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Abstract

Data manipulation functionalities (DMFs) refer to operations such as create, read, update
and delete which are crucial for maintaining the integrity of Android application (app) data.
Existing testing techniques often fail to explicitly verify DMFs in combination, having lim-
ited capability to uncover non-crashing data manipulation errors (DMEs). In this paper, we
propose a novel approach SceneData, which utilizes a scene-guided exploration strategy to
effectively detect DMESs in Android apps. Particularly, we model the UI pages as scenes and
present a scene transition graph (SceneTG) to capture the relation between scenes. By uti-
lizing SceneTG, we explore app states to thoroughly validate DMFs across different scenes.
We evaluate SceneData on 17 popular real-world apps, and SceneData discovers 25 pre-
viously unknown bugs in their latest releases, 21 of which are non-crashing DMEs. The
experiments also show that a significant fraction (15/21) of these bugs cannot be detected by
the state-of-the-art techniques.

Keywords Scene-based exploration - Non-crashing functional bugs - Model-based testing -
Android apps

Communicated by: Shaukat Ali

B Yu Zhou
zhouyu@nuaa.edu.cn

B Taolue Chen
t.chen@bbk.ac.uk

Shugqi Liu
liushugi @nuaa.edu.cn

Wenhua Yang
ywh@nuaa.edu.cn

Harald Gall

gall@ifi.uzh.ch

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, China

School of Computing and Mathematical Sciences, Birkbeck, University of London, London, UK

Department of Informatics, University of Zurich, Zurich, Switzerland

Published online: 10 May 2025 9\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10662-w&domain=pdf
http://orcid.org/0000-0002-3723-7584

110  Page 2 of 38 Empirical Software Engineering (2025) 30:110

1 Introduction

Android applications (apps) are integral to numerous daily activities, with millions available
in app stores (Google 2024b; Fdroid 2024). The growing user demand has led to increas-
ingly complex functionalities and user interface (UI) designs (Xiong et al. 2023). Android
apps commonly perform data operations such as create, read, update and delete (CRUD) to
manage app-specific data (e.g., adding new files, browsing news, or deleting files). These
data operations are directly related to data integrity and availability, making them essential
for maintaining an app’s core functionality. Since data manipulation functionalities (DMFs)
involve data storage, processing and presentation, failures in these operations may cause
data inconsistency or unintended modifications, severely compromising the user experience.
To ensure these DMFs work as expected, developers must conduct thorough testing before
releasing the app (Jabbarvand et al. 2019; Su et al. 2021; Yang et al. 2022).

Despite significant progress in improving and automating GUI testing for Android
apps.detecting non-crashing data manipulation errors (DMEs) remains a challenge. Unlike
crash bugs that cause system failures, non-crashing DMEs lead to inconsistencies in data
operations. These problems often persist silently without triggering obvious failures, making
them difficult to be detected by the current testing techniques. Most existing GUI testing
tools, e.g., Monkey (Monkey 2024), Sapienz (Mao et al. 2016) and Stoat (Su et al. 2017),
are only capable of detecting crash bugs due to the lack of effective test oracles. Some recent
testing tools employ metamorphic relations to mitigate the oracle problem, but most efforts
have been made towards addressing specific issues, such as system settings (Sun et al. 2021,
2023b) and data loss (Guo et al. 2022; Riganelli et al. 2020). While Genie (Su et al. 2021)
and Odin (Wang et al. 2022) can find generic non-crashing bugs, they struggle to identify
logic bugs in data operations such as incorrect file renaming or failed updates.

Figure 1 demonstrates a real-world DME bug in the file management app Markor.! Renam-
ing the recently viewed documents has a serious bug that subsequently makes the document
inaccessible. Specifically, a user creates a file on the home page (Fig. 1(a)-(c)). After a series
of operations, the user navigates to the recently-viewed documents page (Fig. 1(c)-(e)). If
the user attempts to rename a document titled “To-do.md" to “Done.md", the app fails as the
filename is not correctly updated to “Done.md" (see Fig. 1(e)-(h)). Even worse, when the user
clicks on this document, a strikethrough appears on the filename, and the device yields no
response (see Fig. 1(h)-(j)). In this example, a failure to rename a file in the recently-viewed
documents is a typical example of non-crashing DME.

The recent tool PBFDroid (Sun et al. 2023a) leverages the consistency between the data
model and the Ul layout as an oracle for detecting DMEs. For instance, successfully dis-
playing the “To-do.md" file as text in the GUI indicates the normal operation of the DMF
“Create File", as described in Fig. 1(a)-(c). PBFDroid employs an exploration strategy that
randomly interleaves related DMFs and other events. Despite its promising performance,
two key drawbacks hinder its ability to uncover complex DMEs resulting from interactions
between various data manipulations.

First, the same DMF can be executed on different Ul pages. For example, the DMF
“Rename file" can be performed on both the home page (Fig. 1(c)) and the recently viewed
documents page (Fig. 1(e)) of Markor. Randomly executing operations may significantly
reduce the chance of interacting with the widget highlighted in the red box in Fig. 1(c),
which is necessary for navigating to the recently viewed documents page (Fig. 1(e)), where
the error occurs.

I available at https://github.com/gsantner/markor/
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Fig. 1 A DME in app Markor (v2.12.0). The small red box on each page denotes a UI event and the string
below each page screenshot represents the corresponding scene identifier

Second, multiple DMFs can be executed on the same Ul page. For example, the recently
viewed documents page in Markor (Fig. 1(e)) offers various functionalities that allow users
to perform operations such as renaming, deleting and creating files. If the DMF “Create
File" is randomly selected for testing (by clicking the add button on the current page), it
redirects to the home page (Fig. 1(c)), which may interfere with the testing of other DMFs
(e.g., “Rename File") on the recently viewed documents page, making it difficult to trigger
the bug illustrated in Fig. 1.

These problems impose two technical challenges in testing app properties. (1) Determin-
ing the executable DMFs for the current Ul page. Ul pages consist of numerous Ul views
(widgets) that represent the user’s functional intentions. It is essential to determine which
widgets on the current page satisfy the conditions for DMF execution. Due to the richness of
UI pages in Android apps, relying solely on the DMF preconditions provided by humans to
determine their executability may result in omissions. This hinders the comprehensiveness
of DMF validation on a single Ul page. (2) Enhancing mutual interaction between DMFs
across different pages. The complexity of mobile apps often arises from the fact that they
contain multiple distinct DMFs. They work collaboratively to complete data management
and processing tasks. However, certain bugs only manifest under specific combinations of
DMFs, involving interactions and execution sequences among different DMFs. In addition,
the implementation of certain features often relies on specific events on the Ul pages to
trigger. In other words, due to the possible combinations of DMFs, dynamic exploration
struggles to generate comprehensive tests to validate whether various app properties operate
as expected.
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Contributions In this paper, we propose SceneData, a novel approach that utilizes a scene-
guided exploration strategy for effectively detecting DMEs in Android apps. Scene-guided
exploration systematically models an app’s Ul pages as scenes and dynamically explores
their transitions. Leveraging the scene representation, SceneData comprehensively examines
DMF interactions within and across different states. In particular, we adopt a model based
method, and leverage two techniques to overcome the aforementioned challenges.

We construct a GUI model to represent the app’s behavior which is utilized to determine the
executable DMFs on each app page. Specifically, we first model the UI pages as scenes by the
dynamically captured widget hierarchy. Subsequently, a scene transition graph (SceneTG)
is extracted by interacting with the widgets in these scenes to capture the detailed transition
relation between scenes. Based on the constructed SceneTG, the local exploration of DMF-
related widgets is performed in each explored scene to determine their suitability for DMF
execution, enhancing the identification of executable DMF candidates.

For the DMF candidates identified for these unique scenes, a depth-first search (DFS) strat-
egy is employed to generate meaningful test cases that cover diverse DMF combinations.
This strategy ensures thorough testing of each scene and systematically explores DMF inter-
actions across different scenes. During the iterative validation process of DMF operations,
our strategy prioritizes other possible events that may trigger scene transitions to effectively
interlink disparate GUI scenes.

We implement a prototype of SceneData and conduct comprehensive experiments to
demonstrate the effectiveness of SceneData. Evaluation on 17 real-world Android apps
shows that SceneData successfully identifies 25 previously unknown bugs, 21 of which are
non-crashing functional bugs, and the remaining 4 are crashes. We reported these bugs to the
developers, and so far, 14 have been confirmed. A detailed comparative analysis revealed that
a significant fraction (15 out of 21) of these bugs could not be detected by the state-of-the-art
technique PBFDroid. Furthermore, none of the 21 non-crashing defects are identified by
Monkey, Genie, and Odin.

Structure The remainder of the paper is organized as follows. Section 2 introduces the back-
ground of our work. Section 3 elaborates on the details of SceneData. Section 4 describes the
experimental setup, and Section 5 analyzes the experimental results. An extended discussion
of our work is presented in Section 6. Related work is reviewed in Section 7, and Section 8
concludes this paper.

2 Background
2.1 Android Ul Layout and Event

In Android app development, an Activity provides the main interface for user interaction.
It represents an independent screen where users perform specific tasks such as browsing
content, inputting data or making selections. User operations on these screens can trigger
transitions between different Activities.

A Fragment s a versatile component that enables developers to break down complex Activ-
ities into smaller, more flexible units. This modularity not only improves code maintainability
but also allows the app to adapt to devices (e.g., with various screen sizes) more naturally. By
embedding multiple Fragments within a single Activity, each Fragment can independently
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handle a portion of the interface. Furthermore, Fragments can be reused across multiple
Activities, reducing code redundancy and ensuring a consistent user experience throughout
the app.

An Android app is largely a GUI-based event-driven program. Each Ul page is defined
by its corresponding user interface (UI) layout file. The UI layout L is essentially of a tree
structure composed of numerous Ul views (or widgets). Each UI view w € L has attributes
such as class (view type), resource-id (view id) and text (view text). Ul views
include user-visible leaf nodes (such as buttons or text fields), with their type being But ton
or EAditText. They also include non-leaf nodes, which can be elements of type ListView
or ViewGroup. These non-leaf nodes organize or display other views in a specific order.

Figure 2 illustrates a screenshot of Ul page from an app markor, along with its
corresponding UI layout. The leaf nodes in the UI layout are annotated with screen-
shots of the respective widgets on the screen. The file name “To-do.md" displayed on
the screen in Fig. 2 can be uniquely identified by the following attributes and their
values: { (package, “net.gsantner.markor"), (class, “android.widget.TextView"),
(resource-id, “net.gsantner.markor:id/opoc_filesystem_item__title"), (text,
“To-do. md"), (clickable, “false"), (bounds, “[158, 498][369, 565]")}.

A Ul event e = (f, w, 0) is a tuple where e.r denotes the event type (e.g., click, edit,
or a system event), e.w denotes a specific UI element (e.g., a button or text field) that is
directly interacted with by e, and e.o denotes the optional data associated with e (e.g., the
text inputted for editing). Systematically modeling Ul layouts and events enables the analysis
of how user interactions trigger transitions and update within Ul pages, offering an abstract
representation of app behavior.

Multiple ordered events constitute an event trace £ = [eq, ..., ¢;, ..., e;], which imple-
ments a certain funcuonahty of the app. Accordlngly, the state of the app changes as events

are executed, denoted as sg AN 81 8i—1 AN Si - Sp—1 n, su, where the state s; is reached
by executing event ¢; on state s;_1. We use s, = E(so) to denote the transition of the initial
state sp to the final state s,, by executing the events sequence E. In DME detection, analyzing
the initial state helps determine the appropriate DMF to execute on the current page, while
examining the final state helps validate whether the DMF operation has been performed
correctly and achieved its intended functionality.

Markor m = Q
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Fig.2 The GUI screen of Ul page captured from app markor. The Ul layout hierarchy elements highlighted
on the right correspond to the screenshot shown on the left
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2.2 Model-based Properties

When a user performs DMF-related operations, it is crucial to ensure that the data displayed
on the screen corresponds accurately to user’s actions. To this end, we need to know (1)
the UI layout of the app page and (2) the app data (e.g., file name) involved in the DMF
operations. They are specified as an app state s = (L, D), where L represents the Ul layout
and D represents the data.

Model-based property, first introduced by PBFDroid (Sun et al. 2023a), is employed to
verify a DMF, ensuring it correctly implements the desired functionality. For a data manipula-
tion operation op (i.e., op is create, read, update, delete, or search), its model-based property
is defined as ¢°? = (Pre®P, E°P, R°P, Post°P). Here, Pre°P denotes the necessary pre-
condition that must be satisfied before executing the event trace E°P, which represents the
functionality F as an event trace involved in performing the DMF. R°P captures the data
updates when each event ¢; in E° is executed. An abstract data model D can be introduced
to keep track of the app data manipulated by DMF. Under R°’, D is updated to reflect the
effect of the operation on data. The postcondition Post°P describes the expected change in
the app state after E°7 is executed.

We use the example in Fig. 1 to explain how to perform property checking on DMFs. For
the DMF “Create Folder" in app Markor, let the event path E"*“¢ be [eq, €3, e3]. When E€"¢4%¢
is executed starting from the initial state of the app (shown in Fig. 1(a)), the state changes

can be tracked as s, a Sp ... 2 s¢, where s; = (L;, D;) fori € a, b, c. The abstract data
model D is updated throughout the execution of E€"*#, Note that the precondition Pre ¢4,
i.e., the Ul view w; of the first event ¢ is in initial state s,, determines the execution of DMF
“Create Folder". After completing the execution of the three events, Markor switches to the
state s. (depicted in Fig. 1(c)). R"¢?'¢ records the data updates, adding “To-do.md" to D,.
Finally, the postcondition Post<"*#* checks that D, appears in the layout L., confirming
the successful execution of the DMF “Create Folder". Similarly, when multiple DMFs are
executed, the same property checking method is followed. With the successful execution of
DMF “Update Folder", the abstract data model D should be updated from ‘To-do.md" to
“Done.md".

Figure 3 illustrates how D is updated through the execution of the corresponding DMFs
in Fig. 1. However, the final state s, of the app records the data Dj, that fails to include
“Done.md" as expected. This discrepancy indicates that the DMF “update file" property
is violated. Model-based properties provide an effective strategy for verifying DMF exe-
cutions, overcoming the limitations of DME detection. By tracking the app’s UI and data
status throughout the execution process, it ensures consistency with expected behaviors. This
concept lays the foundation of our work. Unlike the random exploration strategy adopted
in PBFDroid, SceneData introduces a scene-guided exploration strategy that systematically
navigates Ul states and DMF interactions, allowing more thorough validation of these prop-
erties.

Ln
normal

Dn
La Le {Done.md}

state \
Da Peete R De w, ______________________ property
{} {To-do.md} i
violation,

& actual
state

Dn
{To-do.md}

Fig.3 Abstract app states shown in Fig. 1(a)-(h)
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3 Approach

Figure 4 presents an overview of the proposed SceneData approach. In a nutshell, SceneData
takes the app under test as input and attempts to reveal any DMEs with bug-reproducing test
cases as output. It consists of three modules: (a) DMF Instantiation, (b) SceneTG Construc-
tion, and (c) Scene-Driven Exploration.

DMF Instantiation (Section 3.1) defines the DMFs of the app. These DMFs can be
specified during the execution of the functionalities of interest. SceneTG Construction (Sec-
tion 3.2) focuses on the collection of UI transition graph (UITG) for the app and its dynamic
exploration. Specifically, we build UITG as the basis for SceneTG. We then collect Inter-
Component Communication (ICC) messages to directly launch activities within the app.
By identifying scenes within these launched activities and extracting the transition relation
between different scenes, the initial UITG is enriched. Scene-driven Exploration (Section 3.3)
encompasses filtering executable DMFs for each new scene and generating GUI tests for the
app. For the former, all executable DMFs are filtered to construct a candidate set. If no can-
didate DMF is found, a widget on the current page is randomly selected to trigger a new
scene. For the latter, the candidate DMFs are tested across different scenes by adopting a
DFS strategy to generate test cases covering different DMF combinations. If new scenes are
discovered during the dynamic exploration process, the former step is iterated to thoroughly
validate the app state.

3.1 DMF Instantiation

DMF instantiation assists testers in defining DMFs for apps. Since app widgets may change
in a newer version, we follow the steps introduced in PBFDroid (Sun et al. 2023a), in which
tester’s interactions are recorded and translated into DMF specifications using a domain-
specific language in the JSON format.

Definition 1 (DMF specification) A DMF specification is given by (EventTrace, Data,
DataChange, View, Precondition, Postcondition), defining the functional operations
performed by the app.

— FEventTrace contains a sequence of events that execute the DMF, with each event having
a type, a view and optional data.

— Data defines the data objects involved in the DMF operation, specifically the data objects
that are added and removed.

Checking Finding DMF- | }
i{__Pre-Condition related Triggers J |

N Candidat
! Testing the Widgets i aISMIFSa ¢
i__Associated with the DMF__}

H /
install ! PN | te
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! \ ©® search |

oid Device ~ Assisted Input

input | (AGq-
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Bug Reports |

Satisfy the
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Conditions?

Fig.4 The workflow of SceneData
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— DataChange specifies the effects of data updates.

— View describes the Ul views associated with the DMF. Each view can be identified
by attributes such as className, resourceId and text, which are automatically
collected based on the recorded events.

— Precondition defines the necessary conditions for executing the DMF. The event trace
for the DMF can only be executed when the preconditions are met.

— Postcondition defines the properties that are valid after executing the DMF.

To generate a DMF specification, one needs to (1) Specify the target DMF type. The
tester first needs to specify the DMF type to SceneData, whether it is create, delete, update,
search or read. (2) Capture interaction sequences. As the tester interacts with the running
app to achieve the specified functionality, an event trace is automatically generated to capture
the sequence of interactions. Concurrently, DMF instantiation extracts the views of each UI
widget participating in the interaction directly from the corresponding XML layout of the
app page, ensuring an accurate representation of the Ul widgets involved. (3) Define data
objects. Based on the DMF type, the tester specifies the data objects to be manipulated using
text input. For example, in the DMF “Update File", where the DMF type is “update", the
tester manually specifies the old filename as the deleted data object and the new filename as
the added data object.

It is important to note that when creating the DMF, the event trace for interactions with the
app should ensure that the preconditions for the observed properties are met on the starting
page. Additionally, the postconditions should be adhered to on the ending page. Following
these steps, a DMF specification in the JSON format is automatically generated.

Example 1 Figure 5 illustrates the basic steps for generating the DMF specification of the
“Update File" in the latest version (v2.12.0) of Markor, where the interaction sequence
follows the definition provided by PBFDroid (Sun et al. 2023a).

In this case, the specified DMF type is “update”. The user inputs are illustrated through
operations across the app pages from Lg to L3 (as shown in Fig. 5), with each Ul wid-
get involved in the interaction marked with a red box. The process involves removing the

‘ (1) DMF type: update

removed: To-do.md ‘

(2) User inputs: added: Done.md

(3) The manipulated data objects

|

To-do.md
7/30/2024,1:54 PM Rename Rename

W3
CANCEL 0K
o L oy
ﬂ i DMF i based on user input

EventTrace: [ Views: {

e:: { type: long-click, view: w:}, wi: { id": "net. id/opoc._f _item_title" },

e:: { type: click, view: w:}, wa { " net. i ion_rename_selected_item" },

e:: { type: edit, view: ws,text: random}, wa: { “resource-id": "net.gsantner.markor:id/new_name" },

eu: { type: click, view: wa}], wa: { "text": "OK" },
Data: { ws: { "resource-id":"net.gsantner.markor:id/opoc_filesystem_item__title" } },

removedDataObject: { L.ws.text }, Precondition: w: € Lo,

addedDataObject: { La.ws.text } } Postcondition: ( wsA addedDataObject € Li) A ( wsA removedDataObject & L),
DataChange: ( remove removedDataObject ) A ( add addedDataObject ),

Fig.5 Defining the DMF specification of “Update File" with the assistance of SceneData
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editable text object “To-do.md" from page L», and adding the editable text object “Done.md"
on page L3. Consequently, the DMF specification for “Update File" is automatically gen-
erated, as depicted in Fig. 5. @The event trace for the DMF “Update File" includes four
events: ey, ez, e3, and e4. For instance, e; is a long-click event, with its target view anno-
tated as w; on Lg. @The DMF “Update File" involves one deleted data object and one
added data object, specified by the text in view ws on L, and L3, respectively. @The
data update effect for “Update File" is to delete the removedDataObject and add the
addedDataObject in the app data. @The execution of DMF “Update File" involves
five views: wi, wa, w3, w4, and ws. For example, w; can be identified by the resource
ID ‘resoure-id=net.gsantner.markor:id/opoc_filesystem_item__title’. ®The Precondition for
“Update File" includes the view w on the starting page Lo. The Postconditions for “Update
File" includes the view ws on the ending page L4, with the text of view ws displaying
addedDataObject instead of deletedDataObject.

3.2 SceneTG

To understand the specific Ul states and their complex transition relation in the app, we
construct a scene transition graph (SceneTG). This graph enhances scene-driven dynamic
exploration by providing a reachable path from the current scene to another target scene,
allowing more comprehensive and flexible validation of DMF-related behaviors. In a nutshell,
a SceneTG connects different scenes through Ul events, providing a detailed depiction of
app behavior. The SceneTG of an app is formally defined as follows.

Definition 2 (Scene Transition Graph) A scene transition graph (SceneTG)is atuple (S, E, §)
where S is a set of scenes representing the Ul components of the app (e.g., activities, frag-
ments, drawers, menus, and other UI pages); E is the set of events that app handles; the
transition function § : § x E — S describes the transitions between scenes. Each transition
(si—1, ei, s;) € & signifies a change from state s;_1 € S to state s; € S, triggered by the event
ei € E.

To construct SceneTG, we follow three steps. First, we collect the Ul Transition Graph
(UITG) as the basis for building the SceneTG. Next, we collect the Inter-Component Com-
munication (ICC) messages for activity launching. Finally, we dynamically explore the app
to identify scenes within activities and their transition relationships.

UITG Collection The UITG of apps is commonly utilized to depict the interactions between
various Uls triggered by typical operations.

Definition 3 (UI Transition Graph) A UI transition graph (UITG) is a directed graph G =
(V, E), where V is the set of nodes representing the app activities or fragments, and E is the
set of edges representing the possible transitions between these nodes.

Many methods have been proposed for GUI modeling (Chen et al. 2019; Azim and
Neamtiu 2013; Yan et al. 2020, 2022). In our approach, we use ICCBot (Yan et al. 2022) to
construct an initial UITG for each app. UITG will be enriched by dynamic exploration and
serves as the basis to construct the SceneTG.

ICC Messages Acquisition Android supports launching the intended activity using ICC mes-
sages through the console interface. Generating ICC messages typically involves creating an
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Intent object that carries the necessary information needed to launch these components. This
information includes basic attributes and extra parameters. Basic attributes, such as action
and category, define the target of an intent and are usually specified in the intent-filter
of the AndroidManifest.xml file. Figure 6 shows the exposed activity MainActivity
and its attribute information as declared in the Markor’s manifest file. The intent-filter spec-
ifies that the implicit ICC must carry the values android. intent.action.MAIN for
action and android. intent.category.LAUNCHER for category. Extra parameters
ensure that activities receive the specific data needed to launch correctly, especially for those
that depend on certain inputs. Since ICCBOT (Yan et al. 2022) infers ICC specifications
by extracting component declarations and analyzing ICC messages related to sending and
receiving, we utilize its extras settings to assign values to parameters.

Specifically, for an activity, we extract the recvIntent field from extras to retrieve
the parameter name and its corresponding data type. Based on the required data type, we
generate basic data structures such as strings, characters, or Boolean values. For example, if
the parameter type is Boolean, we populate a value using the format “ -ez name False",
where —ez indicates that the parameter is of Boolean type, name represents the extracted
parameter name, and False is the corresponding Boolean value. ICC messages ensure that
the activities are launched with the necessary context and information for proper functionality.

Dynamic Exploration The extracted UITG focuses on the transitions between activities or
fragments, resulting in a coarse-grained and potentially incomplete representation. In Android
apps, a single fragment can contain multiple specific functionalities. Consequently, the UITG
may not fully capture the interactions related to these functionalities and the page transitions
they trigger. Namely, some pages with specific functionalities may not be explored. For
example, a bug in Markor, as shown in Fig. 1, involves operations conducted entirely within
MorelnfoFragment of MainActivity. However, UITG captures only high-level transitions
between activities or fragments and fails to distinguish interactions occurring within the same
fragment. As a result, transitions between different Ul states within MoreInfoFragment, such
as navigating between the home page (Fig. 1(a)) and the rename dialog (Fig. 1(b)), may not
be adequately represented in the UITG, leading to an incomplete understanding of the app’s
behavior.

To address this issue, we consider the hierarchical structure of components on the Ul page
and build a more fine-grained GUI model, SceneTG, based on scenes. For each launched
activity, the app state is identified as a scene, and the interactive widgets in each scene are
explored exhaustively, which ensures that the transitions between different scenes are fully
captured.

<activity android:exported="true"
android:name="net.gsantner.markor.activity. MainActivity"
android:launchMode="single Top"
android:taskAffinity=".activity.MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
<fintent-filter>
</activity>

Fig.6 Example of the manifest file with component declaration
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Scene Identification When dynamically exploring an app, itis crucial to define the appropri-
ate granularity of UI updates. We conduct an in-depth analysis of the existing start-of-the-art
UI layout abstraction methods (Wang et al. 2022; Zhang et al. 2023; Lin et al. 2023) and
adopt the following rules to model a UI page at the scene granularity. Specifically, scene iden-
tification assigns a unique scene identifier by abstracting the dynamically captured Ul layout
of the app page. (1) We focus only on nodes that match the target app package. System-level
UI elements, such as the status bar and input method interface, may partially obscure the
screen and hinder the recognition and processing of the target app’s Ul elements. (2) By
combining the values of three key attributes of each widget, resource-id, class, and
package, a unique identifier is generated using the MD5 hash algorithm (Rivest 1992).
This strategy preserves the core features of the page layout by ignoring minor changes that
do not affect the layout (such as text and color). (3) For adapter views such as ListView
or RecyclerView, we only consider the structure of the first child view retrieved from
ListApdapter (Google 2024a). Since the adapter views often contain repeated views,
this strategy ensures that the unique identifier for the UI page remains accurate.

Example 2 As illustrated in Fig. 1, each screenshot of an app page is annotated with its
corresponding identifier below. Two UI pages with the same identifier are considered to be
the same scene. For instance, the pages shown in Fig. 1 (e) and (i) are considered as the same
scene because they share the same identifier, differing only in the text rendering of the file
name.

Transition Extraction Algorithm [ details the process of extracting scene transition relation
within the app to construct the SceneTG. In general, the transition extraction algorithm
adopts a hierarchical strategy by dynamically exploring the app: at the activity level, it uses
breadth-first search (BFS) to ensure coverage of all possible activities that can be launched
through ICC messages (Lines 3-12); when delving down into a specific activity, it switches to
depth-first search (DFS) to exhaustively explore all interactive widgets in the activity (Lines
14-27).

First, based on the ICC messages 1 CC,; obtained, each activity of the app is directly
launched and traversed (Line 3). For successfully launched activities, the UI layout informa-
tion of the initial page is abstracted to obtain the identifier s; for scene identification (Lines
5-6). When new scenes associated with the current activity are encountered, their pages are
explored (Lines 7-10).

SceneData utilizes the Android Debug Bridge (ADB) tool? to dump the current screen,
which means it retrieves the current Ul hierarchy as an XML file. It extracts widgets with
the attribute ‘clickable=true’ from this XML file to identify all interactive widgets (Line 2,
16-17).

Relying solely on a DFS strategy to explore as many scenes as possible within a specific
activity has two major limitations in dynamically exploring data manipulation related behav-
iors. First, each widget in the scene is triggered in sequence until no new scene is discovered,
which will result in a large number of redundant operations. For instance, page (d) of Fig. 7
might be visited in the order of ‘(a) — (b) — (¢) — (d)’, requiring multiple restarts and
navigation back to page (d). In fact, it is possible to reach page (d) directly by triggering the
last button of the bottom navigation bar on page (a). To minimize the time cost associated
with redundant operations, we adopt a mechanism for storing and managing widgets to be
visited in activities. This strategy ensures that each widget across different scenes is visited

2 https://developer.android.com/tools/adb/

@ Springer


https://developer.android.com/tools/adb/

110  Page 12 0f 38 Empirical Software Engineering (2025) 30:110

Algorithm 1 Transition Extraction Algorithm.

Input: Target app app, The corresponding ICC messages with all activities in the target app /CCyy, Ul
transition graph UIT G, Instantiated DMFs of the target app .,

Output: Scene transition graph SceneT G

1: S < @, SceneTG <~ UITG

2t wamps < get DM FSwidgts(igmys)

3: for act,icc € ICCqy do

4 wy <@

5 if Success(act, icc) then

6: s; < abstractStructurelnfo()

7 if s, ¢ S then

8 actionsy <

9: ExplorePage(s;, S, wy, Wamfss SceneT G, actionsy)
10: end if

11:  endif

12: end for

13:

14: function EXPLOREPAGE(s;, S, wy, Wamfss SceneT G, actionsy)
150 S < SUs:

16:  widgets; < getWidgets(si, Wy, Winfs)

17: wy <— getVistetWidgets(widgets;, wy)

18:  for widget; € widgets; do

19: st < executeAction(app, actions;)

20: ar < generateAction(app, widgety)

21: St41 < executeAction (s, wy, ar)

22: SceneT G < SceneT G U(st, (wy, ar), Se4+1)

23: if 5,41 ¢ Sandlen(actions;) <= threshold then

24: actionsy < recordNavigation(s;, ar)

25: ExplorePage(s;+1, S, wy, Wamyss, SceneT G, actions;)
26: end if

27:  end for

28: end function

a % 02:03 a % 02:03 a % 02:03 a % 02:03
Markor m=aQ ToDo ® a: QuickNote ®  a More
|

storage/emulated/0/Documents

Do you have a question or a
&  Pproblem?
Gi

_ W _ B Settings
\_( /)_/ @  Help/FAQ

W Ratethis app

= @0 1’ 8 » .

(b)

Fig.7 Example of navigating to page (d). Page (d) is visited after navigating through pages (a), (b) and (c)

only once, significantly improving the efficiency of the exploration process. Second, sequen-
tial iteration of widgets on a page may prematurely trigger the removal of app data or fail
to explore key data manipulations. To ensure comprehensive coverage of data manipulation-
related behaviors, SceneData prioritizes the activation of widgets that are integral to the DMF
in newly encountered scenes. By prioritizing these widgets, we aim to explore a wider range
of DMF-related states early in the exploration process, thereby improving the effectiveness
of exploration process.
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SceneData traverses the widgets in the new scene for interaction (Lines 18-27). For each
widget w; that appears, the corresponding action a; is assigned based on the characteristics
defined in the UI layout (Line 20). The resulting triggered transitions are recorded as s; RN
Si+1, where wy, a; represent the specific action a, taken on the widget w; (Lines 21-22).

The exploration terminates when a depth threshold is reached or no new scenes appear
(Lines 23-25). In particular, whenever an action that triggers a new scene is discovered, it is
recorded to facilitate initial navigation from the activity launch to the current page. If a widget
initiates a transition that neither advances to an unexplored scene nor revisits an explored
scene, SceneData reverts to the previous scene, ready to interact with other widgets (Lines
19,24).

3.3 Scene-driven Exploration

The input of the scene-driven exploration is the SceneTG, the app under test and the instan-
tiated DMFs. 1t filters out executable DMFs for each newly identified scene and achieves a
DMF-directed DFS strategy for these candidates, interacting with DMFs to discover DMEs.

Executable DMFs Filtering To test the DMFs-related behavior of an app, we need to deter-
mine which DMFs-related operations can be performed in the current state of the app. The
model-based properties of DMFs define the prerequisites that must be met to execute the
events defined in the instantiated DMFs. In some cases, the preconditions defined for an
instantiated DMF might only be set on the app’s initial homepage and are designed to align
with the user’s most common actions. This setup cannot validate the DMF behavior on other
pages of the app, potentially limiting the ability to flexibly and comprehensively validate
DMF-related behaviors.

For example, in the app ActivityDiary?® that records daily activities, a user might see a
visual add activity button on the page after searching for an activity and decide to add an
activity. However, the instantiated DMF “Add Activity" might not recognize that the current
page allows the addition of activities.

To address this issue, we design a filtering strategy for executable DMFs by leveraging the
SceneTG, as described in Algorithm 2. This strategy allows to go beyond the execution paths
defined by instantiated DMFs to identify all executable DMFs for each new scene, providing
a more comprehensive validation of app properties (Line 5). The strategy consists of three
key aspects.

1. Checking pre-condition. Similar to Sun et al. (2023a), SceneData checks whether the
preconditions of an DMF are met based on the current app page layout and the simulated
data.

2. Finding DMF-related triggers. SceneData first determines whether there is a widget
defined in the instantiated DMF on the current page. If so, SceneData then examines the
SceneTG to determine if there are any state transitions in the current scene triggered by
these widgets.

3. Testing widgets associated with DMF. The SceneTG explored by SceneData may be
incomplete and may not cover all new scenes. Since SceneTG is constructed via dynamic

3 https://github.com/ramack/ActivityDiary
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exploration of interactive widgets within launched activities, it prioritizes triggering wid-
gets associated with DMF operations. However, executing a complete DMF often requires
multiple widget interactions. For example, creating a file typically involves clicking the
“New" button, entering a file name and confirming the creation. While depth-first explo-
ration ensures that individual DMFs are executed, the vast number of possible widget
interactions may hinder the exploration of additional new scenes, resulting in the potential
incompleteness of SceneTG. If the current scene includes crucial widgets defined in the
DM, an exhaustive exploration strategy will be performed on these widgets to achieve
comprehensive validation. When clicking a target widget triggers a scene transition, the
newly discovered transition will be updated into the SceneTG. Since a new transition is
triggered, the next step is to attempt to return to the previous scene using the system back
button or by checking the SceneTG for a direct operation to go back. If both ways fail,
try executing the shortest path algorithm on the SceneTG to return to the previous scene.
Then, continue testing other target widgets on the current scene, transitioning to the next
scene one by one until all widgets are tested.

By employing these strategies, if the executable DMF candidates can D M F's are identified
in the current scene, they are incorporated into the pool of candidate DMFs to be visited
toVisitDmfs (Lines 6-7). The DMFs in toVisit Dmfs will then be executed to explore
the new scenes. This process helps to drill down into situations where different states of the

app

can execute the instantiated DMFs. During the filtration process of executable DMFs,

if reverting to the preceding scene is not feasible, the current exploration step is aborted.
SceneData then initiates widgets in the current state with the intention of navigating the app
back to the prior scene (Lines 10-17). This mechanism involves the generation of inputs,
which will be elaborated in the following subsection (Line 13). During this process, once the

app

state is in a new scene state, SceneData will filter the executable DMFs for the current

scene (Lines 4,12).

Algorithm 2 Executable DMFs filtering.

1: function FILTERSCENEDMFS(event Trace, Sceneyigiteds Wamfss lamss> SceneT G, sceneep)

canDMFs < {
scenepoy < abstractStructurelnfo(app)
while not canDM F's and scenepoy == sceneqp do
canDMF's < filterDM Fs(igmys, canDMF's, SceneT G, sceneep)
if canDM Fs then
toVisitDmfs[sceneep] = canDM Fs
break
else
Sceneyigsited < Sceneyjgited U sceneep
scenepoy <— abstractStructurelnfo(app)
while sceney oy € toVisitDmf's or scenepow € Sceneyigiteqd do
eventTrace, e < random(app, Wamfs)
if sceneop == abstractStructurelnfo(app) then
break
end if
end while
end if
end while

20: end function
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Example 3 As illustrated in Fig. 1, Markor supports the following DMFs: Create, Delete,
Update, Search, and View File. In an app state, the presence of an existing file is the pre-
condition for performing the delete, update, search and view operations. Notably, the scenes
shown in Fig. 1(c) and (e) support all DMFs, whereas the scene in Fig. 1(a) only allows the
execution of the DMF “Create File". Moreover, the states illustrated in Fig. 1(i) and (j) share
the same Ul layout as Fig. 1(e). As a result, they are assigned the same scene identifier and
thus allow the same set of executable DMFs.

Input Generation The input generation of SceneData works together with executable DMFs
filtering to enable exploration of new scenes for the app (described in Algorithm 3) and is
responsible for coordinating the testing process of DMFs-related behaviors. It generates and
executes GUI tests that are designed to traverse various app scenes by combining different
DMFs and other Ul events through DFS strategies. The input generation operates in a compo-
sitional manner, similar to data generators in traditional property-based testing (Claessen and
Hughes 2000). It generates random type events, selects random target widgets and assigns
random strings to edit type events according to the designed rules. These ordered events con-
stitute a GUI test. During the scene-driven dynamic exploration of the app, SceneData starts
the abstract data model D and the executed events eventTrace (Line 6). It starts the app by
clearing the data and then enters a loop to generate GUI tests with a maximum sequence length
threshold; (Lines 4-10). This loop continues until a predetermined test time is exceeded
(Line 2). In this loop, SceneData recursively passes each new scene in the app through the
filtering and execution of the DMFs to validate app properties (Line 8).

For each new scene of the app, SceneData first evaluates which DMFs are executable based
on the current state of the app (Line 14). The function FilterSceneDmfs verifies whether the
conditions for executing the DMF are satisfied. When a DMF is randomly selected from the
settoVisit Dmf's of DMFs to be visited in the scene scene,),, SceneData executes its event
trace and records the results (Lines 17,18). If the execution is successful, the abstract data
model D is updated accordingly and the postconditions are checked against the UI layout
L and the data model D (Lines 20-23). If a property violation occurs, the event sequence
that records all the executed events is saved as a test case to reproduce the error (Line 24).
If the DMF cannot be executed, the data model remains unchanged and the test continues.
After executing the selected DMF, SceneData updates the scene to be visited next and the
corresponding DMFs (Line 27).

The current state of the app may not align with the intended exploration scene (Lines
28,29). SceneData accounts for two distinct situations: Firstly, if the app is detected to be in
acompletely new scene, SceneData will prioritize invoking function ExploreScene to explore
this novel context (Lines 30,31). This process will continue until no executable DMFs remain
in the new scene. Secondly, for scenes that have already been explored, SceneData adopts a
different strategy by selecting an executable event from the current Ul layout to trigger based
on the SceneTG (Line 33). SceneData works in this way until the current scene matches the
scene to be explored, making it easier to explore various states of the app.

SceneData focuses on interactive widgets within the UI, as the act of clicking these widgets
is often crucial for triggering state transitions in the app. Specifically, to thoroughly explore
a scene, SceneData first refers to the SceneTG for events recorded in the current scene,
seeking out widgets that have not yet been explored, particularly those that do not exist in the
DMF operations. If no such a widget is found, SceneData randomly selects an event from all
operable widgets to trigger a state change. Based on the types of widgets defined in the Ul
layout, SceneData randomly selects the type of target event and determines the target widget
that can be triggered accordingly. By employing a DFS exploration strategy, SceneData can
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Algorithm 3 Scene-driven exploration.

Input: Target app app, instantiated DMFs of the target app fgpfs. scene transition graph SceneT G,
dmfs-related widgets wgy, f5

Output: The found DMEs DM E's
1: Sceneyigitea < 9, sceneep <= NULL
2: while not timeout do
eventTraces < ()
ClearAndRestartApp(app)
while len(eventTrace) < threshold; do
D <« (, eventTrace < ()
Sinit < abstractStructurelnfo(app)
eventTrace, DMEs < ExploreScene(D, eventTrace, Sceneyisited> Wamfs» tdmfss
SceneT G, sinit)
9:  end while
10:  eventTraces < eventTraces U eventTrace
11: end while

A S

13: function EXPLORESCENE(D, eventTrace, Sceneyisited Wamfs- tamfs-SceneT G, sceneep)
14: toVisitDmfs < Filter SceneDmfs(eventTrace, Sceneyisiteds Wamfs» ldmfs» SceneT G,

sceneep)
15:  if scene,p € toVisitDmf's then
16: while len(toVisit Dmfs[sceneep]) > 0 do
17: dmf,toVisitDmfs[sceneep] <— randomSelect(toVisit Dmfs[sceneep])
18: succ, events < execute(app, dmf.E)
19: eventTrace < eventTrace U events
20: if succ then
21: D < updateAppData(dmf, D)
22: L < dumpU I Layout(app)
23: if —isPostconditionHold(dmf, L, D) then
24: DMEs < DMEs U eventTrace
25: end if
26: end if
27: toVisitDmf's, sceneep < update(toVisitDmf's)
28: scenepoy <— abstractStructurelnfo(app)
29: while scenepoy # sceneep and nottoVisitDmf's do
30: if newscene(sceney ) then
31: ExploreScene(D, eventTrace, Sceneyjsited, Wamfs» tdmfssSceneT G, sceneep)
32: else
33: eventTrace,e < random(app, Wamfs)
34: end if
35: scenepoy < abstractStructurelnfo(app)
36: end while
37: end while
38:  else
39: ExploreScene(D, eventTrace, Sceneyigited, Wamfs- tdmfs,SceneT G, sceneep)
40:  endif

41: end function

selectively validate the app properties, effectively avoiding unnecessary repeated exploration
of DMFs within the same scene.

Example 4 AsshowninFig. 1, as the dynamic exploration progresses, the app Markor transits
to the UI state depicted in Fig. 1(c), which is identified as a new scene. In this scene, five
DMFs are available for execution, making it as the next scene to be explored, denoted as
scenegp. If SceneData randomly selects the DMF “Rename File", it follows the execution
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process from Fig. 1(e) to (g), during which SceneData records the newly added data object
“Done.md". After execution, SceneData checks whether the newly added data object appears
in Fig. 1(h). Due to data inconsistency which deviates from the DMF defined in Fig. 5, this
indicates that the execution of the DMF “Rename File" has failed.

At this point, the current state (Fig. 1(h)) is identified as a new scene. However, since
no executable DMFs remain in this scene, SceneData applies a random strategy to select a
widget from the current scene. For example, it may randomly click a button highlighted with
ared box in Fig. 1(h). The resulting scene remains identical to that of Fig. 1(e), meaning the
scene has not changed from scene,,, and another executable DMF is randomly selected from
the remaining options in the current app state for execution. If the scene remains unchanged
after executing all DMFs in scene,,, SceneData will once again apply a random strategy to
select and execute a widget from the current scene.

4 Experiment Design

This section presents the experiment design following the guidelines (Wohlin et al. 2012).
SceneData is implemented as an automated GUI testing tool for finding DMEs, builds
upon and extends several existing tools. The Apktool® tool is utilized to extract the original
AndroidManifest.xml, resource files, and source code from the APK files. The static
analyzer component is built on top of the data-flow framework Soot (Vallée-Rai et al. Vallée-
Rai et al. 2010) and ICCBot (Yan et al. 2022) to construct UITG. UTAUTOMATOR?2 is used
to extract GUI hierarchy files from UI pages. The Android Debug Bridge (ADB)° facilitates
the launching of app activities and the sending of UI events, while LOGCAT is used to log
runtime exceptions.

4.1 Research Questions and Hypotheses

To evaluate the effectiveness of the SceneData in detecting DMEs, we consider the following
three research questions (RQs).

— RQ1: How effectively does SceneData detect DMEs in real-world Android apps?

— RQ2: To what extent does SceneData complement the state-of-the-art techniques in
detecting DMEs?

— RQ3: How effective are ScenceTG and Scene-Driven Exploration in improving the test-
ing capability of finding DMEs? How does test sequence length impact the DME detection
capability of SceneData?

To guide our investigation, we have the following hypotheses.

— H1: SceneData will effectively detect DMEs in real-world Android apps, and will provide
insights into their types and characteristics.

— H2: SceneData will complement current state-of-the-art techniques by detecting addi-
tional DMEs.

4 https://apktool.org/

5 https://developer.android.com/training/testing/other-components/ui-automator/
6 https://developer.android.com/tools/adb/

7 https://developer.android.com/tools/logcat/
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— H3: The integration of ScenceTG and Scene-Driven Exploration will significantly
enhance the effectiveness of DME detection. Additionally, different test sequences will
impact SceneData’s effectiveness and efficiency in detecting DMEs.

In RQ1, we aim to demonstrate the performance of SceneData in finding DMEs, and
analyze the types and characteristics of these DMEs. We hypothesize H1, which asserts that
SceneData will successfully detect a significant number of previously undetected DMEs
and offer detailed insights into their types and characteristics. RQ2 compares SceneData
with state-of-the-art techniques to assess the extent to which these existing approaches can
detect the DMEs uncovered by SceneData. H2 posits that SceneData will detect additional
DME:s that are not identified by current state-of-the-art techniques, complementing existing
approaches. RQ3 is designed to employ two variants of SceneData to investigate the effect of
incorporating SceneTG and Scene-Driven Exploration on the effectiveness of DME detection,
as well as to evaluate the impact of the test sequence length by configuring four different
event limits per test. H3 predicts that the use of these strategies will significantly improve
SceneData’s ability to detect DMEs, while different test sequences affect the effectiveness
and efficiency of DME detection.

4.2 Datasets

App Subjects PBFDroid (Sun et al. 2023a) is currently the only automated testing tool
specifically designed for detecting non-crashing DME:s, and is closely related to this work.
Therefore, to ensure comparability, we select the 17 real-world open-source Android apps
used in that study as our experimental subjects. We collect these 17 open-source apps from
GitHub® the detail of which is presented in Table 1, including the latest app version available
at the time of our study, the number of stars on GitHub (#Stars), the number of installa-
tions on Google Play® (#Installations) and the main app features (#DMFs). These apps are
selected to ensure a diverse range of functionalities, covering various categories, and mostly
have a substantial number of installations. They have been widely applied in state-of-the-
art research (Su et al. 2021; Wang et al. 2022) on non-crashing functional bug detection,
providing a fair evaluation environment.

DMF Specifications To establish the DMF specifications for each app, we recruited three
graduate students in software engineering, each possessing foundational knowledge of
Android apps. Each participant was assigned all 16 open-source apps, ensuring that the
DMF specifications for each app were obtained from three participants. Rather than intro-
ducing new DMF specifications, we strictly adhered to those defined by PBFDroid, focusing
on replicating and validating them through the same process. Specifically, we selected app
Markor as a reference app and recorded a tutorial video demonstrating the complete process
of generating DMF specifications, providing clear guidance on the necessary steps. To ensure
accuracy, participants utilized PBFDroid’s instantiation helper to generate and validate each
DMF specification. The time spent on each DMF replication was recorded. After discus-
sion, the final DMF specifications for DME detection were determined. This process ensured
consistency with PBFDroid while minimizing manual variations in DMF definitions.

8 https://github.com/
9 https://play.google.com/store/apps
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Table 1 Open-source app subjects evaluated in our study

App Name Version #Stars #Installations App Feature Target Data
(#DMFs)
Markor 2.12.0 3.5K 100K-500K Text Editor File(5)
Aard2 0.56 419 10K-50K DictionaryReader ‘Word(4)
SimpleTask 10.9.3 475 10K-50K Task Manager Task(4)
SkyTube 2.988 22K 100K-500K Video Player Channel(5)
AnyMemo 10.11.7 152 100K-500K Learning Software Card(7)
Amaze 3.10 5.1K IM-5M File Manager Folder(7)
AnkiDroid 2.18.0 8.1K 10M-50M Learning Software Card(7)
Wikipedia 2.7.50489 2.2K 50M-100M Wikipedia Reader Favorite(5)
Tasks 13.8.1 3.3K 100K-500K Task Manager Task(5)
RadioDroid 0.86 689 100K-500K Radio Manager Radio(5)
ActivityDiary 1.4.2 73 1K-5K ActivityRecorder Activity(5)
MyExpenses 337 442 IM-5M Expense Tracker Account(5)
Antennapod 2.7.1 4.6K 500K-1M Podcast Manager Podcast(5)
Materialistic 3.3 2.2K 100K-500K News Browser Story(4)
Notepad 3.03 321 500K-1M Note Manager Note(5)
Transistor 4.1.1 420 10K-50K Station Browser Station(4)
OmniNotes 6.3.1 2.7K 100K-500K Note Manager Note(4)

Defining DMFs for an app involves determining both the data type of DMF and the
corresponding data manipulation operations. For each target app, a primary data type is iden-
tified to represent its core data management functionality, ensuring frequent user interaction.
For example, in AnyMemo,'? the primary data type is “card", which corresponds to flash-
cards used for memorization, while in Markor, it is “file", referring to text documents for
note-taking and editing. For the selected data type, we define DMFs for data manipulation
operations create, read, search, update, and delete. The first three operations are fundamental
for interacting with the data type, while update and delete are included as they modify or
remove data previously created.

In Table 1, the last column lists the selected data types and their corresponding number of
DMFs. The number of DMFs for an app is determined by its specific features. For instance,
the app Amaze'! includes the target data type “folder", with features such as hide and unhide,
affecting data changes within the app. It is defined to contain seven instantiated DMFs,
including “Create Folder", “View Folder", “Rename Folder", “Delete Folder", “Hide Folder",
“Unhide Folder", and “Search Folder". Some apps (e.g., OmniNote'?) might have fewer than
five DMFs due to their less extensive functionality. Selecting a single data type per app for the
study is sufficient to demonstrate the effectiveness of SceneData (see the results of RQ1).
SceneData is highly scalable and can be extended to accommodate more data types and
DMFs, enabling the identification of more DME:s.

10 https://github.com/helloworld1/AnyMemo
1 https://github.com/TeamAmaze/ AmazeFileManager
12 https://github.com/federicoiosue/Omni-Notes
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4.3 Experiment Setup

Experiment Setup of RQ1 SceneData constructs SceneTG to assist in the dynamic
exploration of apps. In the SceneTG construction module, following the setup in Scene-
Droid (Zhang et al. 2023), a state-of-the-art GUI modeling tool, we set a timeout of 15
minutes for the UITG collection and ICC messages acquisition phase, and a timeout of 30
minutes for the dynamic exploration phase for each app. For the scene-driven exploration
module, we allocated 6 machine hours of testing time per app and set a maximum number of
200 events for generating a GUI test. These two parameters are determined based on the find-
ings of RQ3, where we analyzed the effect of different sequence lengths on DME detection
effectiveness. For each app bug report generated, we conducted a detailed manual review,
combining captured screenshots and recorded event triggers for each step, to identify and
categorize bugs based on different trigger conditions and manifestations. For each unique
bug, we provided app developers with a detailed report that includes concise yet essential
reproduction steps. These steps capture the key interactions leading to the errors, along with
screen recordings of the error occurrence, facilitating rapid diagnosis and resolution. We
actively incorporated developer feedback to ensure the authenticity of the reported issues.

Experimental Setup of RQ2 We select four state-of-the-art GUI testing tools as baselines,
i.e., Monkey (Monkey 2024), Genie (Su et al. 2021), Odin (Wang et al. 2022) and PBF-
Droid (Sun et al. 2023a).

— Monkey (Monkey 2024). Monkey is a state-of-the-art automated random testing tool
for testing the stability of Android apps and their ability to respond to random user
interactions. It sends pseudo-random events to the app under test.

— Genie (Su et al. 2021) and Odin (Wang et al. 2022). These two tools focus on detecting
non-crashing bugs through two different test oracles. Genie first generates seed tests that
validate certain properties of the app, and then creates mutation tests that preserve the
app properties from the seed tests based on independent view properties. It uses mutant
tests to detect non-crashing logic bugs by violating properties. Odin builds GUI model
by analyzing UT actions and then automatically expands those actions until the expected
app state is achieved. It clusters UI behavior and quickly identifies abnormal behavior
patterns from normal behavior.

— PBFDroid (Sun et al. 2023a). PBFDroid explicitly considers DMF during testing to find
non-crashing bugs, which is the closest to SceneData. It randomly interleaves different
DMFs and other possible events to explore the state of the app, and utilizes user-specified
model-based attributes as the test oracle to find DMEs.

To thoroughly test each app, we allocate 48 hours of runtime for each tool within the same
experimental environment. This execution time setup is aligned with PBFDroid (Sun et al.
2023a), the cloest approach to ours, ensuring a fair and consistent comparison. Based on the
previous study (Wang et al. 2020), we set an event interval of 200 milliseconds for Monkey.
Genie, Odin and PBFDroid are configured to the default values in the original papers (Su
et al. 2021; Wang et al. 2022; Sun et al. 2023a). We allocate the same time for SceneData to
test the 17 open-source apps. Specifically, in the SceneTG construction module, we allocate
15 minutes for the UITG collection and ICC message acquisition, and 30 minutes for the
dynamic exploration phase. The remaining time is dedicated to the scene-driven exploration
module.
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Experiment Setup of RQ3 With the guidance of the Scene TG, SceneData explores different
app scenes by traversing different DMFs and intersecting other possible events through the
DFS strategy. Therefore, we study how the SceneTG and the scene-driven exploration strategy
affect the SceneData’s ability to find bugs. Specifically, we set up two variants for comparison:

— SceneData-NoGraph. SceneData-NoGraph refrains from constructing a SceneTG, nor
does it participate in SceneTG related operations during the scene-driven exploration
phase. Specifically, when filtering executable DMFs SceneData-NoGraph directly tests
widgets associated with DMF after checking the preconditions. If a new page is encoun-
tered during the exploration process, SceneData-NoGraph only attempts to navigate back
to the actively explored scene through the “home" button. During the input generation
phase, only widgets defined by the UI layout that are unrelated to DMF are considered
as candidates for randomly selecting an event to trigger in the current scene.

— SceneData-Simple. SceneData-Simple employs a simple DMF execution strategy for
each scene in the input generation phase, which only randomly interleaves the DMF of
the scene and other possible events to explore the state of the app. Namely, if there are
candidate DMF in the scene, a single DMF or a widget defined by the UI layout that are
unrelated to DMF is randomly selected to interact with the app.

We focus on evaluating the ability of the two variants of SceneData to generate an equal
number of test cases for detecting DME under different experimental settings. Specifically,
for SceneData-NoGraph, we set it to generate 40 GUI tests during functional testing, each of
which contains a maximum of 200 events. For SceneData-Simple, we allocate a 45-minute
timeout to construct the SceneTG, of which 15 minutes are used for the UITG collection
and ICC message acquisition and 30 minutes for dynamic exploration. Afterwards, similar to
SceneData-NoGraph, in the scenario-driven exploration phase we set it to generate 40 GUI
tests with a maximum of 200 events.

Since the maximum event length threshold; (cf. Algorithm 3, Line 5) of each GUI
test constrains DMF execution and its interleaving with other events, it may impact the
effectiveness of SceneData in detecting DMEs. To assess this effect, we set the default
event length to 200 and conduct experiment with three different configurations (i.e., 100, 300
and 400 events per test). All the other experimental conditions remain unchanged. We then
compare the number of detected DMEs to analyze the impact of different event lengths.

Execution Environment All experiments are conducted on a machine equipped with Intel
Core 17-12700 CPU @2.10 GHz, 32 GB of memory, and Windows 10 OS. We use the
official Android emulator as the experiment device, configured to simulate a Pixel XL running
Android 8.0. Each emulator is set up with 2GB memory, an x86 system image accelerated
by KVM, and runs the Oreo version (API level 26).

5 Experimental Results
5.1 RQ1: How Effectively Does SceneData Detect DMEs in Real-World Android Apps?
For RQ1, we evaluate the ability of SceneData to detect DMEs in real-world Android apps.

We carefully examine the output of SceneData for each app, focusing on runtime logs that
indicated the presence of DMEs. Specifically, we analyze the execution of DMFs to identify
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non-crashing DMEs and determine crash-related bugs by inspecting logs recorded through
LOGCAT.

Table 2 presents the results of the bugs found by SceneData. Specifically, for each detected
bug in an app, it lists the bug ID, the state (fixed, confirmed, reported) of the submitted issue,
the related DMFs, the length of the minimal test needed to reproduce the bug, the type
and a brief description of the bug. Overall, SceneData finds 25 previously unknown bugs
across 12 apps. Among these found bugs, 21 are non-crashing bugs, and the remaining
four are crash bugs. We submitted the found bugs as issues to the developers, including
information about the devices app ran on, videos of the bugs, and reproducible steps, to
facilitate the developers in quickly identifying and fixing the bugs. So far, 15 bugs have been
confirmed, of wich 6 have been fixed. Additional bugs are pending resolution, with none
being rejected. Moreover, 21 out of the 25 require a combination of two or more DMFs to
manifest the bugs, which demonstrates the effectiveness of SceneData in detecting DMEs.
Moreover, we received positive feedback from developers regarding the issues we submitted.
For example, Markor’s developer mentioned “It’s a pain to keep dialog state across rotations"
and OmniNote’s developer commented “You're right, thanks for bringing that up".

Bug Types and Assorted Samples SceneData detects various non-crashing DMEs. Based
on the bug symptom and consequence, we categorize these 21 non-crashing DME:s into four
types which are reported in Table 2. To illustrate these types, we provide specific sample for
each type.

(1) Data update delay (1/21 bugs, 5%). This bug type prevents user data from being updated
immediately. SceneData found such an issue in Anymemo, a spaced repetition flashcard
learning software. Figure 8(a) shows a card list that is being studied. When a user updates
a card in the card list, for example, updating the card ‘heads’ to ‘head’, the card list does
not change. However, when the user clicks ‘heads’ in the card list, the detailed information
of the updated card ‘head’ is displayed (Fig. 8(b)). Only after reloading the card list, these
updates would be displayed normally (Fig. 8(c)).

(2) Unexpected wrong behavior (11/21 bugs, 52%). This bug type indicates that the Ul
page does not display the expected results after performing a specific functionality. Most
DMEs causes abnormal behavior of the app. SceneData found such an issue in ActivityDiary.
Figure 8(e) shows the search page that the user accesses by clicking the search button from
the home page. On this page, the user first searches for an activity “S1" and then clicks the
add button to add the activity “Sliding". However, after performing these two operations, the
current page does not display the added activity. Unexpectedly, ActivityDiary displays the
page of the added activity normally after cancelling the search (Fig. 8(f)). Such a DME may
lead the user to believe that the activity was not successfully added and prompting them to
try adding it again.

(3) User data loss (5/21 bugs, 24%). This type of bugs results in user data loss. Users may
perform uncommon actions while using an app, which some apps find challenging to handle.
Such DMEs occurred when the user rotated its phone screen while entering text for a search,
causing the app to terminate the search. For example, in Skyfube,'? rotating the screen can
result in the entered text disappearing (Fig. 8(g)). Figure 8(h) shows that the page should
remain unchanged after two screen rotations.

(4) Function blocked (4/21 bugs, 19%). This type of bug means that a specific functionality
cannot proceed or lost effect. Ul widgets are designed to perform unique functions, but
developers might not have thoroughly tested these widgets to ensure they works flexibly.

13 https://github.com/SkyTubeTeam/SkyTube
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Issue Issue Related

App Name #Steps Type Description
o ID State DMFs B o ¥
Markor #2287 Fixed CreateUpdate, g Function Renaming the file name in "Recently viewed documents"
Read blocked is invalid, and it cannot be opened when viewed again
#2289 Fixed Create 4 Wrorfg Incorrect extension will be included as part of the file
behavior ~name
#2301 Confirmed Create,Update 9 Data loss Ir'lserlt some symbols separately, file save failed after
viewing
#2311 Confirmed Create,Search 8 Dataloss  Rotating during editing will result in search failure
Aard?2 #179 Fixed  Create,Search 6 Crash The app crashes when filtering
. Wrong a0 3 A o @ A
#180 Confirmed Read 4 . The layout is inconsistent using the "Zoom Out" setting
behavior
#181 Reported Create,Read 6 Wrorfg When a word is bookmarked, duplicates appear marked
behavior  butare not actually bookmarked
SkyTube #1269 Reported Create,Search 7 Dataloss  Rotating during editing will result in search failure
AnyMemo #536  Reported Create,Update, 8 Update delay Card list update delay, error in viewing the card that has
Search,Read not been updated
#535 Reported Search 3 Crash Can'tlook up card in a dictionary
Amaze #4179 Confirmed Create,Search 9 Function Cannot search in Recent files
blocked
#4180 Confirmed Create Search, 13 Function  ¢10t search or rename files within Documents
Update blocked
#4182 Confirmed CreateSearch 10 Crash Sorting by relevance when search fails causes a crash
#4185 Confirmed Create,Search 8 Dataloss  Rotating during editing will result in search failure
e . Wrong S il P
AnkiDroid #16463 Confirmed Create,Search 12 : Search will fail if the text contains "_
behavior
#16460  Fixed Create,Read 9 Wrong Cards of type Basic (type in the answer) do not display

behavior  answers

. . #T3661 . Create,Read, Wrong . . . Lo
Wikipedia 32 Fixed Search 12 behavicr Invalid removal after saving articles in history

Tasks #2887 Reported Create,Search 8 erfg Search results are not sorted by relevance

behavior
RadioDroid #1216 Reported Create,Read 6 Crash Clicking on the radio category information in favorites
causes a crash
ActivityDiary #317 Reported Search,Create 5 b‘gg;\;gr Main page failed to add a note during search
#318 Reported Search,Delete 4 Wrong Delete a note during the search process on the main

behavior  page, the note will not disappear

9 Wrong  The activity added from the menu search page is not

#319 R ted Search,Creat
eporte R behavior  displayed (two ways)

NotePad #153 Reported Create,Update 8 Dataloss  Cannot discard changes during note editing process
Omni Notes  #979 Confirmed Create 8 b‘é\g:\:liir Share the note to this app and it will be added by default
#980 Fixed  CreateSearch 9 Function  Cannot cancel the checklist filtering condition to

blocked  continue searching

Fig.8 Examples of different types of non-crashing DMEs. In each group, the page at top shows the erroneous
behavior, while the page at bottom shows the correct behavior, and the red boxes indicate the clues of each
issue

For example, in OmniNotes, the user may search for a created note and click the checklist
filter, but not find the desired notes (Fig. 8(i)). Additionally, the user cannot clear the filter
to resume searching on the page (Fig. 8(j)).

By examining the types of the previously unknown DMEs detected by SceneData, we
find that while most of these DMEs generally do not result in app crashes, they have varying
impacts on user experience. These findings substantiate our hypothesis H1, which ensures
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that SceneData is effective in detecting previously unknown and diverse types of DMEs in
real-world android apps.

5.2 RQ2: To What Extent Does SceneData Complement the State-of-the-Art
Techniques in Detecting DMEs?

Table 3 provides a summary of the total number of previously unknown bugs (non-crashing
DME?5) detected by five state-of-the-art testing tools: Monkey, Genie, Odin, PBFDroid and
SceneData. For instance, under the ‘SceneData’ column, the row labeled ‘total’ with the
entry 25(21) indicates that SceneData has discovered a total of 25 bugs, of which 21 are
non-crashing DMEs and the remaining 4 are crash-related bugs.

We find that Monkey, Genie and Odin only covered all crash bugs except for the amaze app,
but failed to find the 21 non-crashing DMEs detected by SceneData. We analyzed their results
and attributed their missing these non-crashing DMEs to two factors. (1) Lack of a suitable
oracle for detecting DMEs. Monkey detects crash bugs by monitoring Android system logs
during execution. However, it lacks a mechanism to identify non-crashing DME:s since it does
not analyze Ul behavior and validate data consistency. For Genie, based on the principle that
other views should not be affected by interacting with an independent view, the general oracle
is difficult to generalize DME. Odin adds the same events to similar states to expand the test
input, and clusters the behaviors shown through abstract rules to find anomalies. However, this
rule does not consider text content changes, which are critical for determining whether data
manipulations are executed normally. For example, it fails to capture file name modifications,
such as renaming a file from “To-do.md" to “Done.md," which is essential for validating the
correctness of update operations. (2) Inefficient search strategy generates low-quality test.
These tools employ random strategy in test generation, which often result in incomplete
execution of the entire data manipulation workflow, failing to cover the semantics of data
manipulations. The triggering of DME typically requires executing multiple interdependent

Table 3 Previously unknown bugs found by five tools. Numbers indicate the total bugs, with non-crashing
DME:s in parentheses if applicable

App Monkey Genie Odin PBFDroid SceneData
Markor 0 0 0 0 4(4)
Aard2 1(0) 1(0) 1(0) 2(1) 3(2)
SkyTube 0 0 0 0 1(1)
AnyMemo 1(0) 1(0) 1(0) 1(0) 2(1)
Amaze 0 0 0 1(1) 4(3)
AnkiDroid 0 0 0 0 2(2)
Wikipedia 0 0 0 0 1(1)
Tasks 0 0 0 0 1(1)
RadioDroid 1(0) 1(0) 1(0) 1(0) 1(0)
ActivityDiary 0 0 0 1(1) 3(3)
Notepad 0 0 0 0 1(1)
OmniNotes 0 0 0 0 2(2)
Total 3(0) 3(0) 3(0) 6(3) 25(21)
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crash non-crashing DME

PBFDroid 18

2 4 1 8

SceneData
PBFDroid SceneData

Fig.9 Comparison of PBFDroid and SceneData in detecting all DMEs. The left (resp. right) diagram repre-
sents crash (resp. non-crashing) DMEs; the green (resp. blue) area represents DMEs detected by PBFDroid
(resp. SceneData). (The overlapping areas indicate DMEs detected by both)

DMFs in a specific order. As shown in Table 2, each reported DME involves a sequence of
steps, highlighting the necessity of exploration strategy to ensure a comprehensive coverage.

Our findings confirm that while a suitable oracle is essential for detecting DMEs, it alone
does not guarantee effective detection. While PBFDroid and SceneData both utilize special-
ized oracles, PBFDroid is only able to find three of the non-crashing DMEs found by the
SceneData. This indicates that search strategy is also crucial in ensuring the discovery of
non-crashing DMEs. SceneData improves the exploration through a scene-guided strategy,
which targets scenes and enhances app property validation. It execute all candidate DMFs
in the scene only once. When encountering the scene again, the state of the app is explored
by triggering other widgets, which helps find DME:s in the deep state of the app. Taking the
scene corresponding to the state in Fig. 1(e) as an example, SceneData may first execute
the DMF “Rename File" and, upon revisiting the same scene, select another DMF, such as
“View File", until all executable DMFs have been covered. Scenes can help identify changes
in the state of the app. SceneData can determine non-crashing exceptions of data operations
based on scene inconsistencies, while PBFDroid can only detect related crashes. For exam-
ple, the state of the app should not change when the screen is rotated and then restored. In
addition, the DMF-directed DFS exploration strategy requires the SceneData to prioritize
the validation of candidate DMFs. When new scenes appear in the app, the target is shifted
to the new scene, which explicitly considers the combination of different DMFs. Dynamic
exploration is driven by scenes and can record the DMF history executed in each scene, which
facilitates thorough validation of app properties. For example, while executing DMFs in the
scene shown in Fig. 1(c), if the exploration transitions to a new scene shown in Fig. 1(e),
SceneData prioritizes executing all DMFs in new scene before returning to the previous one.
This strategy avoids unnecessary repeated testing in PBFDroid, which ensures SceneData
detects DMES more effectively.

Since some of the discovered bugs have been reported before, we further examine how well
PBFDroid and SceneData detect both newly discovered and previously identified DMEs. As
shown in Fig. 9, PBFDroid and SceneData exhibit complementary capabilities in detecting
both crash and non-crashing DMEs. Among all detected DMEs, PBFDroid uniquely iden-
tified 2, whereas SceneData uniquely detected 19, and both methods identified 12 DME:s.
While PBFDroid detected some unique DMEs, all of them are crash-related errors, whereas
SceneData successfully detected a larger number of non-crashing DMEs. These results sug-
gest that PBFDroid’s random exploration strategy is particularly effective at discovering
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Fig. 10 The number of revealed bugs over execution time

system-level crashes. It identifies the crash in the app Transistor'* caused by pressing the
Next key on the keyboard while editing, which is challenging for SceneData to trigger. In
addition, SceneData’s scene-guided search strategy significantly enhances the detection of
non-crashing DMEs by systematically validating app states and transitions.

To evaluate the statistical significance of the performance differences in DME detection
between SceneData and the state-of-the-art baseline PBFDroid, we conduct a Wilcoxon
signed-rank test (Wilcoxon 1992). In our study, the null hypothesis is set as Hy: There is no
significant difference between SceneData and PBFDroid in detecting previously unknown
DMEs. The significance level for this test is set at 0.05. The input for this test consists of
paired data points representing the number of DMEs detected by PBFDroid and SceneData
for each app reported in Table 3. For the Wilcoxon signed-rank test, the p-value is 5.0e-4,
which is lower than 0.05. This shows that we can reject the null hypothesis Hy, confirming that
the SceneData significantly outperforms PBFDroid in detecting previously unknown DME:s.
Futhermore, the results presented in Fig. 9 demonstrate that SceneData complements PBF-
Droid in detecting all DMEs. In addition, Table 3 highlights that PBFDroid can complement
other baselines in detecting reported unique DMEs. These results lead us to accept hypothesis
H2. Therefore, we conclude that SceneData demonstrates superior performance by detecting
unique DMEs that are missed by state-of-the-art techniques.

5.3 RQ3: How Effective are ScenceTG and Scene-Driven Exploration in Improving
the Testing Capability of Finding DMEs? How does test sequence length impact
the DME detection capability of SceneData?

ScenceTG As shown in Fig. 10, the lack of guidance in the SceneTG (SceneData-Nograph)
resulted in missing 10 bugs. Overall, the number of unique bugs discovered by SceneData-
Nograph was consistently lower than that of SceneData at each time interval (1h) until no
new bugs were found.

In particular, during the first hour, SceneData-Nograph and SceneData exhibit signifi-
cantly different trends in bug detection. Initially, SceneData does not find any bugs due to
the analysis of the app used to collect data for constructing the SceneTG. After 15 minutes,
when SceneData entered the dynamic exploration phase, its effectiveness becomes more
apparent. Until 30 minutes later, SceneData successfully identifies two crash bugs by mon-
itoring the anomalies during app runtime. We observed that the remaining two crash bugs

14 https://github.com/y20k/transistor/
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involved app data manipulation, which were missed during the sceneTG construction phase
because no relevant app inputs were generated. Taking the radiodroid app as an example,
the crash is triggered only when clicking on the radio category after a radio has been saved.
Due to the varying order in which dynamic exploration triggers widgets, the state of saving
the radio may not be explored.

Furthermore, the dynamic exploration phase captures the transition relation between app
scenes. The number of explored activities, transition pairs, and scenes recorded by the con-
structed SceneTG are depicted in Fig. 11. On average, across the 17 collected apps, SceneData
explores 9 activities, extracts 51 transition pairs, and identifies 27 scenes. We observe that in
exploration activities with a mean difference of 1, the graph generated by SceneData has 14
more transition pairs than the graph generated by SceneDroid (Zhang et al. 2023), a state-
of-the-art GUI modeling tool, and discovers 9 new scenes. For example, SceneDroid visites
page (d) of Fig. 7 in the order (a) — (b) — (¢) — (d), requiring multiple restarts and
navigation back to page (d). In contrast, SceneData leverages saved widgets in page (a) to
directly navigate to pages (c) and (d) via the navigation bar. This shows that our SceneData
is able to build a more complete SceneTG in a shorter time. This phenomenon is beneficial
for thoroughly validating app properties in each scene.

By inspecting the experimental results, we found that all missed errors were related to non-
crashing DMEs. The non-crashing DMEs missed by SceneData-Nograph can be attributed
to two main factors. First, the current scene is not included in the preconditions defined by
the DMF, making it impossible to validate certain properties of the app in the current state.
Second, the inability to identify potentially executable DMFs may lead to a reduction in
relevant data, limiting the number of DMF combinations that can be validated. For example,
in the app Anymemo, executing DMF “Search Card" can only be initiated from the “MORE"
widget on the home page. This restriction prevents from performing the search operation
directly from the card list detail page, thereby failing to fully test what normal behaviors are
affected by the delay in updating the card.

Scene-Driven Exploration As shown in Fig. 10, for any explored scene, if we adopt the strat-
egy of only randomly executing a DMF or interleaving possible event (SceneData-Simple) to
test the behavior of the app, we observe that it eventually uncover 18 bugs. This phenomenon
indicates that our DMF-directed DFS exploration strategy is effective in discovering possible
bugs.

Number
®
o

4 — ** -

#Explored activities #Transition pairs #Scenes
M SceneData M SceneDroid

Fig. 11 Comparison of #Explored activities, #Transition pairs, and #Scenes
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Specifically, there are two main reasons to explain why SceneData-Simple missed 7 out
of 25 (28%) bugs. First, the randomness in interacting with the app introduces considerable
uncertainty. This means a particular DMF within a scene may be executed repeatedly, or it
might never be triggered at all. For example, irregularly executing the DMFs of the scene
in Fig. 1(e) reduces the probability of executing DMF “Rename File". Second, some bugs
are located in obscure areas of the app. Random exploration might coincidentally overlook
these corners, making it even more challenging to conduct DMF interactions in these less
accessible regions. To detect the DME in Fig. 1, the recently viewed documents must first
be accessed, which are nested under a widget in the top navigation bar, making navigation
challenging.

Test Sequence Length As shown in Fig. 12, setting the maximum event length threshold;
to 100 gives the lowest number of detected DMEs, as the test with only 100 operations cannot
cover a sufficient number of DMF interactions. When the test sequence length is set to 200,
300 and 400, no significant difference is observed for SceneData, but a longer event length
allows bugs to be detected more quickly. With prolonged execution, SceneData eventually
behaves like a random exploration tool, as it attempts to match the most closely explored
scene for DMFs execution.

Our results demonstrate that the utilization of ScenceTG and Scene-Driven Exploration
has a significant positive impact on the detection of DME:s. In addition, a longer test sequence
accelerates the discovery of DMEs but does not significantly increase the total number of
DME:s, and a shorter test sequence may reduce the effectiveness of DME detection. Therefore,
we accept hypothesis H3, confirming that the integration of ScenceTG and Scene-Driven
Exploration significantly enhances the effectiveness of DME detection, as well as different
test sequence lengths affect the effectiveness and efficiency of DME detection.

6 Discussion

Finding Non-Crashing DMEs Detecting non-crashing bugs in apps, especially those related
to data manipulation, present significant challenges. Many of the bugs discovered in this
study originate from well-maintained apps, including those extensively tested. For instance,

N
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L

=
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—e— 100 events per test case
—#- 200 events per test case
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AnkiDroid" includes more than 200 well-written UI and unit test cases, each equipped with
assertions to verify correctness. Despite the rigorous testing, SceneData discovered 21 non-
crashing DMEs, demonstrating its ability to help developers effectively explore various states
of their app.

Figure 13 illustrates the characteristics of the number of versions affected and the number
of months on Google Play before these 21 non-crashing DMEs were uncovered, with each
point representing a non-crashing DME (some points overlap). We observe that most of
these DMESs have existed over two years, and 16 (76.2%) non-crashing DMEs have affected
more than 10 versions. For example, three data loss issues triggered by screen rotation have
been present since the initial release of the app. SceneData detects this type of DMEs by
identifying Ul pages as scenes based on layout information, monitoring changes in UI pages
during testing. These results reveal that many of the detected bugs have remained latent
for extended periods and were missed by traditional testing methods, providing significant
assistance to developers in maintaining the apps.

Why Does SceneData Work? We conduct a comprehensive analysis of SceneData’s inner
mechanisms to elucidate the underlying key factors in detecting DMEs. First, SceneData
enhances DME detection by leveraging prior knowledge, including GUI scenes and scene
relationships. RQ3 demonstrates that the absence of model guidance significantly impairs
the performance of DME detection. Constructing a model based on scene granularity enables
accurate capture of DMF operations. Additionally, the dynamic exploration strategy, which
flexibly handles page transition logic, allows for the rapid construction of a more compre-
hensive app model. Second, testing at the scene granularity reduces redundant validation
and focuses on validating DMF operations across different scenes. By introducing scene-
guided exploration, SceneData records the history of DMF execution, allowing developers
to effectively filter and validate DMF across different scenes without unnecessary repeti-

15 https://github.com/ankidroid/ Anki- Android/
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tion. Furthermore, randomly triggering events that promote scene transitions in the explored
scenes facilitates exploration of app diverse states.

Manual Effort Required for SceneData DME detection relies on predefined DMF speci-
fications, which require users to provide necessary information, as described in Section 3.1.
We evaluated the manual effort involved in defining these specifications. Figure 14 presents
the time taken by three participants to define a single DMF for each of the 16 subject apps.
The horizontal axis displays the apps, and the vertical axis represents the time (in minutes).
The results indicate that the time cost for defining a single DMF ranges from 0.98 to 5.05
minutes, with an average of 2.99 minutes. For all DMFs of a single app, the time ranges from
6.8 to 23.42 minutes, with an average of 14.56 minutes. The time (over 20 minutes) is longer
for AnyMemo and AnkiDroid due to their larger number of DMFs. Since these results are
obtained using PBFDroid?s DMF instantiator, they are approximately the same as those of
PBFDroid.

Potential Applications of SceneData In addition to detecting DMEs, SceneData can also
assist developers with other aspects of testing. First, SceneData constructs a SceneTG by
exhaustively exploring the interactive widgets in the activities launched by ICC messages,
which can be used for regression testing. SceneTG records scene transitions within the app
and the widgets that trigger these transitions, providing the corresponding real Ul page for
each identified scene. Developers can employ the SceneTGs from different app versions to
target the functionalities of the modified parts. In the second phase, scene-driven exploration
uses property-based testing to validate the behavior of app. Given accurate DMF properties,
SceneData can automatically find DMEs without any false positives. Property-based testing,
due to its broad applicability, is not limited to testing DMEs and can be extended to iden-
tify other types of errors, making it suitable for a wider range of software testing scenarios.
An instantiated DMF specifies the preconditions and postconditions required for execut-
ing a functionality. These necessary conditions facilitate the validation of whether the app
correctly achieves its functionality. While SceneData effectively detects DMEs, it remains
unclear whether existing baselines (e.g., Monkey, Genie and Odin) encounter DMEs but fail
to report them due to the absence of a suitable oracle. Future work could investigate this
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by integrating SceneData?s oracle into these tools to enable a fairer comparison of search
strategies. Understanding wherther their limitation lies in search strategy or detection capa-
bility would provide insights for enhancing the practical applicability of DME detection in
real-world scenarios.

Threats to Validity A major threat to external validity is the representativeness of the app
subjects. To mitigate this threat, we included multiple open-source apps from various cat-
egories, as detailed in Table 1. These apps are selected based on their high visibility and
substantial user bases on both GitHub and Google Play. This selection ensures that our find-
ings are generalizable and reflective of real-world apps. Another external threat relates to the
selection of DMF types for validating app properties. To mitigate this, we focus on common
operation types including create, read, update, delete, and search, which are fundamental
for data manipulation in apps and essential for completing various tasks. By concentrat-
ing on these common operations, we ensure that that the DMFs effectively cover the core
functionality of each app.

The first internal threat is the potential errors in the implementation of our approach.
To mitigate this threat, we carefully check the code and utilize mature libraries such as
uiautomator2. The second internal threat is the implementation of the baseline approaches.
To mitigate this threat, we follow the previous work (Wang et al. 2020) to set the event
interval of Monkey. For other baselines, we use the default parameter settings of the baseline
approaches to conduct experiments. The third internal threat concerns human factors in the
DMF instantiation process, which may introduce inaccuracies or biases. To address this,
we take several measures to ensure the fairness of the experiment. First, we follow the
DMFs defined in PBFdroid (Sun et al. 2023a) to instantiate the DMFs. In case where the
widgets of the app changed in the new version, participants meticulously validate the DMF
accordingly. Second, to minimize human errors, we provid detailed tutorials during the DMF
instantiation process to measure the time cost. Third, each DMF is independently evaluated
by three different participants to reduce possible biases. Additionally, the correctness of DMF
execution is evaluated by recording screenshots and events at each step. Furthermore, for the
detected bugs in the apps and their root causes, all reports are independently reviewed and
cross-checked by the three authors of this paper to ensure correctness.

The first construct validity pertains to the appropriateness of our evaluation metrics. To
mitigate this, we analyze the number and categories of detected bugs, along with their root
causes. This evaluation helps demonstrate the effectiveness of the generated test cases and
ensure they reflect potential issues within the apps. The second construct validity focuses on
the functional correctness of the test cases generated by SceneData. The consistency between
the data model and Ul layout is used to validate whether the DMF achieves its functionality
correctly, thus illustrating the feasibility of functional validation through test cases. Based
on this, we manually inspected the screenshots captured during the testing process and the
operations performed in each event of the test case to further evaluate the effectiveness of
SceneData.

7 Related Work

Detecting Crash Bugs in Android Apps Various automated GUI testing approaches have
been introduced to enhance the reliability and quality of Android apps. These approaches
employ different strategies such as random (Monkey 2024; Machiry et al. 2013; Kong et al.
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2018), model-based (Su et al. 2017; Wang et al. 2020; Gu et al. 2019), search-based (Mao
et al. 2016; Dong et al. 2020; Mahmood et al. 2014; Amalfitano et al. 2015), and integrated
reinforcement learning (Koroglu and Sen 2019; Pan et al. 2020; Romdhana et al. 2022) to
verify app behavior. However, those approaches rely on app runtime exceptions as implicit
oracles, which makes it challenging to detect non-crashing bugs.

Detecting Non-Crashing Bugs in Android Apps Several tools have been proposed to detect
non-crashing bugs without requiring predefined oracles. These existing works are based on
the idea of metamorphic testing, by designing metamorphic relations applied to the app
execution results and checking whether the relations are violated to detect non-crashing
bugs. However, most of these tools are designed for specific types of bugs, such as data
loss (Guo et al. 2022; Riganelli et al. 2020) and system settings (Sun et al. 2021, 2023b),
which not consider explicit DMF operations during testing. While Genie (Su et al. 2021)
targets generic bugs, its metamorphic relations are limited by the independence between
event fragments, making it less effective in detecting DMEs. On the other hand, Odin (Wang
et al. 2022) detects non-crashing bugs by identifying abnormal behaviors that deviate from
normal app behavior. However, it clusters exhibited behaviors using abstract rules without
considering text features, which results in bugs arising from data inconsistencies escaping
detection.

Most existing works enhance the ability to validate app behaviors through manually written
oracles. Test migration techniques (Liu et al. 2022, 2024; Lin et al. 2019; Behrang and
Orso 2019; Talebipour et al. 2021) manually construct tests for one app to generate tests
for another app with similar functionalities. These approaches are designed purely for single
functionalities of the app and do not consider the interaction between different functionalities.
The no one-to-one event matching during test migration motivates the design of SceneData.
Unlike traditional approaches, SceneData does not limit the implementation of a functionality
to the initial state in the specified path. Instead, it recognizes the GUI scene and explores the
state transition details to identify whether a DMF can be executed in the scene. Although the
aforementioned works are effective in detecting non-crashing functional bugs, they are not
capable of detecting DMEs.

Finding Data Manipulation-Related Bugs Our work focuses on testing data manipulation-
related behavior, specifically targeting CRUD related bugs in the software. Existing
studies (Rigger and Su 2020a,b have detected CRUD errors in database management sys-
tems, but these approaches are not specifically tailored for Android apps. PBGT Costa et al.
2014) utilizes the concept of User Interface Test Patterns (UITPs) to test common recur-
rent behaviors in apps through their possible different implementations. However, it only
models the Find operation as a UITP to check correctness, without considering other related
data manipulations. Augusto (Mariani et al. 2018) leverages semantic knowledge related to
CRUD operation functionalities to automatically generate effective test cases with functional
oracles. It systematically covers critical scenarios and detects failures by encoding expected
functionality into models customized for the app under test. However, it primarily generates
system test cases for individual CRUD operation independently, without explicitly model-
ing their interdependencies. CRUD operations often interact in complex ways, where an
operation (such as update or delete) may depend on prior create operations. Ignoring these
dependencies may lead to inconsistencies or failures that single-operation testing might not
reveal.

Complementarily, PBFDroid (Sun et al. 2023a) validates app properties through the con-
sistency of the data recorded in the data model and the data visualized in UI, enabling
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validation of the correctness of data manipulations. It randomly interleaves different DMFs
and possibly other events to generate various app states. However, its random exploration may
struggle to systematically cover all possible interactions between DMFs, potentially over-
looking deep DMEs. Building on the defined DMF specifications, SceneData enhances this
approach with an improved exploration strategy to further validate app behavior. Different
from PBFDroid, SceneData designs a DMF-directed DFS strategy to traverse the executable
DMFs for each new scene. This strategy explores multiple combinations of DMFs, effectively
and thoroughly validating the states of the app.

8 Conclusion and Future Work

Developers must test whether the app behaves normally under various DMF combinations,
which is often time-consuming and cumbersome. In this paper, we have introduced Scene-
Data, an automated approach that adopts scene-guided exploration to detect DMEs in Android
apps. SceneData launches app activities through ICC messages and identifies scenes within
these activities. It constructs a SceneTG by exhaustively exploring the operational widgets in
each scene, capturing the details of app’s state transitions. Guided by the SceneTG, Scene-
Data performs DMF-directed DFS and intersects with other possible events to intentionally
explore the interactions between DMFs. SceneData employs model-based properties of the
DMFs as oracles to validate app properties. SceneData identified 21 non-crashing DMEs
in 12 real-world Android apps. We reported these bugs to the app developers, and So far,
15 of the submitted issues have been confirmed, with 6 of them already fixed. Compara-
tive experiments demonstrate that the state-of-the-art testing techniques struggle to find the
non-crashing DMEs that SceneData successfully discovers.

In the future, we plan to extend the oracle of our current approach to existing tools such
as Monkey and Genie, and conduct a comprehensive empirical study to determine whether
their inability to detect non-crashing DMEs arises from search inefficiencies or the absence
of a suitable oracle.
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