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Abstract. With motivations from formal verification and databases,
formal models to reason about software systems that contain data values
from an infinite domain became a research focus in theoretical computer
science community during the last decade. In this chapter, we present
a tutorial to summarise the state of the art of these formal models. We
focus on automata models and logics. We organise the models accord-
ing to the different approaches to deal with the data values from an
infinite domain. Specifically, we present the following models, register
automata (and related logics), data automata (and related logics), peb-
ble automata, and symbolic automata and transducers. In addition, we
also incorporate two application-oriented sections, respectively on for-
mal models to reason about programs manipulating dynamic data struc-
tures, and on formal models for the static analysis of data-parallel pro-
grams. For these two sections, we choose to present separation logic with
data constraints, logic of graph reachability and stratified sets, stream-
ing transducers, and streaming numerical transducers. For each model,
we introduce the basic definitions, use some examples to illustrate the
model, and state the main theoretical properties of the model. We hope
that this tutorial will be useful if one wants to have a bird’s eye of view
on this field and know the basic concepts underlying those models.

1 Introduction

In computer science, formal models usually refer to mathematical models to
specify, recognise, generate, and transform a specific class of structures (e.g.,
words and trees). They typically include logic, automata, formal grammars, and
rewriting systems. Formal models, as the basis of many branches of computer
science, are subject to extensive investigations through the history of computer
science [vL90]. Turing machines, together with A-calculus, recursive functions,
etc., are one of the first formal models of computation, which have a profound
impact on almost every area of computer science. Another example is context-
free grammars, which are the foundations of syntax analysis of programming
languages, and hence all modern compliers.
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Logic and automata are two classes of the most well-known formal models.
They have found numerous applications in algorithms and complexity, program-
ming languages, verification, databases, artificial intelligence, etc. For instance,
most automated verification techniques, in particular model checking, are based
on logics and automata over infinite words and trees. In the database commu-
nity, the query languages on semi-structured data (e.g. XML documents) are
based on logics and automata over unranked trees. In addition, path query lan-
guages for graph databases are typically based on finite automata and regular
expressions. Logic and automata are closely related: logics are usually succinct,
declarative, and abstract, whilst automata are specific, imperative, and of low-
level. It is quite common that logics are used as specification languages, and
automata, accounting for the combinatorial aspect of the logics somehow, pro-
vide algorithmic means to reason about the specifications. A classical example is
the satisfiability problem and model checking problem of linear temporal logics
(LTL), which can be reduced to the nonemptiness and language inclusion prob-
lem of Biichi automata respectively [WVS83, VWS86], yielding an efficient and
elegant solution.

To some extent, it is fair to say that classical formal models deal with objects
from a finite domain, which can be formalized by a finite alphabet. Intuitively,
finite alphabets can be used to represent the events in concurrent systems and
tags in XML documents. Formal models (logics and automata) over the finite
alphabets have been investigated extensively and intensively. The Chomsky hier-
archy classified the language (and the associated automata models) over finite
alphabets into four levels: linear grammars and finite-state automata, context-
free grammars and pushdown automata, context-sensitive grammars and linear-
bounded automata, and phrase structure grammars and Turing machines. The
theoretical properties of each level of the hierarchy, as well as their relationships,
have been thoroughly investigated [HU79]. Over finite words and trees, finite-
state automata have been shown to be expressively equivalent to the monadic
second-order logic (MSO) [Biic60,Elg61, TW68]. On the other hand, over infinite
words, Biichi automata and MSO have been proved to have the same expressibil-
ity [Blic62]. It is also worth mentioning that algebraic foundations of finite-state
automata on finite words and trees have been established. One classical result
in this field is that a regular language on finite words is expressible in first-order
logic if and only if the syntactic monoid associated with the language is aperiodic
[Sch65, MPT71].

In the last decade, motivated by the formal analysis and verification of com-
puter programs and query languages for XML documents and graph databases,
formal models to reason about data values from an infinite domain have become
a research focus of (theoretical) computer science [Seg06,D’A12, Kar16]. In these
models, the alphabet is extended from a finite set X' to X' x D, where D is an
infinite data domain (e.g., the set of integers). These infinite alphabets can be
intuitively interpreted as follows:
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— if X denotes the events, then D denotes the time of the events or the identifiers
of the processes or threads where the event occurs,

— in XML documents and graph databases, if Y denotes tags of elements in
XML documents or labels of graph nodes, then I denotes the attributes of
elements or nodes.

In many cases, adding infinite data to the formal models with finite alpha-
bets leads to undecidability of even very basic algorithmic problems. However,
researchers have managed to discover quite a few remarkable exceptions where
decidability, or even efficiency, are preserved. It is usually an art to identify the
trade-off between decidability and expressiveness, which makes the field versatile
and intricate. Nevertheless, this field is of vital importance from both theoretical
and practical viewpoints: on the one hand, formal models over infinite alpha-
bets are natural extensions of their counterparts over finite alphabets, so are of
particular theoretical interests; on the other hand, they are intimately related to
various applications from, for example, formal verification and XML databases.

The current chapter aims to provide a tutorial and survey for the state-of-
the-art research in automata and logics over infinite alphabets and, in partic-
ular; their applications in program verification. This is not the first attempt,
because of the importance of the subject. Segoufin provided an extensive survey
on automata and logics over infinite alphabets in 2006 [Seg06]. In addition, we
are aware of at least two other related surveys:

— D’Antoni’s survey [D’A12] covered the automata and logics on data words
and trees up to 2012, including register automata, data automata, pebble
automata, symbolic automata, and related logics.

— Chap.4 of Kara’s dissertation [Karl6] included an up-to-date survey on
automata and logics on data words, for instance, register automata, data
automata, first-order logic, and temporal logics on data words.

This chapter provides a broader and up-to-date survey which covers the latest
developments in this field (for example, formalisms for reasoning about dynamic
data structures and data-parallel programs).

However, the reader should bear in mind that our survey is by no means com-
prehensive, nor subsumes the other excellent surveys mentioned above. Indeed,
our selection of material may be subjective with respect to our own research
interests and is bounded by the volume of this chapter. In particular

— we restrict the discussions to finite words and trees and do not present the
results of these models and logics on w-words and trees,

— we are mostly driven by program verification, so do not include a huge body
of work on atoms (also known as nominal sets or Fraenkel-Mostowski sets)
which are used to define properties on data words and data trees in an abstract
manner (see, e.g., [Bojl3,BKLT13]),

— we do not include the work of extending Petri nets with data [HLL+16],

— finally, we do not cover the work on the automatic verification of database-
driven systems [Via09).



198 T. Chen et al.

Plan of the Chapter. Section?2 describes some notations used throughout this
chapter. Section 3 presents register automata and related logics. Section4 dis-
cusses data automata and first-order logic on data words. Section 5 introduces
pebble automata, including their various sub-models. Section6 discusses vari-
able automata and temporal logics with data variable quantifications. Section 7
is devoted to symbolic automata and transducers. Sections 8 and 9 describe the
formalisms for reasoning about programs manipulating dynamic data structures
and data-parallel programs respectively.

2 Preliminaries

We use N, Z, Q to denote the set of natural numbers, the set of integers, and the
set of rational numbers respectively. For any n € N, we write [n] for {1, .- ,n}.
We make use of a finite alphabet Y and an infinite set D of data values.

Words and Data Words. A word w is a finite sequence over Y. A data word
w is a finite sequence over X x . In particular, ¢ is used to denote the empty
word or data word. A language is a set of words and a data language is a set of
data words. Let w = (01,d1) ... (0, d,) be a data word and i € [n]. Then the
type of i in w, denoted by type,, (i), is > if i < n and &> otherwise. Intuitively, >
means that the current position is not the rightmost position of the data word
and > denotes the negation of this condition. In addition, the X-projection of
w, denoted by prjs(w), is o1 . ..0,. When X is obvious from the context, we also
write prjy(w) as prj(w) for brevity. For a data word w = (o1,d1) ... (0n,dy), let
|w| denote the length of w, that is, n.

Trees and Data Trees. A tree domain T is a nonempty finite subset of N* such
that (1) for every xi € T with ¢ € N, we have z € T, and (2) for every zi € T
with ¢ € N and every 5 : 0 < j < ¢, we have xj € T'. In particular, we have e € T
for every tree domain T'. Let t,t’ € T. We use t <, t’ to denote the fact that ¢ is
an ancestor of t’, that is, ' = ¢t for some t"” € N*. In addition, we use ¢t <, t’
to denote the fact that ¢ a left-sibling of t’, that is, t = "¢ and ' = t”j for some
t” € N* such that i < j. A X-labeled tree T is pair (T, L), where T is a tree
domain and L : T'— X is a labeling function. A X-labeled data tree T is a pair
(T,L,D), where (T, L) is a X-labeled tree, and D : T'— D assigns each node a
data value. A tree language is a set of X-labeled trees and a data tree language
is a set of X-labeled data trees. Let 7 be a Y-labeled tree (T, L) or a X-labeled
data tree (T, L, D), and ¢t € T. Then the type of ¢t in 7, denoted by type,(t), is
defined as a subset of {V,V, >, >} such that

— if ti € T for some i € N, then V € type;(t), otherwise, V € type,(t),
—if t = ¢t and t'j € T for some j € N such that j > 4, then > € types(t),
otherwise, > € types(t).

Intuitively, V means that the current node is not a leaf and V denotes the
negation of this condition. Similarly, > means that the current node is not the
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rightmost sibling of its parent and > denotes the negation of this condition. We
use TreeTypes to denote the set of all possible types of nodes in trees or data trees.
More specifically, TreeTypes = {{type;, type,} | type; € {V,V}, type, € {r>,5}}.
When X' is obvious from the context, we usually use data trees to denote X-
labeled data trees.

Nondeterministic Finite-State Automata (NFA). An NFA A is a tuple
(@, X, qo, 9, F) such that @ is a finite set of states, X' is a finite alphabet, ¢ € @
is the initial state, § C @ x X' xQ is a finite set of transitions, and F' C @ is a finite
set of final states. A deterministic NFA (DFA) is an NFA A = (Q, X, qo,6, F)
such that for each (¢,0) € @Q x X, there is at most one ¢’ € @ satisfying that
(¢,0,4") € 6. A NFA or DFA A = (Q, X, qo,0, F) is complete if for each ¢ € Q
and o € X, there is ¢ € Q such that (¢,0,¢") € 4.

The semantics of NFAs is defined as follows: We use 6* to denote the reflexive
and transitive closure of §, that is, (q,¢,q) € 6* and (¢, wyws,q’) € 6* iff there is
q" € Q such that (q,w1,q"”) € 6* and (¢",wa,q’) € 6*. A word w is accepted by
an NFA A = (Q, X, qo,0, F) if (qo,w,q’) € 6* for some ¢’ € F. Let L(A) denote
the language defined by A, that is, the set of words accepted by A.

The following decision problems are considered for NFAs:

— Nonemptiness problem: Given an NFA A, decide whether £(A) # @.

— Universality problem: Given an NFA A, decide whether £(A) = X*.

— Language inclusion problem: Given two NFAs A; and Ay, decide whether
L(A1) C L(A3).

— Equivalence problem: Given two NFAs A; and As, decide whether £(A;) =
L(A).

A language L C X* is regular if there is an NFA A defining L, that is, L = L(A).
Given a regular language L, the complement language of L is X*\ L. We say that
NFAs are closed under intersection (resp. union) if for every pair of NFAs 4; and
Ag, there is an NFA A such that £(A) = £(A1) N L(Asg) (resp. L(A) = L(A;)U
L(A3)). On the other hand, NFAs are closed under complementation if for each
NFA A, there is an NFA A’ such that £(A") = X* \ L(A). A complete DFA
A=(Q,%,qo,0,F) is minimal if for each complete DFA A" = (Q’, ¥, ¢}, 0', F")
such that £(A) = L(A'), it holds that |Q| < |Q].

Theorem 1 ([HU79]). The following results hold for NFAs:

— NFAs are closed under all Boolean operations (i.e. intersection, union and
complementation).

— For each NFA, an equivalent DFA can be constructed in exponential time.

— For each regular language L, there is an unique minimal complete DFA (up to
isomorphism) defining L.

— The nonemptiness problem of NFAs is in NLOGSPACE and the universality
problem (as well as language inclusion problem and equivalence problem) of
NFAs is PSPACE-complete.
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Many-Sorted First-Order Logic. We assume a signature 2 = (&, F,B), where
G is a countable set of sorts, § is a countable set of function symbols, and P is
a countable set of predicate symbols. Each function and predicate symbol has an
associated arity, which is a tuple of sorts in &. A function symbol with a single
sort is called a constant. A predicate symbol with a single sort is called a set,
which intuitively denotes a set of elements of that sort.

An -term is built as usual from the function symbols in § and variables
taken from a set X that is disjoint from &, §, and ‘PB. Each variable z € X
has an associated sort in &. In addition, we assume that the variables in X
are linearly ordered <y. When writing ¢(x) for a vector of distinct variables
x such that * = (x1,...,2,) follows the ascending order of the linear order
=<x, we assume that the variables occurring in the term ¢ are from . For a
term ¢(x) of sort s such that € = (z1,...,2,) and each z; for i € [n] is of
sort s; € 6, the term ¢ is said to be of arity (s; X --+ x $,) — s. In addition,
for a vector of terms (t1,...,%s,) such that all the variables of ¢1,...,t,, are
from ¢ = (x1,...,2p), if 1 23 T2 Sx -+ =x T, each x; for i € [n] is
of sort s;, and each t; for j € [m] is of sort s, then (¢1,...,ty) is said to
be a term of arity (si,...,8,) — (s],...,$.,). For readability, a term of arity
(51,-+-58n) — (sh,...,s),) is also called a (s1,...,s,)/(s],...,sh,)-term. We
use (t1,...,tm)(x) to denote a vector of terms whose variables are from x. For
convenience, we also write t(x) as Az. ¢t and (t1,...,tm)(x2) as Ax. (t1,...,tm).

We assume the standard notions of 2-atoms, {2-literals, and (2-formulae,
whose definitions can be found in some textbooks on mathematical logic (see
e.g. [Gal85]). The set of free variables of a §2-formula ¢ is denoted by free(t)).
When writing ¢¥(z), we assume that the free variables of ¢ are from x. For a
formula ¢ () such that = (z1,...,z,) and each x; for i € [n] is of sort s; € &,
the formula 1 is said to be of arity s X -++ X s,. A formula 1 that contains
exactly one free variable (resp. two, n > 3 free variables) is called a unary (resp.
binary, n-ary) 2-formula. A formula v contains no free variables is called a 0-
ary formula, aka a sentence. For i, j € N\{0}, a formula v(z) of arity s/ (where
z = (z1,...,25)), and an s'/s/-term f = (f1,..., f;), we use ¥[f/z] to denote

the formula obtained from 1 by simultaneously replacing z; with fi, ..., and
x; with f;.
An Q-interpretation I maps: (i) each sort s € & to a set s!, (ii) each function

symbol f € § of arity s; x - -+ x 5, — s to a total function f7: s x-.-x sl — s!

if n > 0, and to an element of s’ if n = 0, and (iii) each predicate symbol p € B
of sort s1 X -+ X 8, to a subset of p! C s x ..-sl. An 2-assignment n maps

each variable x € X of sort s € G to an element of s’.

— For a term t, the interpretation of ¢t under (I, n) for an f2-interpretation I and
-assignment 7, denoted by tI) can be defined inductively on the syntax
of terms.

— The satisfiability relation between pairs of an (2-interpretation and an f2-
assignment, and {2-formulae, written I |=, ¢, is defined inductively, as usual.

We say that (I,7) is a model of ¢ if I =, . For an {2-sentence 1), we also write
I =9 if there is an {2-assignment 7 such that I |=, 1.
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Let 2 be a signature and Z be a set of {2-interpretations. Then Th(Z), the
(2-theory associated with I, is the set of {2-sentences v such that for each I € 7,

I

Linear Temporal Logic. Let X be an alphabet. Then linear temporal logic (LTL)
over X' is defined by the following rules,

eZ=o|-pleVe|Xe|leUep,

where o € 3.

Some additional temporal operators, F and G, can be derived from U, Fp; =
true U 7 and Gy = —F—y;.

LTL formulae ¢ are interpreted on pairs (w, ), where w is a word over X and
i is a position of w. The semantics is formalised as a relation (w, ) = ¢ defined
as follows. Let ¢ be an LTL formula, w = 01 ... 0, be a word, and ¢ € [n].

) E =1 iff not (w,i) E 1,

’Z) = o1 Vg iff (w,4) = @1 or (w,1) = o2,
) =X @1 iff i <mand (w,i+1) | ¢,
) i '

In addition, LTL formulae can be turned into positive normal forms, where
the negation symbols are only before atomic formulae, by introducing the dual
operators X and R for X and U, that is, Xo; = —X=p; and ¢; R ¢y =
=((—¢1) U (—¢2)). To help understand the semantics of R, we present its seman-
tics explicitly here: (w,7) = ¢1 R o iff either for all k : i < k < n, we have
(w, k) | @2, or there is k : i« < k < n such that (w,k) E ¢1, and for each
j:i<j<k, (wj) E ¢a For instance, =F(a A XGb) can be turned into the
positive normal form G(a V XF-b).

More specifically, the positive normal forms of LTL formulae are defined by
the following rules,

pZol-oloVvelene|Xe|XeleUp|leRe,

where o € Y.

3 Register Automata, LTL with Freeze Quantifiers,
and XPath

Kaminski and Francez initialised the research of automata models over infi-
nite alphabets. They introduced nondeterministic register automata ([KF94]),
an extension of finite state automata with a set of registers which can store a
symbol from an infinite alphabet.

Let R be a finite set of registers. In addition, we assume that cur ¢ R is a
distinguished register which stores the data value in the current position of data
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words. We use R® to denote RU {cur}. A guard formula over R is defined by
the rules g = true | false | 1y =7y | 71 # 12 | gA g | gV g, where r1,75 € R®.
Let Gg denote the set of all guard formulae over R. An assignment 1 over R is
a partial function from R to R®. Let Ar denote the set of assignments over R.
A waluation p over R is a function from R® to D. For a valuation 7, r € R®,
and d € D, we use n[d/r] to denote the valuation which is the same as 7, except
that d is assigned to the register r.

Definition 1 (Nondeterministic register automata). A nondeterministic
register automaton (NRA) A is a tuple (Q, X, R, qo, 70,0, F) where:

- Q s a finite set of states,

— X is the finite alphabet,

— R is a finite set of registers,

- qo € Q is the initial state,

- 70 : R — D assigns initial values to the registers;

-0 CQxXxGrxAgrXxQ is a finite set of transition rules (for readability,

we also write a transition (q,0,9,m,q') as q Logm), q),

— F C Q is the set of final states.

Semantics of NRAs. Given an NRA A = (Q, R, qo, 70, 9, F), a configuration of A
is a pair (g, p), where ¢ € @ and p is a valuation. A configuration (g, p) is said to
be initial if ¢ = qo and p(r) = 79(r) for each r € R. A run of A over a data word
w = (01,d1)...(0n,dy) is a sequence of configurations (go, po) - - - (¢n, prn) such
that (qgo, po) is the initial configuration, and for each i € [n], there is a transition

Qi1 Loigim), ¢; in 0 such that p;_1[d;/cur] = g; and p; is obtained from p;_1 and

7; as follows: for each r € R, if r € dom(n;), then p;(r) = (pi—1[d;i/cur])(m:(r)),
otherwise, p;(r) = p;—1(r). A run is said to be accepting if ¢, € F. A data word
w is said to be accepted by A if there is an accepting run of A on w. Let £(A)
denote the set of data words accepted by A. We say that a data language L is
defined by an NRA A if £L(A) = L.

Ezample 1. Let ¥ = {a}. The NRA illustrated in Fig.1 defines the data lan-
guage L “in the data word, a data value occurs twice”, where qg is the initial
state, ¢o is an accepting state, and @ denotes the assignment with the empty
domain.

(a, true, 0) (a,cur #r,0)
(a, true, 0)

(a, true, r := cur)

@ (a,cur =r,0)

Fig. 1. An example of NRAs: “a data value occurs twice”
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A deterministic NRA (DRA) is an NRA A = (Q, R, qo, 70, 3, F') such that for
each pair of distinct transitions (¢, 0, g1,m1,4;) and (q, 0, g2, 12, ¢5) in A, it holds
that g; A g2 is unsatisfiable.

Theorem 2 ([KF94,NSV01,DL09]). The following results hold for NRAs:

— NRAs are closed under wunion and intersection, but mnot closed under
complementation.

— The nonemptiness problem of NRAs is PSPACE-complete, the universality
problem of NRAs (as well as the language inclusion and equivalence problems)
is undecidable.

— The nonemptiness, language inclusion, and equivalence problems of DRAs are
PSPACE-complete.

For instance, the complement of the data language L in Example 1, that is,
the data language comprising the data words where each data value occurs at
most once, cannot be defined by NRAs. Intuitively, to guarantee that each data
value occurs at most once, one needs unbounded many registers to store the data
values that have been met so far when reading a data word from left to right.

Researchers also considered two extensions of nondeterministic register
automata, alternating register automata and two-way nondeterministic register
automata.

We next define alternating register automata over data words. We follow the
notations in [Figl2].

Definition 2 (Alternating register automata). An alternating register
automaton with k registers (ARAy) over data words is a tuple A =
(X,R,Q,q0,70,0), where R = {r1,...,1} is a set of k registers, X, Q, qo, To
are the same as those in NRAs, and § : Q — @ is the transition function, where
@ is defined by the following grammar,

& Ztrue|false | o |7 | >? |57 |eq, | &G, | ¢V ¢ | gAq | store.(q) | >q,
where r € R and q,q' € Q.

Intuitively, 0,7 are used to detect the occurrences of letters from Y. >7 and
D7 are used to describe the types of positions in data words, eq, and eq, are
used to check whether the data value in the register r is equal to the current
one, ¢ V ¢’ makes a nondeterministic choice, g A ¢ creates two threads with the
state ¢ and ¢’ respectively, store,.(q) stores the current data value to the register
r and transfers to the state g, >>¢ moves the reading head of the current thread
one position to the right and transfers to the state ¢.

Semantics of ARAs. For defining semantics of ARAs, we introduce the concept
of configurations.

Let A be an ARAj. A configuration ¢ of A is a tuple (i,«,0,d, A), where
i € N\ {0} denotes a position of a data word, « € {r>,5>} denotes the type of
position 4 in the data word, (o,d) € X x D is the letter-data pair in position
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i, A C Q x D® is a finite set of active threads in position ¢ where each thread
(¢,p) € A denotes that the state of the thread is ¢ and the valuation of the
registers of the thread is p. Let C4 denote the set of configurations of A.

To define runs of A4 on data words, we introduce two types of transition rela-
tions on configurations, the non-mowving relation —.C P4 x P4 and the moving
relation — 5 C C4 X C4. For a given configuration ¢ = (i, o, 0,d,{(g,p)} U A),
the non-moving relation updates a thread (g, p) of ¢ according to the transition
function 6(q), and does not move the reading head. Formally, —.C C4 x C4 is
defined as follows,

= (t,a,0,d,{(g,p)} UA) — (i,,0,d, A), if 6(q) =t

= (i,a,0,d,{(q,p)} UA) — (i,a,0,d, A), if 6(q) = 0}

— (i,a,0,d,{(q,p)} UA) —¢ (i,,0,d,A), if §(¢) = 0/ and o # o;

- (t,o,0,d,{(q,p)} U A) —¢ (4,,0,d,A), if 6(¢) =>7 and a = >;

- (t,a,0,d,{(q,p)} U A) —¢ (4,0,0,d,A), if 6(q) =57 and a = B;

- (l,a,0,d,{(q,p)} UA) — (i,a,0,d, A), if §(q) = eq, and p(r) =

= (i,a,0,d,{(q,p)} UA) — (i,0,0,d,4), if 6(q) = eg; and p(r) # d

— forj=1,2, (1,,0,d,{(q, p) }UA) —¢ (i,,0,d,{(q;, p) }UA), if §(q) = q1Vgo;
- (i70‘707 dv{(q”D)} UA) e (Z «, 0, d {(q17 )7(q27 )}UA) if 5(q) =q1 N\ q2;
- (t,a,0,d,{(q,p)} UA) —¢ (4,,0,d,{(¢',p")} UA), if §(¢q) = store.(¢') and

A configuration (¢, a, 0, d, A) is moving if &« = >, A # &, and for every (g, p) € A,
we have §(q) = >¢’. The moving relation — advances some threads of a
moving configuration to the right. More precisely,

(i,a,0,d, A) — (i +1,a,0",d', A),

if (i,,0,d,A) is a moving configuration, o/ € {>,>}, ¢/ € X, d € D, and
A ={(d.p) | (a,p) € 4,6(q) =>¢'}.

Finally, we define the transition relation — = —, U — .

A run of A over a data word w = (01,dy) ... (0, dy,) is a sequence of config-
urations Cy . ..C,, such that

= Co = (1, type,, (1), 01, d1,{(q0,70)}),
— for each j € [m], there is ¢ € [n] such that C; = (i, type,, (i), 0i, d;i, 4),
— for each j € [m], Cj_1 — Cj.

A run Cy...Cy, is accepting if Cp, = (i,type, (i), 04,d;, @) for some i € [n]. A
data word w is accepted by A if there is an accepting run of A over w. Let £(A)
denote the set of data words accepted by A.

Ezample 2. Let ¥ = {a}. Then the ARA; A= ({q0,¢1,---,97,¢a>eq-}, 2, R =
{r}, qo, 70, 9) defines the data language “in the data word, no data values occur
twice”, that is, the complement language of L in Example 1. Here 79(r) = ¢ for
some arbitrary ¢ € D, 6(qo) = ga Aq1, 6(qa) = a, 6(q1) = store-(g2), 6(q2) = >¢s,
6(q3) = qa A g4, 6(q4) = gzq; N\ @5, 0(gsq) = &, 6(q5) = g6 A\ g7, 6(g6) = >gs,
d(g7) = store,(g3). Intuitively, in each position, the data value in the position is



Formal Reasoning About Infinite Data Values 205

stored into the register r and a new thread is created, moreover, this data value
(stored in r) will be checked to be different from each data value in the right of
the position.

Theorem 3 ([DL09,Figl2]). The following facts hold for ARAy’s:

— For each k > 1, ARAy’s are closed under all Boolean operations.

— The nonemptiness problem of ARAs’s is undecidable.

— The mnonemptiness problem of ARA:1’s is decidable and non-primitive
Tecursive.

The nonemptiness of ARA; was proved by defining a well-quasi-order over
the set of configurations and utilising the framework of well-structured transition
systems to achieve the decidability.

In [DL0Y], alternating register automata were introduced to solve the satis-
fiability problem of LTL with freezing quantifiers. Therefore, in the following,
we define LTL with freezing quantifiers and illustrate how the satisfiability of
LTL with freeze quantifiers can be reduced to the nonemptiness of alternating
register automata.

Definition 3 (LTL with freeze quantifiers). Let R = {ry,...,ry}. The syn-
tax of Linear Temporal Logic with freeze quantifiers over X and R (denoted by
LTL,iC) s defined by the following rules,

Lol | TrloVe| | Xele Uy,

where o € X, r; € R.

Semantics of LTLt. LTL,LC formulae are interpreted over a tuple (w, j, p), where
w = (01,d1)...(0n,dy) is a data word, j € [n] is a position of w, and p is an
assignment over R. The semantics of LTL,lC is classical for Boolean and temporal
operators. For the modalities o, |,, and T,,,

- (wajvp) ):O-a iij:Ua
- (wa.]7p) ':lm ®, if (wm]ap[d]/rlb ': ©,
- (wajap) ’:Th if p(rl) - d]

An LTLt formula ¢ is said to be closed if each occurrence of T,, is in the scope
of an occurrence of |,,. For a closed LTLt formula ¢, if (w,1,p) E ¢, then
(w,1,p") E ¢ for any assignment p’. We define L(¢) as the set of data words w
such that (w, 1, p) = ¢ for some p. A data language L is said to be defined by a
closed LTL,lC formula ¢ if £(¢) = L. An LTL,lC formula ¢ is said to be satisfiable
if L(p) # 2.

Similarly to LTL, LTL,lC formulae can be turned into positive normal form,
that is, the formulae where the negation symbols are only before atomic formulae
oand T,,.
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Ezample 3. The LTL! formula G(|,, —XF 1, ) defines the data language in
Example 2. In addition, the LTL} formula G(a — |, F(bA 1,,)), or G(=aV |,,
F(bA 1,,)) in positive normal form, defines the data language “for each occur-
rence of a, there is an occurrence of b on the right with the same data value”.

Theorem 4 ([DL09]). The following facts hold for LTL} :

— The satisfiability problem of LTL% s undecidable.
— The satisfiability problem of LTL{ is decidable.

From each LTL{ formula, an equivalent ARA; can be constructed by an easy
induction on the syntax of the positive normal form of LTL% formulae. Then the
decidability of LTL{ follows from Theorem 3. We use the following example to
illustrate the construction of ARA; from LTL} formulae.

Ezample 4. Consider the LTL} formula ¢ = G(—a V |,, F(bA 1,,)). From ¢, we
construct an ARA; A, as follows:

— The set of states are gy, where 1 is a subformula of ¢ or ¥ = Xy where 1,
is a subformula of ¢.
— The initial state is q,.
— The transition function ¢ is defined as follows.
® 0(dp) = quav |, F(bAT,,) N\ GXgs 0(dXe) = >4y,
® 3(¢-av 1., FoAT)) = Gma V 41, Foaty,)s 0(4-a) = @ 0(qy, Font,)) =
store,, (Gr(bat,,))s
® 0(aGr@at,,)) = Goate, V AXF(BAT,):
® 5(qoat,, ) = @ AGr,, s 0(q) = b, 0(qr,,) = ed,,, 0(axF(bat,,)) = >AF@OAT,, )-

Two-way nondeterministic register automata can be defined as an extension
of nondeterministic register automata in the same way as the two-way exten-
sion of finite-state automata. It turns out that the nonemptiness of two-way
deterministic register automata is already undecidable.

Theorem 5 ([DL09]). The nonemptiness problem of two-way deterministic reg-
ister automata is undecidable.

Alternating register automata on unranked trees have also been considered,
mainly motivated to solve the satisfiability problem of fragments of Data-XPath
(XPath with data value comparisons). In the following, we introduce a model
of alternating one-register tree automata with guess and spread mechanism,
denoted by ATRA;(guess, spread), then illustrate how the satisfiability of for-
ward Data-XPath, a fragment of Data-XPath containing only forward navigation
modalities, can be reduced to the nonemptiness of ATRA;(guess, spread).

Definition 4 (Alternating one-register tree automata with guess and
spread mechanism). An alternating one-register tree automaton with the guess
and spread mechanism (denoted by ATRA; (gquess, spread)) A is defined as a
tuple (X, Q, qo,70,9), such that X,Q,qo are as in ARAy, 19 € D denotes the
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ingtial value of the (unique) register, and 6 : QQ — @ is the transition function,
where @ is defined by the following grammar,

& Ztrue |false |0 |7 | 07 | D7 |eq| &G | ¢V | qgA] |
store(q) | >q | Vq | guess(q) | spread(q, q'),

where ¢,q' € @, and ® € {>,V}. An ATRA, is an ATRA: (quess, spread)
without guess and spread mechanisms.

Semantics of ATRA; (gquess, spread). Let A be an ATRA;(guess, spread). We
introduce the concepts of node configurations and tree configurations as follows.

A node configuration ¢ of A is a tuple (¢,«,0,d, A), where t € N*, a €
TreeTypes, 0 € X, d € D, and A C @ x D is a finite set of active threads where
each thread (g,d) € A denotes that the state of the thread is ¢ and the register
holds the data value d.

A tree configuration C of A is a finite set of node configurations. Let N4
denote the set of node configurations of A, and T4 C 2V4 be the set of tree con-
figurations. In addition, to define a run of A, we introduce two types of transition
relations, the non-mowving relation —.C N4 x N4 and the moving relation
— C Ny X N4. For a given node configuration ¢ = (¢, «,0,d, {(q,d")} U A),
the non-moving relation updates a thread (q,d’) of ¢ according to the transition
function 0(q), and does not move the reading head. Formally, —.C N4 x N4
is defined as follows:

- (t,o,0,d,{(q,d)}UA) —¢ (t,a,0,d, A), if 6(q) = true;

- (t,a,0,d, {(q,d’)} UA) — (t,a,0,d,A), if 6(q) = o;

- (tya,0,d,{(q,d)} U A) — (t,a,0,d, A), if 6(q) :;and o #o';

- (tya,0,d,{(q,d)} U A) —¢ (t,,0,d,A), if §(q) = ©7 and © € «, where
©® =V or >;

- (t,o,0,d,{(q,d)} UA) —. (t,a,0,d,A), if 6(q) = ©7 and ® € «, where
® =V or >;

- (t,a,0,d, {(q,d)} UA) —¢ (t,a,0,d, A), if 6(q) = eq and d' = d;

- (tya,0,d,{(q,d)}UA) — (t,a,0,d, A), if 6(¢) =€q and d’' # d;

—for j =1,2, (t,a,0,d,{(¢,d)} UA) — (t,a,0,d,{(g;,d)} U A), if §(q) =
a1V q;

B (t,Oé,O', d7 {(q’dl)} UA) e (t,Oé,O', dv {((h,d/), (q2ad,)} UA)) if 5(Q) =q1 N\ q2;

= (ta,o,d,{(q,d )} UA) —¢ (t,a,0,d,{(¢',d)} U A), if 6(q) = store(q').

- (t,a,0,d,{(q,d")}UA) — (t,,0,d,{(¢',d")} UA) for each d’ € D, if §(q) =
guess(q').

- (t,a,0,d, A) —¢ (t,a,0,d,{(¢',d") | (g,d') € A} U A), if 6(q) = spread(q, q’).

A node configuration (¢, a, 0,d, A) is moving if

- A # &, and for every (q,d) € A, we have §(q) = V¢’ or >¢,
— if there is (¢, d) € A such that §(¢) = ©¢’, then ® € «, where ® = V or >.



208 T. Chen et al.

The moving relation —y (resp. — ) advances some threads of a mov-
ing node configuration to its leftmost child (resp. to its right sibling). Suppose
(t,a,0,d, A) is a moving node configuration.

- If V € a, then
(t7 «, 0, da A) —> (tov (1/, 0/7 dl) Al))

where o/ € TreeTypes, 0/ € X, d' € D, and A’ = {(¢,d) | (¢,d) € A,d(q) =
vq'}.
— If > € aand t = t'7, then

(t,a,0,d, A) —p (t'(i+1),a,0",d', A),

where o € TreeTypes, 0/ € X, d’ € D, and A" = {(¢',d) | (q,d) € A,d(q) =
>q'}.

The transition relation — of tree configurations is defined as follows. Let
C1,C5 be two tree configurations. Then C — Cs if one of the following condi-
tions hold:

- C1 ={c}uUl and Cy = {d} U’ such that ¢ —. ¢

- C ={cul, ¢c = (t,a,0,d, A), « = {>,V}, Cy
c—p .

-Cy ={cudl’, ¢c = (taodA), a = {>V} Cy
c—y .

- Cy={ctul, c=(t,a,0,d, A), a = {>,V}, Cy = {c},cs} UC’ such that
¢ —p cf and ¢ —y 6.

{c'} U C" such that

{c'} U’ such that

A run of A over a data tree T = (T, L, D) is a sequence of tree configurations
Cy...C, such that

- CO = {(evtypeT(€)7L(€)7D(€)a {(quTO)})}a

— for each i € [n] and each (t,«,0,d,A) € C;, we have t € T, a = types(t),
o = L(t), and d = D(t),

— for each i € [n], C;—1 — C;.

A run Cy...C, is accepting if C,, C {(t,types(t), L(t), D(t), ) |t € T}. A data
tree 7 is accepted by A if there is an accepting run of A over 7. Let £(A) denote
the set of data trees accepted by A.

Theorem 6 ([Figl2]). The following results hold for ATRA:’s and
ATRA; (guess, spread)’s:

— ATRAq’s are closed under all Boolean operations. On the other hand,
ATRA; (gquess, spread)’s are closed under union and intersection, but not
closed under complementation.

— The nonemptiness problem of ATRA, (guess, spread)’s is decidable and non-
primitive recursive.
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It was shown in [Figl2] that the data tree language L in Example 5 is not defin-
able in ATRA/ (guess, spread)’s. On the other hand, the complement of L is defin-
able in ATRA; (guess, spread)’s. This demonstrates that ATRA; (guess, spread)’s
are not closed under complementation. Similarly to ARA;’s, the decidability of
the nonemptiness problem of ATRA; (guess, spread)’s is also proved by utilising
well-structured transition systems.

Data trees can also be seen as an abstraction of XML documents. XPath is
a widely used query and navigation language for XML documents.

Definition 5 (Data-aware XPath). Let O C {|,1,—,—, ", 1%, =, «*}.
Data-aware XPath with set of axes from O, denoted by XPath(O,=), comprises
two types of formulae, path expressions a and node expressions p, defined as
follows:

aZollel|a-a, whereo e O,

oZo|-pleVve|oAp| ()| (a=a)|{a#a), whereo € X.

Suppose F = {],—,|*,—*}. Then we call XPath(F,=) as the forward fragment
of XPath(O,=).

Semantics of XPath(O,=). XPath(O, =) formulae are interpreted on data trees
7 = (T,L,D). The semantics of path expressions and node expressions are
specified by [a]? C T x T and [¢]7 C T as follows:

= W7 =A{@t,ti) | ti € T}, 117 = {(ti,t) | ti € T},

- [[_>]]T {(ti, tGi+ 1)) | t(i +1) € T}, [«]F = {(t(i +1),ti) | t(i + 1) € T},
[T =A@ ) [t e Tt 2o '), 1717 ={(t,8) | t,¥ € T,t 2a t'},

— [=*17 ={t,t) | t,t' € T,t 2, t'}, [~ ]] ={{,t)|t,t' e T,t X, t'},

~lell” ={t,t) | te [M]T},

—Jar -]t ={(t,t") €T xT | 3" €T. (t,t") € [au]T, (", 1) € [aa] T},

~ [o]” ={teT| L) =a}, [~¢]T = \[[@]]T,

~ o1 Vo™ = [p1]7 Uleal?, [1 A 2] ™ = [e1]” N lg2]”,

[T ={teT|3t. (1) [a]”},

-~ [ = a)]T = {t € T | I, t". (t,t') € [ea]”,(t,t") € [ao]?,D(t') =

—agr # )] = {t € T | 3t (t,t') € [au]7,(t,t") € [a2]T, D) #

Let ¢ be a node expression in XPath(O,=) and 7 be a data tree. Then 7
satisfies ¢, denoted by 7 = ¢, if ¢ € [¢]7. We use L(p) denote the set of data
trees satisfying . The satisfiability problem of XPath(O, =) is defined as follows:
Given a node expression ¢, decide whether £(¢) # &. The query containment
problem of XPath(O, =) is defined as follows: Given two node expressions 1, pa,
decide whether £(p1) C L(p2). Since the node expressions of XPath(O, =) are
closed under complementation, it follows that the query containment problem
of XPath(O, =) can be reduced to the satisfiability problem.
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Ezxample 5. Let L be the data tree language comprising the data trees such that
“no data values in two distinct positions are the same”. Then L can be defined
by the XPath(F,=) formula ¢,

¢ = (" [fae =17 v (IF==F 1)),
where o V,exal, 1T=]-|*and —=T=— . =%,

Theorem 7 ([Figl2]). The satisfiability problem (hence the query containment
problem) of XPath(F,=) is decidable.

Theorem 7 is proved by a reduction to the nonemptiness of ATRA; (guess,
spread), that is, for each XPath(F,=) node expression ¢, an ATRA;(guess,
spread) A, can be constructed such that ¢ is satisfiable iff A, is nonempty.
Nevertheless, although the satisfiability of XPath(F,=) can be reduced to the
nonemptiness of ATRA; (guess, spread), ATRA; (guess, spread)’s are still unable
to capture XPath(F,=). For instance, the XPath(F, =) formula ¢ in Example 5
is not definable in ATRA; (guess, spread)’s [Figl2].

Further Reading. Kaminski and Tan initialised the investigation on regular
expressions over infinite alphabets in [KTO06]. Later on, with the motivations
from path query processing in graph databases, Libkin et al. revisited this topic,
proposed regular expressions with memories, and showed they are expressively
equivalent to NRAs [LTV15]. Cheng and Kaminski investigated context free
languages over infinite alphabets and showed that context free grammars over
infinite alphabets and pushdown register automata are expressively equivalent
[CK98]. Murawski et al. showed that the emptiness problem of pushdown register
automata is EXPTIME-complete [MRT14].

4 Data Automata and First-Order Logic on Data Words

In the following, we will introduce data automata and its variants, as well as
first-order logic on data words. Data automata were introduced by Bojanczyk
et al. in [BMS+06,BDM+11], aiming at solving the satisfiability problem of
first-order logic with two variables on data words.

We introduce some additional notations for data words first.

Let w = (01,d1)...(0n,d,) be a data word and i € [n]. The profile of w,
denoted by prof(w), is o} . ..o}, such that ¢} = (o, L), and for each i : 2 < i < n,
o, = (o, T)if d; = d;_1, and o} = (0, L) otherwise. A class of w is a maximal
nonempty set of positions X C [n] with the same data value. Let X C [n]. Then
w|x denotes the restriction of w to the set of positions in X. For instance, let
w = (a,1)(b,2)(a,2)(b,1), then prof(w) = (a, L)(b, L)(a, T)(b, L), the class of w
corresponding to the data value 1 is X = {1,4}, and w|x = (a,1)(b,1).

The concept of class strings is used in the definition of data automata and
its variants.
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Definition 6 (Class strings). Suppose the alphabet X satisfies that 0,1 & 3.
For a data word w = (01,d1) ... (0n,dy) and a class X of w:

— the X-class string of w, denoted by cstrx (w), is defined as w|x,

— the position-preserving X-class string of w, denoted by pcstry (w), is defined
as the word of ...ol, such that for each i € [n], if i € X, then o, = o},
otherwise, o} =0,

— the letter-preserving X-class string of w, denoted by lcstrx (w), is defined as
the word (o1,b1) ... (0n,dy) such that for each i € [n], ifi € X, then b; =1,
otherwise, b; = 0.

Ezample 6. Suppose w = (a, 1)(b,2)(a,2)(b,1) and X = {1,4}. Then cstrx (w) =
w|x = ab, pestry (w) = a00b, and lestrx (w) = (a,1)(b,0)(a,0)(b, 1).

Definition 7 (Data automata). A data automaton (DA) D is a tuple (A, B)
st A= (Q1, 2 x{L, T}, I,q1,0,01,F1) is a nondeterministic letter-to-letter
transducer over finite words from the alphabet X x {1, T} to some output alpha-
bet I', and B = (Q2, I, q2,0, 02, F»), called the class condition, is a finite-state
automaton over I.

Semantics of DAs. We first introduce the concept of class strings. Let D = (A, B)
be a DA and w = (01,d1)...(0n,d,) be a data word. Then w is accepted by
D if over prof(w), the transducer A produces a word 71 .. .7, over the alphabet
I', such that for each class X of w’ = (y1,d1) ... (Vn,dn), cstrx(w’), the X-class
string of w’, is accepted by B. Let £(D) denote the set of data words accepted
by D.

Ezample 7. Let X = {a}. Then the data language comprising the “data words
where at least one data value occurs twice” is accepted by the data automaton
D = (A, B) (see Fig. 2, where (a, L)/# denotes the input and output letter are
(a, L) and #, similarly for (a, T)/#, and so on), where

Fig. 2. An example of data automata
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— A, upon reading prof(w) for a data word w, guesses two positions, relabels the
two positions by $, and relabels all the other positions by #,
— and B accepts the language #*$#*$#* U #*.

Let w = (a, 1)(a,2)(a, 3)(a, 1). Then A produces a word $##$ on prof(w). Since
the three class strings of w’ = (8§, 1)(#, 2)(#, 3)($, 1), that is, $$, #, and #, are
accepted by B, it follows that w is accepted by D.

On the other hand, let X = {a, b}, then the data language comprising the data
words w such that “for each occurrence of a, there is an occurrence of b in

the right with the same data value” can be accepted by the data automaton
D' = (A, B'), where

— A’ is the transducer that outputs a (resp. b) when reading (a, L) or (a, T)
(resp. (b, L) or (b, T)),
— and B’ is the finite-state automaton accepting a*b.

Let w = (a,1)(a,2)(b,2)(a,1)(b,1). Then A’ outputs w’ = aabab on prof(w).
Let X; and X, be two classes of w” = w corresponding to the data value 1
and 2 respectively. Then the X;-class string and Xs-class string of w”, that is,
pri(w”|x,) = aab and prj(w”|x,) = ab, are accepted by B’, it follows that w is
accepted by D’.

Theorem 8 ([BMS+06,BDM+11,BS10]). The following facts hold for DAs:

— DAs are closed under intersection and union, but not under complementation.

— DAs are strictly more expressive than NRAs.

— The nonemptiness problem of DAs is decidable and has the same complezity
as the reachability problem of Petri nets.

By using data automata, it was shown in [BDM+11] that the satisfiabil-
ity problem of first-order logic with two variables on data words is decidable,
whereas, the satisfiability problem of first-order logic with three variables on
data words is undecidable.

Definition 8 (FO over data words). Let Vars denote a countably infinite
set of variables. First-order logic over data words (FO[+1,<,~]) comprises the
formulae ¢ defined by the rules,

pr=ylzt+l=ylo<y|P()|z~y|w|eVe|Iz ¢,

where x,y € Vars and o € X. Intuitively, x ~ y is used to denote the equivalence
of data values in two positions represented by x,y. In addition, FO2[+1,<,~]
(resp. FO3[+1, <,~]) is used to denote the fragment of FO[+1, <, ~] where only
two variables (resp. three variables) can be used.

Semantics of FO[+1, <,~]. An FO[+1, <, ~] formula ¢ is interpreted on a tuple
(w,0), where w = (01,dy) ... (0n,d,) is a data word, and 0 : free(¢) — [n] assigns
each free variable of ¢ a position of w:
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r~y iff d@(w) = dg(y),
— iff not (w,0) = ¢,

is the same as 6, except assigning i’ to z.

Let ¢ be a FO[+1, <, ~] sentence. Then a data word w satisfies o, denoted by
w =, if (w,0) = ¢ for some 6. Let L) denote the set of data words satisfying
. The satisfiability problem of FO[+1, <, ~] is to decide whether L(y) # @, for
a given FO[+1, <, ~] sentence ¢.

Ezxample 8. The data language “each data value occurs at most once” can be
expressed by the FO2[+1, <, ~] formula ¢ =Vz. Vy. (x <y — -z ~y).

Theorem 9 ([BMS+406,BDM+11]). The following facts hold for FO[+1, <, ~]:

— The satisfiability problem of FO3[+1, <, ~] is undecidable.
— The satisfiability problem of FO2[+1,<,~] is decidable.

The decidability of FO2[+1, <, ~] is proved by a reduction to the nonemptiness
problem of data automata, that is, for each FO2[+1, <,~] formula ¢, a data
automaton D, can be constructed such that L(p) = L(D,,).

In [ACWI12], Alur et al. considered a variant of data automata, called
extended data automata, defined as follows.

Definition 9 (Extended data automata). An extended data automaton
(EDA) D is a tuple (A,B) s.t. A= (Q1,X x{L, T}, I,q1,0,01,F1) is a non-
deterministic letter-to-letter transducer over finite words from the alphabet X
to some output alphabet I', and B = (Q2,I" U {0}, g2,0, 02, F») is a finite-state
automaton over I' U {0} such that 0 & I

Semantics of EDAs. The semantics of EDAs is defined similarly as that of DAs,
with cstrx (w’) replaced by pestry (w').
It turns out that the expressibility of EDAs is the same as that of DAs.

Theorem 10 ([ACW12]). EDAs are expressively equivalent to DAs.

Since it is a famous open problem whether the reachability of Petri nets can
be decided with elementary complexity, it is also open whether the nonempti-
ness of data automata can be decided in elementary time. In order to lower
the complexity, weaker versions of data automata were introduced. Kara et al.
introduced weak data automata (WDA) in [KST12] and showed that the non-
emptiness problem of WDAs can be decided in 2NEXPTIME (nondeterministic
double exponential time). Later on, Wu introduced commutative data automata
(CDA), which are strictly more expressive than WDAs, showed that the non-
emptiness problem of CDAs can be solved in 3NEXPTIME (nondeterministic
triple exponential time) [Wul2].
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Definition 10 (Weak data automata). 4 weak data automaton (WDA) is
a tuple (A,C) such that A = (Q, X x {L, T}, I,d,q0,F) is a letter-to-letter
transducer and C is a class condition specified by a collection of

— key constraints of the form Key(y) (where v € I'), interpreted as “every two
~y-positions have different data values”,

— inclusion constraints of the form D(v) C U, cgr D(Y') (where y € I'RC I'),
interpreted as “for every data value occurring in a y-position, there is ¥ € R
such that the data value also occurs in a ~'-position”,

— and denial constraints of the form D(vy) N D(v') = @ (where v,7 € I'),
interpreted as “no data value occurs in both a vy-position and a ~'-position”.

Semantics of WDAs. A data word w = (o1,d1)...(0n,dy,) is accepted by a
WDA D = (A,C) iff there is an accepting run of A over prof(w) which produces
a word 71 ...7, such that the data word w’' = (y1,d1) ... (7Vn,d,) satisfies all
the constraints in C, where the satisfaction of the constraints on w’ is defined as
follows:

— w’ satisfies Key() iff for every pair of positions i, j € [n] such that i # j and
vi = =7, it holds that d; # d;,

- w' satisfies D(v) C U,/ cg D(7') iff for each i € [n] such that v; = 1, there is
J € [n] such that v; € R and d; = d;.

— w’ satisfies D(y) N D(v') = @ iff for every pair of positions 4, j € [n] such that
v = and y; =/, it holds that d; # d;.

Let L be a language over the alphabet Y. Then L is commutative iff for
every 01,02 € X and u,v € X* wuoioov € L iff uosov € L. Commutative
regular languages have a characterisation in quantifier-free simple Presburger
formulae defined in the following: Quantifier-free simple Presburger formulae
(QFSP formulae) over a variable set X are Boolean combinations of atomic
formulae of the form x1+- -4z, < c,orz1+---+xy >c,or 1+ 4z, =c,
or xr1 + -+ + x,,, = r mod p, where z1,...,2,, € X, ¢,7,p € N, p > 2, and
0<r<p.

Suppose X = {o1,...,0%} and v € X*. The Parikh image of v, denoted by
Parikh(v), is a k-tuple (#4, (v), ..., #s, (v)), where for each i : 1 < i < k, #,,(v)
is the number of occurrences of o; in v. Let Vy = {24,,...,24,} and ¢ be an
QFSP formula over Vyx. The word v is said to satisfy ¢, denoted by v = ¢,
iff p[Parikh(v)/Vx] holds, where p[Parikh(v)/Vy] denotes the formula obtained
from ¢ by replacing each x,, with #,,(v). The language defined by ¢, denoted
by L(¢p), is the set of words v € X* such that v | ¢.

Definition 11 (Commutative data automata). A commutative data
automaton (CDA) D is a tuple (A, p) such that A= (Q, X x{L, T}, I,0,q0,F)
is a letter-to-letter transducer and ¢ is a QFSP formula over the variable set
Vr, where Vp = {z | v € I'}.
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Semantics of CDAs. A data word w = (61,dy) ... (0n,dy) is accepted by a CDA
D = (A, p) iff there is an accepting run of A over prof (w) which produces a word
Y1 .. .7, such that the data word w’ = (y1,d1) ... (v, d,) satisfies that for each
class X of w’, cstrx(w’) | .

Theorem 11 ([KST12,Wul2]). The following results hold for WDAs and
CDAs:

— DAs are strictly more expressive than CDAs, which is in turn strictly more
expressive than WDAs.

— WDAs and CDAs are closed under union and intersection, but not under
complementation.

— The nonemptiness problem of WDAs and CDAs can be decided in 2NEXP-
TIME and SNEXPTIMFE respectively.

An extension of data automata, called class automata, were introduced, in
order to capture the expressiveness of XPath with data comparison modalities
([BL12]). Class automata in [BL12] were defined on data trees, here for simplicity,
we restrict our attention to class automata on data words.

Definition 12 (Class automata). A class automaton (CA) C is a tuple (A, B)
such that A = (Q, X x {L, T}, I,d,q0, F) is a letter-to-letter transducer and
B = (Q2,I' x{0,1},g2,0,92, F2) is a finite-state automaton over I x {0,1}.

Semantics of CAs. The semantics of CAs is defined similarly as that of DAs,
with cstrx (w’) replaced by lestrx (w').

It turns out class automata are expressive enough to simulate two-counter
machines and its nonemptiness problem is undecidable.

Theorem 12 ([BL12]). The nonemptiness problem of CAs is undecidable.

In [Wull], Wu proposed a restriction of class automata, called class automata
with priority class condition (PCA), and showed that PCAs strictly extend data
automata, and at the same time have a decidable nonemptiness problem.

Further Reading. Manuel and Ramanujam proposed class counting automata,
which includes a counter for each data value occurring in a data word,
and showed that the nonemptiness problem of class counting automata is
EXPSPACE-complete [MR11a]. The model is in a style similar to class memory
automata. In addition, Tan studied data trees over a linearly ordered infinite
data domain and proposed ordered-data tree automata, which is in the same
flavour as data automata, and showed their nonemptiness problem can be solved
in SNEXPTIME [Tanl14]. To solve the satisfiability problem of an extension of
LTL over multi-attributed data words (i.e. data words where a tuple of data
values, instead of a single one, occur in each position), Decker et al. introduced
nested data automata (NDA) and showed that although the nonemptiness of
NDAs is undecidable in general, the nonemptiness problems of two natural sub-
models are decidable [DHLT14].
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5 Pebble Automata

Pebble automata were introduced by Neven et al. in [NSV01,NSV04]. In contrast
to register automata which are finite state machines equipped with registers,
pebble automata are finite state machines equipped with a finite number of
pebbles. These pebbles are placed on, or lifted from, the input data word in a
stack discipline, i.e., first in last out, with the purpose of marking positions of
the data word. One pebble can only mark one position and the most recently
placed pebble serves as the head of the automaton.

As we are dealing with two-way automata here, as a convention, we delimit
the input data word by two special symbols {<1, >} ¢ D for the left and the right
hand of the data word. Hence, automata always work on the extended data word
of the form >w<i. The positions of > and <1 are 0 and |w|+1, respectively. (Recall
that |w| denotes the length of the data word w.)

Definition 13 (Pebble automata, [NSV04]). A nondeterministic two-way
k-pebble automaton (2N-kPA) A is a tuple (Q, X, qo,d, F') where:

- @ is a finite set of states,

— XY is a finite alphabet,

- go € @ 1is the initial state,

- F C @ is the set of final states, and

- § is a finite set of transitions of the form o — (3 where:
o « is of the form (i,0,V,q), wherei € [k], c € X, V C [i — 1]; and
e (3 is of the form (q,act) with ¢ € Q and

act € {stay, left, right, place-new-pebble, lift-current-pebble}.

Semantics of 2N-kPAs. Given a data word w = (01,dy) ... (04, d,), a configura-
tion of A on w is a triple [z, q,0] where i € [k], g € Q, and 6 : [{] — [n]U{0,n+1}.
The function 6 is the pebble assignment which defines the positions of the peb-
bles. (Recall that, as mentioned earlier, we assume an extended data word
where position 0 is > and position (n 4+ 1) is <1.) The initial configuration is
Yo = [1, qo, 6] where y(1) = 0 is the initial pebble assignment. A configuration
(i,q,0) is accepting if ¢ € F.

A transition (i, 0, V,p) — O applies to a configuration [4, ¢, ] if the following
three conditions hold:

l.i=jand p=gq;
2. V= {l <1 | dg(l) = dg(i)};
3. Ug(i) =0

Intuitively, in a configuration [i, ¢, §], pebble 4 is in control, serving as the head
pebble. (i,0,V,p) — [ applies to the configuration if pebble i is the current
head, p is the current state, V' is the set of pebbles that see the same data value
as the head pebble, and the current symbol seen by the head pebble is o.

We then define the transition relation I as follows: [i, ¢, 6] F [¢/, ¢, '] iff there
is a transition a@ — (p, act) that applies to [i, g, 8] such that ¢’ = p, ¢'(j) = 0(j)
for all j < ¢, and
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— if act = stay, then i =7 and ¢'(i) = 6(3),
— if act = left, then ¢’ = ¢ and 0'(i) = 6(2) —
— if act = right, then " =i and 0'(2) 0(i )

— if act = place-new-pebble, then ¢’ =i+ 1 and 0'(i+1)=0(i) =0(2),

— if act = lift-current-pebble, then i’ =i — 1.

Strong vs Weak PAs. In the above definition, new pebbles are placed at
the position of the most recent pebble. (Formally, in the definition of act =
place-new-pebble, one has ¢'(i + 1) = #'(¢) = 6(¢).) An alternative would be
to place new pebbles at the beginning of the data word. Formally, in the
place-new-pebble case, one has 6'(i + 1) = 1, and ¢'(i) = 6(7). In literature, the
former is often referred to as weak PAs, and the latter is referred to as strong
(a.k.a., ordinary) PAs. While the choice makes no difference in the two-way case
(as defined here), it is significant in the one-way case (i.e., when act = left is not
allowed). For instance, it is known that one-way non-deterministic weak PAs are
weaker than one-way strong PAs, see [NSV04, Theorem 4.5].

Alternating PAs. As in Sect.3, we can define the alternating version of PAs.
Alternating automata additionally have a set U C @ of universal states. The
sets from @ \ U are called existential. (Clearly, if U = &, then we have a nonde-
terministic PA as in Definition 13.)

Acceptance. The acceptance criteria are based on the notion of leads to accep-
tance as follows. For every configuration v = [i, ¢, 6],

— if ¢ € F, then v leads to acceptance;

— if ¢ € U, then v leads to acceptance if and only if for all configurations
such that v F~/, 4" leads to acceptance;

— if ¢ ¢ FUU, then v leads to acceptance if and only if there is at least one
configuration ~' such that v " and 7/ leads to acceptance.

A data word w is said to be accepted by A if vy leads to acceptance. Let
L(A) denote the set of data words accepted by A. We say that a data language
L is defined by a PA A if L(A) =

Remark 1. In Definition 13, we adopt the pebble numbering from [NSV04], in
which the pebbles placed on the input word are numbered from 1 to i. However,
in some literature, for instance, in [Tan10,BSSS06], the pebble numbering is
used differently—it is from & to i. The reason for this reverse numbering is that
it allows to view the computation between placing and lifting pebble i as a
computation of an (i — 1)-pebble automaton.

Ezample 9. To show how a PA works, we consider the data language L com-
prising the data words where at least one data value occurs twice. The reader
should be easily convinced that L is accepted by the IN-2PA A = (Q, ¢1, F, 9),
where
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- Q = {Qh q2,q—, qaCC};

- F= {qacc};

— 0 consists of the following transitions:

(17 g, Qa Q1) - (Q17 rlght)

1,0,9,¢1) — (¢, place-new-pebble)
2,0,{1},q-) — (g2, right)
2,0,9,q2) — (g2, right)

27 g, {1}7 QQ) - (Qacm StaY)

—_

-
-
-
- (

T W N

Some sub-classes of PAs can be defined in a standard way. A PA is determinis-
tic, if in each configuration at most one transition rule applies. And, as mentioned
before, if there are no left-transitions, then the PA is one-way. For the automata
models we consider “control” as deterministic (D), non-deterministic (N), or
alternating (A), as well as the one-way and two-way variants. We denote these
automata models by dC-kPA where d € {1,2}, C = {D, N, A}, and k € N\ {0}.
Here, 1 and 2 stand for one- and two-way, respectively, D, N, and A stand for
deterministic, non-deterministic, and alternating, and k stands for the number
of pebbles. In addition, when necessary we also write S for Strong and W for
Weak, which are specific to one-way PAs.

Ezxpressiveness of PA Models. As we have introduced a variety of pebble
automata, it is natural to ask their expressiveness. A class C of PAs is strictly
stronger than the class Cy of PAs is for all data languages L accepted by a PA in
Cs, L can be accepted by a PA in C and there exists at least one language which
can be accepted by a PA in Cq, but not by any PA in C;. Figure 3 summarises
the known results, where, all classes of PAs in the same box are equivalent in
expressiveness, while — means the source class is at least as expressive as the
target, and the arrow decorated by # means it is strictly more expressive. The
only class which was not addressed in Fig.3 is strong 1A-PAs, whose relation
with other classes does not appear in literature and is to be studied.

[2D-PA, 2N-PA, S1D-PA, SIN-PA|
|=
WID-PA, WIN-PA

Fig. 3. Expressiveness of PAs

5.1 (Un)Decidability of Emptiness of PAs

As usual, one of the fundamental problems regarding PAs is the emptiness prob-
lem, which is to determine, given a PA A, whether L(A) = @. It was shown in
[NSV04] that this problem is generally undecidable, even for weak 1D-PAs. The
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intuition is, when a PA lifts pebble 4, the control is transferred to pebble (i —1).
Therefore, even weak 1D-PAs can make several left-to-right sweeps of the input
data word. This result is very strong in the sense that it implies that almost
all standard decision problems are undecidable for virtually all classes of pebble
automata (cf. Fig. 3).

More technically, [NSV04] gave a reduction from the PCP to the emptiness
of weak 1D-5PAs. Tan observed that the proof can be adapted to weak 1D-3PAs,
yielding an even stronger result. In [Tan10,KT10], a tighter boundary between
decidability and undecidability was drawn in terms of the number of pebbles. In
summary,

Theorem 13 (|[NSV04,Tan10,KT10]). The following facts hold for pebble
automata:

— The nonemptiness problem for strong 2N-2PAs is undecidable.

— The nonemptiness problem for weak 1D-3PAs is undecidable.

— The nonemptiness problem for weak 1D-2PAs is decidable, but is not primitive
Tecursive.

Top View Weak PAs. Theorem 13 suggests that PAs are in general highly unde-
cidable. To mitigate this, Tan [Tan10] proposed a subclass of pebble automata,
the top view weak pebble automata. Roughly speaking, top view weak PAs are
weak one-way PAs where the equality test is performed only between the data
values seen by the two most recently placed pebbles. That is, if pebble i is the
head pebble, then it can only compare the data value it reads with the data
value read by pebble (i — 1). It is not allowed to compare its data value with
those read by pebble 1, ..., (i — 2). Formally,

Definition 14 (Top view weak PA, [Tanl0]). A top view (weak) k-PA is a
tuple A = (Q, X, qo, 9, F) where Q,qo, F are defined as before, and § consists of
transitions of the form (i,0,V,q) — (¢, act), where V is either @ or {i—1} and
act # left.

A transition (i,0,V,q) — (¢, act) applies to a configuration [j, ¢, 0] if
l.i=jand p=g;

% if dg(i—1) # do(s)

{i— 1} if dgi—1) = dogs)
3. 0’9@) =0

2. V=

Note that evidently top view weak 2-PAs and weak 2-PAs are the same.

Theorem 14 ([Tanl0]). For every top view weak k-PA A, there is a (one-way)
ARA1 A’ such that they accept the same language. Moreover, the construction

of A’ is effective.
The following result follows from Theorem 14 and Theorem 3.

Corollary 1. The emptiness problem for top view weak k-PAs is decidable.
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It turns out that top view weak PAs admits many nice properties [Tan13]:

— Expressiveness: it is shown that for every LTL% formula 1, there exists a weak
k-PA Ay, such that £(Ay) = £(). It turns out that the automaton A, is a
top view weak k-PA. Thus, the class of languages accepted by top view weak
k-PAs contains the languages definable by LTL with one freeze quantifier.

— Decidability: The emptiness problem is decidable.

— Efficiency: The membership problem, that is, testing whether a given data
word of length n is accepted by a deterministic top view weak k-PA can be
solved in O(n*) time.

— Closure properties: Top view weak k-PAs are closed under all boolean
operations.

— Robustness: Alternation and non-determinism do not add expressive power to
top view weak k-PAs.

Tan [Tanl0] observed that the finiteness of the number of pebbles for top
view weak PAs is not necessary. He defined top view weak PAs with unbounded
number of pebbles, i.e., top view weak unbounded PAs. It is straightforward
to show that 1-way deterministic 1-RAs can be simulated by top view weak
unbounded PAs. (Each time the register automaton changes the content of the
register, the top view weak unbounded PAs places a new pebble.) Furthermore,
top view weak unbounded PAs can be simulated by ARA;’s (1-way alternating
one-register automata), similar to Theorem 14. Thus, the emptiness problem for
top view unbounded weak PAs is still decidable.

Further Reading. Tan [Tanl3] used graph reachability problem to investigate
the strict hierarchy of pebble automata based on the number of pebbles and the
comparison of the expressiveness of pebble automata with the other formalisms
over infinite alphabets. [BSSS06] studied pebble tree-walking automata on trees.

6 Variable Automata and LTL with Data Variable
Quantifications

Another idea to deal with data values from an infinite data domain is to use log-
ical variables to represent data values. The differences between logical variables
and registers are as follows: While logical variables and registers are both used
to represent the data values from an infinite data domain, logical variables are
declarative in the sense that they cannot be updated, but can be existentially or
universally quantified, on the other hand, registers are imperative in the sense
that they can be updated, but cannot be quantified.

In this section, we introduce variable automata, LTL with data variable quan-
tifications, and its variant, indexed temporal logics, where the data values are
interpreted as process identifiers.

Variable automata were proposed by Grumberg et al. as a natural extension
of NFAs to infinite alphabets [GKS10].
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Definition 15 (Variable automata). Let X' be a finite alphabet and X U {y}
be a finite set of variables, where X is a set of bound variables, andy & X is a free
variable. A variable automaton (VA) A is an NFA (Q, X x (X U{y}),qo,0, F).

Semantics of VAs. Suppose A = (Q, X x (X U{y}),q0,9,F) is a VA and w =
(01,d1) ... (0n,dy) is a data word. A run of A on w is a sequence of transitions

w M} I M qn such that

— for each i € [n], (gi-1, (0, 2i),q:) €9,
— for every i, j € [n] such that z;, z; € X, it holds that z; = z; iff d; = d;,
— for each ,j € [n] such that z; € X and z; = y, it holds that d; # d;.

A run of A on w is accepting if ¢, € F. Let £(.A) denote the set of data words
accepted by A.

Ezample 10. Let X = {a,b} and L be the data language comprising the data
words w = (a,dy)(b,dz)...(b,dn-1)(a,d,) such that dy = d,, and for each i :
1<i<mn,d; #di. Then L can be defined the VA A illustrated in Fig. 4.

X = {z} (b,y)

' (a,x)

A : (a,x) @

Fig. 4. An example of VA

Theorem 15 ([GKS10]). The following results hold for variable automata:

- VAs are closed wunder wunion, but mnot closed wunder intersection or
complementation.

— VAs and NRAs are incomparable with respect to the expressive power.

— The nonemptiness problem of VAs is NL-complete, the universality and lan-
guage inclusion problems of VAs are undecidable.

Mens and Rahonis consisdered variable tree automata (VTA) in [MR11b].
They showed VTAs have similar theoretical properties as VAs.

LTL with data variable quantifications (VLTL) is obtained by extending LTL
with existential and universal quantifications on data variables. VLTL was first
considered by Grumberg et al. in [GKS12,GKS13, GKS14]. Later on, Song and
Wu did an extensive investigation on the decision problems of different fragments
of VLTL in [SW14,SW16].

Definition 16 (LTL with data variable quantifications). Let X be a count-

able set of variables. Then LTL with data variable quantifications (denoted by

VLTL) is defined by the following rules:
p=olval(z) | ~p| eV Xe e Ugp|3e ¢,

where 0 € X and x € X.

The set of free variables of VLTL formula ¢, denoted by free(y), can be defined in
a standard way as first-order logics. A VLTL formula ¢ is closed if free(¢) = @.
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Semantics of VLTL. VLTL formulae ¢ are interpreted on a tuple (w, 4, §), where
w = (01,d1) ... (0pn,dy) is a data word, i is a position of the data word, and
0 : free(yp) — D assigns each variable from free(y) a data value:

)
) Eoiff 0y =0,

; E val(x) iff d; = 6(z),
)

)

(w,i,0
(w,i,0
- (w,,0) &= -y iff not (w,4,0) = ¢,
(w,,0) = o1 Vs iff (w,1,0) = 1 or (w,1,
(w,,0) = X iff i < n and (w,i+ 1,0) |=<p
(w,1,0) = o1 U o iff there exists k: ¢ < k <
foreach j:i<j <k, (w,5,0) = 1,
- (w,4,0) | Jz. ¢ iff there exists d € D such that (w,i,0[d/z]) E ¢, where
0[d/x] denotes the assignment function that is the same as 0, except that z is

assigned with the data value d.

0) = w2,

n such that (w, k,0) E p2 and

)

Similarly to LTL, we can also define the positive normal form of VLTL.
Specifically, VLTL formulae in positive normal form are defined by the following
rules,

o= o | -0 |val(z) | wal(z) [ Vel ene|Xe|Xe|
pUploRo|Iz |V o

In the following, we assume that all VLTL formulae are in positive normal
form.
We consider the following fragments of VLTL:

— Let 3*-VLTL denote the fragment of VLTL where no universal quantifiers
appear.

— Let NN-3*-VLTL denote the fragment of 3*-VLTL where the existential quan-
tifiers are non-nested, more precisely, the formulae ¢ in F*-VLTL such that
for each subformula Jz. ¢’ and each subformula of Jy. ¢” of ¢’, there are no
free occurrences of x in ¢”.

— Let VLTL,,s denote the fragment of VLTL where the formulae in prenex
normal form, that is, VLTL formulae of the form Qizi. ... Q,z,. ¢, where
Q1,...,9, € {3,V} and ¢ is a quantifier-free VLTL formula. Moreover, for a
quantifier prefix © = Q... Qy € {3,V} T, let ©O-VLTL,, s denote the fragment
of VLTL,,, ¢ where all the formulae are of the form O x;. ... Qrxy. ¢, where
@ is a quantifier-free VLTL formula.

— Let V—VLTL%Z; denote the set of V-VLTL,,,; formulae Vz. ¢ such that all the
occurrences of o and —o in 1) are guarded by the positive occurrences of val(x).
More precisely, 1 is a quantifier-free VLTL formula defined by the following
rules,

Y=o Aval(z) | =(c Aval(z)) | mo Aval(x) | =(—o Aval(z))
val(z) | —val(z) [ V4 [ A | Xg [ Xe [ ¢ Usp |9 Ry,
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where o € Y, x € X, and the superscript “gdlt” means “guarded letters”. For
instance, the formula Va. G[(openFile A val(z)) — XF(closeFile A val(x))] is

in V-VLTLS?'!, while the formula

V. G[(openFile Aval(x)) — (write A —val(x)) U (closeFile A val(x))]

is not, since the occurrence of write is not guarded by a positive occurrence
of val(z).

Theorem 16 ([SW14,SW16]). The following results hold for VLTL:

— The satisfiability problem of 3*-VLTL is undecidable.
— The satisfiability problem of V-VLT Ly, s is undecidable.
— The satisfiability problem of NN-IF*-VLTL is decidable and mon-primitive

recursive.

— The satisfiability problem of V- VLTLgff; is decidable.

As mentioned before, since process identifiers are a concrete type of data
values, indexed linear temporal logic (ILTL) used to specify and reason about
parameterized concurrent systems can be seen as variants of VLTL. ILTL was
first proposed by German and Sistla in ([SG87,GS92]). They showed that the
validity (resp. model checking) problem of the indexed LTL is decidable (resp.
undecidable). The differences between ILTL and VLTL are as follows:

— VLTL interpreted over data words where each position carries only one data
value or a fixed number of data values, whereas ILTL is interpreted over com-
putation traces in parameterised systems (cf. the semantics of ILTL formulae
below).

— While computation traces can also be seen as data words by treating process
identifiers as data values, these data words are significantly different than the
traditional ones studied before. Namely, each position of these data words
carries an unbounded number of data values, and all the data values occur in
every position.

Definition 17 (Indexed Linear Temporal Logics). Let AP and AP’ be
the set of global and local atomic propositions. The formulae of indexed linear
temporal logic (ILTL) are defined by the following rules,

¢ Ztrue | false | p | —p | p/(2) | P (x) Ve lonp]
XoloUepleRel|3z. o]V o,

where p € AP, p' € AP', and z € X.

Let free(y) denote the set of free variables occurring in . An ILTL formula
containing no free variables is called a closed ILTL formula. For an ILTL formula
©, let = denote its complement (negation), and let ¥ denote the positive normal
form of =y, that is obtained by pushing the negation inside of operators. For
instance, if ¢ = Jx. Fp/(x), then g = Vz. G—p'(z).
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Semantics of ILTL. ILTL formulae are interpreted over computation traces of
parameterised systems. Let Z be an infinite set of process identifiers. A compu-
tation trace over AP U AP’ is a tuple trc = (o, I, (B;)ier), where a € (247)
is an w-sequence of valuations over the global atomic propositions from AP,
I C T is a finite set of process identifiers, and for each i € I, §; € (QAP/)‘“ is a
local computation trace, i.e. an w-sequence of valuations over the local atomic
propositions from AP’.

Let ¢ be an ILTL formula, trc = (a,I,(8;)ics) be a computation trace,
0 : free(p) — I be an assignment of the process identifiers (from I) to the free
variables in ¢, and n € N. Then (trc, 8, n) satisfies o, denoted by (trc, 0, n) | ¢,
is defined as follows:

— (tre,0,n) = p (resp. —p) if p € a[n] (resp. p ¢ a[n]),

~ (tre,0,n) = p'(z) (vesp. —p'(x)) if p' € By(zy[n] (resp. p’ & Boa)[n]),

— (tre,0,n) | Jx. ¢ if there is @ € I such that (tre,6[i/x],n) E ¢1, where
0[i/x] is the same as 0, except for assigning i to x,

tre,0,n) = Va. ¢ if for each i € I, (tre,0[i/z],n) = ¢1,

tre,0,n) E o1V e if (tre,0,n) | o1 or (tre,0,n) = v,

tre,0,n) E o1 A g if (tre,0,n) = o1 and (tre,0,n) = pa,

tre,0,n) E Xo if (tre,0,n+ 1) = ¢,

tre,0,n) = o1 U @o if there is m > n s.t. (tre,0,m) = @2, and for all
l:n<l<m, (tre,0,1) E o1,

— (trc,0,n) = @1 R g if either for all m > n, (trc,0,m) = @, or thereism > n
s.t. (tre,8,m) = 1, and for all [ : n <1 < m, (tre,0,1) | ¢a.

—(
= (
—
-~ (
—

Note that if ¢ is a closed ILTL formula, then 6 has an empty domain and
thus is omitted. Namely we simply write (trc,n) | . In addition, for a closed
ILTL formula ¢, we use trc = ¢ to abbreviate (tre,0) = . For a closed ILTL
formula ¢, let £(¢) denote the set of computation traces trc such that tre = .
The satisfiability problem of ILTL is defined as follows: Given a closed ILTL
formula ¢, decide whether L(p) is empty.

We shall consider the following fragments of ILTL with abbreviations:

— ILTL,, s denotes the fragment of ILTL where formulae are in prenez normal
form, that is {V,3} quantifications appear only at the beginning of the for-
mula. In particular, let © C {3,V}*. Then ©-ILTL,,; denotes the fragment
of ILTL,, s where the quantifier prefixes belong to 6.

— NN-ILTL denotes the fragment of ILTL where the quantifiers are not nested,
that is, for each formula Qj;z.¢; such that Qsy.po is a subformula of ¢, it
holds that z is not a free variable of @5, where Q;, Qs € {V,3}.

— ILTL(O) for O C {X,F, G, U, R} denotes the fragment of ILTL where only tem-
poral operators from O are used. Moreover, we use ILTL\X as an abbreviation
of ILTL(U, R), where the X operator is forbidden.

— ILTL!ce? denotes the fragment of ILTL where there are no global atomic
propositions, that is, AP = &.

These notations might be combined to define more (refined) fragments, e.g. the
logic (ILTL(F,G))pns denotes the fragment of ILTL,,s where only temporal
operators F and G are used.
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Theorem 17. The following results hold for ILTL:

~ The satisfiability problems of V3-ILTL,,¢ and HVH-ILTL;OHC?I) are undecidable.

- The satisfiability problems of 3*V*-ILTLpny and F*V*-(ILTL \X)pny are
EXPSPACE-complete, and the satisfiability problem of 3*V*-(ILTL(F,G))pns
is NEXPTIME-complete.

— The satisfiability problems of NN-ILTL, NN-ILTL(X,F,G), NN-ILTI\X, and
NN-ILTL(F,G) are EXPSPACE-complete.

7 Symbolic Automata and Transducers

In this section, we introduce symbolic automata and transducers, another line
of work to reason about data values from an infinite domain. Unlike the data
domain I discussed in previous sections, where only the equality and inequality
relation between data values are available, the data domain D in this section has
a richer structure where more complex predicates, e.g. the predicate defining
the set of even natural numbers, can be used. Over an infinite data domain,
where complex predicates can be used, symbolic automata and transducers are
natural extensions of finite automata and transducers over finite alphabets, by
replacing the letters from a finite alphabet with the predicates over the infinite
data domain. The concept of symbolic finite-state automata/transducers was
initially introduced by Watson in [Wat96], then investigated by van Noord and
Gerdemann in [vNGO1], with motivation from natural language processing. The
recent development of this topic by Veanes, Bjgrner, et al., was mainly driven by
regular expression analysis and advanced web security analysis [VB11a, VHL+12,
Veal3].

In the following, we first present symbolic automata and then symbolic trans-
ducers. In the literature on symbolic automata and transducers, a data word is
normally defined as an element of D*, instead of an element of (X' x D)* as in
the previous sections. In this section, we follow this convention and define data
words as elements of D*.

7.1 Symbolic Automata

The data domain D equipped with predicates used in symbolic automata is
formalised by effective Boolean algebra, which is defined as follows.

Definition 18 (Effective Boolean algebra). An effective Boolean algebra 1"
is a tuple (02,] o ||, ¥) satisfying the following constraints:

- 2 =(6,3,P) is a signature such that & is a singleton set {s}, §, and P are
recursively enumerable sets.

— ||o]| is an 2-interpretation such that ||s|| is a recursively enumerable set, called
the universe (denoted by D).
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~w= U YD such that for eachi € N\{0}, ¥ is a recursively enumerable
1€N\{0}

set of i-ary 2-formulae closed under Boolean connectives V,N\,—. For each

Y(x) € ¥, we use ||¢]| to denote the set {n(x) | nisan 2-assignment, and || o]

=, ¥(x)}. Elements of ||¢|| are called the witnesses of 1.

Let T = (£2,| o ||, %) be an effective Boolean algebra and i) € ¥. Then ) is
satisfiable, denoted by isSat(v), if ||¢|| # @. In addition, 7" is decidable iff it is
decidable to check isSat(y) for ¢ € ¥.

Definition 19 (Symbolic finite-state automata). A symbolic finite-state
automaton (SFA) is a tuple A= (Q,7, qo,9, F), where:

- @ is a finite set of states,

- T =(2,]o|,¥) is a decidable effective Boolean algebra,
- qo € Q is the initial state,

— F C Q is the set of final states,

-6 CQx¥W xQ is a finite set of symbolic transitions.

An SFA A= (Q,7,qo,0, F) is deterministic if for every (q1,v,q2), (q1,v’,¢5) €
0, if isSat(¢v A ') holds, then qa = db.

Semantics of SFAs. Let A = (Q,7,qo,0,F) be an SFA. A symbolic transition
t = (q1,%,q2) € ¢ in the SFA A can be concretised into a set ||t|| of concrete
(standard) transitions —C @ x D x @ defined as follows: For every d € D,

oL ge It]| iff d € ||¢||. Intuitively, suppose that A is in the state ¢; and
reading a data value d, if there is a transition (g1,,q2) € ¢ such that d € ||¢]|,
then A moves from ¢; to g2 after consuming the input data value d.

Given a data word w = d;...d, € D*, ¢ 5 Gn+1 if there exist states

q2,--,qn € @ such that for all i € [n], ¢; LN gi+1 € ||t|| for some transition
t € §. A data word w is accepted at the state g of A iff there exists a state
gs € F such that ¢ % gs. Let £4(A) denote the set of data words accepted at
the state ¢ of A. Then the data language defined by .4, denoted by L(A), is
‘CQU (A)

Ezxample 11. Let us consider the language Los1 over integers, in which either
the second letter is less than —23! and the last letter is greater than 23!
or the second letter is greater than 23! and the last letter is less than —23!.
Lgs1 cannot be defined by any finite state automaton. Let Assi = ({qo, ¢1, g2,
43,94}, 7, qo, 6, {qs}) be the SFA such that 7" is linear arithmetic over integers
and § is illustrated in Fig.5 (where 23! is an abbreviation the sequence of 32
bits 1031). Ajs1 defines the data language Los:.

An e-SFA A is a tuple A = (Q,Y U {e}, qo,9, F), where @, T, qo and F are
defined as for SFAs, and § C Qx (#(MU{e})x Q. An e-transition (g1, €, o) in an e-
SFA A allows it to move from the state g; to the state g without consuming any

input data value. The semantics of e-SFA can be defined as a natural extension
of that of SFAs.
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Fig.5. The SFT Agya:

Let A =(Q,7,qo,0,F) be an SFA. A state ¢ € Q is called partial if there is

d € D such that there are no ¢’ € Q satisfying that ¢ 4, q'. Note that given a
state g € @, we can decide whether ¢ is partial by checking whether V ¢
(a,9,9")€0
is valid, that is, whether =~ A —% is unsatisfiable. Then A is minimal if the
(¢,9,9")€8
following conditions hold:

— A is deterministic,
— A is complete, that is, A4 contains no partial states,
— A is clean, that is, for every (q1,v,g2) € d, it holds that isSat(¢)) and there is

w € D* such that gg = q1,

— A is normalized, that is, for each pair of states g1, q2 € Q, there is at most one
transition between them (otherwise, two transitions (g1, %1, g2), (¢1,%2,92) € 0
can be combined into one transition (g1, V ¥2,¢2)),

— forall ¢1,q2 € Q, 1 = q2 iff L, (A) = L4, (A).

Let £ C D* be a data language. Then the Kleene-closure of L, denoted by
L£*, is defined as {e} U{w;i...w, | n > 1,w; € L}. The reversal of L, denoted
by £, is defined as {d; ...d,, | d,,...d1 € L}.

It turns out SFAs preserve all the nice properties of finite-state automata.

Theorem 18 ([vNGO1,VHL+12,DV14]). The following results hold for SFAs:

— Fach e-SFA can be transformed into an equivalent SFA in linear time.

— SFAs are closed under determinization, all the Boolean operations, concatena-
tion, Kleene-closure and reversal.

— The nonemptiness, the universality and the equivalence problems of SFAs are
decidable.

SFAs can only enforce constraints on the data value of a single position, and
are incapable of comparing data values in different positions, which is the main
reason why SFAs preserve all the nice properties of finite-state automata. In
the following, we introduce an extension of SFAs that are capable of comparing
data values in different positions, called extended symbolic finite-state automata
(ESFA). ESFAs extend SFAs with lookahead, that is, by allowing to read several
consecutive input data values in a single transition.
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Definition 20 (Extended symbolic finite-state automata). An extended
symbolic finite-state automaton (ESFA) over the sort s is a tuple A =
(Q,7,q0,9, F), where:

— @ 1is a finite set of states including a specific state qr,

-7 = (2,]| o |I,¥) is a decidable effective Boolean algebra such that {2 =
(6,5,) and & = {s},

- qo € Q is the initial state,

— § is a finite set of transition rules of the form t = (q1,4,%,q2), where

o ¢1 € Q\{qs} and g2 € Q are respectively the source and target states of t,
o /€ N\ {0} is the lookahead of t,
o ¢ € U that is, 1 is an (-ary formula in W,

— F is a set of final rules of the form t = (q1,¢,%,qy) such that if £ > 0, then
t satisfies the same constraints as for transition rules, otherwise (i.e. £ =10),
then ¢ = true. Intuitively, a final rule (q1,¢,,qy) is used when the rest of the
input data word is of length £, where £ = 0 corresponds to the situation that A
already reaches the right end of the data word. It is a generalisation of final
states in finite-state automata.

The lookahead of an ESFA A is the mazimum of the lookaheads of the (transition
or final) rules in A.

Semantics of ESFAs. Let A= (Q,7,qo,0, F) be an ESFA. The semantics of the
rules t = (g1,4,v,q2) € 0 of A is defined as follows: If £ = 0, then ¢ = true and
q2 = qy, therefore, ||t = {q1 5 qr}. Otherwise,

[t ={a1 =5 g2 |w=dy...d¢ € (Dy)", (dy,....d¢) € 0|}

Intuitively, using the transition ¢ = (¢1,4,1,¢2), A reads the next £ input data
values w (including the one in the current position), if the corresponding tuple
of data values satisfies 1), then A consumes the word w and moves from the state
q1 to the state ¢.

Given a data word w € D*, ¢, = Gna+1 if there exist states qo, ..., ¢, € @ and
data words wy, ..., w, € D* such that w = w;...w, and for all ¢ € [n], ¢; 2 Gig1
A data word w € D* is accepted by A iff qq = ¢r- The data language defined by
A, denoted by L(A), is the set of data words accepted by A.

An ESFA A = (Q,7,q0,9, F) is deterministic if for every pair of rules
(q17 Ev 7/}7 Q2) and ((J1, él? wla Qé) in Aa

— if g2, ¢5 € Q\ {gs} and isSat(y) A ¢), then go = g5 and £ = ¢/;
— if g2 = ¢4 = ¢y and isSat() A ¢'), then £ = ¢/,
—if g2 € @\ {qr}, ¢ = qy and isSat(¢p A¢'), then £ > ('

Ezample 12. Let us consider the ESFA Agcripe = ({0, ¢1,45}, 7, 90,9, F) such
that
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95 _‘1/)1 97 “wZ

TR

Y1 & 21.me = (script)x
def

Y2 = x1...w9 = (/script)

Fig. 6. The ESFA A.cript

— 7T is the theory of UTF-8 characters where all the function symbols are con-
stants and the set of predicate symbols is empty,

— ¢ and F are illustrated in Fig.6, where v is an abbreviation of the formula
21 =(ANxyg=8ANz3 =cA--- AN xg =) and 9y is an abbreviation of the
formula 2y = (A xo=/Azg=85A--- ANxg =).

Then the ESFA Ageripe defines the set of words w such that each occurrence
of (script) is followed by an occurrence of (/script) in the future. Note that
although A,y is over a finite alphabet, it is much more succinct than the cor-
responding finite-state automaton defining the same language, where an enumer-
ation of all the possible subwords of length 9 satisfying =1 or —), is necessary.

A formula op € U9 (where ¢ > 0) is Cartesian if ||1)|| is equivalent to D; x

- X Dy for some Dq,...,D; C D,. An ESFA A is Cartesian if for each rule

(q1,¢,%,q2) in A such that ¢ > 0, it holds that v is Cartesian. For a satisfiable

formula ¢ (z) € ¥ (where £ > 0), to decide whether 1 is Cartesian is equivalent
to check whether for some witness (dy, ..., dy) of ¥,

Vl’l, ...,’E((’(/)(LL'M ...71‘4)) < /\ w(dla ceny di,17xi7di+17 ...7dg).

1<i<e

A formula ¢(z) € ¥ (where £ > 0) is monadic if it is equivalent to a Boolean
combination of unary formulae. For instance, 1 (x1,z2) et 1 = xomod 2 is a
monadic formula since it is equivalent to (x1 = 0 mod 2Aze = 0 mod 2)V(z; =1
mod 2 A zo = 1 mod 2), while 1(x1,x2) < 71 < @9 is not. In [VBNB14], a semi-
decision procedure was provided to compute an equivalent Boolean combination
of unary formulae, from a given quantifier-free formula over a decidable back-
ground theory.

An ESFA A is monadic if for each rule (¢1,¥,1,q2) of A such that ¢ > 0, ¢
is monadic.

Theorem 19 ([DV15]). The following results hold for ESFAs:

— Cartesian ESFAs, monadic ESFAs and SFAs are expressively equivalent,
moreover, this also holds for the deterministic case.
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— The membership and nonemptiness problems of ESFAs are decidable, but
the universality, language inclusion and equivalence problems of ESFAs are
undecidable.

— For each £ € N\ {0}, ESFAs with lookahead ¢ + 1 are more expressive than
ESFAs with lookahead £.

— ESFAs are closed under union, but not closed under intersection or comple-
mentation. Moreover, checking whether there exists an input word accepted by
two ESFAs A and A’ with lookahead 2 over quantifier free successor arithmetic
and tuples is undecidable.

In [DV15], the last result in Theorem 19 was shown by reducing the reacha-
bility problem of Minsky machines to the problem checking whether there exists
an input word accepted by two ESFAs A and A’ with lookahead 2 over quantifier
free successor arithmetic and tuples from N3.

Remark 2. In the definition of ESFAs, when the reading head is in the position
i and a transition with ¢ > 2 lookahead is used, then after the transition, the
reading head will be moved to the position i + ¢, instead of the next position
to the right of ¢, that is, i + 1. This special semantics of lookaheads in ESFAs
is essential for the decidability of nonemptiness problem. (Otherwise, we are
already be able to reduce the reachability problem of Minsky machines to the
nonemptiness problem of ESFAs.)

7.2 Symbolic Transducers

Similar to symbolic automata, symbolic transducers are introduced as extensions
of finite-state transducers, where the input letters are replaced by formulae over
an infinite data domain and the output letters are replaced by terms.

For the definition of symbolic transducers, we introduce the concept of back-
ground theories and label theories. Intuitively, background theories are many-
sorted Boolean algebra satisfying the additional constraint that the set of for-
mulae is closed under substitutions. Label theories extend background theories
further by adding inequalities of terms into the set of formulae.

Definition 21 (Background theories). A background theory T is a tuple
(2, o ||, ¥) satisfying the following constraints:

- 2 = (6,F,P) is a signature satisfying that each of &,F,P is a recursively
enumerable set.
— | o|| is an 2-interpretation such that for each s € &, ||s| is a recursively
enumerable set (denoted by Dy ).
-vr= U U) such that for each s = (s1,...,5;) € 6T, U is a recursively
se6+
enumeemble set of £2-formulae of arity s1 X --- X s; closed under Boolean con-

nectives V, A\, . In addition, ¥ is closed under substitutions, that is, for each
s/ -term f and ¢(x) € ¥, we have Y[f/a] € ¥ . For each i(x) € ¥, we
use ||| to denote the set {n(x) | nisan 2-assignment, and || o || =, ¥(x)}.
Elements of ||| are called the witnesses of .
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The notion isSat(¢)) for ¢ € ¥ and the decidability of 7" can be defined similarly
as effective Boolean algebra.

Definition 22 (Label theories). A label theory T with the input sort si, and
output sort Sour 18 a tuple (£2,] o ||, ¥, ') satisfying the following constraints:

= (92, o, ¥) is a background theory such that 2 = (&,F,P) and sin, Sout € &,
v = |J (@)Gn) such that for each i € N\ {0}, (&)n) comprises the
1€N\{0}
formulae of the form (x) A f(x) # g(x), where h(x) € ¥En) and f,g are
st/ Sout-terms.

A label theory is decidable if it is decidable to check isSat(y) for ¢ € W U W',

Given a formula ¥(z) € (¥)*n) and two si /sou-terms f(z),g(z), f and g
are equivalent up to v, denoted by f =~ g, if isSat(y)(z) A f(x) # g(x)) does not
hold. Two sequences of s /sou-terms f = fi...f, and g = g1...gm are equivalent
up to v, denoted by f =~ g, iff n = m and for every j € [n], f; ~y g;.

Given a siin [Sour-term f = fi...f, and a sequence of data values d =
(dyi,...,d;) € (D)% let |f|l(d) denote the sequence | fi|/(d)...|[f.|(d), that
is, a data word of sort seut.

Definition 23 (Symbolic finite-state transducers). A symbolic finite-state
transducer (SFT) is a tuple A = (Q,7, Sin, Sout, 90, 9, F), where:

- @, qo and F are defined as those for SFAs,

- T = (6,5,%) is a decidable label theory with the input sort s, and output
s01t Sout,

- 4 is a finite set of symbolic transitions (q, v, f,q’) such that q,q' € Q, @ € ¥sr
and f is a sequence of Sin/Sout-terms.

Let A= (Q,7, Sin, Sout; g0, 9, F') be an SFT. Then A is deterministic if for all
(q17w7faq2)7 (qlaw/?.f,7q/2) € 67 if 'Ssat(¢ A ’(/)/)7 then g2 = ql2 and f - VIN4 f,'

Semantics of SFTs. Similar to SFAs, a symbolic transition ¢t = (¢1,%,f,q2) € §
in the SFT A can be concretised into a potentially infinite set ||t|| of concrete
transitions —C @ x Dy, x (Dg,,,)* x @, where ¢ oy g2 € ||t]] iff d € [|¢| and
w = ||f]|(d). Intuitively, suppose A is at the state ¢; and reading the input data
value d € Dy, , if there is a transition (g1,v, f,g2) € d such that d € [|1]|, then A
can move from the state ¢; to the state ¢o after reading d, moreover it produces
a data word w € (D, )*.

u/w
Given a data word uw = dy...d, € (Ds,)*, ¢1 — @n41 if there exist states
42, -, qn € Q and data words wy,...,w, € (Ds,,)* such that w = w;...w, and
for each i € [n], ¢; da/us Gi+1- The transduction T, defined by the SFT A is
a relation 74 C (Dg, )* x (Ds,,,)* defined as follows: For each u € (Dg, )* and

/
w € Dy, )", (u,w) € T4 iff there exists ¢’ € F such that g Ny q'. For each
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u € (Dy,)*, define Ty(u) = {w € (Ds,,,)* | (u,w) € T4}. The SFT A is single-
valued if for all u € (D, )*, [Za(u)] < 1. The SFT A is finite-valued if there
exists a bound K > 0 such that for all u € (Dg, )*, |74(v)| < K.

in

Ezxample 13. Let us consider the simple SFT

Axor = ({(10}777 BV27 BV» q0, {(QO,truev fv qO)}v {qO})v

where BV? and BV are respectively bit vectors with length 2 and 1, the function
f 2 \bg, by. by xor by (xor is the bitwise exclusive or operator). The SFT Axor
transforms each sequence of bit pairs (b§,b1)...(b,b%) into a sequence of bits

bl...b™ such that for all i € [n], b° = b} xor b}.

Let 71 = (24, o ||1,%1,%]) be a label theory with input sort s; and out-
put sort so, and 15 = ({29, o |2, P2, ¥4) be a label theory with input sort so
and output sort s3. Then 77 and 1> are said to be composable if the following
constraints hold: Let £y = (&1,F1,P1) and 25 = (&2, F2,P2), then

- 61 n 62 = {52}, ) )

— for each 7,5 € N\ {0}, the set of functions from §; of arity sy — s is the
same as the set of functions from Fo of arity sb — s%, moreover, for each such
function f, || f|l1 = ||f]|2, finally, all these function symbols are the only ones
shared by §1 and §o,

— for each i € N\ {0}, the set of predicates from P; of arity s} is the same as
the set of predicates from Py of arity si, moreover, for each such predicate p,
Iplli = ||pll2, finally, all these predicate symbols are the only ones shared by

ml and mg.

From two composable label theories 77 and 75, a label theory 7" = (£2, ||o]|, ¥, ¥'),
called the composition of 77 and 15, can be defined as follows.

— the input sort and output sort of 1" are s; and s3 respectively,

- 2=(61U63,F1 UF2,P1 UP2).

— The || o ||-interpretations of sorts, function symbols, and predicate symbols
from (21 N 25 are those of || o ||;. On the other hand, the || o ||-interpretations
of sorts, function symbols, and predicate symbols from (£21 \ £22) U (£22\ £21)
inherit from || o |1 or || o |2-

— ¥ is closure of ¥; U W, under Boolean connectives and substitutions (i.e. the
minimum set of formulae that subsumes ¥; U ¥, and is closed under Boolean
connectives and substitutions).

~ v = |J (¥)61) such that for each i € N\ {0}, (¥')¢1) comprises the

iENV{0}
formulae of the form w(z) A f(x) # g(x), where ¥ (z) € ¥(1) and f,g are
s% /s3-terms.

SEFTs are said to be closed under composition if for each pair of SFTs A;
with the input/output sort si/s2, and Ay with the input/output sort ss/ss,
there is an SFT A such that for each data word w € (Ds,)*, it holds that
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Ta(w) = T, (T4, (w)). Two SFTs A; and A, with the input/output sort sq/s2
are equivalent if for each w € (Dg,)*, T4, (w) = T4,(w). The equivalence prob-
lem of SFTs is to decide the equivalence of two given SFTs with the same
input/output sorts.

Theorem 20 ([vNGO1,VHL+12,VB16]). The following results hold for SFTs:

— SFTs are closed under composition if their label theories are composable.
— The equivalence problem of finite-valued SFTs is decidable.

We would like to mention that the equivalence problem of finite state trans-
ducers (hence for SFTs) is undecidable [FV98].

Similarly to the extension of SFAs into ESFAs, SFTs can be naturally gen-
eralised into extended symbolic finite-state transducers (ESFTs).

Definition 24 (Extended symbolic finite-state transducers). An
extended symbolic finite-state transducer (ESFT) A is a tuple (Q,7, Sin,
Sout; 40, 0, F'), where Q, 1, Sin, Sout and qo € @ are defined as those for SFTs,
and 0 is a finite set of transition rules of the form t = (q1, 4,1, f, q2), where:

- q1 € Q\{qr} and g2 € Q are respectively the source and target states of t,

- £ e N\ {0} is the lookahead of ¢,

—ap e W),

- f is a sequence of sfn/sout—terms, each of them representing a function from
(Ds,,)* to D,

and F' is a set of final rules t = (¢1,4,%, f, qf) such that if £ > 0, then t satisfies
the same constraints as transition rules, otherwise (i.e. £ =0), ¥ = true.

The lookahead of an ESFT is defined similarly as for ESFAs.

Semantics of ESFTs. Let A= (Q,7, Sin, Sout, 90,9, F') be an ESFT. The seman-
tics of rules t = (¢1, 4,9, f,q2) of A is defined as follows:

u/w
1t ={a1 — g2 [w € [l w € ]| (u)}-
Intuitively, the transition ¢t = (¢1,4,%, f,q2) reads ¢ adjacent input data values

u that satisfies 1), then produces a sequence of data values w € ||f||(u).

w/w
Given a data word u € (D, )*, g1 — gn+1 if there exist states ga, ..., qn € Q,
words uy, ..., u, € (Dg,)* and words wy, ..., w, € (D, )* such that u = uy...u,,

w = wi...w, and for each i € [n], ¢; /ot Gi+1- The transduction T4 defined by
A is a relation on (Dg, )* x (Ds,,,)* defined as follows: For each u € (D, )* and

w € (Dg,,)*, (u,w) € Ty iff qo uﬁf g¢s. In addition, we use 74(u) to denote the
set {w € (D))" | (u,w) € Ty}
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9, =1/ f1...fo 9, 2/ fe Y1 def Z1...x9 = (Script)*
Y2 = mi...x9 = (/Cript)

def
fe = Ax1,...,T9. €

def

Vi e [9] fz = )\.%'1,...,1279. €T

1,true/g11 ) o def
9,w2/fe VZE[S],]G[Z]Z gij = )\xl,...,xi.xj

8,true/gs1...9gs,s

Fig. 7. The ESFT Aqcript

Ezxample 14. Let us consider the ESFT Ascripe = ({90,91,9r}. 7, 5,5, 40,0,
{90,q1}), where T is the theory of UTF-8 characters where all the function
symbols are constants and the set of predicate symbols is empty, s is the sort of
UTF-8 characters, ¢ is shown in Fig. 7. Agcrip: removes all the non-empty data
subwords following each occurrence of (script) until (/script) occurs.

An ESFT A = (Q,7, Sin, Sout, q0, 9, F') is deterministic if for all rules
(Q17£7¢7f7QZ), (q1a€/7¢/’f,7q5) S SUF:

— if g2, ¢h € Q\ {qr} and isSat(¢) A¢'), then go = gh, £ = ' and f ~yny f',
— if go = gh = qy, isSat(yp A ') and £ = ¢', then f ~yay ',
—if g € @\ {qr},¢5 = gy and isSat(y) A '), then £ > ¢'.

An ESFT A is single-valued if [Ta(u)| < 1 for all u € (Dg,)*. An ESFT A
is finite-valued if there exists K > 0 such that |T4(u)| < K for all u € (D, )*.
Cartesian and monadic ESFTs are defined similarly as for ESFAs.

Theorem 21 ([DV15]). The following results hold for ESFTs:

— Cartesian ESFTs, monadic ESFTs, and SFTs are expressively equivalent,
moreover, this fact holds in the deterministic case.

— ESFTs with lookahead £+ 1 are more expressive than ESFTs with lookahead .

- ESFTs are not closed under composition (even if the label theories are
composable).

— The equivalence problem of single-valued ESFTs over quantifier free successor
arithmetic and tuples is undecidable, but is decidable for single-valued Carte-
sian ESFTs.

It is open whether the equivalence problem of finite-valued Cartesian ESFTs
is decidable or not.

Further Reading. Symbolic visibly pushdown automata (SVPA) were inves-
tigated in [DAI14]. Another extension of SFAs, called symbolic finite-state
automata with registers (SRA), was also investigated in [DV15]. It turns out
that adding registers into SFAs entails undecidability, even for the nonemptiness
problem, since Minsky machines can be easily simulated by SRAs. In addition,
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symbolic finite-state tree automata (SFTAs) were investigated in [VB11a,VB15,
VD16]. It was shown that SVPAs and SFTAs preserve all the desirable proper-
ties of visibly pushdown automata and tree automata respectively. Symbolic tree
transducers (STT) were also investigated. It was shown in [FV14] that symbolic
tree transducers are not closed under compositions, which corrected an incorrect
claim in [VB11b].

8 Formalisms with Data Constraints for the Verification
of Programs Manipulating Dynamic Data Structures

Dynamic data structures, or heaps, are widely used in system software, e.g., oper-
ating systems and device drivers. Formal analysis and verification of programs
manipulating dynamic data structures are notoriously difficult. For instance, the
sizes of dynamic data structures are unbounded, their shapes may change dur-
ing the execution of the program, and their nodes may contain data values from
an infinite domain, or even worse, there may be pointer arithmetics applied to
the pointer variables. Researchers have proposed various approaches to reason
about dynamic data structures, e.g., shape analysis [SRW02], separation logic
[Rey02], and forest automata [HHR+12]. Noteworthily most work focuses on the
shape properties, e.g., whether the data structure is a list, or a binary tree, but
disregards data and size constraints, e.g., whether the lists and trees are sorted
or the trees are balanced.

8.1 Separation Logic with Inductive Definitions and Data
Constraints

Separation logic (SL) is an extension of Hoare logic. Since its introduction, SL has
become a widely used formalism for analysing and verifying heap-manipulating
programs [BCO05,DOY06,CDOY11]. As an assertion language, SL can express
how data structures are laid out in memory in a succinct way. In a nutshell,
this language features: (i) a spatial conjunction operator that decomposes the
heap into disjoint regions, each of which can be reasoned about independently,
and (ii) inductive predicates that describe the shape of unbounded linked data
structures such as lists, trees, etc. We shall present a version of separation logic
with data constraints, which may include pure constraints on data values and
capture desired properties of structural heaps such as the size, height, sortedness
and even near-balanced tree properties.

As in Sect. 7, we consider a data domain D, but this time we have an explicit
logical language to specify (much) more involved properties over D. As a general
framework, we are a bit abstract here and assume a theory (D, L) where L is
a suitable logical structure interpreted over ID. Typical cases include Presburger
arithmetic (in which (D, £) = (N, +, <, 0, 1)), logical theories supported by mod-
ern SMT solvers, or even logical theories on sets or multisets. As a convention,
data variables are typically denoted by DVars, ranged over by lowercase letters

x,y,....
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To define a separation logic with data constraints, we further assume an infi-
nite set L of locations. As a convention, [,I’,--- € I denote locations. Accord-
ingly, we introduce a set of location wvariables LVars ranged over by uppercase
letters E, F, X, Y, - --. We further consider two kinds of fields, i.e., location fields
from F and data fields from D. Each field f € F (resp. d € D) is associated
with I (resp. D). A term is either a variable from DVarsULVars, or the constant
symbol nil. We usually use ¢ and ¢ to denote a term and a tuple of terms.

Logic formulae may contain a set of (user-defined) inductive predicates, which
are collected in P and will defined momentarily. In the following, the logic is
denoted by SLID[P, L].

Syntaz. SLID[P, L] formulae comprise three types of formulae: pure formulae
11, data formulae A, and spatial formulae X', which are defined by the following
rules:

= E=F|E#F|IINI (pure formulae)
»= emp | Ewp | P(t) | XX (spatial formulae)
p= (£, X) | (d,x) | p,p

A= formulae from £ (data formulae)

where P € P, f € F, and d € D. For spatial formulae Y, formulae of the form
emp, E — p, or P(t) are called spatial atoms. In particular, formulae of the form
E — p and P(t) are called points-to atoms and predicate atoms respectively.
Each predicate P € P has a fixed arity, and is of the form

i=1

We call Jw;.(IT; AA; A X;) the rule of P(t). In addition, if in a rule Jw;.(IT; AA; A
X:), X contains predicate atoms, the rule is called an inductive rule; otherwise,
it is called a base rule.

Remark 3. Separation logic, as an extension of first-order logic, usually encom-
passes two connectives: the separating conjunction (%) and its adjoin (the sepa-
rating implication —*, aka the magic wand). It turns out that the magic wand is
so powerful that, adding it to the logic would make the logic undecidable immedi-
ately (with only very few exceptions). Moreover, although very interesting from
a theoretical perspective, its importance in program verification is debatable,
since in many cases, the use of the magic wand can be avoided. In light of this,
we exclude this connective in our logic.

Semantics. Formulae of SLID[P, L] are interpreted on the (memory) states. For-
mally, a state is a pair (s, h), where

— s is a stack, which is a partial function from LVars U DVars to . UD such that
dom(s) is finite and s respects the data type,
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— h is a heap, which is a partial function from IL x (F U D) to L UD such that
e h respects the data type of fields, that is, for each I € L and f € F (resp.
Il € L and d € D), if h(l, f) (resp. h(l,d)) is defined, then h(l, f) € L
(resp. h(l,d) € D); and
e }h is field-consistent, i.e. every location in h possess the same set of fields.

For a heap h, we use ldom(h) to denote the set of locations [ € L such that
h(l, f) or h(l,d) is defined for some f € F and d € D. Moreover, we use Flds(h)
to denote the set of fields f € F or d € D such that h(l, f) or h(l,d) is defined
for some I € .. Two heaps h; and hs are said to be field-compatible if Flds(hy) =
Flds(hs). We write hy#hg if ldom(hy)Nldom(hy) = &. Moreover, we write hiWho
for the disjoint union of two field-compatible fields h; and hy (this implies that
hi#hs).

Let (s,h) be a state and ¢ be an SLID[P, L] formula. The semantics of
SLID[P, £] formulae is defined as follows,

- (s,h) EE=Fif s(F) = s(F),

~ (s,h) F E# Fif s(E) # s(F),
— (s,h) EII} NI if (s,h) EII; and (s,h) E II5,
_(57)

h)

h
h) E emp if Idom(h) = @,
—~ (s,h) E E— pifldom(h) = s(E), and for each (f, X) € p, h(s(E), f) = s(X),
and for each (d,x) € p, h(s(E),d) = s(z),
h
h
h

(s,h) F ()1f(sh) [P(8)],
— (s,h) E X % Xy if there are hq, ho such that h = hy W he, (s,h1) F X7 and

(S 2) E 22.

where the semantics of predicates [P(t)] is given by the least fixpoint of a
monotone operator constructed from the body of rules for P in a standard way,
as in [BFGP14].

Example 15. Linked list segments are defined by the inductive predicate
Is(E, F),

Is(E,F) = (FE = F Aemp)V (3X. E — (next, X) xIs(X, F)).

In addition, acyclic list segments are defined by the inductive predicate als(F, F')
whose definition is obtained from that of Is(E, F') by adding E # F to the induc-
tive rule. Sorted list segments are defined by the inductive predicate sls(E, F, x),

sIs(E, F,z) = (E=F Aemp) V (3X,2". & < 2'A
E — ((next, X), (data,x)) * sls(X, F,z")).
And sorted acyclic list segments are defined by the inductive predicate
asls(E, F,x) whose definition is obtained from that of sls(E, F,z) by adding

E # F to the inductive rule. Linked list segments with consecutive data values
are defined by

pls(E,F,z) = (E=F Aemp) V (3X,2'. 2’/ =z + 1A
E — ((next, X), (data,x)) * pls(X, F,z")).
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For the purpose of program verification, the following two decision problems
play a vital role, which are the subjects of much of the current research in this
area.

— Satisfiability: Given an SLID[P, £] formula ¢, decide whether [¢] is empty.
— Entailment: Given two SLID[P, £] formulae ¢, ¢ such that Vars(y)) C Vars(y),
decide whether ¢ F 1 holds.

We comment that the former problem is fundamental in studying logics, and
usually serves as the first task in developing (automated) tool support. The
latter question enables automated verification of programs with SL assertions in
a Hoare logic style.

Not surprisingly, these questions are challenging, since in general the entail-
ment problem of separation logic with inductive predicates (even without
data constraints) is already undecidable [AGH+14]. Over the past ten years,
researchers have developed various techniques to tackle the challenges, by con-
sidering different fragments, or utilizing incomplete decision procedures (in par-
ticular, by considering heuristics).

Linearly Compositional Fragment. In [GCW16], Gu et al. defined a linearly
compositional fragment, where the inductive predicates, as well as the data con-
straints, must obey certain restrictions. A predicate P € P is linearly composi-
tional if

— the parameters of P can be divided into three categories: source parameters
E a, destination parameters F, 3, and static parameters &, such that F, «a
and F, 3 are symmetric, in the sense that the two vectors of parameters are
of the same length, and the two parameters in the same positions of the two
vectors are of the same data type, in addition, F, F' are location variables,

— the inductive definition of P is given by

P(E,0; F,3;6) = (E=F AN =3 A emp) (Ro)
V(EX3z. ANE — px P(Y,~; F,3;€)) (Ry)

The term “linearly compositional” reflects that: (1) P(E,a; F,3;€) can only
define linear data structures, for instance, singly or doubly linked lists, lists
with tail pointers, (2) P(F, a; F, 3; £) satisfies the so-called composition lemma
P(E1, a1; By, az;€) * P(E2, az; B3, a3;€) = P(E1, aq; B3, a3;€), which is
essential for deciding the entailment problem by extending the procedure based
on graph homomorphism introduced in [CHO+11].

Furthermore, the data formulae are defined as:

def

A=true|zoc|lzoy+c|ANA

where 0 € {=,<,>} and ¢ is an integer constant.
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We have the following constraints on the inductive rule (Ry):

—

None of the variables from F, 3 occur elsewhere in Ry, that is, in A, or E +— p.

2. Each conjunct of A is of the form «; 0 ¢, a;; 0 §;, or o 0 y;+cforo € {=, <, >},
1<i<l|a|=|y,1<j<|¢ and c€ Z.

3. For each 1 <i < |a| such that «; is a data variable, either a; occurs in p, or
A contains «; = y; + ¢ for some ¢ € Z.

4. Each variable occurs in P(Y,~; F, 3; &) (resp. p) at most once.

5. All location variables from o U & U X occur in p.

6. YeX andyC{F}UXUz.

The first constraint on (R;) above is essential to guarantee that P(E, a; F, 3; €)
satisfies the composition lemma (cf. [ESW15]). We will use Flds(P) to denote
the set of fields occurring in the inductive rule (R;) of P and PLF1d(P) to denote
the unique location field f such that (f,Y") occurs in the inductive rule (R;) of
P (the uniqueness of f is due to the aforementioned 4-th constraint of (Ry)).

We write SLIDLc[P] for the collection of separation logic formulae ¢ = IT A
AN X satisfying the following constraints,

— linearly compositional predicates: all predicates from P are linearly com-
positional,

— domination of principal location field: for each pair of predicates Py, P, €
P, if Flds(P;) = Flds(P2), then PLFId(P;) = PLFId(P,),

— uniqueness of predicates: there is P € P such that each predicate atom of
X is of the form P(—), and for each points-to atom occurring in X, the set of
fields of this atom is Flds(P).

Ezample 16. The inductive predicate Is(F, F') in Example15 is linearly com-
positional, while all the others therein are not. For instance, als does not sat-
isfy the constraint that the source parameter F' occurs only once in the induc-
tive rule, sls(E, F,z) does not satisfy that the source parameters and desti-
nation parameters are symmetric. Nevertheless, the predicates sls(E, F, z) and
pls(E, F, x) can be adapted into linearly compositional predicates sls(F, z; F, z")
and pls'(E, z; F,2') by adding one extra destination parameter z’,

SIsS'(B,z; F,o') = (E=F Az =2’ Aemp) V (3X, 1. © < 21 A
E — ((next, X), (data,x)) *sls' (X, z1; F, 1)),

pls' (B, z; F,2') = (E=F Az =21 ANemp)V (3X,2}. 1 =z + 1A
E + ((next, X), (data, x)) * pls' (X, z1; F, z")).
Theorem 22. The following facts hold for SLID c[P].

— The satisfiability problem of SLID ¢[P] is in NP.
~ The entailment problem of SLID c[P] formulae is in T1% .

It is an interesting open problem to extend the results in Theorem 22 to
compositional inductive predicates that are capable of defining non-linear data
structures, e.g. trees.
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Semi-decision Procedures for Separation Logic with Inductive Definitions and
Data Constriants. Bouajjani et al. considered a fragment of separation logic
with the Is predicate and data constraints, called SLD (Singly-linked list with
Data Logic), where data constraints are specified by universal quantifiers over
index variables [BDES12]. They showed that the entailment problem of SLD is
undecidable in general, but provided a sound—but incomplete—decision proce-
dure. In addition, they identified a decidable fragment of SLD. The logic SLD in
[BDES12] focuses on singly linked lists, and it is unclear how to extend to other
linear structures such as doubly linked lists. The decision procedure in [BDES12]
is incomplete for fragments that can express list segments where the data val-
ues are consecutive. (Note that this can be expressed in the logic SLID c[P]
aforementioned; see pls'(E, x; F,z') in Example 16.)

In [CDNQI12], Chin et al. proposed an entailment checking procedure that
can handle well-founded predicates (that may be recursively defined) using
unfold/fold reasoning. In [LSC16], the authors present a semi-decision proce-
dure for a fragment of separation logic with inductive predicates and Presburger
arithmetic. The authors present S2SAT, a decision procedure combining under-
approximation and over-approximation for simultaneously checking SAT and
UNSAT properties for a sound and complete theory augmented with inductive
predicates. To check the satisfiability (but not entailment) of a formula, the pro-
cedure iteratively unfolds the formula and examines the derived disjuncts. In
each iteration, it searches for a proof of either satisfiability or unsatisfiability.
They also identify a syntactically restricted fragment of the logic for which the
procedure is terminating and thus complete.

Other Work on Decision Procedures for First-Order Separation Logic with Data
Constraints. Bansal et al. considered first-order separation logic on lists with
ordered data and identified the decidability frontier of the satisfiability prob-
lem [BBL09]. Very recently, Reynolds et al. proposed a decision procedure for
the quantifier-free fragment of first-order separation logic interpreted over heap
graphs with data elements ranging over a parametric multi-sorted (possibly infi-
nite) domain [RISK16].

8.2 GRASS: Logic of Graph Reachability and Stratified Sets

GRASS stands for logic of Graph Reachability And Stratified Sets, which was
introduced by Piskac et al. [PWZ13,PWZ14]. The main motivation of these logics
is to encode separation logic with inductive predicates into decidable fragments
of many-sorted first-order logic, where inductive predicates (e.g. singly linked
lists) are encoded by reachability predicates without relying on induction and
separating conjunction is encoded by set constraints, and thus offering an SMT-
based decision procedure and tool support for separation logic with inductive
definitions. An appealing feature of this approach is that the translation into
many-sorted first-order logic offers a convenient way to combine shape properties
and data constraints, by utilising the Nelson-Oppen framework [NO79].
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In the following, we first define the logic GRASS.

Definition 25 (GRASS logic, [PWZ14]). The GRASS logic can be defined as
many-sorted first-order logic with the signature Qags = (Sas, Sas, Bas), where

- Ggs = {node, field, set};

— Sas consists of null : node, read : field X node — node, write : field X node x
node — node, and a countable infinite set of constant symbols for each sort in
Gas;

— Pas consists of B : field x node x node x node and €: node X set.

Semantics. The semantics of GRASS formulae is defined with respect to a
theory Th(Zgs), where Zgs is a set of {2gg-interpretations such that an gs-
interpretation I is in Zgg if I satisfies the following conditions.

— I interprets the sort node as a finite set node’.
— The sort field is interpreted as the set of all functions node! — node!.
— The sort set is interpreted as the set of all subsets of node’.
— The function symbols read and write represent field look-up and field update.
They must satisfy the following properties,
e Vu € node!, f € field, readl(f, u) = f(u),
e Vu,v € node!, f € field’, write! (f,u,v) is the function f’ € field” such that
for each w € node’, if w = u, then f’(w) = u, otherwise, f'(w) = f(w).
— The between predicate B(f, z,y, z) denotes that x reaches z via an f-path that
must go though y. Formally, B(f,x,y, z) satisfies that for each (f,u,v,w) €
field’ x node’ x node’ x node’, B(f,u,v, w) holds iff (u,w) € f* A (u,v) €
({(u1, f(u1)) | us € node’ Auy # w})*, where f* is the reflexive and transitive
closure of f, similarly for ({(uy, f(u1)) | u1 € node’ Ay # w})*.
— Finally, €, the interpretation of € in I, is the set membership relation, that
is, for each u € node’ and S € set, u €’ S holds iff u is an element of &.

We will use R(f,x,y) as a short-hand for B(f,z,y,y), which intuitively means
that there is an f-path from z to y.

Although the satisfiability problem of GRASS is undecidable in general,
decidable fragments have been considered in [PWZ13,PWZ14]. In the follow-
ing, we will use the fragment of GRASS in [PWZ13] to illustrate the idea, where
the specialisation of GRASS to lists was considered and it was shown how to
translate separation logic formulae over lists into GRASS. The interested reader
can refer to [PWZ14] for the fragment GRIT which is devoted to tree structures.

Let us call the fragment of GRASS in [PWZ13] as GRASS;;5:.

Definition 26 (GRASS;;s, [PWZ13]). We assume that X is a countably infi-
nite set of variables of sorts node and set. We use the lower-case symbols x,y € X
for variables of sort node and upper-case symbols X, Y € X for variables of
sort set. In addition, we assume that next € field is used to denote the next-
pointers between locations in lists. Then the syntax of GRASS;s is defined by
the following rules,
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def

Tr, = x | next(TL), wherex € X,

A ET, =T, | Ty, Zor\ T, Tp,

UZA|-U|UAU|UVU,

Ts ZX|@|Ts\Ts | Ts UTs | Ts N Ts | {x.U}, s.t.next(z) does not occur in U,
B ETs="Ts|Ty €Ts,

F 2A|B|-F|FAF|FVF.

A GRASS formula is a propositional combination of atoms. There are two types
of atoms.

— Atoms of type A are either equalities between terms of type T, and reachabil-
ity predicates. The terms of type Ty, represent nodes in the graph. They are

associated with the sort node and are constructed from variables and applica-

tion of next. Reachability predicates t1 next\l to intuitively means that there

s a path in the graph that from ti to to without going through ts.

— Atoms of type B are equalities between terms of sort set and membership tests.
Terms of type set represent stratified sets', i.e., their elements are interpreted
as nodes in the graph. Terms of sort set include set comprehensions of the
form {x.U}, where U is a Boolean combination of atoms of type A.

We will use t; Dext, ty as an abbreviation of t; m to, which intuitively

means that ¢y is reachable from ¢; by following the field next. In addition, we

use t; # to as an abbreviation of (¢ = t2). For a variable x € X', we use {z} to
denote the singleton set {y. y = z}. The side condition that next(x) does not
occur in U in the terms {z. U} is important to ensure the decidability of the
logic.

Note that GRASS;;s: includes some syntactic sugar that is not in GRASS
defined above. We will illustrate how this syntactic sugar can be casted into the
original definition of GRASS.

— next(t) = read(next, t),
next\t3

-t —— to = R(next, t1,t2) AVa. (B(next, t1,x,t2) ANx # ta) — x # t3,

— Set operations can be reformulated into GRASS as well. For instance, (X7 \
Xo)UXg =Y =Ve. ((r€e Xu A € Xo)Vr € X3) &z €Y, and
X={z}=xeXAWyyeX —y=u.

We use X =Y W Z as an abbreviation of the formula X =Y UZAY NZ =g,
which intuitively means that X is the disjoint union of ¥ and Z.

next next
—

Ezample 17. Consider the formula F =Y ={z. 2 — y} N Z = {z. «

z} ANX =Y W Z. This formula expresses that the subgraph of the heap graph
induced by the set of nodes X comprises two disjoint connected components,
one in which all nodes reach y, and one in which all nodes reach z.

! The notion of stratified sets comes from [Zar03].
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Theorem 23 ([PWZ13]). The satisfiability problem of GRASS;st is NP-

complete.

In the following, we first illustrate how SLIDJals], i.e. the logic SLID with only
a single inductive predicate als(x,y) and no data constraints (cf. Example 15
for the definition of als, adapted slightly by replacing E, F with z,y), can be
translated into GRASS;;5¢. Specifically, SLID[als] formulae IT A X' are defined by
the following rules,

O=Ex=y|aos#y| TN, Y =z — (next,y) | als(z,y) | £ * X,
where IT and X are called the pure and spatial formulae respectively.

The translation is done by induction the syntax of SLIDJals] formulae. Since
the translation of pure formulae is trivial (the identity translation), we only
describe the translation of spatial formulae, denoted by trx (X') (where X denotes
the set of locations), below.

def

— trx(emp) = X = &,

— trx(z — (next, y))

— trx(als(z, yANX ={z. x#z/\z;«éy}

— trx (X % 22) X X1 W X Atrx, (X1) Atrx,(Xs), where X; and X5 are
two fresh variables of sort set.

P = {2} Anext(z) =y,

) d next

def

As a matter of fact, we can even translate the Boolean combination of SLID]ls|
formulae into GRASS;;s; since GRASS;;4; is closed under negations.

Ezxtension with Data Constraints. One notable feature of this translation of
separation logic formulae into GRASS;;,; is that it offers a convenient way to
specify and reason about data constraints in dynamic data structures, by using
the Nelson-Oppen combination framework. To support reasoning about data
constraints, we extend the signature of GRASS;;s; with an additional sort data
for data values, data fields interpreted as the functions from node’ to data’, and
sets with data elements. The read and write functions are extended accordingly.
In the following, we assume that there is a unique data field d and we use d(z)
to denote the value of a node = corresponding to field d.

We can combine GRASS;;s; with any decidable quantifier-free first-order the-
ory that is signature-disjoint from GRASS;;s; and stably-infinite to interpret the
data sort. The extensions that we discuss build on such quantifier-free combina-
tions. [PWZ14] considers three categories of extensions with data: (1) monadic
predicates on the data value of one node, (2) binary predicates between the
data values of two distinct nodes, and (3) constraints on the content of data
structures, that is, sets of data values occurring in data structures.

— Monadic predicates. These predicates are able to express properties such as
upper and lower bounds on the values contained in a tree. Such formulae have
the following form: Vz.x € X — Q(d(x)) where @ is a monadic predicate
over data and X a variable of sort set. This class of formulae also forms a



244 T. Chen et al.

so-called ¥-local theory extension [IJS08]. Then we can slightly adapt the
decision procedure for GRASS;;s: to obtain a complete decision procedure for
the extension of GRASS;;s; with monadic-predicate data constraints.

— Binary predicates. These predicates are introduced to define, for instance,
a sorted linked list, in which we need to relate data values in two distinct
nodes. To ensure completeness of the decision procedure, the binary predi-
cates must satisfy that the expressed binary relations are transitive as well
as some other constraints. (They are too technical to be stated here clearly.
Those who are interested can read Sect. 7 of [PWZ14] for these additional con-
straints) One typical transitive binary predicate is the order relation between
data values. The transitivity requirement prevents us from expressing data
constraints involving counting, e.g., length constraints or multiset constraints.

With binary predicates, we can express the sortedness property as follows:
next

Ve,ye Xz — y — d(x) < d(y).

— Set constraints. This class of extensions enables reasoning about functional
correctness properties. Essentially a way of referring to the content of lists
is needed. While one can define the content of a list whose footprint is X as
C(X)={z |3z € X. z = x.d}. This definition goes beyond GRASS};:, due to
the existential quantifier appearing inside the set comprehension. In [PWZ13],
the authors proposed a solution by adding a witness function that maps a data
value back to a node in the graph which stores the data value. They define
the witness function in an axiomatic way, any show that the axioms still give
a W-local theory extension.

Limitations of This Approach. Unfortunately, there is no precise characteriza-
tion of the limit of extensions that preserve the property of local theory exten-
sions on which the decision procedure is built. However, not all extensions are
local, in particular, the constraints involving counting, e.g. length constraints
and multiset constraints.

Other Works on First-/Second-Order Logics Combining Shape Prop-
erties and Data Constraints. Bouajjani et al. proposed a fragment of many-
sorted first-order logic with reachability predicates, called CSL (Composite
Structure Logic [BDES09]), to reason about programs manipulating composite
dynamic data structures. The formulae in CSL allow a limited form of alternation
between existential and universal quantifiers and they can express constraints
on reachability between positions in the heap following some pointer fields, lin-
ear constraints on the lengths of the lists, as well as constraints on the data
values attached to these positions. For data constraints, the logic CSL is para-
meterized by a first-order logic over the associated data domain. They proved
that the satisfiability problem of CSL is decidable whenever the underlying data
logic is decidable. In addition, Madhusudan et al. defined a fragment of monadic
second-order logic, called STRAND (STRucture ANd Data), to reason about
both shape properties and data constraints, in tree structures [MPQ11]. While
the satisfiability of STRAND logic is undecidable in general, several decidable
fragments were identified in [MPQ11].
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8.3 Streaming Transducers

In [AC11], Alur and Cerny proposed streaming transducers to show that for
a class of single-pass list processing programs, the equivalence problem of the
programs in this class is decidable. The intuition of streaming transducers is
to model linked lists as data words, use a set of data word variables to store
some intermediate information for the outputs, and at the same time use a set
of registers ranging over an ordered data domain to guide the control flow of
transducers. In the following, we present the definition of streaming transducers
and some basic facts known for streaming transducers.

Let D be an infinite set of data values. We will use < to denote the strict
total order over D. Examples of (D, <) include (Z, <), the set of integers with the
order relation, and (Q, <), the set of rational numbers with the order relation.
As for NRAs in Sect. 3, let R be a set of registers and cur ¢ R be a distinguished
register to denote the data value in the current position, in addition, let R®
denote R U {cur}. A guard formula over R is defined by the rules g = true |
false | curor | gAgAgVg, where r € Rand o € {=,#, <,>}. Let G denote the
set of guards over R. Let p be a valuation that assigns each r € R a data value
from D, and d € D. Then p[d/cur] satisfies a guard g, denoted by p[d/cur] = g,
is defined as follows:

— pld/cur] E cur = r if d = p(r), similarly for p[d/cur] = cur # r, p[d/cur] =
cur < r, and p[d/cur] = cur > r,
— pld/cur] E g A g and p[d/cur] |= gV g are defined in a standard way.

Definition 27 (Streaming transducers). A streaming transducer (ST) S is
a tuple (Q, X, I, R, X, qo, 70, 9, O), where:

- @ is a finite set of states,

- R is a finite set of registers,

— X s a finite set of data word variables,

— qo € Q is the initial state,

- 70 : R — D assigns each register an initial data value,

— 0 1s a finite set of transitions comprising the tuples (q,0,9,q , &), where q,q' €
Q, o€ X, gisaguard on R, « is a function (instead of a partial function)
which assigns each r € R a variable v’ € R®, and assigns each x € X a
sequence from ((I" x R®) U X)*,

- O is a partial output function from Q to (I’ x R) U X)*.

In addition, S satisfies the following constraints.

- deterministic: for each pair of distinct transitions (q,0,91,q1,01),(q, 0, g2,
G2, ) € 6, it holds that g1 A g2 is unsatisfiable,

— copyless: for each q € Q and x € X, there is at most one occurrence of x in
O(q), in addition, for each x € X and (q,0,9,q',a) € §, there is at most one
occurrence of x in the set of words {a(y) |y € X}.
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Semantics of STs. Given a data word w = (01,d1)...(0pn,dy) and an ST S =
(Q, X2, IR, X, qo,0,0), a configuration of S on w, is a pair (i,p), where p is
a wvaluation p on RU X, that is, a function which assigns each r € R a data
value from DD, and assigns each x € X Ndom(p) a data word over the alphabet
I'. The initial configuration is (go, po) where pg(r) = 7o(r) for each r € R, and
po(x) = € for each © € X. A configuration (¢, p’) is said to be a successor of
another configuration (g, p), denoted by (q,p) — (¢, p’), if there are d € D
and a transition (¢,0,g,q,a) € § such that p[d/cur] = g and for each r € R,
p'(r) = (pld/cur])(a(r)), and for each z € X, p'(z) = (p[d/cur])(a(x)), where
(p[d/cur])(a(x)) is obtained from «(z) by replacing each occurrence of y € RUX
in a(x) with (pld/cur])(y). A run of S on w is a sequence of configurations
(g0, p0)(q1,p1) - - - (gn, pn) such that (g, p;) — (g, pix1) for each i : 0 < i < n.
Note that since S is deterministic, there is at most one run of S on w. The output
of § on w, denoted by S(w), is defined as p,(O(¢y)), if there is a run of S on
w, say (9o, Po)(q1,p1) - - - (Gn, pn), such that O(g,) is defined, otherwise, S(w) is
undefined.

F1 F2
) x1 := (private, cur) - z1
(a,true, z := (a, cur) - x) (PI’IVate,true7 ( o = 1 >>

O(q)

Il
8

public, true, =T .
x2 := (public, cur) - z2
F3

(a,cur< r,( m.;x.(a,cur) ))

< ( = cur ))
a,true,
T =

O(q) == (a,7)

Fig. 8. Examples of streaming transducers

Ezample 18. Here are a few examples of streaming transducers (see Fig.8).

— Let X' = {a}. Let F} be the transduction that reverses a data word. Then F}
is defined by an ST & = ({¢}, X, X, R = &, X = {x},q,6,0), where
e § ={(q,a,true,q,a)} such that a(z) = (a,cur) - z,
o O(q) ==
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— Let X = {private, public}. Let F5 be the transduction that outputs wy -ws from
w, where w; and ws are the subsequences of w that contain the private and
public entries respectively. Then F is defined by an ST S2 = ({¢}, X, X, R =
@, X ={x1,22},¢,6,0), where

e § = {(q, private, true, ¢, a1 ), (g, public, true, ¢, a2) } such that aq(z1) = 21 -
(private, cur), aq(z2) = x2, as(z1) = 21, and az(z2) = x2 - (public, cur),
[ ] O(q) =T - T2.

— Let X = {a}. Let F3 be the transduction to move the data value in the first
position to the last position, provided that the sequence of data values in the
data word, except the data value in the first position, is sorted, in addition,
all these data values are less than the data value in the first position. Then Fj3
is defined by an ST S5 = ({q0, 1}, >, X, R = {r}, X = {z}, 0,9, O), where:

e 5 ={(qo,true,q1, 1), (q1,cur < r,q1, az)} such that ay(r) = cur, ay(z) =
x, as(r) =r, and as(z) = z - (a,cur).

e O(q) = x-(a,7).

It is easy to check that each of S1,82,S3 defined above satisfies the copyless
constraint.

STs are said to be closed under composition if for each pair of STs S; with
the input/output alphabet X'/I", and Sy with the input/output alphabet I'/1T,
there is an ST S such that for each data word w over the alphabet X, it holds
that S(w) = S2(S1(w)).

The equivalence problem of SNTs: Given two STs §; and Sa, decide whether
they are equivalent, in the sense that for each data word w, S1(w) = Sa(w).

Theorem 24 ([AC11]). The following results hold for streaming transducers:

— 8Ts are not closed under composition.
— The equivalence problem of STs is PSPACE-complete.
— The equivalence problem of the two-way extension of STs is undecidable.

The PSPACE-hardness of the equivalence problem follows from the fact that the
equivalence of DRAs is PSPACE-hard (cf. Theorem 2).
At last, we would like to remark that since its introduction, most of the

work on streaming transducers focus on finite alphabets, see e.g. [AC10,AD12,
ADGT13].

Other Automata Models to Reason About Dynamic Data Structures with Data
Constraints. Forest automata were also extended with order constraints to rea-
son about the behaviour of programs manipulating dynamic data structures,
where a sound but incomplete procedure was proposed to decide the language
inclusion problem of two forest automata [AHJ+13].
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9 Formalisms for Analysing Programs in the MapReduce
Framework

The MapReduce framework is a popular programming model proposed by Dean
and Ghemawat from Google Inc. for data-parallel computations [DGO04]. Since
its introduction, various data-parallel computing platforms based on the MapRe-
duce framework, e.g. Apache Hadoop?, Apache SPARK?, Microsoft SCOPE
[CJL+08], Yahoo! Pig Latin [ORS+08], and Facebook Hive [TSJ+09], have
appeared and a huge number of big-data processing jobs are executed on these
platforms daily.

In the MapReduce framework, the reducer produces an output from a list of
inputs. Due to the scheduling policy of the platform, the inputs may arrive at
the reducers in different order. The commutativity problem of reducers asks if the
output of a reducer is independent of the order of its inputs. A formal analysis
of the commutativity problem of reducers in the MapReduce framework was
first considered in [CHSW15], where it was shown that (1) the commutativity
problem is undecidable in general, if multiplication operators are available, and
(2) if the data domain is a finite set, then the commutativity problem is decidable
and reduced to the equivalence problem of two-way finite-state automata.

Very recently, Chen et al. proposed a model of reducers, called streaming
numerical transducers (SNTs), and extended the decidability result in [CHSW15]
to the infinite data domain [CSW16]. The model of SNTs originates from the
observation that in practice MapReduce programs are usually used for data
analytics and thus require very simple control flow. By exploiting this simplicity,
in SNTs, the control and data flow of programs are separated and arithmetic
operations are disallowed in the control flow. The design of SNTs is inspired
by streaming transducers [AC11] (see Sect.8.3). Nevertheless, the two models
are intrinsically different since the outputs of SNTs are integers while those of
streaming transducers are data words.

In this section, as in symbolic automata, we assume data words are elements
of D*. In addition, we assume this data domain is the integer domain Z. An
SNT scans a data word w = d ...d, from left to right, records and aggregates
information in variables, and outputs an integer when it finishes reading the data
word.

Let Z be a set of variables. Then an expression over Z is defined recursively
by the following rules: e € Ey = ¢ | z | (e +¢) | (e —e), where z € Z and
c € Z. We use Ez to denote the set of all possible expressions over Z. For an
expression e, let var(e) denote the set of variables in e. Given a set of expressions
E, we also use var(E) to denote the set of all variables appeared in FE, i.e.,
var(E) = U.cpvar(e). A guard over Z is defined recursively by the following

rules: g € Gz true [v <v|v=wv|v>v]|gAg, where v € ZUZ. We use
Gz to denote the set of guards over Z. A guarded expression over Z is a pair
(g,e) € Gz x Ez.

2 http://hadoop.apache.com.
3 http://spark.apache.com.
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A waluation p of Z is a function from Z to Z. The value of an expression
e € Ez under a valuation p over Z, denoted by [e],, is defined recursively in the
standard way. Let p be a valuation of Z and g be a guard in Gz. Then p satisfies
g, denoted by p [ g, iff ¢ is evaluated to true under p. We say that a guard g is
satisfiable if there exists a valuation p satisfying g.

Definition 28 (Streaming numerical transducers). A streaming numerical
transducer (SNT) S is a tuple (Q, R, X, 6, qo, O), where Q is a finite set of states,
R is a finite set of control registers, X is a finite set of data variables, 0 is the
set of transitions, qo € Q is the initial state, O is the output function, which is a
total function from Q to 2°6r¥Erux e O(q) for q € Q is a finite set of guarded
expressions over X UY where the guards only put constraints on R. In addition,
a distinguished register cur € R is used to denote the data value in the current
position. For convenience, let R® denote RU {cur}.

The set of transitions § comprises the tuples (q,9,1,q'), where q,q' € Q, g is a
guard over R®, and n is an assignment function which is a partial function from
RUX to Ereyux such that for each r € dom(n) N R, n(r) € R®. Informally, n

maps a data variable to an expression over ROUX and a control register to either

cur or another control register. We write q Lo, q to denote (¢,9,1,q") € 8 for

convenience. Moreover, we assume that an SNT S is deterministic. That is,
(1) for each pair of distinct transitions originating from q, say (q,91,m,q}) and
(¢, 92,m2,45), it holds that g1 A g2 is unsatisfiable, (2) for any state ¢ € Q and
each pair of distinct guarded expressions (g1,e1) and (ga,e2) in O(q), it holds
that g1 A go is unsatisfiable.

Semantics of SNTs. The semantics of an SNT § is defined as follows. A con-
figuration of S is a pair (g, p), where ¢ € Q and p is a valuation of RU X. An
ingtial configuration of S is (qo, po), where py assigns zero to all variables in
RU X. A sequence of configurations R = (qo, po)(q1,p1) - - - (qn, pn) is a run of
S over a data word w = dj ... d, iff there exists a path (sequence of transitions)

P = q (91,m) q1 (g2,m2) G2 - Qn_1 Lgn 1), @n such that for each ¢ € [n + 1],

pi—1|d;i/cur] = gi, and p; is obtained from p,_; as follows: (1) For each r € R,
if r € dom(n;), then p;(r) = [0:(r)]p,_.[di/cur), Otherwise pi(r) = pi—1(r). (2)
For each x € X, if x € dom(n;), then p;(x) = [1:(2)],,_,[d;/cur], Otherwise,
pi(x) = pi—1(x). We call (qn, pn) the final configuration of the run. In this case,
we also say that the run R follows the path P. We say that a path P in S is
feasible iff there exists a run of S following P. Given a data word w =d; ... d,,
if there is a run of S over w from (qg, po) t0 (Gn, prn) and there exists a guarded
expression (g,€) € O(gy,) such that p,, = g, then the output of S over w, denoted
by S(w), is [e],, . Otherwise, S(w) is undefined, denoted by L.

Ezample 19 (SNT for maz). The SNT S,ax for computing the maximum value
of an input data word is defined as ({qo,q1,¢2}, {max}, &, 4, g0, O), where the
set of transitions J and the output function O are illustrated in Fig.9 (here
R = {max}, X = @, and max := cur denotes the assignment of cur to the
variable max).
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(cur < max, 0)

M%) (cur = max, )
O(q1) = {(true, max)}

(cur > max, max := cur)

Fig.9. The SNT Smax for computing the maximum value

We focus on three decision problems of SNTs defined as follows: (1) Commu-
tativity: Given an SNT S, decide whether S is commutative, that is, whether for
each data word w and each permutation w’ of w, S(w) = S(w’). (2) Equivalence:
Given two SNTs S, 8’, decide whether S and S’ are equivalent, that is, whether
over each data word w, S(w) = §'(w). (3) Non-zero output: Given an SNT S,
decide whether S has a non-zero output, that is, whether there exists a data
word w such that S(w) ¢ {L,0}.

Theorem 25 ([CSW16,CLTW16]). The commutativity, equivalence, and non-
zero output problem of SNTs can be decided in exponential time.

In [CSW16,CLTW16], Theorem 25 was proved as follows:

1. The commutativity problem of SNTs is reduced to the equivalence problem
of SNTs in polynomial time, which can be further reduced to the non-zero
output problem of SNTs in polynomial time.

2. Then it is shown that the non-zero output problem of SNTs can be decided
in exponential time, by extending Karr’s algorithm for computing affine rela-
tionships in affine programs [MS04].

Further Reading. Recently, Neven et al. proposed variants of register automata
and transducers as formal models for the distributed evaluation of relational
algebra on relational databases in MapReduce framework [NSST15]. They intro-
duced three models and investigated the expressibility issues.

10 Conclusion

This chapter has provided a tutorial and survey on the state of the art of
automata models and logics to reason about the behaviour of software sys-
tems which embrace data values from an infinite domain. We have presented
the models with different mechanisms to deal with infinite data values, regis-
ter automata (and related logics), data automata (and related logics), pebble
automata, and symbolic automata and transducers. In addition, we included
two application-oriented sections, on formal models to reason about programs
manipulating dynamic data structures and for the static analysis of data-parallel
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programs respectively. For these two sections, we presented separation logic with
data constraints, logic of graph reachability and stratified sets, streaming trans-
ducers, and streaming numerical transducers. For each model, we introduced
the basic definitions, used some examples to illustrate the model, and stated the
main theoretical properties of the model.

For the perspectives of this field, in our opinion, researchers should strengthen
the connections of the models with applications to better motivate, or to achieve
greater impact of, their work. In particular, symbolic automata and transducers,
separation logic with data constraints, and streaming numerical transducers are
the formalisms that are better motivated by applications. These formalisms are
still the research focus in the verification and database community. In addition,
in order to produce practical tools to solve industrial-scale problems, there are
still various challenges, and interested readers are encouraged to work on, and
contribute to, this promising field.
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