
LLMMeets Bounded Model Checking: Neuro-symbolic Loop
Invariant Inference

Guangyuan Wu
guangyuanwu@smail.nju.edu.cn
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

Weining Cao
weiningcao@smail.nju.edu.cn
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

Yuan Yao
y.yao@nju.edu.cn

State Key Laboratory for Novel
Software Technology, Nanjing

University
China

Hengfeng Wei
hfwei@nju.edu.cn

State Key Laboratory for Novel
Software Technology, Nanjing

University
China

Taolue Chen
t.chen@bbk.ac.uk

School of Computing and
Mathematical Sciences, Birkbeck,

University of London
UK

Xiaoxing Ma
xxm@nju.edu.cn

State Key Laboratory for Novel
Software Technology, Nanjing

University
China

ABSTRACT
Loop invariant inference, a key component in program verification,
is a challenging task due to the inherent undecidability and complex
loop behaviors in practice. Recently, machine learning based tech-
niques have demonstrated impressive performance in generating
loop invariants automatically. However, these methods highly rely
on the labeled training data, and are intrinsically random and uncer-
tain, leading to unstable performance. In this paper, we investigate
a synergy of large language models (LLMs) and bounded model
checking (BMC) to address these issues. The key observation is that,
although LLMs may not be able to return the correct loop invariant
in one response, they usually can provide all individual predicates
of the correct loop invariant in multiple responses. To this end,
we propose a “query-filter-reassemble” strategy, namely, we first
leverage the language generation power of LLMs to produce a set of
candidate invariants, where training data is not needed. Then, we
employ BMC to identify valid predicates from these candidate in-
variants, which are assembled to produce new candidate invariants
and checked by off-the-shelf SMT solvers. The feedback is incor-
porated into the prompt for the next round of LLM querying. We
expand the existing benchmark of 133 programs to 316 programs,
providing a more comprehensive testing ground. Experimental re-
sults demonstrate that our approach significantly outperforms the
state-of-the-art techniques, successfully generating 309 loop in-
variants out of 316 cases, whereas the existing baseline methods
are only able to tackle 219 programs at best. The code is publicly
available at https://github.com/SoftWiser-group/LaM4Inv.git.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695014

CCS CONCEPTS
• Software and its engineering→ Formal software verifica-
tion.

KEYWORDS
loop invariant, program verification, large language model

ACM Reference Format:
Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng Wei, Taolue Chen,
and Xiaoxing Ma. 2024. LLM Meets Bounded Model Checking: Neuro-
symbolic Loop Invariant Inference. In 39th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’24), October 27-November
1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3691620.3695014

1 INTRODUCTION
Loop invariant inference plays a central role in program verification.
In a nutshell, a loop invariant is a proposition that holds before and
after each iteration of the loop, serving as a cornerstone for deduc-
tive verification of loop programs. However, being undecidable in
general, inferring loop invariants is a notoriously difficult problem
which has been the subject of active research for over 40 years.

Historically, direct inference of loop invariants using pure logical
methods has proven to be hard; such methods are normally based
on fixpoint computation and/or abstract interpretation, which are
not scalable in practice. Later on, several studies adopt template-
based constraint-solving approaches, where typically polynomial
invariants are considered in a pre-defined parametric form (e.g.,
polynomials in a fixed set of variables up to certain degrees) and
then computer algebra tools (e.g., Gröbner basis, Nullstellensatz/-
Positivstellensatz) are applied to synthesize the coefficients of the
polynomial. This class of methods relies on a suitable form of tem-
plates which cannot be too simple (otherwise not producing useful
invariants) or too complicated (otherwise cannot be handled by
constraint solvers).

Recent work adopts the “guess-and-check” framework, where
candidate invariants are iteratively generated (guessing) and verified
(checking). This class of methods is heuristic in nature (hence no
completeness guarantees) but is highly versatile. In particular, they

https://github.com/SoftWiser-group/LaM4Inv.git
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

can accommodate data-driven approaches in the “guessing” step.
Indeed, various machine learning techniques have been applied to
generate candidate invariants including decision tree [20, 23, 51],
reinforcement learning [46, 54], continuous logic networks [42, 52]
and large language models (LLMs, [7, 28, 33, 50]).

Our work. In this paper, we propose a novel neuro-symbolic ap-
proach LaM4Inv (LLM and Model checking for loop Invariant
inference) to instantiate the aforementioned guessing step, leverag-
ing the cutting-edge breakthrough in generative AI and traditional,
established symbolic approaches from formal verification for loop
invariant inference. Specifically, our work is motivated by two ob-
servations. First, recent progress in (Transformer-based) LLMs has
demonstrated their remarkable capabilities in “understanding” pro-
grams; there is evidence that LLMs may generate loop invariants
for programs that traditional methods failed to handle. Meanwhile,
LLMs are, compared to previous machine learning methods which
may require building up a neural network model from scratch and
a tremendous volume of training data, considerably more cost-
effective owing to their in-context learning capability. Second, our
empirical studies show that, although LLMs may not return the
correct loop invariant in one response, all the individual predi-
cates/clauses of the correct loop invariants are usually included in
multiple responses. Based on the these observations, we propose
a “query-filter-reassemble” procedure to instantiate the “guessing”
step. That is, we first query LLMs to obtain a set of candidate loop
invariants, and then distill appropriate atomic predicates which can
be further “reassembled” to produce new candidate loop invariants.
As to the “checking” step, the candidate loop invariants are checked
by off-the-shelf SMT solvers.

Two challenges to implement such a “query-filter-reassemble”
procedure are: 1) to effectively extract knowledge from LLMs under
the context loop invariant inference, and 2) to effectively identify
the appropriate predicates from the LLM outputs. For the first chal-
lenge, we design prompts (cf. Section 3.2 for details) to query LLMs
which include, among others, the feedback (e.g., counterexamples
and the specific properties that the current candidate invariant
violates) from the “checking” step. In this way, LLMs would have
richer information to produce more accurate candidate loop in-
variants, thereby accelerating the entire inference process. For the
second challenge, a technical question is to determine whether a
predicate should be filtered out or remain to be reassembled later,
by which we can maximize the chance of generating a valid loop
invariant. To this end, we leverage a (symbolic) approach from
formal verification, i.e., bounded model checking (BMC, [9]). In
a nutshell, BMC is a symbolic model-checking technique which
leverages SAT solvers. In its plain form, the loop is unrolled for a
(pre-defined) fixed number of times producing a finite execution on
which properties (encoded in predicates in this paper) are checked.
In practice, BMC is mainly used for falsification, i.e., violations of
properties, and we leverage its strong falsification capabilities to
filter out incorrect predicates.

Essentially, the interaction between LLM and BMC gives rise to a
closed-loop neuro-symbolic system. That is, the neural component
(LLM) takes into account the feedback, which can be regarded as an
implicit inductive bias when generating candidate loop invariants;
the symbolic component (BMC) processes the output from the

neural component, and reassembles a new candidate loop invariant;
the new candidate is further verified with feedback further used in
the next round of LLM querying.
Evaluation. To evaluate the proposed approach LaM4Inv in a more
thorough way, we first expand the existing benchmark which con-
sists of 133 loop invariant inference problems [46]. We include
84 problems from the 2019 SyGuS competition [1] and 99 prob-
lems from the 2024 SV-COMP benchmarks [5], giving rise to a new
benchmark of 316 problems. Each problem consists of a C code
snippet containing a loop with possibly nested if-then-else struc-
tures, and the corresponding SMT-LIB2 files. We compare LaM4Inv
with 8 existing methods including LoopInvGen [38], CVC5 [3],
Code2Inv [46], LIPUS [54], CLN2INV [42], G-CLN [52], ESBMC [21],
and LEMUR [50]. The experimental results on the new benchmark
show that LaM4Inv successfully generates 309 loop invariants out
of 316 cases, which is at least 90 more than the existing competitors.

Additionally, we conduct a series of ablation studies, the results
of which show that: 1) the carefully designed prompt that includes
feedback information from SMT solvers, 2) the adoption of BMC as
a filter mechanism to identify potentially correct predicates, and 3)
the closed-loop synergy between LLM and BMC, all contribute to
the performance enhancement of LaM4Inv.

In summary, the main contributions of this paper include:
• Approach. We propose a neuro-symbolic loop invariant inference
approach LaM4Inv that synergizes large language models and
bounded model checking. The experiments confirm that LaM4Inv
advances the state-of-the-art baselines.
• Dataset and Evaluation. We expand the existing benchmark of
loop invariant inference problems, curating a dataset double of
the size of the existing benchmark. The proposed approach is
thoroughly evaluated based on the new dataset.

Structure. The rest of the paper is organized as follows. Section 2
introduces the background knowledge and presents a motivation
example. Section 3 describes the proposed approach and Section 4
shows the evaluation results. Section 5 discusses the limitations and
threats to validity, and Section 6 covers the related work. Section 7
concludes the paper.

2 PRELIMINARY AND MOTIVATION
In this section, we provide the background knowledge on loop
invariant inference and present a motivating example.

2.1 Loop Invariant Inference
By well-known Hoare logic [25], for a given loop while 𝐵 do 𝑆 ,
the loop invariant inference problem aims to identify a loop invari-
ant 𝐼 that satisfies

𝑃 ⇒ 𝐼 {𝐼 ∧ 𝐵}𝑆{𝐼 } (𝐼 ∧ ¬𝐵) ⇒ 𝑄

{𝑃} while 𝐵 do 𝑆{𝑄} (1)

where 𝑃 is the pre-condition, 𝑄 is the post-condition, and 𝑆 is the
loop body with 𝐵 as the loop condition. Essentially, Eq. (1) includes
the following three requirements. Recall that a (program) state is a
valuation of all variables of the program and an execution can be
viewed as a sequence of transitions of program states.
• Reachability. The set of program states represented by the loop
invariant should include all states that can be reached by the code



LLM Meets Bounded Model Checking: Neuro-symbolic Loop Invariant Inference ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

executed before the loop. This ensures that the loop invariant
encompasses the pre-condition of the loop.
• Inductiveness. For each program state within the loop invariant,
after each loop execution which leads to a new program state,
this new state must also remain within the loop invariant. This
requirement ensures that the invariant is maintained throughout
the loop’s execution, regardless of the number of iterations.
• Provability. The states within the loop invariant, upon meeting
the exit conditions of the loop, must satisfy the property that
we aim to verify. This condition ensures that the loop correctly
achieves the intended outcomes and that the properties of interest
are maintained once the loop terminates.

Once a candidate invariant is obtained, the next step is to verify
its correctness. To this end, we instruct an SMT solver to check the
satisfiability of the following formula

¬(𝑃 ⇒ 𝐼 ) ∨ ¬ (𝐼 ∧ 𝐵 ∧ 𝑆 ⇒ 𝐼 ) ∨ ¬(𝐼 ∧ ¬𝐵 ⇒ 𝑄) . (2)

If the SMT solver returns “sat” (satisfiable), we will obtain a coun-
terexample that demonstrates a violation of one of the three condi-
tions. Otherwise, i.e., the solver returns “unsat” (unsatisfiable), we
get a valid loop invariant.

Automatically generating a loop invariant is challenging, even
generally impossible due to the undecidability of the problem. So
incomplete/heuristic approaches are necessary in general. However,
with a candidate invariant, SMT solvers such as Z3 [15] normally
can determine whether it meets the three requirements efficiently.
In light of this, most practical methods adopt a guess-and-check
strategy. In a nutshell, program information (e.g., results from sym-
bolic execution, syntactic features of the program, etc.) is gathered
to hypothesize a candidate invariant, which is further checked by
an SMT solver. If the violation of the aforementioned three condi-
tions is detected, the solver provides a counterexample, which can
be utilized in the “guessing” procedure to generate a new candi-
date invariant. This process iterates multiple times until the correct
result is found or the resource budget is exhausted.

2.2 Motivating Example
Figure 1 presents a code snippet in C from our benchmark. The
pre-condition of this program is 𝑃 (𝑙𝑜,𝑚𝑖𝑑, ℎ𝑖) := 𝑚𝑖𝑑 > 0 ∧ 𝑙𝑜 =

0 ∧ ℎ𝑖 =𝑚𝑖𝑑 ∗ 2 and the post-condition is 𝑄 (𝑙𝑜,𝑚𝑖𝑑, ℎ𝑖) := 𝑙𝑜 = ℎ𝑖 .
The loop condition is 𝐵(𝑙𝑜,𝑚𝑖𝑑, ℎ𝑖) :=𝑚𝑖𝑑 > 0. In this example, a
valid loop invariant might be (ℎ𝑖 − 𝑙𝑜 = 2 ∗𝑚𝑖𝑑) ∧ (𝑚𝑖𝑑 >= 0).

Previous tools (e.g., LoopInvGen [38], Code2Inv [46], CLN2INV
[42], G-CLN [52], and LIPUS [54]) have struggled to identify the
correct solution in this example. Simply using LLMs cannot gen-
erate the valid invariant either, as shown in Figure 1. However,
although none of LLM’s outputs are a valid loop invariant, the cor-
rect predicates (e.g., ℎ𝑖 − 𝑙𝑜 = 2 ∗𝑚𝑖𝑑 and𝑚𝑖𝑑 >= 0 in the example)
have appeared in different responses (highlighted in red in Figure 1).
Note that correct predicates are those which hold true before the
loop starts and at the beginning and end of each iteration. This
observation motivates us to identify the correct predicates from the
candidates and reassemble them (e.g., with a conjunctive normal
form) to produce a valid loop invariant.

1. int main() {
2. //variable declarations
3. int lo, mid, hi;
4. //pre-condition
5. assume(mid > 0 && lo == 0 && hi == 2 * mid);
6. //loop-body
7. while(mid > 0) {
8. lo = lo + 1;
9. hi = hi - 1;
10. mid = mid - 1;
11. }
12. //post-condition
13. assert(lo == hi);
14.}

Valid loop invariant:
assert((hi − lo == 2 * mid) && (mid >= 0));

GPT’s answer:
assert((lo + hi == 2 * mid + lo) && (mid >= 0));
assert((lo + hi == 2 * mid));
assert((lo + mid == hi) && (mid >= 0));
assert((hi − lo == 2 * mid));

The red part is the correct predicate.

Figure 1: An example from our benchmark. Although LLM
may not return the valid loop invariant, the correct predi-
cates are already included in different responses.

3 OUR APPROACH
In this section, we present a neuro-symbolic approach for loop
invariant inference, which combines LLMswith traditional bounded
model checking tools to generate loop invariants automatically.
Figure 2 outlines the framework of our approach, which consists of
the following major steps.

(1) Initially, we prepare a prompt containing program information,
task description and suggestions for LLMs, asking them to gen-
erate loop invariants. The output is a set of candidate invariants
in the form of “assert(. . . );”.

(2) Each returned candidate invariant from the LLM is verified using
an SMT solver. If the invariant satisfies the three conditions as per
Eq. (1), it is returned and the procedure terminates; otherwise, the
SMT solver returns a counterexample for the candidate invariant.

(3) We split each failed candidate invariant into individual predicates,
and use bounded model checking tools to check whether each
predicate holds within the input program. Verified predicates
form the correct predicate set.

(4) We combine the verified predicates to form a new loop invari-
ant, and submit it to the SMT solver for verification. Similarly,
the procedure terminates if the combined invariant passes SMT
checking, and a counterexample is returned otherwise.

(5) We incorporate the counterexample generated in either Step 2 or
Step 4 to come up with a new prompt, query LLMs to obtain a
new loop invariant, and go back to Step 2.

The automatic generation process is repeated until the desired
loop invariant is obtained or the resource budget is exhausted. In
the sequel, we present the details of two key steps, i.e., predicate
filtering and LLM querying.



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

Program

Task description
Candidate
Invariant

SplitQuery

BMC tool

SMT solverLLM

Filter

Verify
If sat

Y

N

Candidate predicate 1
Candidate predicate 2
Candidate predicate 3
……

Correct predicate 1
Correct predicate 3
……

Combined
Invariant

Combine

If sat
Y

N
Verify

SMT solver

Construct Prompt

Step 1. Query LLM Step 2. Verify Candidate Invariant Step 3. Identify Correct Predicate

Success

Success

Step 4. Verify Combined InvariantStep 5. Incorporate CE into Prompt

Suggestions

(Counterexample)

Counterexamples

Update

Add CE

Figure 2: An overview of LaM4Inv.

3.1 Predicate Filtering
The main purpose of predicate filtering is to identify those (atomic)
predicates which are most likely to be assembled to give rise to
a valid loop invariant. As mentioned in Section 1, we leverage
bounded model checking. One might be wondering why we cannot
simply use SMT solvers to determine whether a predicate should
be included. To see this, consider the example in Figure 1 again.
Assume we want to check the predicate ℎ𝑖 − 𝑙𝑜 = 2 ∗ 𝑚𝑖𝑑 . An
SMT solver might return a counterexample, e.g., the program state
{𝑙𝑜 = 0,𝑚𝑖𝑑 = −1, ℎ𝑖 = −2} and thus filtered this predicate out.
However, a careful examination would reveal that this is a spuri-
ous counterexample because this state can never be reached in a
program execution (i.e., it violates provability), the consequence of
which is that a valid loop invariant would be missed. This means
that one should take all the executions of the program into account,
and should consider an under-approximation of the program states
when ruling out predicates, for which BMC fits squarely.

We next describe the proposed predicate filtering mechanism,
which processes candidate loop invariants in both conjunctive nor-
mal form and disjunctive normal form.

Conjunctive normal form. If the candidate invariant is in the conjunc-
tive normal form, we first decompose it into individual predicates
by splitting it at the outermost conjunction. Each predicate is then
transformed into an “assert” statement. These assertions are then
inserted into the source code at points, for instance, before the loop
commences, at the start of each loop iteration, and at the end of each
iteration. These assert statements are subsequently validated using
a bounded model checking tool. If the tool returns a failure, the
predicate does not correspond to any property contained within the
program. Such a result implies that the predicate narrows the state
space represented by the candidate invariant, thereby diminishing
its reachability and inductiveness. Consequently, we discard this
predicate. Conversely, if the verification does not fail, indicating
that the predicate holds true across the specified points in the loop,
we retain this predicate and add it to the correct predicate set.

Disjunctive normal form. For a candidate loop invariant in the dis-
junctive normal form, we directly input it into a bounded model

Algorithm 1: Predicate Filtering Algorithm
Input: A program 𝑝 , current candidate invariant set 𝐶𝐼𝑠 ,

correct predicate set 𝐶𝑃𝑠 .
Output: Updated correct predicate set 𝐶𝑃𝑠 .

1 Function BMCFilter(𝑝,𝐶𝐼𝑠,𝐶𝑃𝑠):
2 foreach 𝑐𝑎𝑛_𝐼 in 𝐶𝐼𝑠 do
3 if 𝑐𝑎𝑛_𝐼 is in conjunctive normal form then
4 foreach 𝑐𝑎𝑛_𝑃 in 𝑐𝑎𝑛_𝐼 .split() do
5 if BMC.verify(𝑝, 𝑐𝑎𝑛_𝑃 ) is not Failure then
6 𝐶𝑃𝑠 .add(𝑐𝑎𝑛_𝑃 );
7 else
8 if BMC.verify(𝑝, 𝑐𝑎𝑛_𝐼 ) is not Failure then
9 foreach 𝑐𝑎𝑛_𝑃 in 𝑐𝑎𝑛_𝐼 .split() do
10 if BMC.verify(𝑝,¬(𝑐𝑎𝑛_𝑃)) is not

Failure then
11 𝑐𝑎𝑛_𝐼 .remove(𝑐𝑎𝑛_𝑃 );
12 𝐶𝑃𝑠 .add(𝑐𝑎𝑛_𝐼 );
13 return 𝐶𝑃𝑠

checker. If this tool returns “false”, the candidate invariant is imme-
diately discarded; otherwise, we proceed to split the invariant into
individual predicates at the outermost disjunction. Each of these
predicates is negated and transformed into an “assert” statement.
These assertions are inserted at three critical points in the source
code, similar to the previous case, and are re-evaluated using the
bounded model checker. If the tool returns “true”, we can conclude
that the negated predicate consistently holds in all three locations
within the program, which implies that the original predicate has
never held along any execution of the program, suggesting that the
predicate is redundant in the original disjunctive normal form, and
should be removed. We evaluate all the predicates and conjunct the
remaining ones as a disjunctive form which is then added to the
collection of candidate predicates.

Remarks. The above predicate filtering mechanism allows us to
identify the predicates that align with properties during program
execution. In particular, BMC ensures that these predicates hold



LLM Meets Bounded Model Checking: Neuro-symbolic Loop Invariant Inference ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Prompt 1: Initial prompt.

[𝑝]

Print loop invariants as valid C assertions that help
prove the assertion. In order to get a correct answer, you
may want to consider both the situation of not entering
the loop and the situation of jumping out of the loop. If
some of the preconditions are also loop invariant, you
need to add them to your answer as well. Use ‘&&’ or
‘||’ if necessary. Don’t explain. Your answer should be
‘assert(...);’

before entering the loop and before and after each loop iteration.
Consequently, they naturally satisfy the reachability and induc-
tiveness conditions of the invariant. Regarding provability, as our
candidate predicate set grows, the program state space it constrains
becomes increasingly tighter. Eventually, this constrained program
state space 𝑆 ′ = (𝐼 ∧ ¬𝐵) will satisfy 𝑆 ′ ⊆ 𝑄 , indicating that the
correct loop invariant has been found. The entire algorithm of our
predicate filtering mechanism is summarized in Alg. 1.

Our filtering mechanism can theoretically be applied with other
loop invariant inference methods as long as they are built on the
“guess-and-check” framework. We choose LLMs as our candidate
invariant generation agent primarily because our empirical obser-
vations show that they often can capture correct predicates, but
struggle to combine them effectively using logical conjunctions (∧)
or disjunctions (∨) to form valid loop invariants.

3.2 LLM Querying
In this work, to effectively extract knowledge from LLMs, we design
two types of prompts, i.e., initial prompt and intermediate prompt.
Initial prompt. The initial prompt, as presented in Prompt 1, is used
at the beginning of our loop invariant inference procedure, when
only the program information is available. Specifically, we combine
the program source code (denoted as [𝑝]) with a task description
and generation suggestions. In the suggestions, we encourage LLMs
to pay attention to the pre-condition 𝑃 and loop condition 𝐵, as
both have a significant impact on reachability and inductiveness.
We also specify that the output format must be in the form of
“assert(...);”, facilitating subsequent automatic processing.
Intermediate prompt. In our approach, each generated candidate
loop invariant (either directly obtained from LLMs or recombined
from verified predicates) is verified using an SMT solver. If the
verification fails, SMT solvers may provide critical feedback, and
our intermediate prompt is designed to handle such cases.

To maximize the effect of feedback, we consider both the pro-
vided counterexample and its specific type (i.e., which condition
in Eq. (2) is violated). To obtain this type, we use an SMT solver to
solve the three clauses in Eq. (2), and record the type if any clause
yields a solution. According to the three conditions (i.e., reachability,
inductiveness, and provability) that the current candidate invari-
ant fails to satisfy, we design different intermediate prompts. Take

Prompt 2: Intermediate prompt with reachability violation.

[𝑝]

Print loop invariants as valid C assertions that help
prove the assertion. Your previous answer [𝐶𝐼 ] is too
strict and not reachable. The reachability of the loop
invariant means that the loop invariant 𝐼 can be derived
based on the pre-condition 𝑃 , i.e. 𝑃 ⇒ 𝐼 .

The following is a counterexample given by z3: [𝐶𝐸]

In order to get a correct answer, you may want to
consider the initial situation where the program won’t
enter the loop. Use ‘&&’ or ‘||’ if necessary. Don’t explain.
Your answer should be ‘assert(...);’

reachability as an example. The corresponding prompt is presented
in Prompt 2.

The intermediate prompt is designed to guide the LLM to modify
the candidate invariant (denoted as [𝐶𝐼 ]) based on the feedback
from the counterexample (denoted as [𝐶𝐸]). It generally consists
of the following parts: the current program 𝑝 , the task description,
the previous answer, the failure reasons for the previous answer,
the counterexample provided by the SMT solver, and the genera-
tion suggestions. Specifically, when the candidate invariant fails to
satisfy reachability, we inform the LLM that the previous answer
was too stringent, making it impossible to derive the candidate
invariant from the pre-condition.

Details of the other two types of intermediate prompts can be
found in Appendix A.3. Essentially, if the provability is not satisfied,
we indicate that the previous answer was too loose, and the derived
invariant is insufficient to deduce the post-condition; if inductive-
ness is not satisfied, we explain that the previous answer does not
hold for each loop iteration and may need to account for special
cases during loop execution.

3.3 Overall Algorithm
The overall algorithm is summarized in Alg. 2. “LaM4Inv” refers
to our main function, whose input includes the current program
to be solved, and the three loop invariant conditions in Eq. (2).
After initializations, LaM4Inv utilizes the initial prompt to drive
LLMs in inferring candidate invariants (denoted as 𝑐𝑢𝑟_𝐶𝐼𝑠), and
adds them to the set of candidate invariants (denoted as 𝐶𝐼𝑠). It
then uses BMC tools to update the correct predicate set (denoted
as 𝐶𝑃𝑠). The function “BMCFilter()” refers to invoking Alg. 1.
Subsequently, it iteratively invokes “verifyAndRefine()” to verify
the candidate invariant from 𝐶𝐼𝑠 and reassemble a new invariant
formed by all verified predicates from 𝐶𝑃𝑠 , prompting LLMs with
counterexamples and their types given by the SMT solver to infer
new candidates. Throughout the loop, we keep track of the number
of proposals (denoted as 𝑐𝑜𝑢𝑛𝑡 ), and terminate the algorithm if
it exceeds the predefined limit. In practice, we also add a timeout



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

Algorithm 2: The LaM4Inv Algorithm
Input: A program 𝑝 , the three loop invariant conditions𝑉𝐶 ,

maximum number of iterations 𝑁 .
Output: the correct loop invariant 𝐼

1 Function LaM4Inv(𝑝,𝑉𝐶):
2 𝑠𝑜𝑙𝑣𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒;
3 𝑐𝑜𝑢𝑛𝑡 ← 0;
4 𝐼 ← 𝑁𝑜𝑛𝑒;
5 𝐶𝐼𝑠,𝐶𝑃𝑠 ← ∅,∅;
6 𝑝𝑟𝑜𝑚𝑝𝑡 ← promptGen(𝑝, ⟨∅,∅⟩); ⊲ Initial prompt
7 𝑐𝑢𝑟_𝐶𝐼𝑠 ← LLM.query(𝑝𝑟𝑜𝑚𝑝𝑡);
8 𝐶𝐼𝑠 .push(𝑐𝑢𝑟_𝐶𝐼𝑠);
9 𝐶𝑃𝑠 ← BMCFilter(𝑝, 𝑐𝑢𝑟_𝐶𝐼𝑠,𝐶𝑃𝑠); ⊲ Call Alg. 1

10 while 𝑠𝑜𝑙𝑣𝑒𝑑 is 𝐹𝑎𝑙𝑠𝑒 and 𝑐𝑜𝑢𝑛𝑡 < 𝑁 do
11 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
12 𝑐𝑎𝑛_𝐼 ← 𝐶𝐼𝑠 .pop();
13 𝐼 ← verifyAndRefine(𝑝,𝑉𝐶, 𝑐𝑎𝑛_𝐼 ,𝐶𝐼𝑠,𝐶𝑃𝑠);
14 if 𝐼 is not 𝑁𝑜𝑛𝑒 then
15 𝑠𝑜𝑙𝑣𝑒𝑑 ← 𝑇𝑟𝑢𝑒;
16 else
17 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
18 𝑐𝑎𝑛_𝐼 ← conjunction(𝐶𝑃𝑠);
19 ⊲ Reassemble new invariant
20 𝐼 ← verifyAndRefine(p, 𝑉𝐶, 𝑐𝑎𝑛_𝐼 ,𝐶𝐼𝑠,𝐶𝑃𝑠);
21 if 𝐼 is not 𝑁𝑜𝑛𝑒 then
22 𝑠𝑜𝑙𝑣𝑒𝑑 ← 𝑇𝑟𝑢𝑒;
23 return 𝐼 ;
24 Function verifyAndRefine(𝑝,𝑉𝐶, 𝑐𝑎𝑛_𝐼 ,𝐶𝐼𝑠,𝐶𝑃𝑠):
25 𝑐𝑒 ← SMT-solver.verify(𝑐𝑎𝑛_𝐼 ,𝑉𝐶);
26 if 𝑐𝑒 is not 𝑁𝑜𝑛𝑒 then
27 𝐼 ← 𝑁𝑜𝑛𝑒;
28 𝑝𝑟𝑜𝑚𝑝𝑡 ← promptGen(𝑝, ⟨𝑐𝑎𝑛_𝐼 , 𝑐𝑒⟩);
29 ⊲ Intermediate prompt
30 𝑐𝑢𝑟_𝐶𝐼𝑠 ← LLM.query(𝑝𝑟𝑜𝑚𝑝𝑡);
31 𝐶𝐼𝑠 .push(𝑐𝑢𝑟_𝐶𝐼𝑠);
32 𝐶𝑃𝑠 ← BMCFilter(𝑝, 𝑐𝑢𝑟_𝐶𝐼𝑠,𝐶𝑃𝑠); ⊲ Call Alg. 1
33 else
34 𝐼 ← 𝑐𝑎𝑛_𝐼 ;
35 return 𝐼 ;

constraint. Each LLM query begins a new session without providing
the context from previous dialogues for saving costs.

4 EVALUATION
In this section, we present the experimental results. Our experi-
ments are designed to answer the following research questions.

RQ1. How effective is LaM4Inv in inferring loop invariants com-
pared with the state-of-the-art methods?

RQ2. What impacts do different LLMs, prompt design and predi-
cate filtering mechanisms have on LaM4Inv’s performance?

4.1 Setup
Benchmark dataset. To more comprehensively evaluate different
loop invariant inference methods, we curated a dataset of 316 bench-
mark problems. Our benchmark contains the 133 problems collected
by Code2Inv [46], which are commonly evaluated by previous work.
Additionally, we have manually crafted 84 problems from the 2019
SyGuS competition [1] and 99 problems from the 2024 SV-COMP
benchmarks [5]. More details of the benchmark construction are
included in Appendix A.1.

Baselines. To evaluate our approach, we compare it with the follow-
ing eight baselines.

• LoopInvGen [38] uses an enumerative synthesis technique
which repeatedly adds consistent clauses to strengthen the post-
condition until it becomes inductive.
• CVC5 [3] is an advanced SMT solver equipped with a syntax-
guided synthesis engine for loop invariant inference.
• Code2Inv [46] uses reinforcement learning to infer loop invari-
ants, along with recurrent and graph neural networks to capture
program’s features.
• LIPUS [54] is built upon Code2Inv. It improves reinforcement
learning with a two-dimensional reward, and combines it with a
template iteration method.
• CLN2INV [42] infers loop invariants from the program execu-
tion traces. It designs new neural network models to fit logical
expressions.
• G-CLN [52] is also based on program execution traces and further
extends CLN2INV by using gating units and dropout.
• ESBMC [21] is a context-bounded model checker for verifying
programs, combining BMC, k-induction, abstract interpretation,
SMT and constraint programming solvers.
• LEMUR [50] casts program verification tasks into a series of
deductive steps suggested by LLMs and validated by automated
reasoners, assisting ESBMC in verifying programs.

Among these baselines, LoopInvGen, CVC5 and ESBMC are tra-
ditional symbolic methods, and the rest are learning-based methods.
The last two methods are based on 𝑘-induction verifier [17], which
aligns with the verification procedure used in our approach.

Evaluation metrics. To evaluate the efficacy of different methods
in inferring loop invariants, we adopt the following performance
indicators: 1) the number of successfully generated loop invariants;
2) the number of candidate invariants proposed during the inference
process; and 3) the time consumed to infer the invariants. The first
metric is related to effectiveness, and the latter two metrics are
related to efficiency. Note that the latter two metrics are computed
based on the successfully generated loop invariants of each method.

Implementation details. In our experimental setup, all methods were
evaluated under identical settings, using the same hardware and
benchmark problems. Each method was subjected to a timeout of
600 seconds per problem, with a maximum of 50 loop invariant
proposals allowed. For the experiments involving LLMs, we utilized
four different models: Llama3-8B, GPT-3.5-Turbo (gpt-3.5-turbo-
0125) [37], GPT-4 (gpt-4-0613) [36], and GPT-4-Turbo (gpt-4-turbo-
2024-04-09). For LEMUR [50], we used their default LLM, GPT-4.
When invoking these LLMs, we adopt the default settings (e.g.,
parameters 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 are both set to zero). In our



LLM Meets Bounded Model Checking: Neuro-symbolic Loop Invariant Inference ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: The performance comparison of different loop invariant inference methods. The proposed LaM4Inv generates 309
correct loop invariants out of 316 benchmark problems.

Methods # Solved Benchmarks # Avg. Proposals Avg. Time (s)
All None Only Total (133/84/99)

LoopInvGen [38]

43 4

0 218 (107/49/62) 5.6 17.8
CVC5 [3] 1 207 (107/46/54) 13.9 5.5

Code2Inv [46] 0 210 (110/47/53) 10.9 137.6
LIPUS [54] 0 159 (124/18/17) 3.7 48.4

CLN2INV [42] 0 211 (124/35/52) 23.9 0.6
G-CLN [52] 0 219 (116/45/58) 20.1 2.6
ESBMC [21] 0 126 (70/23/33) 0 0.2
LEMUR [50] 0 177 (81/43/53) 1.5 9.8
LaM4Inv 20 309 (133/81/95) 3.7 35.7

study, the default bounded model checker tool employed is ES-
BMC [21], because it is an efficient and state-of-the-art BMC-based
program verification tool. Our framework is flexible as other BMC
tools can be adopted as well. The bound (i.e., the number of times
the loop is unrolled) of ESBMC is set to 10. The experiments are
conducted on a GPU server with an Intel Core i9-13900k@3.00GHz
CPU, 48GB RAM, and a GeForce RTX 4090 GPU.

4.2 RQ1. Effectiveness and Efficiency
We first compare the overall performance of different methods in
loop invariant inference. The experimental results across 316 bench-
mark problems are shown in Table 1. In the table, “All” indicates
the number of problems solved by all methods; “None” denotes the
problems that no method could solve; “Only” means the number of
problems only solved by the specific method; “Total” represents the
total number of benchmark problems solved by the method. The
three numbers in the parentheses are the respective numbers of
solved problems from three different sources (i.e., Code2Inv, SyGuS
2019, and SV-COMP 2024). The average number of proposals and
average time required by each method on the solved problems are
also reported.

As shown in the table, LaM4Inv successfully infers loop invari-
ants for 309 out of 316 benchmark problems, which is at least 90
more than the competitors. Additionally, our LaM4Inv generates
the correct loop invariant for 20 problems that none of the exist-
ing competitors could solve. Such results demonstrate the superior
performance of the proposed approach.

Among the competitors, LIPUS performs relatively well on the
original 133 benchmark problems but struggles on the expanded
problems. This is probably due to the overfitting problem which is
common in machine learning based methods. For example, the two-
dimensional reward design in LIPUS relies on manually defined
heuristics, and may not generalize well across different datasets.
CLN2INV and G-CLN face similar issues,1 i.e., the performance
on the expanded problems is also significantly worse than that on
the original problems. This is primarily due to their reliance on

1Using the original code provided by the authors, we can solve 191 (123/31/37) and
184 (123/30/31) problems for CLN2INV and G-CLN, respectively. However, we found
a bug in the code, fixing which could further improve their performance. Hence, we
report the results of the fixed version in the table.

generating training data for the continuous logic networks. We
observe 36 out of the 183 new problems result in timeout due to
excessively long data generation process.

In contrast to the above three methods, LoopInvGen, CVC5, and
Code2Inv perform relatively stable across the three dataset sources.
LoopInvGen and CVC5 are traditional symbolic methods, and thus
are expected to be more generalizable. The result of Code2Inv, as a
reinforcement learning based method, is relatively surprising. We
conjecture that its relative better generalization is due to the simple
but effective reward design, i.e., the number of counterexamples
the candidate invariant can pass.

Among the competitors, although efficient, ESBMC solves the
least problems. This is because when the branching of loop execu-
tion traces become complex, verifying all reachable program states
becomes challenging for ESBMC. This also shows the importance of
the synergy between LLMs and model checking. LEMUR is also effi-
cient. This is due to the fact that LEMUR first uses ESBMC to verify
the program, and queries LLMs to generate loop invariants when
ESBMC fails. With this straightforward combination of ESBMC
and LLM, LEMUR generates the correct loop invariants for 51 more
benchmark problems. In contrast, our LaM4Inv solves 183 more
problems compared to ESBMC. This result shows the superiority
of the proposed closed-loop combination, i.e., LLMs’ outputs are
checked by BMC to assemble a new loop invariant, which is further
verified with feedback leveraged for LLM querying.

For efficiency, LaM4Inv generates fewer proposals except for
ESBMC and LEMUR. For LEMUR, on the 51 problems that require
LLMs to solve, the average time is 33.6 seconds and the average
number of proposals is 5.2. In contrast, LaM4Inv’s average time is
35.7 seconds and average number of proposals is 3.7. LaM4Inv takes
relatively longer runtime compared with several competitors. This
can be attributed to two main factors: 1) the inference of LLMs itself
takes a significant amount of time, and 2) we need to decompose
each generated candidate invariant and verify each predicate using
ESBMC.

4.3 RQ2. Ablation Study
To thoroughly understand the impact of different components in
our approach, we conduct a series of ablation studies. These studies
cover the specific LLMs used, the content of the prompts, and the



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

Table 2: The ablation results of different components in LaM4Inv. Both our LLM prompt design and BMC based predicate
filtering play important roles.

LLMs # Solved Benchmarks # Avg. Proposals # Avg. Time (s)

Baseline Prompt No BMC Full Baseline Prompt No BMC Full Baseline Prompt No BMC Full

Llama-3-8B 231 214 233 8.1 10.8 7.0 20.7 10.4 18.8
GPT-3.5-Turbo 265 248 271 6.1 8.9 5.4 22.0 21.2 28.9

GPT-4 241 275 306 3.8 6.3 5.0 27.1 26.5 46.3
GPT-4-Turbo 246 275 309 3.5 5.5 3.7 28.2 27.0 35.7

predicate filtering mechanism. Specifically, we consider four LLMs
including Llama-3-8B, GPT-3.5-Turbo, GPT-4, and GPT-4-Turbo. For
the prompt, we consider a baseline prompt adopted by LEMUR [50],
which is detailed in Appendix A.2. In a nutshell, the baseline prompt
does not contain the feedback information from SMT solvers and
the related modification suggestions. We also consider the impact
of predicate filtering by removing it from LaM4Inv (denoted as “No
BMC”). The ablation results are listed in Table 2, where “Full” refers
to the complete LaM4Inv.

Impact of different LLMs. Table 2 demonstrates performance vari-
ability across the different LLMs. GPT-4 and GPT-4-Turbo generally
show better performance under both the “No BMC” and the “Full”
columns, and GPT-3.5-Turbo outperforms the others using the base-
line prompt. Since both “No BMC” and “Full” incorporate feedback
information into the prompt, this result indicates that GPT-4 se-
ries are more capable of generating the correct loop invariants
when feedback information is provided. In contrast, we observe
that GPT-3.5-Turbo may output more diverse results when the same
baseline prompt is provided, thus has a higher chance to obtain the
correct invariant with our predicate filtering mechanism. Never-
theless, even the least performing LLMs demonstrated comparable
effectiveness to the state-of-the-art methods mentioned before. For
example, using Llama-3-8B could generate 15 more correct loop
invariants than the best existing competitor LoopInvGen.

Impact of feedback information. Next, we compare the results of
the “Baseline Prompt” columns with those of the “Full” columns.
In terms of the number of solved benchmark problems, our full
method LaM4Inv is better in all cases, especially for GPT-4 series.
For example, with GPT-4-Turbo, LaM4Inv solves 63 more problems.
This, again, shows the importance of feedback information, whose
absence hampers LLMs’ ability to iteratively refine and improve
their candidate invariants.

Impact of predicate filtering. In this ablation experiment, we com-
pare the results in the “No BMC” columns with those in the “Full”
columns. We observe improvements in all cases w.r.t. the number of
solved benchmark problems and the average number of proposals,
clearly indicating our predicate filtering mechanism’s usefulness
in enhancing the efficacy of loop invariant inference. For instance,
when using GPT-4-Turbo, our full LaM4Inv solves 309 benchmark
problems with 3.7 proposals in average; when the predicate filtering
mechanism is excluded, it solves 34 less benchmark problems and
meanwhile requires 1.8 more proposals in average. The trade-off
for this improvement is the additional time required when using
the BMC tool to filter predicates.

Baseline Prompt No BMC Full200.0

250.0

300.0

350.0

So
lv

ed
 B

en
ch

m
ar

ks

Std: 2.7

Std: 3.6

Std: 1.2

Std: 2.6

Std: 4.1

Std: 2.2

GPT-3.5-Turbo
GPT-4-Turbo

Figure 3: The robustness results of LaM4Inv against the ran-
domness of LLM outcomes. LaM4Inv performs stable and the
predicate filtering mechanism improves stability.

Robustness to randomness. We next evaluate the robustness of
LaM4Inv against the randomness of LLM outcomes. Specifically,
we still consider the three ablation methods mentioned above, and
apply GPT-3.5-Turbo and GPT-4-Turbo for inferring loop invari-
ants. Five runs of the experiments are conducted for each ablation
method, and the results are shown in Figure 3, where both mean
and standard deviation results are plotted. It can be observed that
the standard deviation of our full LaM4Inv is relatively low (2.2 for
GTP-4-Turbo and 1.2 for GPT-3-Turbo), indicating that LaM4Inv’s
performance is relatively stable. Additionally, comparing the re-
sults in the “No BMC” columns and the “Full” columns, the standard
deviation is reduced when BMC is incorporated. This result demon-
strates that our BMC based predicate filtering mechanism mitigates
the randomness in the inference of LLMs.

5 DISCUSSION
5.1 Threats to Validity
There are three main validity threats. The first concerns the limited
SMT solver capabilities. SMT solvers often struggle with handling
multiplication, division, and power operations. This limitation be-
comes a bottleneck for some methods [49, 54]. Existing works on
non-linear invariant inference also restrict the number of multi-
plicative layers (typically 4-5) [52, 54] and avoid dealing with power
operations where both the base and exponent are variables. While
LLMs can generate candidate invariants of the form “pow(a, b)”,
we are unable to verify these invariants due to the performance



LLM Meets Bounded Model Checking: Neuro-symbolic Loop Invariant Inference ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1. int main() {
2. unsigned int x, y;
3. //pre-condition
4. assume(x == 0 && y == 0);
5. //loop-body
6. while (x < 1000000) {
7. if (x < 500000) {
8. y++;
9. }
10. else {
11. y--;
12. }
13. x++;
14. }
15. //post-condition
16. assert(y == 0);
17.}

(a) Case 1. A successfully-solved but time-consuming case due to
BMC’s performance limitation.

1. int main() {
2. int x, y;
3. //pre-condition
4. assume(x == 0);
5. //loop-body
6. while (x < 99) {
7. if (y % 2 == 0) {
8. x = x + 2;
9. }
10. else {
11. x = x + 1;
12. }
13. }
14. //post-condition
15. assert((x % 2) == (y % 2));
16.}

(b) Case 2. A failed case due to LaM4Inv’s weak DNF handling.

Figure 4: Problems that LaM4Inv struggles to solve.

constraints of SMT solvers. This limitation is the primary reason
we did not include non-linear benchmarks in our test suite.

The second concerns limited benchmarks. Althoughwe expanded
our benchmark set to 316 problems, these benchmarks are still quite
basic and resemble toy problems when compared to real-world ap-
plications. The limited size of the dataset also poses a challenge for
fine-tuning LLMs, as it does not provide enough data to capture
the complexities of real-world programs.

The third concerns data leakage. Despite the risk of overfitting
due to a small dataset being observed in previous work [42, 52, 54],
we cannot guarantee that the benchmarks used in our study are not
part of the pre-training data for LLMs. However, we believe this
issue is less prominent in loop invariant inference because the loop
invariants themselves are unlikely to be included (note that only
the requirements/assertions to verify loop invariants are present in
existing benchmarks).

5.2 Limitations
There are limitations of the proposed LaM4Inv. First, considering
the efficiency aspect, it relies on BMC tools which are sometimes

inefficient in terms of identifying property violations. Second, con-
sidering the solving capability, there are still cases in which LLMs
cannot produce the correct predicates.
Case 1: a successfully-solved but time-consuming case. As noted in
Table 1, our LaM4Inv takes relatively more time when generat-
ing loop invariants. One main reason is due to the inefficiency of
BMC tools under certain circumstances. Figure 4a presents such
an example. Consider a candidate invariant given by the LLM:
“((𝑥 >= 500000 && 𝑦 == 𝑥 −500000) | | (𝑥 < 500000 && 𝑦 == 𝑥))”.
The BMC tool will not find a program execution path that violates
this candidate invariant within 500,000 loop iterations, as it requires
the loop to be unfolded 500,000 to 1,000,000 times. Given the com-
putational speed constraints of BMC, such extensive unfolding is
often impractical. Consequently, we have to rely only on LLMs to
generate the correct invariants, substantially prolonging the infer-
ence process. Enhancing the predicate filtering through appropriate
symbolic execution or generating suitable test cases automatically
could potentially address this issue.
Case 2: a failed case due to LaM4Inv’s weak DNF handling capacity.
Figure 4b demonstrates an example where LaM4Inv’s weak DNF
(disjunctive normal form) handling capacity results in unsuccessful
invariant inference. The correct loop invariant includes a predicate
“(𝑥 <= 99 && 𝑦 % 2 == 1) | | (𝑥 <= 100 && 𝑦 % 2 == 0&&𝑥 %
2 == 0)”. However, when attempting to infer the invariant, LLMs
frequently focus on the parity of variable 𝑥 (odd or even) rather
than considering the range of values 𝑥 can take under different
conditions (𝑥 <= 99 or 𝑥 <= 100). Consider a candidate predicate
(𝑥 <= 99 && 𝑦 % 2 == 1&&𝑥 % 2 == 1) | | (𝑥 <= 100 && 𝑦 %
2 == 0&&𝑥 % 2 == 0). This predicate would be discarded by our
filtering mechanism because the entire expression is incorrect (i.e.,
𝑥 being oddwhen𝑦 is odd is not always true). However, if we further
analyze its conjunctive clause, we may find that simply removing
𝑥%2 == 1 would make the entire predicate correct. Unfortunately,
further refining this process would require evaluating all possible
combinations of predicates within each conjunctive clause of the
DNF, which has an exponential time complexity and is impractical
to implement.

6 RELATEDWORK
In this section, we briefly review the related work, which is divided
into traditional approaches and learning-based approaches.
Traditional approaches. Traditional loop invariant inference meth-
ods mainly rely on symbolic methods such as abduction analy-
sis [6, 16], dynamic analysis [18, 19, 31], model checking [26, 47],
Craig interpolation [27, 34], abstract interpretation [12–14, 29],
random search [43], constraint solving [11, 24], syntax-guided
synthesis [3, 4], and counterexample guided abstraction refine-
ment [10, 55]. For example, Daikon [19] dynamically detects likely
program invariants by running a program and observing the values
it computes during execution. It then reports properties that consis-
tently hold true over these observed executions. LoopInvGen [38]
introduces a data-driven approach, which combines symbolic ex-
ecution and constraint solving techniques to efficiently extract
precise program invariants. Eldarica [26] is a model checker for
Horn clauses over integer arithmetic, algebraic data types, and bit-
vectors, using predicate abstraction combined with counterexample



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

guided abstraction refinement to check the satisfiability of Horn
clauses. CVC4/CVC5 [3, 4] are efficient SMT solvers equipped with a
syntax-guided synthesis engine, enabling the synthesis of functions
in accordance with background theories and their combinations.
Learning-based approaches. Recently, machine learning and deep
learning techniques have been employed in various software engi-
neering tasks [8]. Specifically, for the loop invariant inference prob-
lem, existing methods mainly use decision tree [20, 22, 23, 41, 51],
support vector machine [32, 45], PAC learning [44], reinforcement
learning [46, 54], continuous logic networks [42, 52], and LLMs [7,
28, 33, 48, 50] under the guess-and-check framework. For exam-
ple, Code2Inv [46] and LIPUS [54] employ reinforcement learning
to search for the correct loop invariants. However, reinforcement
learning highly relies on the quality of reward functions, and may
require extensive trial and error. CLN2INV [42] and G-CLN [52] are
both founded on fuzzy logic [35], and utilize deep learning models
to model program execution paths. However, approximation errors
introduced when fitting discrete logic expressions with continuous
functions are inevitable, which may have adverse effects on loop
invariant inference especially for complex expressions.

A few recent attempts have explored the capability of LLMs in
loop invariant inference. Kamath et al. [28] directly empoly LLMs
to find inductive loop invariants; Chakraborty et al. [7] further
rank the outputs of LLMs; Liu et al. [33] propose a self-supervised
learning paradigm to fine-tune LLMs for loop invariant inference;
LEMUR [50] employs LLMs to generate properties that assist ES-
BMC in program verification; Wen et al. [48] consider the broader
problem of automated specification synthesis. More generally, Pei et
al. [39] focus on fine-tuning LLMs to generate program properties;
Yao et al. [53] employ multi-turn prompts with feedback to leverage
LLMs for automated proof synthesis in Rust. Different from the
above work, LaM4Inv forms a closed-loop synergy between LLM
and BMC. That is, LLMs’ outputs are checked by BMC to filter out
incorrect predicates; the remained predicates are reassembled and
verified, and the verification feedback is incorporated into the next
round LLM prompting.

7 CONCLUSION
In this paper, we have proposed a new approach LaM4Inv that
combines LLMs with bounded model checking to generate loop
invariants automatically. The key of LaM4Inv is a “query-filter-
reassemble” procedure that forms a closed-loop synergy between
the (neural) LLM for generating candidate variants and (symbolic)
bounded model checking for filtering out incorrect predicates. Eval-
uations on an expanded dataset consisting of 316 problems confirm
the superior performance of LaM4Inv over a range of state-of-the-
art methods in loop invariant generation.

Our work showcases the power of a neuro-symbolic approach in
solving traditionally challenging problems in the area of software
engineering, which, we believe, can be used elsewhere, e.g., static
analysis, code generation, and DevOps/MLOps.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (Grant #62025202), and the Collaborative Innovation Cen-
ter of Novel Software Technology and Industrialization. T. Chen is

partially supported by oversea grants from the State Key Labora-
tory of Novel Software Technology, Nanjing University under Grant
#KFKT2022A03 and #KFKT2023A04. Yuan Yao is the corresponding
author.

A APPENDIX
A.1 Benchmark Details
In addition to the 133 benchmark problems from existing work,
we have manually crafted 84 problems from the 2019 SyGuS com-
petition and 99 problems from the 2024 SV-COMP benchmarks.
Each problem consists of a C code snippet and the corresponding
SMT-LIB2 files. Each C code snippet is meticulously annotated to
outline pre-conditions, the body of the loop, and post-conditions.
All the snippets contain a single loop, which may include com-
plex nested if-then-else structures, reflecting typical control flow
scenarios in programming. Moreover, to simulate real-world pro-
gramming environments where external dependencies are common,
the code snippets may include calls to unknown functions, denoted
as “unknown()”. This introduces additional complexity to the loop
invariant inference problem. The SMT-LIB2 [40] files are provided
in two distinct formats: SMT-LIB and SyGuS-IF. Each format is
tailored to support different existing methods such as CVC5 [3] and
LoopInvGen [38].

For the 133 benchmark problems from Code2Inv [46], which is
collected from previous work [16, 23] and the 2017 SyGuS com-
petition [2], Ryan et al. [42] identified that 9 out of them were
unsolvable. During our own review of the benchmarks, we discov-
ered additional 6 unsolvable cases. We undertook corrections to
these problematic cases based on their original SMT-LIB2 files.

For the problems from the 2019 SyGuS competition, we follow
Code2Inv [46] by manually converting SyGuS files into C programs
and using Clang [30] to generate the required SMT-LIB2 files. After
removing duplicates, we obtain 84 problems.

For the problems from the 2024 SV-comp, we exclude programs
containing pointers, arrays, nested loops, or multiple loops. To ac-
commodate the prompt length limitations and enhance code read-
ability, we exclude programs exceeding 100 lines. We also exclude
programs that were semantically identical. We then standardize
the coding style for the remaining programs and enhance them
with additional annotations to improve clarity and uniformity. Ad-
ditionally, we implement pre-conditions for programs susceptible
to numerical overflow to ensure their operational correctness. After
these steps, we obtain 99 problems.

A.2 Baseline Prompt
The baseline prompt is from Lemur [50], shown in Prompt 3, which
is based on the program information only.

A.3 Other Intermediate Prompts
If the inductiveness/provability is violated by the candidate invari-
ant, the intermediate prompt is shown in Prompt 4/Prompt 5.

REFERENCES
[1] Rajeev Alur, Dana Fisman, Saswat Padhi, Rishabh Singh, and Abhishek Udupa.

2019. SyGuS-Comp 2018: Results and Analysis. CoRR abs/1904.07146 (2019).
arXiv preprint arXiv:1904.07146 (2019).



LLM Meets Bounded Model Checking: Neuro-symbolic Loop Invariant Inference ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Prompt 3: Baseline prompt.

[𝑝]

Print loop invariants as valid C assertions that help
prove the assertion. Use ‘&&’ or ‘||’ if necessary. Don’t
explain. Your answer should be ‘assert(...);’

Prompt 4: Intermediate prompt with inductiveness viola-
tion.

[𝑝]

Print loop invariants as valid C assertions that help
prove the assertion. Your previous answer [𝐶𝐼 ] is not
inductive. The Inductiveness of the loop invariant means
that if the program state satisfies loop condition 𝐵, the
new state obtained after the loop execution 𝑆 still satisfies,
i.e. {𝐼 ∧ 𝐵} 𝑆 {𝐼 }.

The following is a counterexample given by z3: [𝐶𝐸]

In order to get a correct answer, you may want to
consider the special case of the program executing to the
end of the loop. Use ‘&&’ or ‘||’ if necessary. Don’t explain.
Your answer should be ‘assert(...);’

Prompt 5: Intermediate prompt with provability violation.

[𝑝]

Print loop invariants as valid C assertions that help
prove the assertion. Your previous answer [𝐶𝐼 ] is too weak
and not provable. The Provability of the loop invariant
means that after unsatisfying loop condition 𝐵, we can
prove the post-condition 𝑄 , i.e. (𝐼 ∧ ¬𝐵) ⇒ 𝑄 .

The following is a counterexample given by z3: [𝐶𝐸]

In order to get a correct answer, you may want to
consider the special case of the program executing to the
end of the loop. If some of the preconditions are also loop
invariant, you need to add them to your answer as well.
Use ‘&&’ or ‘||’ if necessary. Don’t explain. Your answer
should be ‘assert(...);’

[2] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. 2017.
Sygus-comp 2017: Results and analysis. arXiv preprint arXiv:1711.11438 (2017).

[3] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, et al. 2022. cvc5: A versatile and industrial-strength SMT solver. In
International Conference on Tools and Algorithms for the Construction and Analysis

of Systems. Springer, 415–442.
[4] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. cvc4. In Inter-
national Conference on Computer Aided Verification (CAV). Springer, 171–177.

[5] Dirk Beyer. 2024. State of the art in software verification and witness valida-
tion: SV-COMP 2024. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 299–329.

[6] Cristiano Calcagno, Dino Distefano, and Viktor Vafeiadis. 2009. Bi-abductive
resource invariant synthesis. In Asian Symposium on Programming Languages
and Systems. Springer, 259–274.

[7] Saikat Chakraborty, Shuvendu Lahiri, Sarah Fakhoury, Akash Lal, Madanlal
Musuvathi, Aseem Rastogi, Aditya Senthilnathan, Rahul Sharma, and Nikhil
Swamy. 2023. Ranking LLM-Generated Loop Invariants for Program Verification.
In Findings of the Association for Computational Linguistics: EMNLP. 9164–9175.

[8] Xiangping CHEN, Xing HU, Yuan HUANG, He JIANG, Weixing JI, Yanjie JIANG,
Yanyan JIANG, Bo LIU, Hui LIU, Xiaochen LI, Xiaoli LIAN, Guozhu MENG, Xin
PENG, Hailong SUN, Lin SHI, Bo WANG, Chong WANG, Jiayi WANG, Tiantian
WANG, Jifeng XUAN, Xin XIA, Yibiao YANG, Yixin YANG, Li ZHANG, Yuming
ZHOU, and Lu ZHANG. [n. d.]. Deep Learning-based Software Engineering:
Progress, Challenges, and Opportunities. SCIENCE CHINA Information Sciences
([n. d.]). https://doi.org/10.1007/s11432-023-4127-5

[9] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded
model checking using satisfiability solving. Formal methods in system design 19
(2001), 7–34.

[10] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2003.
Counterexample-guided abstraction refinement for symbolic model checking.
Journal of the ACM (JACM) 50, 5 (2003), 752–794.

[11] Michael A Colón, Sriram Sankaranarayanan, and Henny B Sipma. 2003. Lin-
ear invariant generation using non-linear constraint solving. In International
Conference on Computer Aided Verification (CAV). Springer, 420–432.

[12] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. 238–252.

[13] Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis
frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages (POPL). 269–282.

[14] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear
restraints among variables of a program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages (POPL). 84–96.

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[16] Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. 2013. Inductive invariant
generation via abductive inference. Acm Sigplan Notices 48, 10 (2013), 443–456.

[17] Alastair F Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer.
2011. Software verification using k-induction. In Static Analysis: 18th International
Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings 18. Springer,
351–368.

[18] Mnacho Echenim, Nicolas Peltier, and Yanis Sellami. 2019. Ilinva: Using abduction
to generate loop invariants. In Frontiers of Combining Systems: 12th International
Symposium, FroCoS 2019, London, UK, September 4-6, 2019, Proceedings 12. Springer,
77–93.

[19] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[20] P Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P Madhusudan.
2018. Horn-ICE learning for synthesizing invariants and contracts. Proceedings
of the ACM on Programming Languages 2, OOPSLA (2018), 1–25.

[21] Mikhail R Gadelha, Felipe R Monteiro, Jeremy Morse, Lucas C Cordeiro, Bernd
Fischer, and Denis A Nicole. 2018. ESBMC 5.0: an industrial-strength C model
checker. InACM/IEEE International Conference on Automated Software Engineering
(ASE). 888–891.

[22] Pranav Garg, Christof Löding, Parthasarathy Madhusudan, and Daniel Neider.
2014. ICE: A robust framework for learning invariants. In International Conference
on Computer Aided Verification (CAV). Springer, 69–87.

[23] Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and Dan Roth. 2016.
Learning invariants using decision trees and implication counterexamples. ACM
Sigplan Notices 51, 1 (2016), 499–512.

[24] Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. 2009. From tests
to proofs. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 262–276.

[25] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer program-
ming. Commun. ACM 12, 10 (1969), 576–580.

[26] Hossein Hojjat and Philipp Rümmer. 2018. The ELDARICA horn solver. In 2018
Formal Methods in Computer Aided Design (FMCAD). IEEE, 1–7.

https://doi.org/10.1007/s11432-023-4127-5


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

[27] Ranjit Jhala and Kenneth L McMillan. 2006. A practical and complete approach
to predicate refinement. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 459–473.

[28] Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis,
Shuvendu K Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma.
2023. Finding Inductive Loop Invariants using Large Language Models. arXiv
preprint arXiv:2311.07948 (2023).

[29] Michael Karr. 1976. Affine relationships among variables of a program. Acta
Informatica 6, 2 (1976), 133–151.

[30] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In
The BSD conference, Vol. 5. 1–20.

[31] Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING: using
dynamic analysis to infer program invariants in separation logic. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 788–801.

[32] Jiaying Li, Jun Sun, Li Li, Quang Loc Le, and Shang-Wei Lin. 2017. Automatic loop-
invariant generation anc refinement through selective sampling. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 782–792.

[33] Chang Liu, Xiwei Wu, Yuan Feng, Qinxiang Cao, and Junchi Yan. 2023. Towards
General Loop Invariant Generation via Coordinating Symbolic Execution and
Large Language Models. arXiv preprint arXiv:2311.10483 (2023).

[34] Kenneth L McMillan. 2010. Lazy annotation for program testing and verification.
In International Conference on Computer Aided Verification (CAV). Springer, 104–
118.

[35] Vilém Novák, Irina Perfilieva, and Jiri Mockor. 2012. Mathematical principles of
fuzzy logic. Vol. 517. Springer Science & Business Media.

[36] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[37] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems (NeurIPS) 35 (2022), 27730–27744.

[38] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven precondition
inference with learned features. ACM SIGPLAN Notices 51, 6 (2016), 42–56.

[39] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. 2023.
Can large language models reason about program invariants?. In International
Conference on Machine Learning. PMLR, 27496–27520.

[40] Mukund Raghothaman and Abhishek Udupa. 2014. Language to specify syntax-
guided synthesis problems. arXiv preprint arXiv:1405.5590 (2014).

[41] Daniel Riley and Grigory Fedyukovich. 2022. Multi-phase invariant synthesis. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 607–619.

[42] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. 2020.
CLN2INV: Learning Loop Invariants with Continuous Logic Networks. In Inter-
national Conference on Learning Representations (ICLR).

[43] Rahul Sharma and Alex Aiken. 2016. From invariant checking to invariant
inference using randomized search. Formal Methods in System Design 48 (2016),
235–256.

[44] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V
Nori. 2013. Verification as learning geometric concepts. In Static Analysis: 20th
International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings
20. Springer, 388–411.

[45] Rahul Sharma, Aditya V Nori, and Alex Aiken. 2012. Interpolants as classifiers.
In International Conference on Computer Aided Verification. Springer, 71–87.

[46] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018.
Learning loop invariants for program verification. Advances in Neural Information
Processing Systems (NeurIPS) 31 (2018).

[47] Hari Govind Vediramana Krishnan, YuTing Chen, Sharon Shoham, and Arie
Gurfinkel. 2023. Global guidance for local generalization in model checking.
Formal Methods in System Design (2023), 1–29.

[48] Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun
Li, Shing-Chi Cheung, and Cong Tian. 2024. Enchanting program specification
synthesis by large language models using static analysis and program verification.
In International Conference on Computer Aided Verification (CAV).

[49] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT
solvers via semantic fusion. In Proceedings of the 41st ACM SIGPLAN Conference
on programming language design and implementation (PLDI). 718–730.

[50] Haoze Wu, Clark Barrett, and Nina Narodytska. 2024. Lemur: Integrating Large
LanguageModels in Automated ProgramVerification. In The Twelfth International
Conference on Learning Representations (ICLR).

[51] Rongchen Xu, Fei He, and Bow-Yaw Wang. 2020. Interval counterexamples for
loop invariant learning. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 111–122.

[52] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020.
Learning nonlinear loop invariants with gated continuous logic networks. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). 106–120.

[53] Jianan Yao, Ziqiao Zhou, Weiteng Chen, and Weidong Cui. 2023. Leveraging
large language models for automated proof synthesis in rust. arXiv preprint
arXiv:2311.03739 (2023).

[54] Shiwen Yu, Ting Wang, and Ji Wang. 2023. Loop Invariant Inference through
SMT Solving Enhanced Reinforcement Learning. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 175–
187.

[55] He Zhu, Aditya V Nori, and Suresh Jagannathan. 2015. Learning refinement
types. ACM SIGPLAN Notices 50, 9 (2015), 400–411.

https://arxiv.org/abs/2303.08774

	Abstract
	1 Introduction
	2 Preliminary and Motivation
	2.1 Loop Invariant Inference
	2.2 Motivating Example

	3 Our Approach
	3.1 Predicate Filtering
	3.2 LLM Querying
	3.3 Overall Algorithm

	4 Evaluation
	4.1 Setup
	4.2 RQ1. Effectiveness and Efficiency
	4.3 RQ2. Ablation Study

	5 Discussion
	5.1 Threats to Validity
	5.2 Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Appendix
	A.1 Benchmark Details
	A.2 Baseline Prompt
	A.3 Other Intermediate Prompts

	References

