation definition proposed by 
Cao et al. (2010) [2], and can equate more pairs of states which are deemed to be 
equivalent intuitively, but which cannot be equated in previous definitions. We carry out a 
systematic investigation on this new notion of bisimulation. In particular, a fixed point 
characterization of the group-by-group fuzzy bisimilarity is given, based on which, we 
provide a polynomial-time algorithm to check whether two states in a fuzzy transition 
system are group-by-group fuzzy bisimilar. Moreover, a modal logic, which is an extension 
of the Hennessy–Milner logic, is presented to completely characterize the group-by-group 
fuzzy bisimilarity.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Bisimulations are well-established forms of behavioral equivalences for discrete event systems, and have become a central 
notion in, for instance, process algebras, automata theory, etc. They are widely used in many areas of computer science, in 
particular, in verification where they are crucial to reduce the state space of the system under consideration.

Recently, bisimulations have been developed in fuzzy systems as well. For example, Cao et al. [2,4] considered bisimula-
tions for fuzzy transition systems (FTS) where both fuzzy transitions and nondeterministic transitions co-exist. This model is 
further studied under fuzzy automata by Cao et al. [3] and Pan et al. [15]. Ćirić et al. [5] investigated bisimulations for fuzzy 
automata. Qiu and Deng [9], and Xing et al. [19] studied (bi)simulations for fuzzy discrete event systems. Fan [10] discussed 
fuzzy bisimulations for Gödel logic. Wu et al. [16–18] investigated algorithms and logical characterizations of bisimulations 
for FTS. For more information about fuzzy (bi)simulations, we also refer the readers to [6,7,11]. In addition, model checking 
for fuzzy systems was also studied [12–14].

A central question regarding any notion of bisimulation (or in general, any equivalence) is its distinguishing power. 
Namely, to which extent it will distinguish a pair of states. As a simple example, we presented two FTS in Fig. 1. Assuming 
that states si and ti are equal for i = 4, 5, 6 (i.e., they cannot be distinguished in this case), and thus one can be easily 
convinced that si and ti are also equal for i = 1, 2, 3, and si and t j are not equal for 1 ≤ i �= j ≤ 3 since they have different 
enabled actions. We are mainly interested in whether states s and t can be related by the bisimulation under consideration. 
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Fig. 1. s and t are group-by-group fuzzy bisimilar.

The bisimulation proposed by Cao et al. [4] will distinguish them. To see this, the transition s a−→ 0.3
s1

+ 0.5
s2

cannot be 

matched by either t
a−→ 0.5

t1
+ 0.3

t2
, or t

a−→ 0.3
t1

+ 0.5
t3

, or t
a−→ 0.5

t2
+ 0.3

t3
. However, arguably the two states should not be 

distinguished from the following perspective. The transition of s a−→ 0.3
s1

+ 0.5
s2

can be respectively matched by t a−→ 0.3
t1

+ 0.5
t3

(the central transition) when considering the group of states enabling only action b, t a−→ 0.5
t2

+ 0.3
t3

(the rightmost transition) 

when considering the group of states enabling only action c, and the t a−→ 0.5
t1

+ 0.3
t2

(the leftmost transition) when considering 
the group of states enabling action b or c. The other transitions from s can be analyzed similarly. From this point of view, s
and t ought not be distinguished. Indeed, in [4] the bisimilar states must stepwise behave the same along two fully matching 
resolutions, which in this case unnecessary and should be relaxed.

The aim of this paper is to define a new bisimulation for an FTS, dubbed group-by-group fuzzy bisimulation. This 
bisimulation is different from the one proposed by Cao et al. [4] in two aspects: (1) The bisimulation in [4] considers 
each equivalence class of some equivalence relation R , while ours considers each subset of equivalence classes; this is why 
it is called a group-by-group fuzzy bisimulation, and (2) for a transition s a−→ μ, the bisimulation in [4] requires that there 
exists a transition t

a−→ ν such that μ and ν are equal at all equivalence classes of some equivalence relation R , i.e., the 
definition requires fully matching. In contrast, our definition requires that for each subset G of the equivalence classes and 
a transition s a−→ μ, there exists a transition t a−→ ν such that μ and ν are equal for the union of G . We note that for G1, ν1
exists such that μ and ν1 are equal for the union of G1, but for different G2, it is possible that ν2 exists such that μ and 
ν2 are equal for the union of G2. Loosely speaking, our new bisimulation allows partially matching resolutions.

We perform a systematic study on this new bisimulation by giving its characterization in different machinery, as follows.

1. We use a fixed point method to characterize group-by-group fuzzy bisimulation. This characterization shows that a 
group-by-group fuzzy bisimulation is a post-fixed point of some suitable monotonic function over a complete lattice, 
while a group-by-group fuzzy bisimilarity, the greatest group-by-group fuzzy bisimulation, is the greatest fixed point of 
this monotonic function.

2. We give a polynomial time algorithm to computing group-by-group fuzzy bisimilarity. Our algorithm follows the stan-
dard partition-refinement framework which is the cornerstone for the computation of almost all bisimulations in 
conventional labeled transition systems, and their various probabilistic and fuzzy extensions. In the current setting, 
while an exponential-time algorithm can be obtained almost for free, designing a polynomial-time algorithm turns out 
to be difficult simply because of the universal quantification over all subsets of the state space (cf. Definition 3). As a 
witness, for probabilistic systems considered in [1], a similar group-by-group probabilistic bisimulation is proposed, but 
eludes a polynomial-time algorithm.1 In contrast, we show that in the fuzzy setting, a polynomial-time algorithm does 
exist, owing to that, essentially, the operations of max and min instead of addition and multiplication respectively are 
used.

3. We provide a logical characterization of a group-by-group fuzzy bisimilarity, which states that two states are group-by-
group fuzzy bisimilar if and only if they satisfy the same logical formulae.

These characterizations suggest the robustness of our new definition of bisimulation of FTS. As mentioned, this work 
is inspired by the work in [1], where a group-by-group probabilistic bisimulation is investigated in probabilistic systems. 
However, it is probably noteworthy that our work is different from that in [1] in two aspects: (1) neither the fixed point 
characterization nor the algorithm was discussed in [1], and (2) [1] has given a logical characterization of group-by-group 

1 We conjecture such a polynomial-time algorithm does not exist.
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probabilistic bisimilarity, but needs the condition of image-finiteness, which is not needed in our characterization. Moreover, 
the methods of proving logical characterization theorems are different; see Remark 2 for details.

The rest of this paper is structured as follows. We briefly review some basic concepts used in this paper in Section 2. 
Section 3 introduces the notion of a group-by-group fuzzy bisimulation. Some properties about it are discussed. A fixed 
point characterization of the group-by-group fuzzy bisimilarity is given in Section 4. In Section 5, we present a polynomial 
time algorithm for testing the group-by-group fuzzy bisimilarity. In the subsequent section, we provide a modal logic, which 
characterizes group-by-group fuzzy bisimilarity soundly and completely. Finally, this paper is concluded in Section 7 with 
some future work.

2. Preliminaries

In this section, we briefly recall some notions used in this paper. We write [n] for {1, · · · , n}. Given a set S and a binary 
relation R ⊆ S × S , we write sRt if (s, t) ∈ R . An equivalence relation is a reflexive, symmetric, and transitive relation. An 
equivalence relation R partitions a set S into equivalence classes. For s ∈ S , we use [s]R to denote the (unique) equivalence 
class containing s. We drop the subscript R if it is clear from the context. Let R(s) denote the set {s′ | (s, s′) ∈ R}. A set U is 
said to be R-closed if R(s) ⊆ U for all s ∈ U . We write R∗ for the transitive closure of R .

The following basic facts will be useful later. The proof is a fairly elementary exercise and thus is omitted. In particular, 
the first item follows from [16, Lemma 2.1].

Lemma 1. Let R, R1 , R2 be equivalence relations on S. Then we have:

(i) Any R-closed set U is the union of some equivalence classes of R.
(ii) Let R1 ⊆ R2 . Then U is R2-closed implies that it is also R1-closed.

(iii) The (R1 ∪ R2)
∗ is an equivalence relation.

The notions about fuzzy set are mainly borrowed from [4]. Let S be a set and μ be a fuzzy set in S . The support of 
μ is the set supp(μ) = {s ∈ S | μ(s) > 0}. We denote by F(S) the set of all fuzzy sets in S . When supp(μ) is finite, say 
{s1, · · · , sn}, μ can be written in Zadeh’s notation as follows:

μ = μ(s1)

s1
+ μ(s2)

s2
+ · · · + μ(sn)

sn
.

For any μ ∈F(S) and U ⊆ S , let μ(U ) stand for sups∈U μ(s).

Definition 1. [4] An FTS is a triple M = (S, A, →), where

• S is a set of states,
• A is a set of actions, and
• → ⊆ S × A ×F(S) is the transition relation.

An FTS is image-finite if for each a ∈ A and s ∈ S , the set Ta(s) = {μ | s a−→ μ} is finite and for any μ ∈ Ta(s), the supp(μ)

is also finite; an FTS is finitely branching if for each s ∈ S , the set {(a, μ) | s a−→ μ, a ∈ A, μ ∈F(S)} is finite. Furthermore, this 
FTS is finitary if S is also finite. For readability, we usually write s a−→ μ for (s, a, μ) ∈→.

3. New bisimulation

This section is devoted to the notions of a new bisimulation. We start with the definition proposed by Cao et al. [4], 
which is a straightforward adaptation of the classical bisimulation to FTSs.

Definition 2. Let (S, A, →) be an FTS. An equivalence relation R ⊆ S × S is a (fuzzy) bisimulation if whenever sRt , then for 
any transition s a−→ μ, there exists a transition t a−→ ν such that μ([s]) = ν([s]) for all equivalence classes [s] ∈ S/R .

Before presenting the new bisimulation, we highlight the differences of our new definition (to be given in Definition 3) 
and Definition 2. The first difference is that, for an action a, the distribution over all classes of equivalent states reached by 
the a-transition can now be matched by several a-transitions, each of which may take care of a different class. Secondly, the 
new equivalence takes into account the possibility of reaching groups of equivalence classes rather than individual classes only. 
This is similar to the approach in [16] (cf. Definition 4). Notice that considering groups of equivalence classes in Definition 2
does not change the bisimulation relation, while dealing only with individual classes here would significantly weaken the 
discriminating power.
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Definition 3. Let (S, A, →) be an FTS. An equivalence relation R over S is a group-by-group fuzzy bisimulation if, whenever 
(s, t) ∈ R , for all actions a ∈ A and for all groups of equivalence classes G ∈ 2S/R , it holds that for each s a−→ μ there exists 
t

a−→ ν such that μ(
⋃

G) = ν(
⋃

G), where 
⋃

G = ⋃
C∈G C . We say s and t are group-by-group fuzzy bisimilar, denoted by 

s ∼FB,gbg t , if there exists a group-by-group fuzzy bisimulation R such that (s, t) ∈ R .

Intuitively, while in Definition 2 the quantification over [s] ∈ S/R is after the transition matching, in Definition 3 the 
quantification over G ∈ 2S/R is before the transition matching. This allows a transition to be matched possibly by distinct 
transitions depending on the target groups. Because of the difference of the quantification ordering, it is not hard to observe 
that the bisimulation in Definition 2 is finer than that in Definition 3.

Example 1. Consider the Fig. 1. We will show that s and t are group-by-group fuzzy bisimilar. First of all, S = {s, t, si, ti | i =
1, · · · , 6}, we construct an equivalence relation R on S as follows:

R = {s, t} × {s, t} ∪ {(si, si), (ti, ti), (si, ti) | 1 ≤ i ≤ 6}.
The equivalence class of the state space S under R is

S/R = {{s1, t1}, {s2, t2} · · · , {s6, t6}, {s, t}}.
It suffices to prove that R is a group-by-group fuzzy bisimulation. Obviously, (s, s), (t, t), (si, si) and (ti, ti) (i = 1, · · · , 6) all 
satisfy the condition of Definition 3. Hence, we only need to verify that (s, t) and (t, s) satisfy this condition as well. We 
first examine (s, t). Let G ∈ 2S/R be any group of equivalence classes and s a−→ μ1 = 0.3

s1
+ 0.5

s2
. Now, consider the possible 

matching transitions from t . Since μ1 takes none-zero values only at s1 and s2, and the three transition distributions 
from t take none-zero values only at t1 or t2 or t3, it suffices to consider G that only contains the {s1, t1} or {s2, t2}, or 
{s3, t3}. That is, {s1, t1}, {s2, t2}, {s3, t3}, {{s1, t1}, {s2, t2}}, {{s1, t1}, {s3, t3}}, {{s2, t2}, {s3, t3}}, and {{s1, t1}, {s2, t2}, {s3, t3}}. 
Let ν1 = 0.5

t1
+ 0.3

t2
, ν2 = 0.3

t1
+ 0.5

t3
and ν3 = 0.5

t2
+ 0.3

t3
. Then we consider the following cases according to 

⋃
G .

(1)
⋃

G = {s1, t1}, there exists t a−→ ν2 such that μ1({s1, t1}) = ν2({s1, t1}) = 0.3;

(2)
⋃

G = {s2, t2}, there exists t a−→ ν3 such that μ1({s2, t2}) = ν3({s2, t2}) = 0.5;

(3)
⋃

G = {s3, t3}, there exists t a−→ ν1 such that μ1({s3, t3}) = ν1({s3, t3}) = 0;

(4)
⋃

G = {s1, s2, t1, t2}, there exists t a−→ ν3 such that μ1({s1, s2, t1, t2}) = ν3({s1, s2, t1, t2}) = 0.5;

(5)
⋃

G = {s1, s3, t1, t3}, there exists t a−→ ν3 such that μ1({s1, s3, t1, t3}) = ν3({s1, s3, t1, t3}) = 0.3;

(6)
⋃

G = {s2, s3, t2, t3}, there exists t a−→ ν2 such that μ1({s2, s3, t2, t3}) = ν2({s2, s3, t2, t3}) = 0.5;

(7)
⋃

G = {s1, s2, s3, t1, t2, t3}, there exists t a−→ ν1 such that μ1({s1, s2, s3, t1, t2, t3}) = ν1({s1, s2, s3, t1, t2, t3}) = 0.5.

That is, for the transition s a−→ μ1, there is corresponding transition matching coming from t . Similarly, for other transi-
tions coming from s, there are corresponding transitions coming from t . Hence, (s, t) satisfy the condition of Definition 3. In 
a similar way, we can verify that (t, s) satisfy the condition of Definition 3 too. Consequently, R is a group-by-group fuzzy 
bisimulation as desired.

Since 
⋃

G is the union of some equivalence classes of R , it is R-closed. Moreover, any R-closed set is the union of 
some equivalence classes. Hence, we have the following conclusion which effectively gives an alternative definition of the 
group-by-group fuzzy bisimulation. The equivalence of Definition 3 and Definition 4 is rather straightforward and thus is 
omitted.

Definition 4. Let (S, A, →) be an FTS. An equivalence relation R over S is a group-by-group fuzzy bisimulation iff, whenever 
(s, t) ∈ R , then for all actions a ∈ A and for all R-closed sets U it holds that for each s a−→ μ there exists t

a−→ ν such that 
μ(U ) = ν(U ).

Bisimulation is preserved by the equality, inverse and the transitive closure of unions, which are summarized in the 
following proposition.

Proposition 1. The following statements hold.

(i) Eq(S) is a group-by-group fuzzy bisimulation, where Eq(S) = {(s, s) | s ∈ S};
(ii) If R is a group-by-group fuzzy bisimulation, then so is R−1 (in fact, R−1 = R since R is an equivalence relation);

(iii) If Ri (i = 1, 2) is a group-by-group fuzzy bisimulation, then so is (R1 ∪ R2)
∗ .
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Proof. (i) and (ii) are trivial. Now we prove (iii).
Firstly, (R1 ∪ R2)

∗ is an equivalence relation by Lemma 1 (iii).
Secondly, let U be (R1 ∪ R2)

∗-closed. Then Lemma 1 (ii) implies that it is also Ri -closed (i = 1, 2) since Ri ⊆ (R1 ∪ R2)
∗

(i = 1, 2).

Finally, let (s, t) ∈ (R1 ∪ R2)
∗ and s a−→ μ. Then there exist s1, s2, · · · , sn such that (s, s1), (si, si+1) (i = 1, 2, · · ·n − 1), 

(sn, t) ∈ R1 ∪ R2. Without loss of generality, we suppose that (s, s1) ∈ R1 and (sn, t) ∈ R2. Since R1 is a group-by-group fuzzy 
bisimulation and U is R1-closed, there exists s1

a−→ ν1 such that μ(U ) = ν1(U ). Since (si, si+1)(i = 1, 2, · · ·n − 1) must be in 
R1 or R2, moreover R1, R2 are both group-by-group fuzzy bisimulations and U is Ri (i = 1, 2)-closed, there exists si

a−→ νi
(i = 2, · · · , n), such that ν1(U ) = ν2(U ) = · · · = νn(U ). Hence μ(U ) = νn(U ). Similarly, (sn, t) ∈ R2, R2 is a group-by-group 
fuzzy bisimulation and U is R2-closed imply that there exists t a−→ ν such that νn(U ) = ν(U ). Consequently, μ(U ) = ν(U ) as 
desired. Hence, (R1 ∪ R2)

∗ is a group-by-group fuzzy bisimulation by Proposition 4. The proof is completed. �
The conclusion of Proposition 1 (iii) can be generalized into any i ∈ I .

Proposition 2. The ∼FB,gbg is an equivalence relation and is the greatest group-by-group fuzzy bisimulation, called group-by-group 
fuzzy bisimilarity.

Proof. Proposition 1 (i, ii, iii) imply that ∼FB,gbg is reflexive, symmetric, transitive, respectively, and hence it is an equiv-
alence relation. By Definition 3, it is straightforward that ∼FB,gbg is the largest group-by-group fuzzy bisimulation. In fact, 
∼FB,gbg= (∪i∈I Ri)

∗ where Ri (i ∈ I) is a group-by-group fuzzy bisimulation. That is, ∼FB,gbg is the transitive closure of the 
union of all group-by-group fuzzy bisimulations. �
Remark 1. Bisimulations for fuzzy systems have received much attention recently. Many different notions have been given, 
see, for example, [2,5,7,9–11,16–19]. All these notions can be divided into two classes. In the first class, bisimulations are 
based on a crisp relation on the state space, and thus one state is either bisimilar to another state or not. In the second 
class, bisimulations are based on a fuzzy relation on the state space, which shows the degree to which one state is bisimilar 
to another one. We refer the readers to the related work in [16,18] for more details. The present study belongs to the 
first class, but provides a coarser bisimulation than those in the existing definitions falling into the first class [2,16]. Its 
advantage is that one can consider whether two systems are equivalent from the overall perspective. For example, in Fig. 1, 
after implementing the action a and then β ∈ {b, c, d}, two systems reach the equivalent states with the equal possibility 0.5. 
Hence they can be regarded as equivalent.

4. Fixed-point characterization

In this section, we will use fixed-point method to characterize group-by-group fuzzy bisimulation. We always suppose 
that the state space S is finite in this section.

Let R be the set of all equivalence relations over S . For any R1, R2 ∈R, define the partial order on R as follows:

R1 � R2 if R1 ⊆ R2.

For any Ri(i ∈ I) ∈R, the sup and inf on the set {Ri | i ∈ I} are defined as follows:

�i∈I Ri = (∪i∈I Ri)
∗


i∈I Ri = ∩i∈I Ri .

So, R is a complete lattice, its least element 0 and the greatest element 1 are Eq(S) and S × S , respectively.
We now review the notion of group-by-group fuzzy bisimulation in terms of suitable monotone functions over a complete 

lattice. We consider the function F defined as follows:

F : R → R, R �−→

⎧⎪⎨
⎪⎩

(s, t) ∈ S × S

∣∣∣∣
∀ R-closed set U

∀s
a−→ μ ∃t

a−→ ν : μ(U ) = ν(U )

∀t
a−→ ν ∃s

a−→ μ : μ(U ) = ν(U )

⎫⎪⎬
⎪⎭

(1)

Given an equivalence relation R ∈ R, it is not difficult to verify that F (R) is reflexive, symmetric and transitive, i.e., an 
equivalence relation. This shows that F is well-defined.

The following proposition establishes the relation between a group-by-group fuzzy bisimulation and a post-fixed point 
of F .

Proposition 3. Let R be an equivalence relation over S. Then R is a group-by-group fuzzy bisimulation if and only if R is a post-fixed 
point of F , i.e., R � F (R).
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Proof. It is a straightforward result of Definition 4. �
Recall that the remarkable Tarski’s theorem [8] says that each monotonic function on a complete lattice has a greatest 

fixed point. Therefore, to show that F has a greatest fixed point, it remains to verify that F is monotonic with respect to �.
Recall that for a partially ordered set (X, ≤), a function f : X → X is said to be monotonic if for all x1, x2 ∈ X , x1 ≤ x2

implies that f (x1) ≤ f (x2).

Lemma 2. F is monotonic with respect to the partial order �.

Proof. It is not difficult to verify by Lemma 1 (ii) and hence we omit its proof. �
By Tarski’s fixed point theorem, we have the following theorem.

Theorem 1. F has a greatest fixed point μF . Moreover

μF = �{R | R � F (R)}.

This theorem shows that the greatest fixed point of F is the sup of all post-fixed points of F . By the definition of sup
and Propositions 2, 3, the following theorem holds.

Theorem 2. We have that ∼FB,gbg= μF .

Recall that for a lattice (L, ≤), a function f : L → L is said to co-continuous if for all decreasing sequence x0, x1, · · · (i.e., 
xi+1 ≤ xi for all i ∈ N) in the lattice L, we have f (
i∈Nxi) = 
i∈N f (xi).

Lemma 3. F is co-continuous on the complete lattice R.

Proof. Let Ri ∈ R (i ∈ N) be a decreasing sequence. Since the state space S is finite, there are at most finite different 
equivalence relations. Further, Ri ∈ R (i ∈ N) being a decreasing sequence implies that there exists k such that Rk � Ri
for all i ∈ N. As a result, F (
i∈NRi) = F (Rk). On the other hand, F (Rk) � F (Ri) for any i ∈ N since F is monotonic by 
Lemma 2. Hence F (Rk) � 
i∈NF (Ri), while 
i∈NF (Ri) � F (Rk) is obvious since k ∈ N. That is, F (Rk) = 
i∈NF (Ri). It follows 
that F (
i∈NRi) = 
i∈NF (Ri). The proof is completed. �

Based on this lemma, one can show that 
n∈N F n(1) is the greatest fixed point of F (cf. [8]). So, the following corollary 
holds.

Corollary 1. we have that ∼FB,gbg= μF = 
n∈NF n(1).

This says that the group-by-group fuzzy bisimilarity is 
n∈NF n(S × S).

5. Algorithmic characterization

In this section, we present an algorithm for checking if two states s and t are group-by-group bisimilar in a finitary
FTS M = (S, A, →) which we fix for the rest of the section. We follow the standard partition-refinement scheme, which 
essentially is to compute the greatest fixed point of the function F (cf. (1)) defined in the preceding section. We start with 
some additional notations. Let � be a partition of S , i.e., � = {B1, · · · , Bm} such that 

⋃m
i=1 Bi = S .

• Given B ∈ � and C ⊆ �,

Bμ(C) := {t ∈ B | ∃ν.t
a−→ ν ∧ ν(C) = μ(C)}.

• For any vector �v = (a1, · · · , an) and I ⊆ [n], we write max �v[I] for max{ai | i ∈ I}.

As a routine in partition-refinement algorithms, in Algorithm 1, we start with an initial (trivial) partition � and, in each 
iteration, we refine the current partition according to F (cf. (1)) until it is stabilized. Clearly, when the algorithm terminates, 
� stores the greatest fixed point of F , and this is precisely the bisimulation quotient of S , i.e., S/ ∼FB,gbg , which is the 
output of Algorithm 1.

The challenging part, however, is to check whether the current partition � of S is already a bisimulation, and in partic-
ular, to check this in polynomial time. According to the definition of ∼FB,gbg , this is to check, for a pair of states (s, t) in an 
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Algorithm 1: Calculate the quotient space of bisimulation ∼FB,gbg .

Data: FTS (S, A, →)

Result: Bisimulation quotient space S/ ∼FB,gbg

begin
� ←− S × S;
�old ←− S × S;
repeat

�old ←− �;
for each B ∈ � do

for each pair of states s, t ∈ B and a, μ with s a−→ μ do
C ←− Match(s, t, a, μ, �);
if C �= ∅ then

� ←− � \ {B} ∪ {Bμ(C)};

until �old = �;
S/ ∼FB,gbg←− �

Function Match(s, t, a, μ, �)

Data: s, t ∈ S , a ∈ A with s a−→ μ, � is the current partition of S
Result: true if L is fulfilled; otherwise false
begin

�vμ := (μ(C1), · · · , μ(Ck));
//compute the vector �vμ .
h ←− 1;
for each ν with t a−→ ν do

�wν := (ν(C1), · · · , ν(Ci));
W [h] ←− �wν ;
h ←− h + 1 ;

//compute all �wν and store them in the matrix W
for each i ∈ [k] do

Li ←− { j ∈ [k] | �vμ[ j] ≤ �vμ[i]};
// �vμ[i] is the largest element of �vμ among the indices in Li .
if Cover(i, �vμ, W , Li) = False then

Match(s, t, a, μ, �) := Li ;
Return;

Match(s, t, a, μ, �) := ∅

Algorithm 2: Cover(i, �v, W , L).
Data: i ∈ L ⊆ [k], �v[i] = max �vμ[L]
Result: True iff for all i ∈ I ⊆ L, there exists some j such that �v[i] = max W [ j][I]
begin

I ←− L;
while True do

S ←−S(I) ;
if S = ∅ then

Cover(i, �v, W , L) ←− False;
Return;

else
if i ∈ S then

Cover(i, �v, W , L) ←− True;
Return;

else
I ←− I \ S;

equivalence class of � and an action a with s a−→ μ, whether for all C ⊆ � there always exists some ν such that t a−→ ν and 
μ(C) = ν(C). A naïve approach, which verifies for each C ⊆ � individually, is doable, but would need exponential time in 
the worst case. We shall show that this brute force enumeration of all C ⊆ � is unnecessary and the check can actually be 
carried out in a more efficient way, i.e., in polynomial time. This is the main purpose of the Match function of Algorithm 1
and Algorithm 2.

Let us fix two states s and t , an action a, and a distribution μ such that s a−→ μ, and assume that the current partition 
is �. Function Match(s, t, a, μ, �) will test whether, for all C ⊆ �, some ν exists such that t a−→ ν and μ(C) = ν(C). If this 
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is the case, the procedure Match returns an empty set; otherwise it returns some C ⊆ � which one can use to refine the 
current partition �.

Technically, assume that � = {B1, · · · , Bk}. We let

• �vμ := (a1, · · · , ak) where ai := μ(Bi). (Recall that μ(B) := max{μ(s) | s ∈ B}.)

• for each ν such that t a−→ ν , �wν := (bν
1 , · · · , bν

k ) where bν
i := ν(Bi).

Observe that Match(s, t, a, μ, �) = ∅ iff

for all subset I ⊆ [k], ν exists such that max �vμ[I] = max �wν [I] (�)

To verify (�), for each i ∈ [k], we define an index set Li such that ai is the maximal element among Li in �vμ . Formally, 
Li = {k | ak ≤ ai}. Furthermore, for a given index set L with a := max �vμ[L], we define

S[L] := {k ∈ L | ∃ν.a = �wν [k] = max �wν [L]}.
Note that obviously S[L] ⊆ L.

Lemma 4. Given an index set L ⊆ [n], let �M ∈ L be �vμ[�M ] = max �vμ[L]. For all I ⊆ L with S[L] ∩ I �= ∅ and �M ∈ I , max �vμ[I] =
max �wν [I].

Proof. By definition S[L] := {k ∈ L | ∃ν. a = �wν [k] = max �wν [L]}. As �M ∈ L, max �vμ[I] = �vμ[�M ]. It follows that there exists 
some ν and k ∈ I ∩ S[L] such that �vμ[�M ] = �wν [k], and �wν [k] = max �wν [L] ≥ max �wν [I]. Moreover, as k ∈ I , max �wν [L] ≤
max �wν [I]. We then can conclude that max �vμ[I] = max �wν [I], which completes the proof. �
Proposition 4 (Correctness of Algorithm 2). Function Cover(i, �v, W , L) returns True iff for all I such i ∈ I ⊆ L, there exists some row 
of W indexed by ν (viz. �wν ) such that max �v[I] = max �wν [I].

Proof. Recall that, as the precondition of Cover(i, �v, W , L), i satisfies that �v[i] is the maximal element among �v[I], i.e., for 
all I ⊆ L with i ∈ I , max �v[I] = max �vμ[L]. Cover(i, �v, W , L) first computes S(I) ⊆ I . Clearly, if S(I) = ∅, we can conclude 
that, for I , there is no ν such that max �v[I] = max �wν [I], hence the function returns False. If, on the other hand, S(I) �= ∅, 
we have the following two cases:

• i ∈ S(I). Then clearly S(I) ∩ I �= ∅ as i ∈ I . By Lemma 4, we can conclude that some ν exists such that max �v[I] =
max �wν [I].

• i /∈ S(I). Then by Lemma 4, we have that all I ′ with S[I] ∩ I ′ �= ∅ and i ∈ I ′ , max �v[I ′] = max �wν [I ′]. For I ′ such that 
i ∈ I ′ but S[I] ∩ I ′ = ∅, we have that I ′ ⊆ I \S[I], and the iteration (the while loop) will guarantee that, if the function 
returns True, there exists some ν such that max �v[I ′] = max �wν [I ′]. �

Proposition 5 (Correctness of Algorithm 1). The main procedure in Algorithm 1 terminates and, when it terminates, the output is 
S/ ∼FB,gbg .

Proof. Recall the notations introduced before, i.e., �vμ , �wν with respect to the fixed states s, t , action a, and partition �. 
We only need to show that the Match function (from Algorithm 2) and the Cover (from Algorithm 2) faithfully check (�), 
and the rest follows standard argument for partition-refine algorithms. Note that each I ⊆ [k] is verified under some i ∈ I
with Li given in the Match function, and Proposition 4 shows that for such Li , we can determine correctly whether it will 
invalidate the condition that �vμ(Li) = �wν(Li).

Termination of Algorithm 1 is straightforward. For Algorithm 2, we observe that when S �= ∅, the size of I decreases 
and finally we will have I = {i} for which the function terminates. On the other hand, when S = ∅, the function returns 
immediately. Hence the while loop will terminate in, at most, |L| steps. �
Complexity analysis The partition-refinement takes at most O(|S|2) steps. For each step, the computation time is dominated 
by Cover function in Algorithm 2. At mentioned earlier, it takes at most O(|L|) ≤ O(|S|) steps. Hence for Match function, it 
takes O(|S|2 · |A| · |S|) steps. Wrapping up, the overall time is O(|S|5|A|), which puts the bisimulation checking problem in 
(strongly) polynomial time.2

Example 2. We use the example FTS in Fig. 1 to illustrate some key steps of the algorithm. First of all, S = {s, t, si, ti | i =
1, · · · , 6}. Let’s assume that the current partition � = {{s, t}, {si, ti}1≤i≤6}. To check whether the equivalence relation induced 

2 We made no effort to optimize the algorithm, nor to provide a tightened analysis, as our main purpose is to show that the problem is in P.
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by � is a bisimulation, clearly we only need to verify whether the pair (s, t) satisfies necessary condition. To this end, as an 
example, we consider s a−→ 0.3

s1
+ 0.5

s2
and the candidate transitions from t are t a−→ 0.5

t1
+ 0.3

t2
, t a−→ 0.3

t1
+ 0.5

t3
, and t a−→ 0.5

t2
+ 0.3

t3
. 

We then, following the Match function, obtain that

• �vμ = (0.3, 0.5, 0),
• �w1 = (0.5, 0.3, 0), �w2 = (0.3, 0, 0.5), �w3 = (0, 0.5, 0.3).

Here k = 3, and W =
⎡
⎣

0.5 0.3 0
0.3 0 0.5
0 0.5 0.3

⎤
⎦.

For illustration purpose, we check for i = 1 and thus, following the Match function, obtain that Li = {1, 3} and 
S(Li) = {3}. Hence Cover(1, �vμ, W , {1, 3}) in Algorithm 2 is invoked. In this case, after one iteration, L is updated by 
{1} and S(L) = {1}, and thus we have i = 1 ∈S(L), True is returned.

One could check further other transitions from s, i.e., s a−→ 0.5
s1

+ 0.3
s3

and s a−→ 0.3
s2

+ 0.5
s3

, and readily conclude that indeed 
� is stable, hence it is the after bisimulation quotient of the state space S .

6. Logical characterization

In this section, we embark upon the relationship between group-by-group bisimilarity and logics. More concretely, we 
will show that two states are group-by-group bisimilar iff they satisfy the same logical formulae.

First, we recall modal logics that are used to characterize bisimulations of Cao et al. [4]. Wu and Deng in [16] gave the 
following logic:

ϕ ::= � | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉pϕ. (2)

where a ∈ A and p ∈ [0, 1], and ϕ is a state formula that is interpreted on states. Under the assumption of image-finiteness, 
this logic can characterize the bisimilarity of Cao et al. for a deterministic FTS.

For a nondeterministic FTS, Wu et al. in [17] gave the following two-sorted logic:

ϕ ::= � | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉ψ
ψ ::= ψ1 ∧ ψ2 | ¬ψ | [ϕ]p

(3)

where ψ is a distribution formula that is interpreted on distributions. Under the assumption of image-finiteness, this logic 
can characterize the bisimilarity of Cao et al. for a nondeterministic FTS. For example, consider the FTS in Fig. 1, and a 
logical formula ϕ = 〈a〉([〈b〉[�]1]0.3 ∧ [〈c〉[�]1]0.5). We have that s |= ϕ but t �|= ϕ . Hence, the bisimulation of Cao et al. will 
distinguish s and t .

In this paper, the FTS is nondeterministic. With a slight modification of the logic in (2), we obtain the following logic L:

ϕ ::= � | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉[p1,p2]ϕ (4)

where 0 ≤ p1 ≤ p2 ≤ 1. This is the basic logic that we employ to establish the logical characterization of group-by-group 
fuzzy bisimilarity for an FTS.

Fix an FTS (S, A, →), the satisfaction relation is defined by

• s |=L �, for any s ∈ S;
• s |=L ϕ1 ∧ ϕ2 iff s |= ϕi for i = 1, 2;
• s |=L ¬ϕ iff s �|=L ϕ;

• s |=L 〈a〉[p1,p2]ϕ iff a transition s a−→ μ exists such that p1 ≤ μ(�ϕ�) ≤ p2.

Let T hL(s) = {ϕ ∈L | s |= ϕ} be the set of formulae that the state s satisfies.

Lemma 5. For any ϕ ∈L, �ϕ� is ∼FB,gbg closed.

Proof. It can be proven by structure induction on formulae, we only consider the case: ψ = 〈a〉[p1,p2]ϕ . Let s ∼FB,gbg t and 
s |= 〈a〉[p1,p2]ϕ . It suffices to prove that t |= 〈a〉[p1,p2]ϕ . By induction, �ϕ� is ∼FB,gbg closed, which is the union of some 
equivalence classes of ∼FB,gbg . Thus, there exists G ∈ 2S/∼FB,gbg such that 

⋃
G = �ϕ�. Since s |= 〈a〉[p1,p2]ϕ , a transition 

s a−→ μ exists such that p1 ≤ μ(�ϕ�) ≤ p2. That is, p1 ≤ μ(
⋃

G) ≤ p2. Further, by the definition of group-by-group fuzzy 
bisimulation, there exists t

a−→ ν such that μ(
⋃

G) = ν(
⋃

G), i.e., μ(�ϕ�) = ν(�ϕ�). Hence, p1 ≤ ν(�ϕ�) ≤ p2 and then 
t |= 〈a〉[p1,p2]ϕ . �
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Lemma 6. Let state space be finite and R = {(s, t) | T hL(s) = T hL(t)}. Then, for any equivalence class [si] of R, there exists a formula 
ϕi ∈L such that �ϕi � = [si].

Proof. Its proof can be found in the proof of Theorem 4.6 in [16]. �
Theorem 3. Let the set S be finite and (S, A, →) be an FTS. Then for any two states s, t ∈ S, s ∼FB,gbg t iff T hL(s) = T hL(t).

Proof. (=⇒) First we show soundness, i.e.,

∀s, t ∈ S. s ∼FB,gbg t =⇒ T hL(s) = T hL(t).

Let s, t ∈ S , s ∼FB,gbg t and ψ be a formula. We show that s |=L ψ ⇐⇒ t |=L ψ by structural induction on ψ . The cases of 
�, conjunction and negation are trivial. Now consider ψ ≡ 〈a〉[p1,p2]ϕ .

By Lemma 5, �ϕ� is ∼FB,gbg -closed. Further, since ∼FB,gbg is an equivalence relation by Proposition 2, �ϕ� is the union of 
some equivalence classes of ∼FB,gbg by Lemma 1 (i). Now let s |=L 〈a〉[p1,p2]ϕ . Then a transition s a−→ μ exists such that p1 ≤
μ(�ϕ�) ≤ p2. Since s ∼FB,gbg t , there exists a transition t a−→ ν such that μ(�ϕ�) = ν(�ϕ�). As a result, p1 ≤ ν(�ϕ�) ≤ p2. It 
follows that t |=L 〈a〉[p1,p2]ϕ . Another direction holds since the symmetry of ∼FB,gbg . Hence, s |=L ψ ⇐⇒ t |=L ψ as desired.

(⇐=). Let R = {(s, t) | T hL(s) = T hL(t)}. Obviously, R is an equivalence relation. It remains to prove that R is a group-
by-group fuzzy bisimulation. Let G = {[si] | i ∈ I} be the set of all equivalence classes of R . Assume by contrary that R

is not a group-by-group fuzzy bisimulation. Then there exist (s, t) ∈ R , G0 ∈ 2S/R and some transition s a−→ μ such that 
for all transitions t

a−→ ν , μ(
⋃

G0) �= ν(
⋃

G0). For each [si] ∈ G0, Lemma 6 implies that a formula ϕi ∈ L exists such that 
�ϕi � = [si]. Further, let ϕ = ∨ϕi where �ϕi � = [si] and [si] ∈ G0. Then 

⋃
G0 = �ϕ�. Let μ(�ϕ�) = μ(

⋃
G0) = p. We have that 

s |= 〈a〉[p,p]ϕ , but t �|= 〈a〉[p,p]ϕ , which contradicts (s, t) ∈ R . �
Example 3. Consider the FTS in Fig. 1 again, s, t |= 〈a〉[0.3,0.5]〈β〉[1,1]� where β ∈ {b, c, d}. One of the benefits of a logical 
characterization is that we can conveniently detect two states which are not bisimilar. For example, if we adjust the central 
transition from s as s a−→ 0.5

s1
+ 0.4

s3
, then we have that s |= 〈a〉[0.4,0.4]〈d〉[1,1]� but t �|= 〈a〉[0.4,0.4]〈d〉[1,1]�. Hence, s and t are 

not group-by-group fuzzy bisimilar.

Remark 2. In probabilistic systems, the literature [1] (see Theorem 1, page 75) has established the logical characterization 
theorem of group-by-group probabilistic bisimilarity, which needs image-finite condition and the minimal probability as-
sumption. While Theorem 3 in this paper does not need this condition and similar assumption. In addition, in order to 
characterize ∼P B,gbg , the literature [1] first characterizes ∼i

P B,gbg , i ∈ N that is a coarser equivalence relation and its limit 
is ∼P B,gbg . While Theorem 3 in this paper adopts a direct approach-structural induction on formulae and the definition of 
group-by-group bisimulation.

7. Conclusion and future work

In this paper, we have investigated a novel group-by-group fuzzy bisimulation for FTS, which is coarser than that in [4]. 
We provided both fixed point characterization and logical characterization for the group-by-group fuzzy bisimilarity, together 
with a polynomial-time algorithm to compute the group-by-group fuzzy bisimilarity.

As future work, two questions are worth studying. One is to study behavioral distance that can measure to what ex-
tent two states are group-by-group fuzzy bisimilar. The other is to consider coalgebraic theory of group-by-group fuzzy 
bisimulation.
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