
Probabilistic Alternating-Time µ-Calculus∗

Fu Song1, Yedi Zhang1, Taolue Chen2,5, Yu Tang3, and Zhiwu Xu4†
1School of Information Science and Technology, ShanghaiTech University, Shanghai, China

2Department of Computer Science and Information Systems, Birkbeck, University of London, UK
3School of Computer Science and Software Engineering, East China Normal University, Shanghai, China

4College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
5State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Abstract

Reasoning about strategic abilities is key to an AI system con-
sisting of multiple agents with random behaviors. We propose
a probabilistic extension of Alternating µ-Calculus (AMC),
named PAMC, for reasoning about strategic abilities of agents
in stochastic multi-agent systems. PAMC subsumes existing
logics AMC and PµTL. The usefulness of PAMC is exempli-
fied by applications in genetic regulatory networks. We show
that, for PAMC, the model checking problem is in UP∩co-UP,
and the satisfiability problem is EXPTIME-complete, both of
which are the same as those for AMC. Moreover, PAMC ad-
mits the small model property. We implement the satisfiability
checking procedure in a tool PAMCSolver.

Introduction
Temporal logics play a key role in specification and veri-
fication of ICT systems. There are two fundamental deci-
sion problems of temporal logics: satisfiability checking and
model checking. Given a temporal logic formula, the former
asks whether a system satisfying the formula exists, while
the latter asks whether a further given system satisfies the
formula. Temporal logics for reasoning about strategic abil-
ities in Multi-Agent Systems (MAS) have been proposed,
typically in the form of alternating-time temporal logics
(e.g., ATL, ATL∗ and AMC) (Alur, Henzinger, and Kupfer-
man 2002), and strategic logics (Chatterjee, Henzinger, and
Piterman 2010; Mogavero et al. 2014; 2017). Both model
checking and satisfiability checking for these logics have
been extensively investigated (Schewe and Finkbeiner 2006;
Walther et al. 2006; Schewe 2008).

In practice, agents or the environment may exhibit ran-
dom behaviors because of unpredictable physical conditions.
Hence, it is vital to reason about strategic abilities of agents in
a stochastic setting. From the modeling perspective, this gives
rise to stochastic MAS, which consist of a set of agents oper-
ating concurrently in a stochastic environment. Probabilistic
variants of ATL and ATL∗, for instance PATL, PATL∗ (Chen
and Lu 2007; Chen et al. 2013) and SGL (Baier et al. 2007),

∗This work is partially supported by NSFC (No. 61532019,
61761136011, and 61502308), EPSRC (EP/P00430X/1) and ARC
(DP160101652, DP180100691).

†Corresponding author. Email: xuzhiwu@szu.edu.cn.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have been proposed, for which the model checking prob-
lem was also studied. In contrast, the satisfiability problem
for these logics turns out to be much more difficult. Indeed,
the satisfiability problem for PCTL, a (proper) fragment of
these logics, is a long-standing open problem in the formal
verification community (Chakraborty and Katoen 2016).

This paper aims to propose a temporal logic with decidable
satisfiability checking for reasoning about stochastic MAS.
Apart from being theoretical appealing, admitting decidabil-
ity for satisfiability is useful in practice. Examples include
debugging specifications (as writing formal specifications
is often error-prone (Rozier and Vardi 2010)), social proce-
dure or mechanism design (Pauly 2011), and assertion-based
design (i.e., verifying consistency of all requirements by for-
malizing designer’s intention by assertions, and checking
the full set of assertions to be satisfied before the model is
ready for examination (Foster, Krolnik, and Lacey 2004)). To
this end, we propose a probabilistic variant of AMC, prob-
abilistic alternating-time µ-calculus (PAMC), which is ac-
quired by equipping the coalition modalities with (qualita-
tive) probability quantifiers 〈〈A〉〉./k in AMC. For instance,
νZ(a ∧ 〈〈{1, 2}〉〉≥0.9Z) states that the agent group {1, 2} has a
coalition strategy at each step such that the opponent coali-
tion can escape the a-region in one step with probability less
than 0.1. PAMC subsumes both AMC and PµTL (Liu et al.
2015), but is incomparable with PATL and PATL∗ mentioned
before. Remark that we do not extend AMC in a quantitative
way such as (Mio 2012), in order to retain decidability.

We investigate the model checking and the satisfiabil-
ity checking problems of PAMC. The former can be done
by an adaptation of the algorithm for AMC. As a re-
sult, the model checking problem of PAMC is shown in
UP∩co-UP. In a sharp contrast, for satisfiability check-
ing the presence of coalition modalities and probabilis-
tic quantifiers pose new challenges. In particular, the de-
cision procedures for (non-probabilistic) alternating-time
logics (Schewe and Finkbeiner 2006; Walther et al. 2006;
Schewe 2008) and PµTL (Chakraborty and Katoen 2016)
cannot be directly adapted. To solve this problem, we pro-
pose a novel reduction from the satisfiability problem to
solving (turn-based two-player) parity games, resulting in an
EXPTIME decision procedure and a small model property
in the sense that every satisfiable formula φ has a model of
size exponential in |φ| (cf. Theorem 3). Remarkably, the com-

plexities of the model checking and satisfiability problems of
PAMC lie in the same complexity classes of AMC. We imple-
ment a satisfiability solver for PAMC, which is, to our best
knowledge, the first satisfiability checker for (probabilistic)
alternating-time temporal logics.

Due to space restriction, proofs and experimental re-
sults are given in the full version, which, together
with our tool PAMC and benchmarks, is available
at http://faculty.sist.shanghaitech.edu.cn/faculty/
songfu/Projects/PAMCSolver.

Probabilistic Concurrent Game Structures
For a natural number k ∈ N, let [k] denote the set {1, ..., k}.
Given a probability distribution Pr : X → [0, 1], let supp(Pr)
denote the set {x ∈ X | Pr(x) > 0}. We denote by D(X) the
set of probability distributions on X.

Probabilistic concurrent game structures are a model of
concurrent stochastic multi-agent systems, in which the tran-
sition probability function gives a probability distribution
over the successor states after considering a joint action from
the agents. In this work, we consider stochastic multi-agent
systems with perfect information only.

Definition 1. Fix a finite set AP of atomic propositions
(i.e., observations). A probabilistic concurrent game struc-
ture (PCGS) is a tupleM = (Ag,Act,Q,Γ, δ, λ, q0), where:
Ag = [n] is a finite set of agents. Act =

⋃
i∈Ag Acti and Acti

is a non-empty set of actions of agent i ∈ Ag. A decision
d = 〈a1, ..., an〉 is a joint action of all the agents in which
ai, denoted by d(i), is the action chosen by agent i. We de-
note by D the set of decisions. Q is a finite set of states and
q0 ∈ Q is the initial state. Γ = (Γi)i∈Ag with Γi : Q → 2Acti

assigning to agent i at a state q a finite set Γi(q) ⊆ Acti of
actions available at the state q. We denote by D(q) the set∏

i∈Ag Γi(q) of available decisions at q. δ : Q ×D→ D(Q) is
a (partial) probability transition function which associates
each pair (q, d) ∈ Q×D such that d ∈ D(q) with a probability
distribution over Q. λ : Q → 2AP is the labeling function
assigning to each state q ∈ Q a set of atomic propositions.

Given a state q ∈ Q and a decision d ∈ D(q),M moves
to a next state q′ ∈ Q with probability δ(q, d)(q′), which
is also denoted as δ(q, d, q′). We indicate by supp(q, d) the
set supp(δ(q, d)). The outdegree of M is the maximum of
|supp(q, d)| for q ∈ Q and d ∈ D(q).
Paths and tracks. A path π ∈ Qω (a.k.a. play) is an in-
finite sequence of states q0q1... such that for all j ≥ 1,
q j ∈ supp(q j−1, d j−1) for some d j−1 ∈ D(q j−1). A track is
a finite prefix of a path. Given a track π = q0q1...qm (resp. a
path π = q0q1...) and 0 ≤ i ≤ m for track, let πi denote the
state qi and π≤i denote q0...qi.
Strategies. A (mixed) strategy of agent i ∈ Ag is a function
θi : Q+ → D(Acti) that assigns to each track q0 . . . qm, repre-
senting the past history of the game, a probability distribution
on its available actions Γi(qm) ⊆ Acti. Therefore, the choice
of the next action can be history-dependent and mixed. A
strategy θi is pure if for all π ∈ Q+, θi(π) is a Dirac distri-
bution, i.e., |supp(θi(π))| = 1. A strategy θi is memoryless
(i.e., positional or imperfect recall) if for all π, π′ ∈ Q+ and

q ∈ Q, θi(πq) = θi(π′q), namely, the agent takes an action
only depending on the last state. We denote by Θi the set of
all strategies for agent i and let Θ =

⋃
i∈Ag Θi.

A coalition is a set of agents A ⊆ Ag. A coalition strategy
for A is a function υA : A→ Θ assigning to each agent i ∈ A
a strategy υA(i) ∈ Θi. Let ΥA denote the set of all coalition
strategies for the coalition A. We denote by A the set Ag \ A.
Outcomes. Given a track π ∈ Q+ such that the last state of
π is q and a decision d ∈ D(q), we denote by PrυA,υA (π, d)
the probability

∏
i∈A υA(i)(π)(d(i))·

∏
i∈A υA(i)(π)(d(i)), that is,

the probability of the decision d chosen by the agents Ag with
respect to π, υA and υA. We say that a path π is compatible
with respect to υA and υA, if for all j ≥ 0, there is a decision
d j ∈ D(π j) such that δ(π j, d j, π j+1) > 0 and PrυA,υA (π≤ j, d j) >
0. We denote by OυA,υA

q the set of paths starting from q that
are compatible with respect to υA and υA, which is the set of
paths that can be followed by the game when agents enforce
strategies υA and υA.

Probability Space. A σ-algebra over a set Ω is a set E ⊆ 2Ω

such that E contains ∅ and is closed under countable union
and complement. An element of E is called an event. A prob-
ability space is a triple (Ω,E,Pr), where Ω is a sample space,
E is a σ-algebra over Ω, Pr : E → [0, 1] is a probability
measure such that Pr(Ω) = 1 and the countable additivity
property is satisfied, i.e., Pr(U∪V) = Pr(U)+Pr(V) whenever
U ∩ V = ∅.

Given a coalition A ⊆ Ag, a state q, two coalition strate-
gies υA and υA, one can construct a probability space over
the set of paths OυA,υA

q with the probability measure PrυA,υA
q

defined in the standard way (Vardi 1985), where an event is a
measurable set of paths.
CGS, MDP and MC. A concurrent game structure (CGS) is
a PCGS such that all the probability distributions involved in
the PCGS (i.e., probability transition function and strategies)
are Dirac distributions. A Markov decision process (MDP)
is a PCGS such that |Ag| = 1. A Markov chain (MC) is an
MDP such that |Act| = 1.

Probabilistic Alternating-Time µ-Calculus
Probabilistic alternating-time µ-calculus is a simple and suc-
cinct, but natural, probabilistic extension of AMC (Alur,
Henzinger, and Kupferman 2002). In this logic, coalition
modalities 〈〈A〉〉φ from AMC are replaced with probabilistic
coalition modalities 〈〈A〉〉./kφ, which probabilistically quan-
tify over the strategic choices of a group A of agents.

Definition 2. Let Z be a finite set of propositional vari-
ables. The syntax of probabilistic alternating-time µ-calculus
(PAMC for short) is defined as follows:

φ ::= p | ¬φ | Z | φ∧φ | φ∨φ | µZ.φ | νZ.φ | 〈〈A〉〉./kφ | [[A]]./kφ

where p ∈ AP, Z ∈ Z, ./∈ {≥, >, <,≤}, k ∈ [0, 1] is a ra-
tional constant, A ⊆ Ag, and for each µZ.φ and νZ.φ, each
occurrence of Z in φ is under the scope of an even number of
negations in φ.

Let φ be a PAMC formula. Z ∈ Z is a free variable in φ if
an occurrence of Z is not in the scope of a fixed-point operator

µZ or νZ. φ is closed if φ does not contain any free variables.
A closed formula is called a sentence. W.l.o.g., we assume
hereafter that each variable Z is quantified by either µ or ν at
most once in each PAMC sentence. We denote by ⊥ ≡ p∧¬p
and > ≡ p ∨ ¬p. For simplifying the presentation, formulae
like 〈〈{i1, ..., im}〉〉./kφ may be written as 〈〈i1, ..., im〉〉./kφ.

Given two PAMC sentences ηZ.φ for η ∈ {µ, ν} and ϕ, let
φ[ϕ/Z] be the sentence obtained from φ by replacing every
occurrence of Z with ϕ. The Fisher-Ladner closure FL(φ) of a
PAMC sentence φ contains all the sub-sentences of φ with the
rule: if ηZ.ϕ ∈ FL(φ) for η ∈ {µ, ν}, then ϕ[ηZ.ϕ/Z] ∈ FL(φ).
The size of FL(φ) is at most double that of φ. We denote by
FL∃(φ) ⊆ FL(φ) and FL∀(φ) ⊆ FL(φ) the set of sentences of
the form 〈〈A〉〉./kϕ and [[A]]./kϕ, respectively.

Example 1. Let φ = νZ1.(〈〈1, 2〉〉≥
1
2 Z1 ∧ φ

′) where φ′ =

µZ2.(p ∨ 〈〈1, 3〉〉≥
1
3 Z2), we have FL(φ) = {φ, 〈〈1, 2〉〉≥

1
2 φ ∧

φ′, 〈〈1, 2〉〉≥
1
2 φ, φ′, p ∨ 〈〈1, 3〉〉≥

1
3 φ′, p, 〈〈1, 3〉〉≥

1
3 φ′}.

The semantics of PAMC is defined w.r.t. PCGSs and a
valuation ξ : Z → 2Q. Let ξ[S/Z] denote the valuation such
that ξ[S/Z](Z) = S and ξ[S/Z](Z′) = ξ(Z′) for Z , Z′.
Definition 3. Given a PCGS M = (Ag,Act,Q,Γ, δ, λ, q0),
the semantics of PAMC is defined via the denotation function
~◦�

ξ

M
, which is defined as follows:

• ~p�ξ
M

= {q ∈ Q | p ∈ λ(q)};
• Boolean connectors are defined in a standard way;
• ~µZ.φ�ξ

M
=

⋂
{Q′ ⊆ Q | ~φ�ξ[Q

′/Z]
M

⊆ Q′};

• ~νZ.φ�ξ
M

=
⋃
{Q′ ⊆ Q | ~φ�ξ[Q

′/Z]
M

⊇ Q′};

• ~〈〈A〉〉./kφ�ξ
M

=

{
q ∈ Q | ∃υA ∈ ΥA, ∀υA ∈ ΥA :
PrυA,υA

q ({π ∈ OυA,υA
q | π1 ∈ ~φ�

ξ

M
}) ./ k

}
;

• ~[[A]]./kφ�ξ
M

=

{
q ∈ Q | ∀υA ∈ ΥA, ∃υA ∈ ΥA :
PrυA,υA

q ({π ∈ OυA,υA
q | π1 ∈ ~φ�

ξ

M
}) ./ k

}
.

We sometimes drop the superscript ξ from ~φ�ξ
M

if φ is a
PAMC sentence. When it is clear from context, the subscript
M is also dropped from ~φ�ξ

M
and ~φ�M.

AMC (resp. PµTL (Liu et al. 2015)) is an extension of µ-
calculus in which the next-modalities are replaced by 〈〈A〉〉φ
and [[A]]φ (resp. [Xφ]./k) and the semantics is defined over
CGSs (resp. MCs). PATL/PATL∗ (Chen and Lu 2007) are
probabilistic variants of ATL/ATL∗ (Alur, Henzinger, and
Kupferman 2002) and the semantics is defined over PCGSs.
Theorem 1. PAMC subsumes AMC and PµTL. PAMC and
PATL/PATL∗ are incomparable.

Proof sketch. Each AMC (resp. PµTL) formula can be
encoded as a PAMC formula, which can be shown eas-
ily by structural induction. For instance, 〈〈A〉〉φ in AMC
(resp. [Xφ]./k in PµTL) can be encoded as 〈〈A〉〉≥1φ′ (resp.
〈〈∅〉〉./kφ′), where φ′ denotes the encoding of φ in respective
cases. Some PAMC formulae (e.g., 〈〈A〉〉>0.5φ) cannot be
expressed in AMC or PµTL.

Since PµTL and PCTL are incomparable on Markov
chains (Liu et al. 2015), there exists a PCTL formula (and
thus a PATL formula) which is inexpressible in PAMC. More-
over, we note that AMC is more expressive than ATL∗, by

which a formula in PAMC can be constructed which is inex-
pressible in PATL∗. �

Proposition 1 is directly from the PAMC semantics. To
simplify the notation, we write > for <, < for >, ≤ for ≥ and
≥ for ≤, and write ≥̂ for <, >̂ for ≤, ≤̂ for > and <̂ for ≥.

Proposition 1. Given a PAMC formula 〈〈A〉〉./kφ or [[A]]./kφ
for k ∈ [0, 1], ./∈ {≥, >,≤, <}, a PCGSM and a valuation
ξ, we have the following deduction rules.

1. ~〈〈A〉〉./kφ�ξ = ~〈〈A〉〉./1−k ¬φ�ξ.
2. ~[[A]]./kφ�ξ = ~[[A]]./1−k ¬φ�ξ.
3. ~¬〈〈A〉〉./kφ�ξ = ~[[A]].̂/1−kφ�ξ.
4. ~¬[[A]]./kφ�ξ = ~〈〈A〉〉.̂/1−kφ�ξ.
5. ~〈〈Ag〉〉./kφ�ξ = ~[[∅]]./k φ�ξ.
6. ~[[Ag]]./kφ�ξ = ~〈〈∅〉〉./k φ�ξ.

A PAMC sentence is in negation normal form (NNF) if
¬ only appear in front of atomic propositions. Using Propo-
sition 1 and the rule ¬µZ.φ ≡ νZ.¬φ[¬Z/Z], every PAMC
sentence can be equivalently transformed into NNF. Here-
after, we assume that all PAMC sentences are in NNF.

In this work, for a given PAMC sentence φ, we consider
the following two fundamental problems. Model checking
is to determine whether q0 ∈ ~φ�M for the initial state q0

of a given PCGSM. Satisfiability checking is to determine
whether there exists a PCGSM with the initial state q0 such
that q0 ∈ ~φ�M.

In PAMC, only probabilistic next-time coalition modalities
〈〈A〉〉./kφ and [[A]]./kφ are allowed, hence it suffices to con-
sider memoryless strategies for the coalition A. By leveraging
the model checking algorithm for AMC (Alur, Henzinger,
and Kupferman 2002) that computes ~φ� recursively, we can
get a model checking algorithm for PAMC. The key differ-
ence lies in the handling of 〈〈A〉〉./kφ and [[A]]./kφ, which
can be done in polynomial time by linear programming. The
model checking problem for AMC lies in UP∩co-UP, and
can be solved in exponential time in the alternation depth of
the formula. We have that

Theorem 2. The model checking problem for PAMC is in
UP∩co-UP and can be decided in O((|φ| · |M|)c·d) time for
some constant c, where d denotes the alternation depth of φ.

An application: Genetic Regulatory Networks
To demonstrate the usage of PCGSs and PAMC, we present
an example from precision medicine based on the probabilis-
tic Boolean network (PBN) model for genetic regulatory net-
works (Shmulevich and Dougherty 2010). Consider a PBN
with n genes, each of which has two local states {0, 1} where
0 and 1 indicate that the corresponding gene is not expressed
and expressed, respectively. A (global) state of the PBN is a
Boolean vector of local states with width n. Each gene i has a
finite set of predictor functions Fi = { f i

1, ..., f i
ki
} denoting the

inter-gene relationship, where each function f i
j determines

the local state of gene i at the next step when the j-th element
of Fi (i.e., f i

j) is chosen, and ci
j is the probability that f i

j is
selected (so

∑ki
j=1 ci

j = 1). The probability of the PBN evolv-
ing from a state ~q = [q1, ..., qn] to the state ~q′ = [q′1, ..., q

′
n] is

∑
f1∈F1: f1(~q)=q′1

· · ·
∑

fn∈Fn: fn(~q)=q′n
∏n

i=1 ci, where ci is the proba-
bility that fi is selected by the gene i.

For intervention purposes, control inputs are introduced
into PBN to reason about treatment strategies. For instance, in
cancer therapy, control inputs (e.g. radiation, chemotherapy)
may be employed to move the state probability distribution
vector away from one associated with uncontrolled cell pro-
liferation or markedly reduced apoptosis (Shmulevich and
Dougherty 2010, Section 5.2). Suppose there are x1, ..., xm
control inputs ranging over binary values {0, 1}, which con-
trol the probabilities of predictor functions. The control input
being 1 indicates that a corresponding predictor function
(intuitively a treatment) is applied; 0 otherwise. Under the
values ~v = v1, ..., vm of control inputs, the probability of the
predictor function f i

j ∈ Fi becomes ci
j,~v with

∑ki
j=1 ci

j,~v = 1.
(The specific definitions of ci

j,~v are irrelevant here.) The main
problem is to synthesize values for the control inputs at each
state to ensure that the network behaves as desired.

The control of PBN can be naturally modelled as a PCGS
M = (Ag,Act,Q, Γ, δ, λ, q0), where Ag = [n+m] with i ∈ [n]
denotes the gene i, and n + i ∈ {n + 1, ...n + m} denotes the
control input i; Q = {0, 1}n corresponding to states of the
network; Acti = Fi for i ∈ [n] denoting the predictor func-
tions and Actn+i = {0, 1} for n + i ∈ {n + 1, ...n + m} denoting
treatment choices; Γi is the function such that Γi(~q) = Acti
for every agent i and state ~q; q0 is the initial state of the net-
work which is determined by the patient’s physiology; δ is
the probability transition function such that for every ~q ∈ Q,
f i

ji
∈ Fi and ~v = v1, ..., vm ∈ {0, 1}m:

δ(~q, 〈 f 1
j1
, ..., f n

jn
, v1, ..., vm〉, [f 1

j1
(~q), ..., f n

jn
(~q)]) :=

∏n
i=1 ci

ji,~v
.

Note that we do not specify λ explicitly as this is usually
application-specific.

With PCGS defined above, we can formulate the achieve-
ment property as: µZ.(p ∨ 〈〈A〉〉≥0.8Z) for some A ⊆ {n +
1, ..., n + m}. This formula expresses that some desired-region
is reachable, and there is treatment strategy using at most
treatments in A at each step such that it has at least probability
0.8 to go on with the right direction.

The maintenance property can be formulated as νZ.(p ∧
〈〈A〉〉>0.9Z) stating that there is a treatment strategy using at
most treatments in A at each step such that the network has
less than 0.1 probability to escape from the desired-region.

Deciding Satisfiability
In this section, we present a reduction from the satisfiability
problem of a PAMC sentence φ to solving a (turned-based,
two-player) parity gameGφ such that φ is satisfiable iff Player-
0 has a winning strategy in Gφ. Intuitively, as in the classic
decision procedure of µ-calculus, the fixpoint is handled by
parity games. In particular, the two players are model “con-
structor” and “spoiler”. The constructor intends to show that
there a model witnessing the satisfiability of φ, while the
spoiler tries to defeat the constructor by demonstrating a
path in the game to show that a model cannot exist. Each
state controlled by the constructor consists of a set of sub-
sentences of φ for which the constructor strives to show that
it is satisfiable. In addition, the coalition strategies for the

set of sub-sentences are tackled by the notions of intersec-
tion graph and maximally independent set (cf. Definition 5),
which are used to make sure that the strategies of an agent
in different coalitions are consistent. To handle probabili-
ties, weighted covers are used which would guarantee that
there exist distributions over covers satisfying constraints
./ k. To illustrate the reduction, the PAMC sentence Ψ =
〈〈1, 2〉〉>0.5 p1 ∧ 〈〈3〉〉>0.5(¬p1 ∨ p2) ∧ [[1, 3]]>0.4(¬p1 ∧ ¬p2)
will be used as an example. We start with some concepts.
Parity automata. A parity automaton (PA) is a tuple P =
(S ,Σ, δ, S 0, F), where S is a finite set of states, Σ is the input
alphabet, δ : S × Σ → 2S is a transition function, S 0 ⊆ S
is the set of initial states and F : S → {0, ..., k} is a rank
function. A run ρ of P over an ω-word α0α1... ∈ Σω is an
infinite sequence of states s0s1 · · · such that s0 ∈ S 0, and
for every i ≥ 0, si+1 ∈ δ(si, αi). Let inf(ρ) be the set of states
visited infinitely often in ρ. ρ is accepting iff mins∈inf(ρ) F(s) is
even. An infinite word is accepted byP iffP has an accepting
run over this word. We denote by L(P) ⊆ Σω the set of all
infinite words accepted by P. A Büchi automaton (BA) is
a special PA (S ,Σ, δ, S 0, F) in which F : S → {0, 1}. A PA
P = (S ,Σ, δ, S 0, F) is deterministic if |S 0| = 1 and for all
(s, α) ∈ S × Σ, |δ(s, α)| ≤ 1. δ and S 0 in a deterministic parity
automaton (DPA for short) are simplified as the function
δ : S × Σ→ S and a state s0.
Turned-based two-player parity games. A (turned-based
two-player) parity game G is a tuple (V = V0]V1, E, vinit,Ξ),
where V0 is a finite set of states (i.e., vertices) of Player-0, V1
is a finite set of states (i.e., vertices) of Player-1, E ⊆ V × V
is a finite the set of edges, vinit ∈ V0 is the initial state, and
Ξ : V → {0, ..., k} is a rank function. An infinite play ρ of
G is an infinite sequence of states v0v1... such that v0 = vinit,
and for every i ≥ 0, (vi, vi+1) ∈ E. A finite play ρ of G is a
finite sequence of states v0v1...vn such that v0 = vinit, and for
every i ∈ [n], (vi−1, vi) ∈ E. A strategy of Player-i is a partial
function θ : V∗Vi → V such that for every ρ ∈ V∗ and v ∈ Vi,
if θ(ρ · v) is defined, then (v, θ(ρ · v)) ∈ E. Given a strategy θ0
for Player-0 and a strategy θ1 for Player-1, let Gθ0,θ1 be the
play such that Player-0 and Player-1 enforce their strategies
θ0 and θ1 during the play. Player-0 wins on a finite play ρ iff
the last state of ρ is controlled by Player-1 and it cannot move
to the next state anymore. Player-0 wins on an infinite play ρ
iff mins∈inf(ρ) F(s) is even. Player-0 has a winning strategy iff
Player-0 has a strategy θ0 such that Player-0 wins on the play
Gθ0,θ1 , for each strategy θ1 Player-1 chooses.
Covers and weighted covers. Given a set of sentences Φ,
a cover c of Φ is a set c ⊆ 2Φ such that

⋃
v∈c v = Φ. A

weighted cover of Φ is a pair (c,w) such that c is a cover
of Φ and w : c → (0, 1] is a probability function such that∑

v∈c w(v) = 1. The width of a cover c is the cardinality of
c. Given a weighted cover (c,w) of Φ = {φ1, · · · , φm}, let
Φ(φi) := {v ∈ c | φi ∈ v} and w(φi) :=

∑
v∈Φ(φi) w(v). We write

Cb(Φ) for the set of covers of Φ with width at most b. Given
b and a set Φ, |Cb(Φ)| is at most 2|Φ|·(b+1)−2|Φ|

2|Φ|−1 (Chakraborty and
Katoen 2016). Intuitively, a weight cover (c,w) of Φ can be
seen as a distribution w over the cover c.

Definition 4. A set v of sentences is transitive if the following
conditions hold: (1) If φ1 ∧ φ2 ∈ v, then φ1, φ2 ∈ v; (2) If

φ1 ∨ φ2 ∈ v, then φ1 ∈ v or φ2 ∈ v; (3) If ηZ.ϕ ∈ v for
η ∈ {µ, ν}, then ϕ[ηZ.ϕ/Z] ∈ v; and (4) There exists at least
one sentence of the form 〈〈A〉〉./kϕ or [[A]]./kϕ in v.

Let Vt denote the set of transitive sets of sentences. For
every v ∈ Vt, we denote by 〈〈v〉〉 and [[v]] the sets {〈〈A〉〉./kϕ ∈
v} and {[[A]]./kϕ ∈ v}, respectively. Intuitively, consider a set
v that is controlled by the constructor in the parity game Gφ.
If v is transitive, then the constructor should give successor
states to satisfy sentences in 〈〈v〉〉 and [[v]].

Example 2. The set v = {〈〈3〉〉>0.5(¬p1 ∨ p2), 〈〈1, 2〉〉>0.5 p1,
[[1, 3]]>0.4(¬p1 ∧ ¬p2)} is a transitive vertex. We have:
〈〈v〉〉 = {〈〈1, 2〉〉>0.5 p1, 〈〈3〉〉〉>0.5(¬p1 ∨ p2)}, and [[v]] =
{[[1, 3]]>0.4(¬p1 ∧ ¬p2)}.

Definition 5. An intersection graph Gv = (〈〈v〉〉, Ev)
formed from v ∈ Vt is an undirected graph such that
(〈〈A1〉〉

./1k1ϕ1, 〈〈A2〉〉
./2k2ϕ2) ∈ Ev iff A1 ∩ A2 , ∅.

A maximal independent set (MIS) M of Gv is a maximal
set of vertices in Gv such that there are no edges between
each pairs of vertices fromM.

Given a set B ⊆ Ag, a B-dominant MIS (B-MIS)M of Gv
is a maximal set of vertices in Gv such that (1) there is no
edge between each pairs of vertices fromM and (2) for all
〈〈A〉〉./kϕ ∈ M, A ⊆ B.

Let misv (resp. misB
v) denote the set of MIS (resp. B-

MIS) in Gv. Note that misv and misB
v are sets whose

members are sets of sub-sentences. Let MISv :=
(
misv \⋃

[[B]]./kϕ∈[[v]] mis
B
v

)
∪
{
M∪{[[B]]./kϕ} | M ∈ misB

v , [[B]]./kϕ ∈

[[v]]
}
. As mentioned before, MIS and B-dominant MIS are

used to ensure the consistency of the strategies of an agent in
different coalitions. Intuitively, consider a transitive set v con-
trolled by the constructor. To satisfy sentences in 〈〈v〉〉 and
[[v]], probabilistic constraints in each setM of MISv should
be ensured simultaneously by one distribution, but this distri-
bution need not satisfy the probabilistic constraints outside
ofM by choosing proper actions.

Example 3. Consider the vertex v defined in Example 2,
we have: misv =

{{
〈〈1, 2〉〉>0.5 p1, 〈〈3〉〉>0.5(¬p1 ∨ p2)

}}
, mis{1,3}v ={{

〈〈3〉〉>0.5(¬p1 ∨ p2)
}}
, MISv =

{{
〈〈1, 2〉〉>0.5 p1, 〈〈3〉〉>0.5(¬p1 ∨ p2)

}
,{

〈〈3〉〉>0.5(¬p1 ∨ p2), [[1, 3]]>0.4(¬p1 ∧ ¬p2)
}}
.

Proposition 2. (Moon and Moser 1965) Given a set v of
sentences, the size of misv (resp. misB

v) is at most 3
|v|
3 and

can be computed in time O(3
|v|
3).

Definition 6. Given a set M ∈ MISv, the objective of M is
the set OM := {ϕ | 〈〈A〉〉./kϕ ∈ M or [[A]]./kϕ ∈ M}.

A weighted cover (cM,wM) of OM such that cM ∈

Cb(OM) satisfies M, denoted by (cM,wM) |= M, if for all
〈〈A〉〉./kϕ, [[A]]./kϕ ∈ M, wM(ϕ) ./ k, where b = |M| + 1.

Example 4. Consider the vertex v from Example 2. We have
MISv = {M,M′}, whereM = {〈〈1, 2〉〉>0.5 p1, 〈〈3〉〉>0.5(¬p1 ∨

p2)} andM′ = {〈〈3〉〉>0.5(¬p1 ∨ p2), [[1, 3]]>0.4(¬p1 ∧ ¬p2)}.
Furthermore, OM = {p1,¬p1 ∨ p2}, and OM′ = {¬p1 ∨

p2,¬p1 ∧¬p2}. OM has one cover c1 =
{
{p1,¬p1 ∨ p2}

}
such

that (c1,w1) |= M for some weight w1, e.g., w1({p1,¬p1 ∨

p2}) = 1.M′ have two covers c2 =
{
{¬p1 ∨ p2,¬p1 ∧ ¬p2}

}
and c′2 =

{
{¬p1 ∨ p2}, {¬p1 ∧ ¬p2}

}
such that (c2,w2) |=

M′ and (c′2,w
′
2) |= M′ for some weights w2 and w′2, e.g.

w2({¬p1 ∨ p2,¬p1 ∧ ¬p2} = 1), w′2({¬p1 ∨ p2}) = 0.55 and
w′2({¬p1 ∧ ¬p2}) = 0.45).
Definition 7. Given a PAMC sentence φ, the two-player
game Gφ is a triple (V = V0] V1, E, vinit), where V0 and
V1 form a partition of V, Vi for i ∈ {0, 1} is the finite set of
vertices for Player-i, vinit = {φ} ∈ V0 is the initial vertex of
the game and E ⊆ V × V is a finite set of edges.

V0 and V1 are defined below. E ⊆ V × V is the least set of
edges satisfying the following conditions.

1. (v, v ∪ {φi}) ∈ E if φ1 ∨ φ2 ∈ v and φi < v, for i ∈ {1, 2}.
2. (v, v∪{ϕ[ηZ.ϕ/Z]}) ∈ E if ηZ.ϕ ∈ v and ϕ[ηZ.ϕ/Z] < v, for

η ∈ {µ, ν}.
3. (v, v ∪ {φ1, φ2}) ∈ E if φ1 ∧ φ2 ∈ v and {φ1, φ2} * v.
4. (v,⊥) ∈ E if both p ∈ v and ¬p ∈ v for some p ∈ AP.
5. (v,>) ∈ E if v < Vt and Items 1-4 cannot be applied to v.
6. For each v ∈ Vt, let MISv = {M1

v , · · · ,M
kv
v }, C j := {cM |

(cM,wM) |= M j
v}, and C =

⋃
j∈[kv] C j. If C j = ∅ for some

j ∈ [kv], then (v,⊥) ∈ E; otherwise (v,C) ∈ E, (C,C j) ∈ E
for j ∈ [kv], (C j, c) ∈ E for each c ∈ C j, and (c, v′) ∈ E
for each v′ ∈ c.

As a result, V0 := 2FL(φ) ∪ {⊥} ∪ {C j | (C,C j) ∈ E} and
V1 := V1,0 ∪ V1,1 ∪ {>}, where V1,0 = {C | (v,C) ∈ E},V1,1 =
{c | (c, v′) ∈ E}, C,C j and c are defined as above.

The intuition of Items 1-5 are straightforward. To see
the intuition behind Item 6. Let us begin with v =
{〈〈A1〉〉

./1k1φ1, · · · , 〈〈An〉〉
./nknφn}. If Ai ∩ A j = ∅ for some

i, j ∈ [n], then for each pair of possible strategies of Ai and A j,
there always exist some common decisions when Ai and A j
enforce their strategies, hence their probabilistic constraints
should be simultaneously ensured by one distribution. Sup-
pose misv = {M1, · · · ,Mm} (cf. Definition 5), then, (1) for
each pair of 〈〈A〉〉./kφ and 〈〈A′〉〉./

′k′φ′ inMi, A ∩ A′ = ∅, (2)
for each sentence 〈〈A〉〉./kφ fromMi, for every setM j , Mi,
there exists a sentence 〈〈A′〉〉./

′k′φ′ inM j with A∩A′ , ∅, and
(3) each sentence in v must occur at least in one setMi. This
allows us to consider each setMi individually by assigning
the action a j to players in A j. For each setM j, we compute
its weighted covers, which check existence of distributions
that satisfying the probabilistic constraints inM j.

For the general case v = {〈〈A1〉〉
./1k1ϕ1, · · · , 〈〈Am〉〉

./mkmϕm,
[[B1]]∼1h1ψ1, · · · , [[Bn]]∼nhnψn}, we assume there exists a
player j <

⋃n
i=1 Bi (cf. Remark 1). By assigning the action

bi to the player j for each sentence [[Bi]]∼ihiψi, it suffices to
check individually each of {[[B1]]∼1h1ψ1, · · · , [[Bn]]∼nhnψn}.
For each Bi, let misBi

v = {Mi
1, · · · ,M

i
mi
}, then (1) for each sen-

tence 〈〈A〉〉./kϕ from misBi
v , A ⊆ Bi, and (2)Mi

` for 1 ≤ ` ≤ mi
must be a subset of a set in misv. By assigning proper actions
to players (cf. previous paragraph), for each [[Bi]]∼ihiψi, it
suffices to check existence of a distribution for sub-sentences
inMi

` and [[Bi]]∼ihiψi simultaneously, which is done by com-
puting weighted covers. Moveover, each MISM ∈ misv such
thatM ⊆ M′ for someM′ ∈ misBi

v is omitted to avoid double
checking.

v1 = {〈〈1, 2〉〉>0.5p1 ∧ 〈〈3〉〉>0.5(¬p1 ∨ p2) ∧ [[1, 3]]>0.4(¬p1 ∧ ¬p2)}

v2 = {〈〈1, 2〉〉>0.5p1 ∧ 〈〈3〉〉>0.5(¬p1 ∨ p2), [[1, 3]]
>0.4(¬p1 ∧ ¬p2)}

v3 = {〈〈1, 2〉〉>0.5p1, 〈〈3〉〉>0.5(¬p1 ∨ p2), [[1, 3]]
>0.4(¬p1 ∧ ¬p2)}

C =
{{

{p1,¬p1 ∨ p2}
}
,
{
{¬p1 ∨ p2,¬p1 ∧¬p2}

}
,
{
{¬p1 ∨ p2}, {¬p1 ∧¬p2}

}}

{p1,¬p1}
v7 = {p1, p2}

{¬p1,¬p1 ∧ ¬p2}{p2,¬p1 ∧ ¬p2} {¬p1} v9 = {¬p1,¬p2}v8 = {p2}

⊥

C1 =
{{

{p1,¬p1 ∨ p2}
}}

C2 =
{{

{¬p1 ∨ p2,¬p1 ∧ ¬p2}
}
,
{
{¬p1 ∨ p2}, {¬p1 ∧ ¬p2}

}}

c1 =
{
{p1,¬p1∨p2}

}
c2 =

{
{¬p1 ∨p2,¬p1 ∧¬p2}

}
c3 =

{
{¬p1∨p2}, {¬p1∧¬p2}

}

v4 = {p1,¬p1 ∨ p2} {¬p1 ∨ p2,¬p1 ∧ ¬p2} v5 = {¬p1 ∨ p2} v6 = {¬p1 ∧¬p2}

>

Figure 1: The game GΨ for Ψ, where C,>, c1, c2, and c3 are
Player-1 vertices, others are Player-0 vertices.

Overall, for each v ∈ Vt with MISv = {M1
v , · · · ,M

kv
v }, if

C j = ∅ for some j ∈ [kv], then no distribution satisfies the
probabilistic constraints ofM j

v, we added (v,⊥) into E. i.e.,
Player-0 loses the game. Otherwise, the play goes to C and let
Player-1 to choose oneM j

v to dissatisfy, i.e., (C,C j) ∈ E. At
C j, Player-0 chooses one cover c ∈ C j such that (c,w) |= M j

v,
i.e., the distribution w satisfies the probabilistic constraints of
M

j
v. Next, Player-1 chooses one set of sub-sentences v′ ∈ c

to dissatisfy.

Example 5. Recalling the sentence Ψ = 〈〈1, 2〉〉>0.5 p1 ∧

〈〈3〉〉>0.5(¬p1 ∨ p2)∧ [[1, 3]]>0.4(¬p1 ∧¬p2), the correspond-
ing game is shown in Figure 1, in which c1, c2, c3,> and C are
Player-1 vertices, others are Player-0 vertices. 〈〈1, 2〉〉>0.5 p1
and 〈〈3〉〉>0.5(¬p1 ∨ p2) have some common decisions, as
well as 〈〈3〉〉>0.5(¬p1∨ p2) and [[1, 3]]>0.4(¬p1∧¬p2). While,
〈〈1, 2〉〉>0.5 p1 and [[1, 3]]>0.4(¬p1 ∧ ¬p2) can have disjoint
decisions by assigning proper actions to Player-1. We have:
MISv = {M,M′}, whereM = {〈〈1, 2〉〉>0.5 p1, 〈〈3〉〉>0.5(¬p1 ∨

p2)} andM′ = {〈〈3〉〉>0.5(¬p1 ∨ p2), [[1, 3]]>0.4(¬p1 ∧ ¬p2)}.
If Player-1 chooses C1 (resp. C2) to dissatisfy, then Player-
0 can choose c1 (resp. c3) as the witness of M (resp. M′).
It is easy to verify that Player-0 has a winning strategy in
the game GΨ by choosing c1, c3, v7, v8 and v9. The model
construction from a winning strategy is given in Example 6.

Finally, in order to prevent from regeneration sequences
for each µ-sentence ψ (i.e., derivation sequences that de-
rive ψ infinitely often), we construct a DPA which accepts
all terminating regeneration sequences. By constructing the
cross-product of the two-player game Gφ and the DPA, we
get the resulting parity game Gφ such that φ is satisfiable iff
Player-0 has a winning strategy in the parity game Gφ.

Definition 8. Given a PAMC sentence φ, we define a Büchi
automaton Pµ = (S µ,Σ, δµ, S 0

µ, Fµ) where S µ = S 0
µ = {ψ ∈

FL(φ) | ψ contains some µ-sentence}, Σ = 2FL(φ), δµ(q, α) =
q′, if q′ is derived from q and q′ ∈ α, and Fµ(s) = 0 for all
s ∈ S µ.

Pµ precisely accepts all the sequences in which some
µ-sub-sentence of φ is derived infinitely often. Let Pφ =

(S φ,Σ, δφ, s0
φ, Fφ) be a DPA such that L(Pφ) = Σω \ L(Pµ).

Therefore, Pφ accepts all the sequences for which all the
µ-sentences in FL(φ) are regenerated finitely often.
Definition 9. Based on Definition 7 and Definition 8, we
define a turn-based two-player parity game Gφ = (V ′ =
V ′0] V ′1, E

′, v′init,Ξ) where

• V ′0 = V0× (S φ∪{♦}), V ′1 = V1× (S φ∪{♦}), v′init = (vinit, s0
φ),

• for every v ∈ V such that v < Vt, s ∈ S φ and (v, v′) ∈ E:
then

(
(v, s), (v′, δφ(s, v))

)
∈ E′;

• for every v ∈ Vt and s ∈ S φ:
–

(
(v, s), (⊥, ♦)

)
∈ E′ if (v,⊥) ∈ E;

–
(
(v, s), (C, ♦)

)
∈ E′ if (v,C) ∈ E;

–
(
(C, ♦), (C j, ♦)

)
∈ E′ for every (C,C j) ∈ E;

–
(
(C j, ♦), (c, ♦)

)
∈ E′ for every c ∈ C j;

–
(
(c, ♦), (v′, δφ(s, v))

)
∈ E′ for every v′ ∈ c.

• Ξ : V ′ → {0, · · · , k} such that Ξ(v, s) = Fφ(s) for all
s ∈ S φ,

where ♦ is a placeholder, C,C j and c are the vertices as in
Definition 7.

Lemma 1. Player-0 has a winning strategy in the game Gφ
for every satisfiable sentence φ.

To show the other direction of Lemma 1, we shall show
how to construct a model from a winning strategy of Player-0.
W.l.o.g., we assume that {1, · · · , g} is the set of all players
appeared in φ. It is well-known that, for parity games, if
Player-0 has some winning strategies, then Player-0 has a
pure memoryless winning strategy (Gurevich and Harrington
1982). Let ζ′ : V ′0 → V ′ be a winning strategy of Player-0
in Gφ. Since the DPA Pφ is deterministic, we can directly
extract from ζ′ : V ′0 → V ′ a winning strategy ζ : V0 → V for
Player-0 by projecting from V ′ onto V .

The winning strategy ζ and the game Gφ together yield
the digraph Gζφ in which only the edges specified by the
strategy ζ are retained. Let Π be the set of all finite paths
~v = v1 · · · vr ∈ V+

0 (V1,0 ∪ {>}) in Gζφ such that v1 is either the

initial vertex vinit or there is an edge (v, v1) in Gζφ such that
v ∈ V1,1. Note that Π is a finite set. We denote by fst(~v) and
lst(~v) the vertex v1 and vr, respectively. Given a vertex v ∈ V0,
let Πv ⊆ Π be the set of finite paths starting from v.

Let AP be the set of atomic propositions appearing in
φ, Mφ = (Ag,Act,Q,Γ, δ, λ, q0) be a PCGS obtained from
G
ζ
φ, where Ag := {1, · · · , g + 1}, Act :=

⋃
i∈Ag Acti, Acti :=⋃

q∈Q Γi(q), Q := {q~v | ~v ∈ Π} ∪ {q>}, q0 := q~v such that
fst(~v) = vinit, λ(q~v) := (

⋃
i∈[r−1] vi) ∩ AP, for ~v = v1 · · · vr ∈ Π

and λ(q>) := ∅. Γ := (Γi)i∈Ag and δ are defined as follows.
Consider a path ~v = v1 · · · vr ∈ Π such that vr , >, then

vr−1 ∈ Vt, we assume that

〈〈vr−1〉〉 := {〈〈A1〉〉
./1k1ϕ1, · · · , 〈〈Am〉〉

./mkmϕm}

[[vr−1]] := {[[B1]]∼1h1ψ1, · · · , [[Bn]]∼nhnψn}.

Let ι(〈〈A j〉〉
./ jk jϕk) (resp. ι([[B j]]∼ jh jψ j)) denote the index j.

Case 1: If [[vr−1]] =
⋃

i∈[m] Ai = ∅, then we use one action a
and let Γi(q~v) := {a} for every i ∈ Ag.

Case 2: Otherwise, we consider m + n distinct actions
a1, ..., am, b1, ..., bn. Let Γg+1(q~v) := {b1, · · · , bn} and Γi(q~v)
be the least set of actions satisfying the following conditions:

1. for every j ∈ [m] and i ∈ A j, a j ∈ Γi(q~v)

2. for every j ∈ [n] and i ∈ B j, b j ∈ Γi(q~v).
In the sequel, we define δ. We first extract essential infor-

mation from ~v. Suppose misB j
vr−1 := {M j

1, · · · ,M
j
` j
}, for j ∈

[n] and misvr−1 \
⋃

j∈[n] mis
B j
vr−1 := {M0

1, · · · ,M
0
`0
}. Note that

in Case 1, there is only one MIS that is 〈〈vr−1〉〉.
By the construction of Gφ, for everyM ∈ MISvr−1 , there is

a weighted cover (c,w) such that |c| ≤ |M| + 1, (c,w) |= M.
Let wM be the distribution such that wM(q~v′) = w(fst(~v′)) for
all ~v′ ∈

⋃
v∈c Πv, w> be the distribution such that wM(q>) = 1.

Moreover, vr ≡ {c | (c,w) |= M, M ∈ MISvr−1 }.
To define δ, we introduce some auxiliary notations.

• For a sentence ψ = 〈〈A〉〉./kϕ ∈ 〈〈vr−1〉〉, let

D[ψ]∃ := {d ∈ D(q~v) | ∀i ∈ A, d(i) = aι(ψ)}.

• For an MISM ∈ {M0
1, · · · ,M

0
`0
}, let

D[M]∃ :=
⋂
ψ∈M D[ψ]∃ and D∃ :=

⋃
M∈{M0

1,··· ,M
0
`0
} D[M]∃.

• For a sentence ϕ = [[B]]∼hψ ∈ [[vr−1]], let

D[ϕ]∀ := {d ∈ D(q~v) | ∀i ∈ B, d(i) = bι(ϕ)}.

• For a sentence ϕ = [[B]]∼hψ ∈ [[vr−1]] and a B-MISM ∈
misB

vr−1
, let

D[M, ϕ]∀ := D[M]∃ ∩ D[ϕ]∀ and
D∀ :=

⋃
[[B]]∼hψ∈[[vr−1]],M∈misB

vr−1
D[M, [[B]]∼hψ]∀.

The following proposition reveals the property of action
assignments of agents.
Proposition 3. The following statements hold:

1. For everyM ∈ {M0
1, · · · ,M

0
`0
}, [[B]]∼hψ andM′ ∈ misB

vr−1
:

D[M]∃ ∩ D[M′, [[B]]∼hψ]∀ = ∅.

2. For everyM1,M2 ∈ {M
0
1, · · · ,M

0
`0
}, ifM1 , M2, then

D[M1]∃ ∩ D[M2]∃ = ∅.

3. For every [[B]]∼hψ, [[B′]]∼
′h′ψ′, M ∈ misB

vr−1
and M′ ∈

misB′
vr−1

, ifM , M′ or [[B]]∼hψ , [[B′]]∼
′h′ψ′, then

D[M, [[B]]∼hψ]∀ ∩ D[M′, [[B′]]∼
′h′ψ′]∀ = ∅.

4. For every ϕ, ϕ′ ∈ 〈〈vr−1〉〉, if ϕ , ϕ′, then
(D[ϕ]∃ \ (D∃ ∪ D∀)) ∩ (D[ϕ′]∃ \ (D∃ ∪ D∀)) = ∅.

5. For every ϕ, ϕ′ ∈ [[vr−1]], if ϕ , ϕ′, then
(D[ϕ]∀ \ (D∃ ∪ D∀)) ∩ (D[ϕ′]∀ \ (D∃ ∪ D∀)) = ∅.

6. For every ϕ ∈ 〈〈vr−1〉〉 and ϕ′ ∈ [[vr−1]],
(D[ϕ]∃ \ (D∃ ∪ D∀)) ∩ (D[ϕ′]∀ \ (D∃ ∪ D∀)) = ∅.

We now define δ as follows.
1. ForM ∈ {M0

1, · · · ,M
0
`0
} and d ∈ D[M]∃, δ(q~v, d) := wM.

2. For all ϕ = [[B]]∼hψ ∈ [[vr−1]], M ∈ misB
vr−1

and d ∈
D[M, ϕ]∀, δ(q~v, d) := wM.

3. For all ϕ ∈ 〈〈vr−1〉〉 and d ∈ D[ϕ]∃ \ (D∃ ∪ D∀), for some
M ∈ MISvr−1 such that ϕ ∈ M, δ(q~v, d) := wM. Note that
suchM always exists.

4. For all ϕ = [[B]]∼hψ ∈ [[vr−1]] and d ∈ D[ϕ]∀ \ (D∃ ∪ D∀),
for some M ∈ MISvr−1 such that ϕ ∈ M, δ(q~v, d) := wM.
Note that suchM always exists as well.

5. For all the other d ∈ D(q~v), δ(q~v, d) = w>.

Example 6. Consider the game in Figure 1 and the strategy
ζ with ζ(C2) = c3, ζ(v4) = v7 and ζ(v5) = v8. Then, ζ is a win-
ning strategy for Player-0 from which we can construct the di-
graph Gζ

Ψ
. Gζ

Ψ
is the subgraph of the game shown in Figure 1

consisting of the vertices {v1, · · · , v9,C,C1,C2, c1, c3,>}
and related edges between them. Π consists of four finite
paths {v1v2v3C, v4v7>, v5v8>, v6v9>} (blue paths in Figure 1).
From Π, using the weights defined in Example 4, we get
the model of φ as shown in Figure 2, where players are
{1, 2, 3, 4} and actions are {a1, a2, b1} with Γ1(q0) = {a1},
Γ2(q0) = {a1, b1} and Γ3(q0) = {a2}, λ(q1) = {p1, p2},
λ(q2) = {p2} and λ(q3) = ∅.

q0 q1

q2

q3
〈a1, a1, a2, b1〉, 1〈a1, b1, a2, b1〉, 0.45

〈a1, b1, a2, b1〉, 0.55q0 = qv1v2v3C q1 = qv4v7>
q2 = qv5v8> q3 = qv6v9>

Figure 2: The model of Ψ.

By the construction (in particular, the function δ and finite
path set Π), we can verify that
Lemma 2. Mφ satisfies φ.

Theorem 3. The satisfiability problem for PAMC is
EXPTIME-complete. Moreover, if φ is satisfiable, we can
construct a model of φ in exponential size of |φ| such that

• the number of players is bounded by k + 1, where k is the
number of the players occurring in φ,

• the number of actions is bounded by |FL∃(φ)|+ |FL∀(φ)|+1,
• the out-degree is bounded by |FL∃(φ)| + 2.

Remark 1. Without adding the player g + 1, our reduction
still works if Ag , (B ∪ B′) for each distinct pair of [[B]]∼hψ
and [[B′]]∼

′h′ψ′ in [[v]]. The case Ag = B ∪ B′ could be
solved by adapting the reduction by adding new MISsM into
MISv, which takes into account the common decisions for
[[B]]∼hψ and [[B′]]∼

′h′ψ′. We leave it as future work.

Related Work
Probabilistic temporal logics such as PCTL, PCTL∗, PLTLK,
µ-calculi and their variants (Vardi 1985; Morgan and McIver
1997; Huth and Kwiatkowska 1997; de Alfaro and Majumdar
2001; McIver and Morgan 2002; 2007; Mio 2012; Cleave-
land, Iyer, and Narasimha 2005; Huang and Kwiatkowska
2016; Fu et al. 2018) can express probabilistic properties,
rather than coalitions of players.

The most relevant work includes PATL and PATL∗ (Chen
and Lu 2007; Huang, Su, and Zhang 2012), their vari-
ants (Chen et al. 2013; Huang and Luo 2013) and SGL (Baier

et al. 2007). These papers mainly focus on the model check-
ing problem (on different game structures or interpretations
of strategies). The satisfiability problem, which is the main
focus of the current paper, is a long-standing open problem
for PATL and PATL∗, notwithstanding with some progress
(Brázdil et al. 2008; Chakraborty and Katoen 2016).

Satisfiability checking of (non-probabilistic) alternating-
time temporal logics has been considered (Goranko and
Vester 2014). Our decision procedure shares some similarity,
specifically, MIS plays a similar role as the distributed con-
trol therein. Modulo the probabilistic aspects and fixpoints,
the main difference is that, to handle coalition strategies we
are considering maximally independent sets rather than all
subsets of distributed controls. As a result, our construction
leads to potentially smaller models, which is important for
implementation, but is at the cost of a considerably more
complicated construction.

Much research has been dedicated to algorithms of solv-
ing stochastic games, e.g., (Chatterjee 2007; Chatterjee and
Henzinger 2012; Brázdil et al. 2006) in which objectives are
usually given by ω-regular properties or PCTL. Stochastic
games are useful for synthesis and verification of reactive
systems, but hard to express cooperation of players.

Conclusion and Future Work
We proposed a temporal logic PAMC for reasoning about
strategic abilities of agents in stochastic multi-agent systems.
We showed that the complexities of its model checking and
satisfiability checking problems lie in the same complexity
classes of the respective problems of modal µ-calculus and
AMC. We also implemented a satisfiability solver for PAMC.

Several questions are left open for PAMC, such as (com-
plete) axiomatization and extensions with epistemic opera-
tors. We leave them as future work.

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002. Alternating-
time temporal logic. J. ACM 49(5):672–713.
Baier, C.; Brázdil, T.; Größer, M.; and Kucera, A. 2007. Stochastic
game logic. In QEST, 227–236.
Brázdil, T.; Brozek, V.; Forejt, V.; and Kucera, A. 2006. Stochastic
games with branching-time winning objectives. In LICS, 349–358.
Brázdil, T.; Forejt, V.; Kretı́nský, J.; and Kucera, A. 2008. The
satisfiability problem for probabilistic CTL. In LICS, 391–402.
Chakraborty, S., and Katoen, J. P. 2016. On the satisfiability of
some simple probabilistic logics. In LICS, 56–65.
Chatterjee, K., and Henzinger, T. A. 2012. A survey of stochastic
ω-regular games. J. Comput. Syst. Sci. 78(2):394–413.
Chatterjee, K.; Henzinger, T. A.; and Piterman, N. 2010. Strategy
logic. Information and Computation 208(6):677–693.
Chatterjee, K. 2007. Stochastic Omega-Regular Games. Ph.D.
Dissertation, University of California, Berkeley.
Chen, T., and Lu, J. 2007. Probabilistic alternating-time temporal
logic and model checking algorithm. In FSKD, 35–39.
Chen, T.; Forejt, V.; Kwiatkowska, M. Z.; Parker, D.; and Simaitis,
A. 2013. Automatic verification of competitive stochastic systems.
Form. Method. Syst. Des. 43(1):61–92.

Cleaveland, R.; Iyer, S.; and Narasimha, M. 2005. Probabilistic
temporal logics via the modal µ-calculus. Theor. Comput. Sci. 342(2-
3):316–350.
de Alfaro, L., and Majumdar, R. 2001. Quantitative solution of
omega-regular games. In STOC, 675–683.
Foster, H.; Krolnik, A.; and Lacey, D. 2004. Assertion-based design
(2. ed.). Kluwer.
Fu, C.; Turrini, A.; Huang, X.; Song, L.; Feng, Y.; and Zhang, L.
2018. Model checking probabilistic epistemic logic for probabilistic
multiagent systems. In IJCAI, 4757–4763.
Goranko, V., and Vester, S. 2014. Optimal decision procedures for
satisfiability in fragments of alternating-time temporal logics. In
AIML, 234–253.
Gurevich, Y., and Harrington, L. 1982. Trees, automata, and games.
In STOC, 60–65.
Huang, X., and Kwiatkowska, M. 2016. Model checking probabilis-
tic knowledge: A PSPACE case. In AAAI, 2516–2522.
Huang, X., and Luo, C. 2013. A logic of probabilistic knowledge
and strategy. In AAMAS, 845–852.
Huang, X.; Su, K.; and Zhang, C. 2012. Probabilistic alternating-
time temporal logic of incomplete information and synchronous
perfect recall. In AAAI.
Huth, M., and Kwiatkowska, M. Z. 1997. Quantitative analysis and
model checking. In LICS, 111–122.
Liu, W.; Song, L.; Wang, J.; and Zhang, L. 2015. A simple proba-
bilistic extension of modal mu-calculus. In IJCAI, 882–888.
McIver, A., and Morgan, C. 2002. Games, probability and the
quantitative µ-calculus qmµ. In LPAR, 292–310.
McIver, A., and Morgan, C. 2007. Results on the quantitative
µ-calculus qmµ. ACM Trans. Comput. Log. 8(1):3.
Mio, M. 2012. Game semantics for probabilistic modal µ-calculi.
Ph.D. Dissertation, The University of Edinburgh.
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y. 2014.
Reasoning about strategies: On the model-checking problem. ACM
Trans. Comput. Log. 15(4):34:1–34:47.
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y. 2017.
Reasoning about strategies: on the satisfiability problem. Log. Meth.
Comput. Sci. 13(1).
Moon, J., and Moser, L. 1965. On cliques in graphs. Israel J. Math.
3(1):23–28.
Morgan, C., and McIver, A. 1997. A probabilistic temporal calculus
based on expectations. In FMP, 4–22.
Pauly, M. 2011. Logic for Social Software. Ph.D. Dissertation,
University of Amsterdam.
Rozier, K. Y., and Vardi, M. Y. 2010. LTL satisfiability checking.
STTT 12(2):123–137.
Schewe, S., and Finkbeiner, B. 2006. Satisfiability and finite model
property for the alternating-time mu-calculus. In CSL, 591–605.
Schewe, S. 2008. ATL* satisfiability is 2EXPTIME-complete. In
ICALP, 373–385.
Shmulevich, I., and Dougherty, E. R. 2010. Probabilistic Boolean
Networks - The Modeling and Control of Gene Regulatory Networks.
SIAM.
Vardi, M. Y. 1985. Automatic verification of probabilistic concur-
rent finite-state programs. In FOCS, 327–338.
Walther, D.; Lutz, C.; Wolter, F.; and Wooldridge, M. 2006. ATL
satisfiability is indeed EXPTIME-complete. J. Logic Comput.
16(6):765–787.

